1
|
Khan MM, Khan ZA, Khan MA. Metabolic complications of psychotropic medications in psychiatric disorders: Emerging role of de novo lipogenesis and therapeutic consideration. World J Psychiatry 2024; 14:767-783. [PMID: 38984346 PMCID: PMC11230099 DOI: 10.5498/wjp.v14.i6.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 06/19/2024] Open
Abstract
Although significant advances have been made in understanding the patho-physiology of psychiatric disorders (PDs), therapeutic advances have not been very convincing. While psychotropic medications can reduce classical symptoms in patients with PDs, their long-term use has been reported to induce or exaggerate various pre-existing metabolic abnormalities including diabetes, obesity and non-alcoholic fatty liver disease (NAFLD). The mechanism(s) underlying these metabolic abnormalities is not clear; however, lipid/fatty acid accumulation due to enhanced de novo lipogenesis (DNL) has been shown to reduce membrane fluidity, increase oxidative stress and inflammation leading to the development of the aforementioned metabolic abnormalities. Intriguingly, emerging evidence suggest that DNL dysregulation and fatty acid accumulation could be the major mechanisms associated with the development of obesity, diabetes and NAFLD after long-term treatment with psychotropic medications in patients with PDs. In support of this, several adjunctive drugs comprising of anti-oxidants and anti-inflammatory agents, that are used in treating PDs in combination with psychotropic medications, have been shown to reduce insulin resistance and development of NAFLD. In conclusion, the above evidence suggests that DNL could be a potential pathological factor associated with various metabolic abnormalities, and a new avenue for translational research and therapeutic drug designing in PDs.
Collapse
Affiliation(s)
- Mohammad M Khan
- Laboratory of Translational Neurology and Molecular Psychiatry, Department of Biotechnology, Era’s Lucknow Medical College and Hospital, and Faculty of Science, Era University, Lucknow 226003, India
| | - Zaw Ali Khan
- Era’s Lucknow Medical College and Hospital, Era University, Lucknow 226003, India
| | - Mohsin Ali Khan
- Era’s Lucknow Medical College and Hospital, Era University, Lucknow 226003, India
| |
Collapse
|
2
|
Zyryanov SK, Baybulatova EA. [Current challenges for therapy of comorbid patients: a new look at celecoxib. A review]. TERAPEVT ARKH 2024; 96:531-542. [PMID: 38829816 DOI: 10.26442/00403660.2024.05.202769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
The use of non-steroidal anti-inflammatory drugs (NSAIDs) for a wide range of diseases is increasing, in part due to an increasing elderly population. Elderly patients are more vulnerable to adverse drug reactions, including side effects and adverse effects of drug-drug interactions, often occurring in this category of patients due to multimorbidity and polypharmacy. One of the most popular NSAIDs in the world is celecoxib. It is a selective cyclooxygenase (COX)-2 inhibitor with 375 times more COX-2 inhibitory activity than COX-1. As a result, celecoxib has a better gastrointestinal tract safety profile than non-selective NSAIDs. Gastrointestinal tolerance is an essential factor that physicians should consider when selecting NSAIDs for elderly patients. Celecoxib can be used in a wide range of diseases of the musculoskeletal system and rheumatological diseases, for the treatment of acute pain in women with primary dysmenorrhea, etc. It is also increasingly used as part of a multimodal perioperative analgesia regimen. There is strong evidence that COX-2 is actively involved in the pathogenesis of ischemic brain damage, as well as in the development and progression of neurodegenerative diseases, such as Alzheimer's disease. NSAIDs are first-line therapy in the treatment of acute migraine attacks. Celecoxib is well tolerated in patients with risk factors for NSAID-associated nephropathy. It does not decrease the glomerular filtration rate in elderly patients and patients with chronic renal failure. Many meta-analyses and epidemiological studies have not confirmed the increased risk of cardiovascular events reported in previous clinical studies and have not shown an increased risk of cardiovascular events with celecoxib, irrespective of dose. COX-2 activation is one of the key factors contributing to obesity-related inflammation. Specific inhibition of COX-2 by celecoxib increases insulin sensitivity in overweight or obese patients. Combination therapies may be a promising new area of treatment for obesity and diabetes.
