1
|
Prevalence and Antimicrobial Resistance Profiles of Foodborne Pathogens Isolated from Dairy Cattle and Poultry Manure Amended Farms in Northeastern Ohio, the United States. Antibiotics (Basel) 2021; 10:antibiotics10121450. [PMID: 34943663 PMCID: PMC8698512 DOI: 10.3390/antibiotics10121450] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Foodborne pathogens significantly impact public health globally. Excessive antimicrobial use plays a significant role in the development of the public health crisis of antibiotic resistance. Here, we determined the prevalence and antimicrobial resistance profiles of E. coli O157, Salmonella, L. monocytogenes, and Campylobacter isolated between 2016 and 2020 from small scale agricultural settings that were amended with dairy cattle or poultry manure in Northeastern Ohio. The total prevalence of the foodborne pathogens was 19.3%: Campylobacter 8%, Listeria monocytogenes 7.9%, Escherichia coli O157 1.8%, and Salmonella 1.5%. The prevalence was significantly higher in dairy cattle (87.7%) compared to poultry (12.2%) manure amended farms. Furthermore, the prevalence was higher in manure samples (84%) compared to soil samples (15.9%; p < 0.05). Multiple drug resistance was observed in 73%, 77%, 100%, and 57.3% of E. coli O157, Salmonella, L. monocytogenes, and Campylobacter isolates recovered, respectively. The most frequently observed resistance genes were mphA, aadA, and aphA1 in E. coli O157; blaTEM, tet(B), and strA in Salmonella; penA, ampC, lde, ermB, tet(O), and aadB in L. monocytogenes and blaOXA-61, tet(O), and aadE in Campylobacter. Our results highlight the critical need to address the dissemination of foodborne pathogens and antibiotic resistance in agricultural settings.
Collapse
|
2
|
Xiong L, Sun Y, Shi L, Yan H. Characterization of antimicrobial resistance genes and class 1 integrase gene in raw meat and aquatic product, fresh vegetable and fruit, and swine manure in southern China. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Susceptibility and Multidrug Resistance Patterns of Escherichia coli Isolated from Cloacal Swabs of Live Broiler Chickens in Bangladesh. Pathogens 2019; 8:pathogens8030118. [PMID: 31370344 PMCID: PMC6789550 DOI: 10.3390/pathogens8030118] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/02/2022] Open
Abstract
Antimicrobial resistance is a major health problem, particularly in developing countries like Bangladesh, where there is a paucity of information on resistance patterns and prevalence of antimicrobial determinants. Therefore, the aims of this study were to investigate the prevalence of resistance, including multi-drug resistance (MDR), and the associated genetic determinants in Escherichia coli isolates from cloacal swabs of live broiler chickens in Bangladesh. Altogether, 400 cloacal swabs (200 from Rajshahi and 200 from Dhaka divisions) were randomly collected from individual chickens in 50 broiler farms. E. coli was isolated and identified using conventional bacteriological culture and biochemical methods. The isolates were further confirmed using genus-specific 16S rRNA-targeted polymerase chain reaction (PCR) primers. Antimicrobial susceptibilities and MDR of the isolates against nine different antimicrobial agents (ampicillin, erythromycin, tetracycline, gentamicin, ciprofloxacin, levofloxacin, trimethoprim-sulfamethoxazole, colistin sulphate, and streptomycin) were determined using the Kirby-Bauer disc diffusion method. Resistance determinants of E. coli to ampicillin (blaTEM), streptomycin (aadA1), erythromycin [ere(A)], trimethoprim (dfrA1), and tetracycline [tet(A), tet(B)] were screened using PCR. Our results showed that all swab samples were positive for E. coli. The isolates were uniformly resistant to ampicillin, tetracycline, streptomycin, ciprofloxacin, erythromycin, and trimethoprim-sulphamethoxazole. The isolates exhibited highest susceptibility to colistin sulphate (73.5%), followed by gentamicin (49%), and levofloxacin (17%). All isolates were resistant to three classes of antibiotics, 204 isolates (51%) were resistant to four classes, and 56 isolates (14%) were resistant to five. The highest prevalence of antimicrobial resistance gene was recorded for tetracycline (tet(A):95.25%; tet(B):95.25%) followed by ampicillin (blaTEM:91.25%), streptomycin (aadA1:88.25%), erythromycin (ere(A):84.75%), and trimethoprim (dfrA1:65.5%). In conclusion, surveillance for MDR bacteria in poultry is a critical piece of knowledge, which would be useful for optimizing empiric antimicrobial treatments and exploring alternative antimicrobial agents.
Collapse
|
4
|
Wang R, Lou J, Li J. A mobile restriction modification system consisting of methylases on the IncA/C plasmid. Mob DNA 2019; 10:26. [PMID: 31182978 PMCID: PMC6555945 DOI: 10.1186/s13100-019-0168-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND IncA/C plasmids play important roles in the development and dissemination of multidrug resistance in bacteria. These plasmids carry three methylase genes, two of which show cytosine specificity. The effects of such a plasmid on the host methylome were observed by single-molecule, real-time (SMRT) and bisulfite sequencing in this work. RESULTS The results showed that the numbers of methylation sites on the host chromosomes were changed, as were the sequences recognized by MTase. The host chromosomes were completely remodified by the plasmid with a methylation pattern different from that of the host itself. When the three dcm genes were deleted, the transferability of the plasmid into other Vibrio cholerae and Escherichia coli strains was lost. During deletion of the dcm genes, except for the wild-type strains and the targeted deletion strains, 18.7%~ 38.5% of the clones lost the IncA/C plasmid and changed from erythromycin-, azithromycin- and tetracycline-resistant strains to strains that were sensitive to these antibiotics. CONCLUSIONS Methylation of the IncA/C plasmid was a new mobile restriction modification (RM) barrier against foreign DNA. By actively changing the host's methylation pattern, the plasmid crossed the barrier of the host's RM system, and this might be the simplest and most universal method by which plasmids acquire a broad host range. Elimination of plasmids by destruction of plasmid stability could be a new effective strategy to address bacterial multidrug resistance.
Collapse
Affiliation(s)
- Ruibai Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing, 102206 People’s Republic of China
| | - Jing Lou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing, 102206 People’s Republic of China
| | - Jie Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing, 102206 People’s Republic of China
| |
Collapse
|
5
|
Ingle DJ, Levine MM, Kotloff KL, Holt KE, Robins-Browne RM. Dynamics of antimicrobial resistance in intestinal Escherichia coli from children in community settings in South Asia and sub-Saharan Africa. Nat Microbiol 2018; 3:1063-1073. [PMID: 30127495 PMCID: PMC6787116 DOI: 10.1038/s41564-018-0217-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/09/2018] [Indexed: 11/30/2022]
Abstract
The dynamics of antimicrobial resistance (AMR) in developing countries are poorly understood, especially in community settings, due to a sparsity of data on AMR prevalence and genetics. We used a combination of phenotyping, genomics and antimicrobial usage data to investigate patterns of AMR amongst atypical enteropathogenic Escherichia coli (aEPEC) strains isolated from children younger than five years old in seven developing countries (four in sub-Saharan Africa and three in South Asia) over a three-year period. We detected high rates of AMR, with 65% of isolates displaying resistance to three or more drug classes. Whole-genome sequencing revealed a diversity of known genetic mechanisms for AMR that accounted for >95% of phenotypic resistance, with comparable rates amongst aEPEC strains associated with diarrhoea or asymptomatic carriage. Genetic determinants of AMR were associated with the geographic location of isolates, not E. coli lineage, and AMR genes were frequently co-located, potentially enabling the acquisition of multi-drug resistance in a single step. Comparison of AMR with antimicrobial usage data showed that the prevalence of resistance to fluoroquinolones and third-generation cephalosporins was correlated with usage, which was higher in South Asia than in Africa. This study provides much-needed insights into the frequency and mechanisms of AMR in intestinal E. coli in children living in community settings in developing countries.
Collapse
Affiliation(s)
- Danielle J Ingle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Myron M Levine
- Departments of Pediatrics and Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Karen L Kotloff
- Departments of Pediatrics and Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
- London School of Hygiene and Tropical Medicine, London, UK
| | - Roy M Robins-Browne
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.
| |
Collapse
|
6
|
Shin E, Mduma S, Keyyu J, Fyumagwa R, Lee Y. An Investigation of Enterococcus Species Isolated from the African Buffalo (Syncerus caffer) in Serengeti National Park, Tanzania. Microbes Environ 2017; 32:402-406. [PMID: 29081464 PMCID: PMC5745028 DOI: 10.1264/jsme2.me17025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We isolated Enterococcus species that colonized in the African buffalo (Syncerus caffer) in order to investigate their genetic relatedness and antimicrobial susceptibility. A total of 219 isolates were obtained and a 16S rRNA gene sequence analysis showed they were classified into Enterococcus avium, E. casseliflavus, E. faecalis, E. faecium, E. hirae, or E. mundtii. Multilocus sequence typing of E. faecalis and E. faecium isolates indicated that some of the isolates showed an evolutionary distance that was far from the primary founders. The antimicrobial susceptibility of the enterococcal isolates suggested that the significant transmission of antimicrobial resistance via human intervention had not yet occurred.
Collapse
Affiliation(s)
- Eunju Shin
- Culture Collection of Antimicrobial Resistant Microbes, Department of Horticulture, Biotechnology, and Landscape Architecture, Seoul Women's University
| | | | | | | | - Yeonhee Lee
- Culture Collection of Antimicrobial Resistant Microbes, Department of Horticulture, Biotechnology, and Landscape Architecture, Seoul Women's University
| |
Collapse
|
7
|
Integrons in Enterobacteriaceae: diversity, distribution and epidemiology. Int J Antimicrob Agents 2017; 51:167-176. [PMID: 29038087 DOI: 10.1016/j.ijantimicag.2017.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/29/2017] [Accepted: 10/07/2017] [Indexed: 01/03/2023]
Abstract
Integrons are versatile gene acquisition systems that allow efficient capturing of exogenous genes and ensure their expression. Various classes of integrons possessing a wide variety of gene cassettes are ubiquitously distributed in enteric bacteria worldwide. The epidemiology of integrons associated multidrug resistance in Enterobacteriaceae is rapidly evolving. In the past two decades, the incidence of integrons in enteric bacteria has increased drastically with evolution of multiple gene cassettes, novel gene arrangements and complex chromosomal integrons such as Salmonella genomic islands. This review focuses on the distribution, versatility, spread and global trends of integrons among important members of the Enterobacteriaceae, including Escherichia coli, Klebsiella, Shigella and Salmonella, which are known to cause infections globally. Such a comprehensive understanding of integron-associated antibiotic resistance, their role in the spread of such resistance traits and their clinical relevance especially with regard to each genus individually is paramount to contain the global spread of antibiotic resistance.