Collapse
Affiliation(s)
- S K Zyryanov
- Peoples' Friendship University of Russia named after Patrice Lumumba
| | - E A Baybulatova
- Peoples' Friendship University of Russia named after Patrice Lumumba
| |
Collapse
|
3
|
Yeon Park S, Cho W, Abd El-Aty A, Hacimuftuoglu A, Hoon Jeong J, Woo Jung T. Valdecoxib attenuates lipid-induced hepatic steatosis through autophagy-mediated suppression of endoplasmic reticulum stress. Biochem Pharmacol 2022; 199:115022. [DOI: 10.1016/j.bcp.2022.115022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/09/2023]
|
4
|
Ballesteros-Martinez C, Rodrigues-Diez R, Beltrán LM, Moreno-Carriles R, Martínez-Martínez E, González-Amor M, Martínez-González J, Rodríguez C, Cachofeiro V, Salaices M, Briones AM. Microsomal Prostaglandin E Synthase-1 (mPGES-1) is involved in the metabolic and cardiovascular alterations associated with obesity. Br J Pharmacol 2021; 179:2733-2753. [PMID: 34877656 DOI: 10.1111/bph.15776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 10/22/2021] [Accepted: 11/15/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible isomerase responsible for prostaglandin E2 production in inflammatory conditions. We evaluated the role of mPGES-1 in obesity development and in the metabolic and cardiovascular alterations associated. EXPERIMENTAL APPROACH mPGES-1+/+ and mPGES-1-/- mice were fed with normal or high fat diet (HFD, 60% fat). The glycaemic and lipid profile was studied by glucose and insulin tolerance tests and colorimetric assays. Vascular function, structure and mechanics were evaluated by myography. Histological studies, q-RT-PCR and Western Blot analyses were performed in adipose tissue depots and cardiovascular tissues. Gene expression in abdominal fat and perivascular adipose tissue (PVAT) from patients and its correlation with vascular damage was determined. KEY RESULTS Male mPGES-1-/- mice fed with HFD were protected against body weight gain and showed reduced adiposity, better glucose tolerance and insulin sensitivity, lipid levels and less white adipose tissue and PVAT inflammation and fibrosis, compared to mPGES-1+/+ mice. mPGES-1 knockdown prevented cardiomyocyte hypertrophy, cardiac fibrosis, endothelial dysfunction, aortic insulin resistance, and vascular inflammation and remodeling, induced by HFD. Obesity-induced weight gain and endothelial dysfunction of resistance arteries were ameliorated in female mPGES-1-/- mice. In humans, we found a positive correlation between mPGES-1 expression in abdominal fat and vascular remodeling, vessel stiffness and systolic blood pressure. In human PVAT, there was a positive correlation between mPGES-1 expression and inflammatory markers. CONCLUSIONS AND IMPLICATIONS mPGES-1 inhibition might be a novel therapeutic approach for the management of obesity and the associated cardiovascular and metabolic alterations.
Collapse
Affiliation(s)
- Constanza Ballesteros-Martinez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain
| | - Raquel Rodrigues-Diez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| | - Luis M Beltrán
- Servicio de Medicina Interna. Hospital Universitario La Paz, IdiPaz, Madrid, Spain.,Servicio de Medicina Interna. Hospital Virgen del Rocío - IBiS, Sevilla. Departamento de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Rosa Moreno-Carriles
- Servicio de Angiología y Cirugía vascular. Hospital Universitario La Princesa, Madrid, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María González-Amor
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| | - Jose Martínez-González
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain.,Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Instituto de Investigación Biomédica (IIB) Sant Pau, Barcelona, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain.,Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), IIB-Sant Pau, Barcelona, Spain
| | - Victoria Cachofeiro
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| | - Ana M Briones
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| |
Collapse
|
5
|
Martorell M, Castro N, Victoriano M, Capó X, Tejada S, Vitalini S, Pezzani R, Sureda A. An Update of Anthraquinone Derivatives Emodin, Diacerein, and Catenarin in Diabetes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3313419. [PMID: 34589130 PMCID: PMC8476274 DOI: 10.1155/2021/3313419] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Diabetes is part of metabolic diseases and is characterized by high blood sugar levels over a prolonged period as result of an insulin-deficient production or an inappropriate response to insulin by our cells. This chronic disease was the direct cause of 1.6 million deaths in 2016 as reported by the World Health Organization. Emodin is a natural product and active ingredient of various Chinese herbs with the chemical formula 1,3,8-trihydroxy-6-methylanthraquinone. Diacerein is another naturally occurring anthraquinone (1,8-diacetoxy-3-carboxyanthraquinone) commonly used as commercial drug to treat osteoarthritis. These two anthraquinone derivatives have been shown to exert antidiabetic activities. Emodin seems to enhance the glucose tolerance and insulin sensibility via activation of PPARγ and modulation of metabolic-related genes. Diacerein seems to decrease inflammatory cytokines and increase insulin secretion enhancing insulin sensibility and therefore improving glucose control. Other naturally occurring anthraquinone derivatives, such as catenarin (1,4,6,8-tetrahydroxy-3-methylanthraquinone), have been shown to have antidiabetic activities although few studies have been performed. The synthesis of new emodin derivatives is increasing, but these new molecules have not been tested for diabetes treatment. In the current work, available literature on anthraquinone derivatives' effects in diabetes disease is reviewed. Moreover, we discuss the chemistry, food sources, bioavailability, and toxicity of the naturally occurring anthraquinone with antidiabetic effects.