Collapse
|
8
|
Poole TL, Callaway TR, Norman KN, Scott HM, Loneragan GH, Ison SA, Beier RC, Harhay DM, Norby B, Nisbet DJ. Transferability of antimicrobial resistance from multidrug-resistant Escherichia coli isolated from cattle in the USA to E. coli and Salmonella Newport recipients. J Glob Antimicrob Resist 2017; 11:123-132. [PMID: 28801276 DOI: 10.1016/j.jgar.2017.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES This study aimed to evaluate conjugative transfer of cephalosporin resistance among 100 strains of multidrug-resistant Escherichia coli (MDRE) to Salmonella enterica serotype Newport and E. coli DH5α recipients. METHODS Phenotypic and genotypic profiles were determined for MDRE as well as for Salmonella Newport (trSN) and E. coli DH5α (trDH) transconjugants. RESULTS Of 95 MDRE donor isolates, 26 (27%) and 27 (28%) transferred resistance to trSN and trDH recipients, respectively. A total of 27 MDRE (27%) were confirmed as extended-spectrum β-lactamase (ESBL)-producers based on the double-disk synergy assay and whole-genome sequencing (WGS). WGS was performed on 25 of the ESBL-producing isolates, showing that 2 isolates carried blaCTX-M-6, 22 possessed blaCTX-M-32 and 1 was negative for blaCTX-M genes. Fourteen of the ESBLs sequenced were qnrB19. Differential transfer of IncA/C and IncN from MDRE32 was observed between trSN32 and trDH32. IncN-positive trDH32 displayed an ESBL phenotype, whereas IncA/C-positive trSN32 displayed an AmpC phenotype. The rate of ESBL transfer to trSN and trDH recipients was 11% and 96%, respectively. CONCLUSIONS Twenty-seven MDRE were phenotypically identified as ESBL-producers. WGS of 25 MDRE revealed that 2 and 22 isolates carried blaCTX-M-6 and blaCTX-M-32, respectively. One multidrug-resistant isolate exhibited conversion from an AmpC phenotype to an ESBL phenotype with the transfer of only the IncN plasmid. The rate of resistance transfer to Salmonella or E. coli recipients was nearly identical. However, the ESBL phenotype was transferred with significantly greater prevalence to E. coli compared with Salmonella Newport (96% and 11%, respectively).
Collapse
Affiliation(s)
- T L Poole
- USDA/ARS/SPARC, 2881 F&B Road, College Station, TX 77845, USA.
| | - T R Callaway
- USDA/ARS/SPARC, 2881 F&B Road, College Station, TX 77845, USA
| | - K N Norman
- Department of Veterinary Integrative Biosciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences (TAMU/CVM), College Station, TX 77843, USA
| | - H M Scott
- Department of Veterinary Pathobiology, TAMU/CVM, College Station, TX 77843, USA
| | - G H Loneragan
- Texas Tech University (TTU), Department of Animal and Food Science, Lubbock, TX 79409, USA
| | - S A Ison
- Texas Tech University (TTU), Department of Animal and Food Science, Lubbock, TX 79409, USA
| | - R C Beier
- USDA/ARS/SPARC, 2881 F&B Road, College Station, TX 77845, USA
| | - D M Harhay
- USDA/ARS/MARC, Clay Center, NE 68933, USA
| | - B Norby
- Michigan State University College of Veterinary Medicine (MSU-CVM), Large Animal Clinical Sciences, East Lansing, MI 48824, USA
| | - D J Nisbet
- USDA/ARS/SPARC, 2881 F&B Road, College Station, TX 77845, USA
| |
Collapse
|
9
|
Baloch AB, Yang H, Feng Y, Xi M, Wu Q, Yang Q, Tang J, He X, Xiao Y, Xia X. Presence and Antimicrobial Resistance of Escherichia coli in Ready-to-Eat Foods in Shaanxi, China. J Food Prot 2017; 80:420-424. [PMID: 28199148 DOI: 10.4315/0362-028x.jfp-16-175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to determine the presence and characteristics of Escherichia coli in ready-to-eat (RTE) foods. A total of 300 RTE foods samples were collected in Shaanxi Province, People's Republic of China: 50 samples of cooked meat, 165 samples of vegetable salad, 50 samples of cold noodles, and 35 samples of salted boiled peanuts. All samples were collected during summer (in July to October) 2011 and 2012 and surveyed for the presence of E. coli . E. coli isolates recovered were classified by phylogenetic typing using a PCR assay. The presence of Shiga toxin genes 1 (stx1) and 2 (stx2) was determined for these E. coli isolates by PCR, and all isolates were analyzed for antimicrobial susceptibility and the presence of class 1 integrons. Overall, 267 (89.0%) RTE food samples were positive for E. coli : 49 cold noodle, 46 cooked meat, 150 salad vegetable, and 22 salted boiled peanut samples. Of the 267 E. coli isolates, 73.0% belong to phylogenetic group A, 12.4% to group B1, 6.4% to group B2, and 8.2% to group D. All isolates were negative for both Shiga toxin genes. Among the isolates, 74.2% were resistant to at least one antimicrobial agent, and 17.6% were resistant to three or more antimicrobial agents. Resistance to ampicillin (75.6% of isolates) and tetracycline (73.1% of isolates) was most frequently detected; 26.2% of E. coli isolates and 68.8% of multidrug-resistant E. coli isolates were positive for class 1 integrons. All isolates were sensitive to amikacin. Our findings indicate that RTE foods in Shaanxi were commonly contaminated with antibiotic-resistant E. coli , which may pose a risk for consumer health and for transmission of antibiotic resistance. Future research is warranted to track the contamination sources and develop appropriate steps that should be taken by government, industry, and retailers to reduce microbial contamination in RTE foods.