Collapse
Affiliation(s)
- Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
| | - Natalia Castro
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Montserrat Victoriano
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma de Mallorca 07122, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, University Research Institute of Health Sciences (IUNICS), University of Balearic Islands, Palma E-07122, Balearic Islands, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid E-28029, Spain
- Research Institute of the Balearic Islands, Palma de Mallorca E-07120, Spain
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via G. Celoria 2 20133, Milan, Italy
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, Padova 35128, Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma de Mallorca 07122, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid E-28029, Spain
- Research Institute of the Balearic Islands, Palma de Mallorca E-07120, Spain
| |
Collapse
|
6
|
Mo LC, Piao SZ, Zheng HH, Hong T, Feng Q, Ke M. Pelvic lipomatosis with cystitis glandularis managed with cyclooxygenase-2 inhibitor: A case report. World J Clin Cases 2021; 9:4373-4380. [PMID: 34141803 PMCID: PMC8173416 DOI: 10.12998/wjcc.v9.i17.4373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pelvic lipomatosis (PL) is a rare benign condition with characteristic overgrowth of histologically benign fat and invasion and compression of pelvic organs, often leading to non-specific lower urinary tract symptoms (LUTS). Approximately 40% of patients with PL have cystitis glandularis (CG). The cause of PL combined with CG is poorly understood, and there is currently no effective treatment. Refractory CG with upper urinary tract obstruction even requires partial or radical bladder resection.
CASE SUMMARY In this case, a patient suffering from PL with CG was treated by transurethral resection of bladder tumour (TUR-BT) and oral administration of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor. The LUTS were alleviated, and the cystoscopy results improved significantly. Immunohistochemistry showed up-regulated COX-2 expression in the epithelium of TUR-BT samples, suggesting that COX-2 may participate in the pathophysiological process of PL combined with CG.
CONCLUSION We report for the first time that celecoxib may be an effective treatment strategy for PL combined with refractory CG.
Collapse
Affiliation(s)
- Li-Cai Mo
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated with Wenzhou Medical University, Taizhou 317000, Zhejiang Province, China
| | - Song-Zhe Piao
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated with Wenzhou Medical University, Taizhou 317000, Zhejiang Province, China
| | - Hai-Hong Zheng
- Department of Pathology, Taizhou Hospital of Zhejiang Province Affiliated with Wenzhou Medical University, Taizhou 317000, Zhejiang Province, China
| | - Tao Hong
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated with Wenzhou Medical University, Taizhou 317000, Zhejiang Province, China
| | - Qin Feng
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated with Wenzhou Medical University, Taizhou 317000, Zhejiang Province, China
| | - Mang Ke
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated with Wenzhou Medical University, Taizhou 317000, Zhejiang Province, China
| |
Collapse
|
7
|
Kim TJ, Lee HJ, Pyun DH, Abd El-Aty AM, Jeong JH, Jung TW. Valdecoxib improves lipid-induced skeletal muscle insulin resistance via simultaneous suppression of inflammation and endoplasmic reticulum stress. Biochem Pharmacol 2021; 188:114557. [PMID: 33844985 DOI: 10.1016/j.bcp.2021.114557] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Valdecoxib (VAL), a non-steroidal anti-inflammatory drug, has been widely used for treatment of rheumatoid arthritis, osteoarthritis, and menstrual pain. It is a selective cyclooxygenase-2 inhibitor. The suppressive effects of VAL on cardiovascular diseases and neuroinflammation have been documented; however, its impact on insulin signaling in skeletal muscle has not been studied in detail. The aim of this study was to investigate the effects of VAL on insulin resistance in mouse skeletal muscle. Treatment of C2C12 myocytes with VAL reversed palmitate-induced aggravation of insulin signaling and glucose uptake. Further, VAL attenuated palmitate-induced inflammation and endoplasmic reticulum (ER) stress in a concentration-dependent manner. Treatment with VAL concentration-dependently upregulated AMP-activated protein kinase (AMPK) and heat shock protein beta 1 (HSPB1) expression. In line with in vitro experiments, treatment with VAL augmented AMPK phosphorylation and HSPB1 expression, thereby alleviating high-fat diet-induced insulin resistance along with inflammation and ER stress in mouse skeletal muscle. However, small interfering RNA-mediated inhibition of AMPK abolished the effects of VAL on insulin resistance, inflammation, and ER stress. These results suggest that VAL alleviates insulin resistance through AMPK/HSPB1-mediated inhibition of inflammation and ER stress in skeletal muscle under hyperlipidemic conditions. Hence, VAL could be used as an effective pharmacotherapeutic agent for management of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Tae Jin Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Do Hyeon Pyun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Chan PC, Liao MT, Hsieh PS. The Dualistic Effect of COX-2-Mediated Signaling in Obesity and Insulin Resistance. Int J Mol Sci 2019; 20:ijms20133115. [PMID: 31247902 PMCID: PMC6651192 DOI: 10.3390/ijms20133115] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Obesity and insulin resistance are two major risk factors for the development of metabolic syndrome, type 2 diabetes and associated cardiovascular diseases (CVDs). Cyclooxygenase (COX), a rate-limiting enzyme responsible for the biosynthesis of prostaglandins (PGs), exists in two isoforms: COX-1, the constitutive form, and COX-2, mainly the inducible form. COX-2 is the key enzyme in eicosanoid metabolism that converts eicosanoids into a number of PGs, including PGD2, PGE2, PGF2α, and prostacyclin (PGI2), all of which exert diverse hormone-like effects via autocrine or paracrine mechanisms. The COX-2 gene and immunoreactive proteins have been documented to be highly expressed and elevated in adipose tissue (AT) under morbid obesity conditions. On the other hand, the environmental stress-induced expression and constitutive over-expression of COX-2 have been reported to play distinctive roles under different pathological and physiological conditions; i.e., over-expression of the COX-2 gene in white AT (WAT) has been shown to induce de novo brown AT (BAT) recruitment in WAT and then facilitate systemic energy expenditure to protect mice against high-fat diet-induced obesity. Hepatic COX-2 expression was found to protect against diet-induced steatosis, obesity, and insulin resistance. However, COX-2 activation in the epidydimal AT is strongly correlated with the development of AT inflammation, insulin resistance, and fatty liver in high-fat-diet-induced obese rats. This review will provide updated information regarding the role of COX-2-derived signals in the regulation of energy metabolism and the pathogenesis of obesity and MS.
Collapse
Affiliation(s)
- Pei-Chi Chan
- Institute of Physiology, National Defense Medical Center, Taipei 114, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Po-Shiuan Hsieh
- Institute of Physiology, National Defense Medical Center, Taipei 114, Taiwan.