Collapse
Affiliation(s)
- Allah Bux Baloch
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 72100, People's Republic of China
| | - Hua Yang
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, People's Republic of China.,State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, People's Republic of China
| | - Yuqing Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 72100, People's Republic of China
| | - Meili Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 72100, People's Republic of China
| | - Qian Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 72100, People's Republic of China
| | - Qinhao Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 72100, People's Republic of China
| | - Jingsi Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 72100, People's Republic of China
| | - Xiangxiang He
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 72100, People's Republic of China
| | - Yingping Xiao
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, People's Republic of China.,State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, People's Republic of China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 72100, People's Republic of China.,Sino-U.S. Joint Research Center for Food Safety, Northwest A&F University, Yangling, Shaanxi 72100, People's Republic of China
| |
Collapse
|
10
|
Castellanos LR, Donado-Godoy P, León M, Clavijo V, Arevalo A, Bernal JF, Timmerman AJ, Mevius DJ, Wagenaar JA, Hordijk J. High Heterogeneity of Escherichia coli Sequence Types Harbouring ESBL/AmpC Genes on IncI1 Plasmids in the Colombian Poultry Chain. PLoS One 2017; 12:e0170777. [PMID: 28125687 PMCID: PMC5268450 DOI: 10.1371/journal.pone.0170777] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/10/2017] [Indexed: 11/19/2022] Open
Abstract
Background Escherichia coli producing ESBL/AmpC enzymes are unwanted in animal production chains as they may pose a risk to human and animal health. Molecular characterization of plasmids and strains carrying genes that encode these enzymes is essential to understand their local and global spread. Objectives To investigate the diversity of genes, plasmids and strains in ESBL/AmpC-producing E. coli from the Colombian poultry chain isolated within the Colombian Integrated Program for Antimicrobial Resistance Surveillance (Coipars). Methods A total of 541 non-clinical E. coli strains from epidemiologically independent samples and randomly isolated between 2008 and 2013 within the Coipars program were tested for antimicrobial susceptibility. Poultry isolates resistant to cefotaxime (MIC ≥ 4 mg/L) were screened for ESBL/AmpC genes including blaCTX-M, blaSHV, blaTEM, blaCMY and blaOXA. Plasmid and strain characterization was performed for a selection of the ESBL/AmpC-producing isolates. Plasmids were purified and transformed into E. coli DH10B cells or transferred by conjugation to E. coli W3110. When applicable, PCR Based Replicon Typing (PBRT), plasmid Multi Locus Sequence Typing (pMLST), plasmid Double Locus Sequence Typing (pDLST) and/or plasmid Replicon Sequence Typing (pRST) was performed on resulting transformants and conjugants. Multi Locus Sequence Typing (MLST) was used for strain characterization. Results In total, 132 of 541 isolates were resistant to cefotaxime and 122 were found to carry ESBL/AmpC genes. Ninety-two harboured blaCMY-2 (75%), fourteen blaSHV-12 (11%), three blaSHV-5 (2%), five blaCTX-M-2 (4%), one blaCTX-M-15 (1%), one blaCTX-M-8 (1%), four a combination of blaCMY-2 and blaSHV-12 (4%) and two a combination of blaCMY-2 and blaSHV-5 (2%). A selection of 39 ESBL/AmpC-producing isolates was characterized at the plasmid and strain level. ESBL/AmpC genes from 36 isolates were transferable by transformation or conjugation of which 22 were located on IncI1 plasmids. These IncI1 plasmids harboured predominantly blaCMY-2 (16/22), and to a lesser extend blaSHV-12 (5/22) and blaCTX-M-8 (1/22). Other plasmid families associated with ESBL/AmpC-genes were IncK (4/33), IncHI2 (3/33), IncA/C (2/33), IncΒ/O (1/33) and a non-typeable replicon (1/33). Subtyping of IncI1 and IncHI2 demonstrated IncI1/ST12 was predominantly associated with blaCMY-2 (12/16) and IncHI2/ST7 with blaCTX-M-2 (2/3). Finally, 31 different STs were detected among the 39 selected isolates. Conclusions Resistance to extended spectrum cephalosporins in E. coli from Colombian poultry is mainly caused by blaCMY-2 and blaSHV-12. The high diversity of strain Sequence Types and the dissemination of homogeneous IncI1/ST12 plasmids suggest that spread of the resistance is mainly mediated by horizontal gene transfer.