- Department of Medical Research, Tri-Service General Hospital, Taipei 114, Taiwan.
| |
Collapse
|
9
|
Villar MMD, Martínez-Abundis E, Preciado-Márquez RO, González-Ortiz M. Effect of diacerein as an add-on to metformin in patients with type 2 diabetes mellitus and inadequate glycemic control. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2017; 61:188-192. [PMID: 28225996 PMCID: PMC10118867 DOI: 10.1590/2359-3997000000242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/10/2016] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate the effect of diacerein as an add-on to metformin in patients with type 2 diabetes mellitus (T2DM) and inadequate glycemic control. MATERIALS AND METHODS A randomized, double-blind, placebo-controlled clinical trial was carried out on 12 patients with T2DM and inadequate glycemic control [glycated hemoglobin A1c (A1C) ≥ 7%] with metformin as monotherapy (≥ 1500 mg per day) for at least the previous 90 days. Fasting and postprandial glucose were measured before and after the pharmacological intervention. A1C, lipid profile, creatinine and uric acid were also evaluated. After randomization, all patients continued with their dose of metformin. Six subjects received placebo and the other six volunteers took diacerein. Data were tested using the Wilcoxon signed-rank, Mann-Whitney U and chi-square tests. The Institutional Ethics Committee approved the study protocol. RESULTS After 90 days of diacerein as an add-on to metformin, there was a significant decrease in fasting glucose (196 ± 79 vs. 149 ± 70 mg/dL, p < 0.05), postprandial glucose (262 ± 99 vs. 187 ± 70 mg/dlL, p < 0.05) and A1C (8.4 ± 2.0 vs. 6.7 ± 1.7 %, p < 0.05). CONCLUSIONS Diacerein as an add-on to metformin in patients with T2DM improved their glycemic control.
Collapse
|
10
|
Valverde ÁM, Martín-Sanz P. Response to Comment on Francés et al. Hepatic Cyclooxygenase-2 Expression Protects Against Diet-Induced Steatosis, Obesity, and Insulin Resistance. Diabetes 2015;64:1522-1531. Diabetes 2015; 64:e43-4. [PMID: 26604179 DOI: 10.2337/dbi15-0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ángela M Valverde
- Institute of Biomedical Research Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Paloma Martín-Sanz
- Institute of Biomedical Research Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
11
|
González-Ortiz M, Martínez-Abundis E, Méndez-Del Villar M, Pérez-Rubio KG. Comment on Francés et al. Hepatic Cyclooxygenase-2 Expression Protects Against Diet-Induced Steatosis, Obesity, and Insulin Resistance. Diabetes 2015;64:1522-1531. Diabetes 2015; 64:e42. [PMID: 26604178 DOI: 10.2337/db15-1150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Manuel González-Ortiz
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Center for Health Science, University of Guadalajara, Guadalajara, Mexico
| | - Esperanza Martínez-Abundis
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Center for Health Science, University of Guadalajara, Guadalajara, Mexico
| | - Miriam Méndez-Del Villar
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Center for Health Science, University of Guadalajara, Guadalajara, Mexico
| | - Karina G Pérez-Rubio
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Center for Health Science, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
12
|
Yan S, Zhang Q, Zhong X, Tang J, Wang Y, Yu J, Zhou Y, Zhang J, Guo F, Liu Y, FitzGerald GA, Yu Y. I prostanoid receptor-mediated inflammatory pathway promotes hepatic gluconeogenesis through activation of PKA and inhibition of AKT. Diabetes 2014; 63:2911-23. [PMID: 24722246 DOI: 10.2337/db13-1893] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), including acetylsalicylic acid (ASA), improve glucose metabolism in diabetic subjects, although the underlying mechanisms remain unclear. In this study, we observed dysregulated expression of cyclooxygenase-2, prostacyclin biosynthesis, and the I prostanoid receptor (IP) in the liver's response to diabetic stresses. High doses of ASA reduced hepatic prostaglandin generation and suppressed hepatic gluconeogenesis in mice during fasting, and the hypoglycemic effect of ASA could be restored by IP agonist treatment. IP deficiency inhibited starvation-induced hepatic gluconeogenesis, thus inhibiting the progression of diabetes, whereas hepatic overexpression of IP increased gluconeogenesis. IP deletion depressed cAMP-dependent CREB phosphorylation and elevated AKT phosphorylation by suppressing PI3K-γ/PKC-ζ-mediated TRB3 expression, which subsequently downregulated the gluconeogenic genes for glucose-6-phosphatase (G6Pase) and phosphoenol pyruvate carboxykinase 1 in hepatocytes. We therefore conclude that suppression of IP modulation of hepatic gluconeogenesis through the PKA/CREB and PI3K-γ/PKC-ζ/TRB3/AKT pathways contributes to the effects of NSAIDs in diabetes.