Collapse
Affiliation(s)
- Luis Ricardo Castellanos
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Colombian Integrated Program for Antimicrobial Resistance Surveillance – Coipars, Corporación Colombiana de Investigación Agropecuaria - Corpoica, Cundinamarca, Colombia
| | - Pilar Donado-Godoy
- Colombian Integrated Program for Antimicrobial Resistance Surveillance – Coipars, Corporación Colombiana de Investigación Agropecuaria - Corpoica, Cundinamarca, Colombia
| | - Maribel León
- Instituto Colombiano Agropecuario - ICA, Bogotá, Colombia
| | - Viviana Clavijo
- Colombian Integrated Program for Antimicrobial Resistance Surveillance – Coipars, Corporación Colombiana de Investigación Agropecuaria - Corpoica, Cundinamarca, Colombia
- Department of Biological Sciences, Los Andes University, Bogotá, Colombia
| | - Alejandra Arevalo
- Colombian Integrated Program for Antimicrobial Resistance Surveillance – Coipars, Corporación Colombiana de Investigación Agropecuaria - Corpoica, Cundinamarca, Colombia
| | - Johan F. Bernal
- Colombian Integrated Program for Antimicrobial Resistance Surveillance – Coipars, Corporación Colombiana de Investigación Agropecuaria - Corpoica, Cundinamarca, Colombia
| | - Arjen J. Timmerman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Dik J. Mevius
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Joost Hordijk
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
11
|
Lee M, Shin E, Lee Y. Antimicrobial resistance and integron profiles in multidrug-resistant Escherichia coli isolates from pigs. Foodborne Pathog Dis 2015; 11:988-97. [PMID: 25303163 DOI: 10.1089/fpd.2014.1795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
From July 2006 to June 2008, a total of 3876 Escherichia coli strains were collected from 1014 porcine intestinal contents to investigate antimicrobial resistance and related gene patterns. Average resistance rates of porcine E. coli isolates were 93.2% for tetracycline, 65.3% for ampicillin, 60.4% for chloramphenicol, 57.7% for streptomycin, 35.8% for nalidixic acid, 23.6% for gentamicin, 10.8% for ciprofloxacin, 10.0% for norfloxacin, 4.5% for cephalothin, 1.0% for cefoxitin, and 0.4% for cefazolin. The number of isolates resistant to more than 3 different classes of antimicrobials was 2537. Among these, 92 isolates were resistant to 5 or more classes of antimicrobials, and 69 isolates among 92 multidrug-resistant (MDR) isolates were integrase positive. Among 69 integrase-positive MDR isolates, only class I integron was detected in 19 isolates (20.7%). The class-1-integron-positive isolates had different sizes and gene contents (i.e., 1.0 kb containing aadA1 and 1.5 kb containing aadA1-dfrA1 and aadA1-aadB), and showed 15 distinct types by pulsed-field gel electrophoresis (PFGE) analysis, with 80% cut-off band pattern similarity. PFGE typing of four groups of isolates with identical antimicrobial resistance gene profiles showed two heterogeneous groups, while one group had very similar PFGE patterns; the fourth group was not typeable due to DNA degradation. In conjugation experiments, class I integron-harboring isolates transferred resistance to ampicillin, norfloxacin, gentamicin, and chloramphenicol to the recipient strain. This study showed that antimicrobial resistance rates and corresponding genes in porcine E. coli isolates are different from those in human isolates described by previous studies, and that transfer of antimicrobial-resistant genes from animal to human occurred. These data can be used as a baseline to evaluate the effect of antimicrobial use after implementation of the animal antimicrobial ban for prophylactic and growth promotion except for therapeutic use in 2012 in Korea.
Collapse
Affiliation(s)
- Minyoung Lee
- Culture Collection of Antimicrobial Resistant Microbes, Department of Horticulture, Biotechnology, and Landscape Architecture, Seoul Women's University , Seoul, Korea
| | | | | |
Collapse
|
12
|
Determination of extended spectrum β-lactamases/AmpC β-lactamases and plasmid-mediated quinolone resistance in Escherichia coli isolates obtained from bovine carcasses in Mexico. Trop Anim Health Prod 2015; 47:975-81. [DOI: 10.1007/s11250-015-0818-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
|
13
|
Jackson CR, Davis JA, Frye JG, Barrett JB, Hiott LM. Diversity of Plasmids and Antimicrobial Resistance Genes in Multidrug-Resistant Escherichia coli Isolated from Healthy Companion Animals. Zoonoses Public Health 2015; 62:479-88. [PMID: 25653018 DOI: 10.1111/zph.12178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Indexed: 01/02/2023]
Abstract
The presence and transfer of antimicrobial resistance genes from commensal bacteria in companion animals to more pathogenic bacteria may contribute to dissemination of antimicrobial resistance. The purpose of this study was to determine antimicrobial resistance gene content and the presence of genetic elements in antimicrobial resistant Escherichia coli from healthy companion animals. In our previous study, from May to August, 2007, healthy companion animals (155 dogs and 121 cats) from three veterinary clinics in the Athens, GA, USA area were sampled and multidrug-resistant E. coli (n = 36; MDR, resistance to ≥ 2 antimicrobial classes) were obtained. Of the 25 different plasmid replicon types tested by PCR, at least one plasmid replicon type was detected in 94% (34/36) of the MDR E. coli; four isolates contained as many as five different plasmid replicons. Nine replicon types (FIA, FIB, FII, I2, A/C, U, P, I1 and HI2) were identified with FIB, FII, I2 as the most common pattern. The presence of class I integrons (intI) was detected in 61% (22/36) of the isolates with eight isolates containing aminoglycoside- and/or trimethoprim-resistance genes in the variable cassette region of intI. Microarray analysis of a subset of the MDR E. coli (n = 9) identified the presence of genes conferring resistance to aminoglycosides (aac, aad, aph and strA/B), β-lactams (ampC, cmy, tem and vim), chloramphenicol (cat), sulfonamides (sulI and sulII), tetracycline [tet(A), tet(B), tet(C), tet(D) and regulator, tetR] and trimethoprim (dfrA). Antimicrobial resistance to eight antimicrobials (ampicillin, cefoxitin, ceftiofur, amoxicillin/clavulanic acid, streptomycin, gentamicin, sulfisoxazole and trimethoprim-sulfamethoxazole) and five plasmid replicons (FIA, FIB, FII, I1 and I2) were transferred via conjugation. The presence of antimicrobial resistance genes, intI and transferable plasmid replicons indicate that E. coli from companion animals may play an important role in the dissemination of antimicrobial resistance, particularly to human hosts during contact.
Collapse
Affiliation(s)
- C R Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, Russell Research Center, Athens, GA, USA
| | - J A Davis
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, Russell Research Center, Athens, GA, USA
| | - J G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, Russell Research Center, Athens, GA, USA
| | - J B Barrett
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, Russell Research Center, Athens, GA, USA
| | - L M Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, Russell Research Center, Athens, GA, USA
| |
Collapse
|
14
|
Wu Q, Xi M, Lv X, Xu Y, Feng Y, Li Q, Yang Q, Xia X. Presence and antimicrobial susceptibility of Escherichia coli recovered from retail chicken in China. J Food Prot 2014; 77:1773-7. [PMID: 25285496 DOI: 10.4315/0362-028x.jfp-14-080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to determine the prevalence and antimicrobial susceptibility of Escherichia coli in retail whole chicken in the People 9 s Republic of China. Five hundred seventy-six raw whole chicken samples, randomly purchased from 146 farmers' markets or supermarkets in four provinces from March through December 2010, were analyzed for E. coli contamination, and the E. coli isolates were further tested for the presence of virulence genes and antimicrobial susceptibility. The overall positive rate for E. coli in retail chicken was 69.1%. E. coli prevalence was the highest in Beijing (86.8%), followed by Henan province (78.5%), Shaanxi province (65.3%), and the lowest prevalence was found in Sichuan province (45.8%). Among 398 isolates recovered, only the eae gene was detected in one isolate; no other virulence genes were detected. Resistance was most common to tetracycline (84.4%), followed by nalidixic acid (74.1%), ampicillin (71.1%), trimethoprim-sulfamethoxazole (70.1%), amoxicillin-clavulanic acid (68.8%), and streptomycin (58.5%). Lower resistance was detected to chloramphenicol (43.7%), kanamycin (42.7%), ciprofloxacin (30.2%), gentamicin (29.4%), cefoperazone (13.6%), amikacin (12.6%), gatifloxacin (8%), and cefoxitin (7.8%). Only 3.8% of the isolates were susceptible to all tested antimicrobials. Six percent of the isolates displayed resistance to one antimicrobial, 6.3% to two, and 83.9% to three or more of the antimicrobials. Our findings indicate that retail chicken in China was commonly contaminated with E. coli, and many E. coli strains exhibited multiple drug resistance. The implementation of good manufacturing practices throughout the poultry production chain is necessary to reduce E. coli contamination in retail chicken, and the prudent use of antibiotics is imperative in poultry production in China.
Collapse
Affiliation(s)
- Qian Wu
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Meili Xi
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoying Lv
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yunfeng Xu
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yuqing Feng
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qiong Li
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qinnan Yang
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
15
|
Zhang F, Huo S, Li Y, Xie R, Wu X, Chen L, Gao Y. A survey of the frequency of aminoglycoside antibiotic-resistant genotypes and phenotypes inEscherichia coliin broilers with septicaemia in Hebei, China. Br Poult Sci 2014; 55:305-10. [DOI: 10.1080/00071668.2014.891096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Voets GM, Fluit AC, Scharringa J, Schapendonk C, van den Munckhof T, Leverstein-van Hall MA, Stuart JC. Identical plasmid AmpC beta-lactamase genes and plasmid types in E. coli isolates from patients and poultry meat in the Netherlands. Int J Food Microbiol 2013; 167:359-62. [PMID: 24184615 DOI: 10.1016/j.ijfoodmicro.2013.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/30/2013] [Accepted: 10/02/2013] [Indexed: 01/08/2023]
Abstract
The increasing prevalence of third-generation cephalosporin-resistant Enterobacteriaceae is a worldwide problem. Recent studies showed that poultry meat and humans share identical Extended-Spectrum Beta-Lactamase genes, plasmid types, and Escherichia coli strain types, suggesting that transmission from poultry meat to humans may occur. The aim of this study was to compare plasmid-encoded Ambler class C beta-lactamase (pAmpC) genes, their plasmids, and bacterial strain types between E. coli isolates from retail chicken meat and clinical isolates in the Netherlands. In total, 98 Dutch retail chicken meat samples and 479 third-generation cephalosporin non-susceptible human clinical E. coli isolates from the same period were screened for pAmpC production. Plasmid typing was performed using PCR-based replicon typing (PBRT). E coli strains were compared using Multi-Locus-Sequence-Typing (MLST). In 12 of 98 chicken meat samples (12%), pAmpC producing E. coli were detected (all blaCMY-2). Of the 479 human E. coli, 25 (5.2%) harboured pAmpC genes (blaCMY-2 n = 22, blaACT n = 2, blaMIR n = 1). PBRT showed that 91% of poultry meat isolates harboured blaCMY-2 on an IncK plasmid, and 9% on an IncI1 plasmid. Of the human blaCMY-2 producing isolates, 42% also harboured blaCMY-2 on an IncK plasmid, and 47% on an IncI1 plasmid. Thus, 68% of human pAmpC producing E. coli have the same AmpC gene (blaCMY-2) and plasmid type (IncI1 or IncK) as found in poultry meat. MLST showed one cluster containing one human isolate and three meat isolates, with an IncK plasmid. These findings imply that a foodborne transmission route of blaCMY-2 harbouring plasmids cannot be excluded and that further evaluation is required.