Collapse
Affiliation(s)
- Shuai Yan
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qianqian Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Zhong
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juan Tang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyang Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Junjie Yu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Zhou
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feifan Guo
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - Ying Yu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| |
Collapse
|
13
|
Martínez-Abundis E, González-Ortiz M, Mercado-Sesma AR, Reynoso-von-Drateln C, Moreno-Andrade A. Effect of avocado soybean unsaponifiables on insulin secretion and insulin sensitivity in patients with obesity. Obes Facts 2013; 6:443-8. [PMID: 24135894 PMCID: PMC5644760 DOI: 10.1159/000355720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/04/2013] [Indexed: 01/03/2023] Open
Abstract
AIM To evaluate the effect of avocado soybean unsaponifiables (ASU) on insulin secretion and insulin sensitivity in patients with obesity. METHODS A randomized, double-blind, placebo-controlled, clinical trial was carried out in 14 obese adult volunteers. After random allocation of the intervention, 7 patients received 300 mg of ASU or placebo during a fasting state for 3 months. A metabolic profile including IL-6 and high-sensitivity C-reactive protein (hs-CRP) levels was carried out prior to the intervention. A hyperglycemic-hyperinsulinemic clamp technique was used to assess insulin secretion and insulin sensitivity phases. Mann-Whitney U test and Wilcoxon test were performed for statistical analyses. The study was approved by the local ethics committee of our institution. RESULTS At baseline, both groups were similar according to clinical and laboratory characteristics. There was no significant difference in insulin secretion and insulin sensitivity with ASU. CONCLUSIONS ASU administration for 3 months did not modify insulin secretion and insulin sensitivity in patients with obesity.
Collapse
Affiliation(s)
- Esperanza Martínez-Abundis
- Medical Research Unit in Clinical Epidemiology, Specialties Hospital, Medical Unit of High Specialty, West National Medical Center, Mexican Institute of Social Security, Guadalajara, Mexico
- Cardiovascular Research Unit, Physiology Department, Health Science University Center, University of Guadalajara, Guadalajara, Mexico
| | - Manuel González-Ortiz
- Medical Research Unit in Clinical Epidemiology, Specialties Hospital, Medical Unit of High Specialty, West National Medical Center, Mexican Institute of Social Security, Guadalajara, Mexico
- Cardiovascular Research Unit, Physiology Department, Health Science University Center, University of Guadalajara, Guadalajara, Mexico
| | - Arieh R. Mercado-Sesma
- Cardiovascular Research Unit, Physiology Department, Health Science University Center, University of Guadalajara, Guadalajara, Mexico
| | - Claudia Reynoso-von-Drateln
- Medical Research Unit in Clinical Epidemiology, Specialties Hospital, Medical Unit of High Specialty, West National Medical Center, Mexican Institute of Social Security, Guadalajara, Mexico
| | - Aureliano Moreno-Andrade
- Medical Research Unit in Clinical Epidemiology, Specialties Hospital, Medical Unit of High Specialty, West National Medical Center, Mexican Institute of Social Security, Guadalajara, Mexico
| |
Collapse
|
14
|
Ramos-Zavala MG, González-Ortiz M, Martínez-Abundis E, Robles-Cervantes JA, González-López R, Santiago-Hernández NJ. Effect of diacerein on insulin secretion and metabolic control in drug-naive patients with type 2 diabetes: a randomized clinical trial. Diabetes Care 2011; 34:1591-4. [PMID: 21610123 PMCID: PMC3120202 DOI: 10.2337/dc11-0357] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/21/2011] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To assess the effect of diacerein on insulin secretion and metabolic control in drug-naïve patients with type 2 diabetes. RESEARCH DESIGN AND METHODS A randomized, double-blind, placebo-controlled clinical trial was carried out in 40 drug-naïve adult patients with type 2 diabetes. A metabolic profile including interleukin (IL)-1β, tumor necrosis factor-α, IL-6, and fasting insulin levels was carried out before the intervention and 2 months afterward. A hyperglycemic-hyperinsulinemic clamp technique was performed to assess the phases of insulin secretion and insulin sensitivity. After randomization, 20 patients received diacerein (50 mg once daily) for the first 15 days and twice daily for 45 additional days. The remaining patients received placebo. Intra- and intergroup differences were calculated by Wilcoxon signed rank and Mann-Whitney U tests. RESULTS There were significant increases in first (102±63 vs. 130±75 pmol/L; P<0.01), late (219±111 vs. 280±135 pmol/L; P<0.01), and total insulin (178±91 vs. 216±99 pmol/L; P<0.01) secretions without changes in insulin sensitivity after diacerein administration. There were significant decreases in fasting glucose (7.9±1.4 vs. 6.8±1.0 mmol/L; P<0.01) and in A1C levels (8.3±1.0 vs. 7.0±0.8%; P<0.001) after diacerein administration. There were no significant changes after placebo administration in the above-mentioned evaluations. CONCLUSIONS Insulin secretion increased and metabolic control improved after diacerein administration in drug-naïve patients with type 2 diabetes.