Collapse
Affiliation(s)
- Guido M Voets
- Department of Medical Microbiology, University Medical Centre Utrecht, G04.614, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
Szmolka A, Nagy B. Multidrug resistant commensal Escherichia coli in animals and its impact for public health. Front Microbiol 2013; 4:258. [PMID: 24027562 PMCID: PMC3759790 DOI: 10.3389/fmicb.2013.00258] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/13/2013] [Indexed: 11/13/2022] Open
Abstract
After the era of plentiful antibiotics we are alarmed by the increasing number of antibiotic resistant strains. The genetic flexibility and adaptability of Escherichia coli to constantly changing environments allows to acquire a great number of antimicrobial resistance mechanisms. Commensal strains of E. coli as versatile residents of the lower intestine are also repeatedly challenged by antimicrobial pressures during the lifetime of their host. As a consequence, commensal strains acquire the respective resistance genes, and/or develop resistant mutants in order to survive and maintain microbial homeostasis in the lower intestinal tract. Thus, commensal E. coli strains are regarded as indicators of antimicrobial load on their hosts. This chapter provides a short historic background of the appearance and presumed origin and transfer of antimicrobial resistance genes in commensal intestinal E. coli of animals with comparative information on their pathogenic counterparts. The dynamics, development, and ways of evolution of resistance in the E. coli populations differ according to hosts, resistance mechanisms, and antimicrobial classes used. The most frequent tools of E. coli against a variety of antimicrobials are the efflux pumps and mobile resistance mechanisms carried by plasmids and/or other transferable elements. The emergence of hybrid plasmids (both resistance and virulence) among E. coli is of further concern. Co-existence and co-transfer of these "bad genes" in this huge and most versatile in vivo compartment may represent an increased public health risk in the future. Significance of multidrug resistant (MDR) commensal E. coli seem to be highest in the food animal industry, acting as reservoir for intra- and interspecific exchange and a source for spread of MDR determinants through contaminated food to humans. Thus, public health potential of MDR commensal E. coli of food animals can be a concern and needs monitoring and more molecular analysis in the future.
Collapse
Affiliation(s)
| | - Béla Nagy
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of SciencesBudapest, Hungary
| |
Collapse
|
18
|
Kim M, Kwon TH, Jung SM, Cho SH, Jin SY, Park NH, Kim CG, Kim JS. Antibiotic resistance of bacteria isolated from the internal organs of edible snow crabs. PLoS One 2013; 8:e70887. [PMID: 23990916 PMCID: PMC3749200 DOI: 10.1371/journal.pone.0070887] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/25/2013] [Indexed: 02/01/2023] Open
Abstract
Antibiotic resistance and microbiota within edible snow crabs are important for the Chionoecetes (snow crab) fishing industry. We investigated these parameters using culture methods and antibiotic susceptibility tests with six internal organs from three species of Chionoecetes. Each sample revealed many unexpected microbial species within Chionoecetes internal organs. On the basis of 16S rRNA sequence analysis of 381 isolates, the most abundant genera identified in Chionoecetes opilio were Acinetobacter spp. (24%), Bacillus spp. (4%), Pseudomonas spp. (34%), Stenotrophomonas spp. (28%), and Agreia spp. (11%). In Chionoecetes sp. crabs, Acinetobacter spp. (23%), Bacillus spp. (12%), and Psychrobacter spp. (20%) were most prevalent, while Agreia spp. (11%), Bacillus spp. (31%), Microbacterium spp. (10%), Rhodococcus spp. (12%), and Agrococcus spp. (6%) were most abundant in C. japonicus. Our antibiotic resistance test found resistance to all nine antibiotics tested in 19, 14, and two of the isolates from C. opilio, Chionoecetes sp., and, C. japonicus respectively. Our results are the first to show that microbes with antibiotic resistance are widely distributed throughout the internal organs of natural snow crabs.
Collapse
Affiliation(s)
- Misoon Kim
- Gyeongbuk Institute for Marine Bioindustry, Jukbyeon-Meon, Uljin-Gun, Gyeongbuk, Republic of Korea
| | - Tae-Hyung Kwon
- Gyeongbuk Institute for Marine Bioindustry, Jukbyeon-Meon, Uljin-Gun, Gyeongbuk, Republic of Korea
| | - Su-Mi Jung
- Division of Enteric Bacterial Infections, Center for Infectious Diseases, Korea National Institute of Health, Cheongwon-Gun, Chungcheongbuk, Republic of Korea
| | - Seung-Hak Cho
- Division of Enteric Bacterial Infections, Center for Infectious Diseases, Korea National Institute of Health, Cheongwon-Gun, Chungcheongbuk, Republic of Korea
| | - Seon Yeong Jin
- Gyeongbuk Institute for Marine Bioindustry, Jukbyeon-Meon, Uljin-Gun, Gyeongbuk, Republic of Korea
| | - Nyun-Ho Park
- Gyeongbuk Institute for Marine Bioindustry, Jukbyeon-Meon, Uljin-Gun, Gyeongbuk, Republic of Korea
| | - Choong-Gon Kim
- Gyeongbuk Institute for Marine Bioindustry, Jukbyeon-Meon, Uljin-Gun, Gyeongbuk, Republic of Korea
| | - Jong-Shik Kim
- Gyeongbuk Institute for Marine Bioindustry, Jukbyeon-Meon, Uljin-Gun, Gyeongbuk, Republic of Korea
- * E-mail:
| |
Collapse
|
19
|
Proposed model for the high rate of rearrangement and rapid migration observed in some IncA/C plasmid lineages. Appl Environ Microbiol 2013; 79:4806-14. [PMID: 23747695 DOI: 10.1128/aem.01259-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IncA/C plasmids are a class of plasmids from the Enterobacteriaceae that are relatively large (49 to >180 kbp), that are readily transferred by conjugation, and that carry multiple antimicrobial resistance genes. Reconstruction of the phylogeny of these plasmids has been difficult because of the high rate of remodeling by recombination-mediated horizontal gene transfer (HGT). We hypothesized that evaluation of nucleotide polymorphisms relative to the rate of HGT would help to develop a clock to show whether anthropic practices have had significant influences on the lineages of the plasmid. A system was developed to rapidly sequence up to 191 known open reading frames from each of 39 recently isolated IncA/C plasmids from a diverse panel of Salmonella enterica and Escherichia coli strains. With these data plus sequences from GenBank, we were able to distinguish six distinct lineages that had extremely low numbers of polymorphisms within each lineage, especially among the largest group designated as group 1. Two regions, each about half the plasmid in size, could be distinguished with a separate lineal pattern. The distribution of group 1 showed that it has migrated extremely rapidly with fewer polymorphisms than can be expected in 2,000 years. Remodeling by frequent HGT was evident, with a pattern that appeared to have the highest rate just upstream of the putative conjugation origin of transfer (oriT). It seems likely that when an IncA/C plasmid is transferred by conjugation there is an opportunity for plasmid remodeling adjacent to the oriT, which was also adjacent to a multiple antimicrobial resistance gene cassette.
Collapse
|
20
|
Frye JG, Jackson CR. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front Microbiol 2013; 4:135. [PMID: 23734150 PMCID: PMC3661942 DOI: 10.3389/fmicb.2013.00135] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/07/2013] [Indexed: 01/26/2023] Open
Abstract
The prevalence of antimicrobial resistance (AR) in bacteria isolated from U.S. food animals has increased over the last several decades as have concerns of AR foodborne zoonotic human infections. Resistance mechanisms identified in U.S. animal isolates of Salmonella enterica included resistance to aminoglycosides (e.g., alleles of aacC, aadA, aadB, ant, aphA, and StrAB), β-lactams (e.g., blaCMY−2, TEM−1, PSE−1), chloramphenicol (e.g., floR, cmlA, cat1, cat2), folate pathway inhibitors (e.g., alleles of sul and dfr), and tetracycline [e.g., alleles of tet(A), (B), (C), (D), (G), and tetR]. In the U.S., multi-drug resistance (MDR) mechanisms in Salmonella animal isolates were associated with integrons, or mobile genetic elements (MGEs) such as IncA/C plasmids which can be transferred among bacteria. It is thought that AR Salmonella originates in food animals and is transmitted through food to humans. However, some AR Salmonella isolated from humans in the U.S. have different AR elements than those isolated from food animals, suggesting a different etiology for some AR human infections. The AR mechanisms identified in isolates from outside the U.S. are also predominantly different. For example the extended spectrum β-lactamases (ESBLs) are found in human and animal isolates globally; however, in the U.S., ESBLs thus far have only been found in human and not food animal isolates. Commensal bacteria in animals including Escherichia coli and Enterococcus spp. may be reservoirs for AR mechanisms. Many of the AR genes and MGEs found in E. coli isolated from U.S. animals are similar to those found in Salmonella. Enterococcus spp. isolated from animals frequently carry MGEs with AR genes, including resistances to aminoglycosides (e.g., alleles of aac, ant, and aph), macrolides [e.g., erm(A), erm(B), and msrC], and tetracyclines [e.g., tet(K), (L), (M), (O), (S)]. Continuing investigations are required to help understand and mitigate the impact of AR bacteria on human and animal health.
Collapse
Affiliation(s)
- Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Agricultural Research Service, U.S. Department of Agriculture Athens, GA, USA
| | | |
Collapse
|
21
|
Abstract
The modern molecular biology movement was developed in the 1960s with the conglomeration of biology, chemistry, and physics. Today, molecular biology is an integral part of studies aimed at understanding the evolution and ecology of gastrointestinal microbial communities. Molecular techniques have led to significant gains in our understanding of the chicken gastrointestinal microbiome. New advances, primarily in DNA sequencing technologies, have equipped researchers with the ability to explore these communities at an unprecedented level. A reinvigorated movement in systems biology offers a renewed promise in obtaining a more complete understanding of chicken gastrointestinal microbiome dynamics and their contributions to increasing productivity, food value, security, and safety as well as reducing the public health impact of raising production animals. Here, we contextualize the contributions molecular biology has already made to our understanding of the chicken gastrointestinal microbiome and propose targeted research directions that could further exploit molecular technologies to improve the economy of the poultry industry.
Collapse
|
22
|
Poole T, Callaway T, Bischoff K, Loneragan G, Anderson R, Nisbet D. Competitive effect of commensal faecal bacteria from growing swine fed chlortetracycline-supplemented feed on β-haemolytic Escherichia coli strains with multiple antimicrobial resistance plasmids. J Appl Microbiol 2012; 113:659-68. [DOI: 10.1111/j.1365-2672.2012.05365.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/21/2012] [Accepted: 06/13/2012] [Indexed: 11/26/2022]
Affiliation(s)
- T.L. Poole
- USDA/ARS Southern Plains Agricultural Research Center; College Station; TX,; USA
| | - T.R. Callaway
- USDA/ARS Southern Plains Agricultural Research Center; College Station; TX,; USA
| | - K.M. Bischoff
- USDA/ARS National Center for Agricultural Utilization Research; Peoria; IL,; USA
| | - G.H. Loneragan
- Department of Food and Animal Sciences; Texas Tech University; Lubbock; TX,; USA
| | - R.C. Anderson
- USDA/ARS Southern Plains Agricultural Research Center; College Station; TX,; USA
| | - D.J. Nisbet
- USDA/ARS Southern Plains Agricultural Research Center; College Station; TX,; USA
| |
Collapse
|