Collapse
Affiliation(s)
- Maria G. Ramos-Zavala
- Medical Research Unit in Clinical Epidemiology, Specialties Hospital, Medical Unit of High Specialty, West National Medical Center, Mexican Institute of Social Security, Guadalajara, Mexico
| | - Manuel González-Ortiz
- Medical Research Unit in Clinical Epidemiology, Specialties Hospital, Medical Unit of High Specialty, West National Medical Center, Mexican Institute of Social Security, Guadalajara, Mexico
- Cardiovascular Research Unit, Physiology Department, Health Science University Center, University of Guadalajara, Guadalajara, Mexico
| | - Esperanza Martínez-Abundis
- Medical Research Unit in Clinical Epidemiology, Specialties Hospital, Medical Unit of High Specialty, West National Medical Center, Mexican Institute of Social Security, Guadalajara, Mexico
- Cardiovascular Research Unit, Physiology Department, Health Science University Center, University of Guadalajara, Guadalajara, Mexico
| | - José A. Robles-Cervantes
- Medical Research Unit in Clinical Epidemiology, Specialties Hospital, Medical Unit of High Specialty, West National Medical Center, Mexican Institute of Social Security, Guadalajara, Mexico
| | - Roberto González-López
- Medical Research Unit in Clinical Epidemiology, Specialties Hospital, Medical Unit of High Specialty, West National Medical Center, Mexican Institute of Social Security, Guadalajara, Mexico
| | - Nestor J. Santiago-Hernández
- Medical Research Unit in Clinical Epidemiology, Specialties Hospital, Medical Unit of High Specialty, West National Medical Center, Mexican Institute of Social Security, Guadalajara, Mexico
| |
Collapse
|
15
|
Metabolic profiling of the response to an oral glucose tolerance test detects subtle metabolic changes. PLoS One 2009; 4:e4525. [PMID: 19242536 PMCID: PMC2643463 DOI: 10.1371/journal.pone.0004525] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 01/07/2009] [Indexed: 12/31/2022] Open
Abstract
Background The prevalence of overweight is increasing globally and has become a serious health problem. Low-grade chronic inflammation in overweight subjects is thought to play an important role in disease development. Novel tools to understand these processes are needed. Metabolic profiling is one such tool that can provide novel insights into the impact of treatments on metabolism. Methodology To study the metabolic changes induced by a mild anti-inflammatory drug intervention, plasma metabolic profiling was applied in overweight human volunteers with elevated levels of the inflammatory plasma marker C-reactive protein. Liquid and gas chromatography mass spectrometric methods were used to detect high and low abundant plasma metabolites both in fasted conditions and during an oral glucose tolerance test. This is based on the concept that the resilience of the system can be assessed after perturbing a homeostatic situation. Conclusions Metabolic changes were subtle and were only detected using metabolic profiling in combination with an oral glucose tolerance test. The repeated measurements during the oral glucose tolerance test increased statistical power, but the metabolic perturbation also revealed metabolites that respond differentially to the oral glucose tolerance test. Specifically, multiple metabolic intermediates of the glutathione synthesis pathway showed time-dependent suppression in response to the glucose challenge test. The fact that this is an insulin sensitive pathway suggests that inflammatory modulation may alter insulin signaling in overweight men.
Collapse
|