1
|
Zheng J, Sorensen C, Li R, An H, Hildebolt CF, Zayed MA, Mueller MJ, Hastings MK. Deteriorated regional calf microcirculation measured by contrast-free MRI in patients with diabetes mellitus and relation with physical activity. Diab Vasc Dis Res 2021; 18:14791641211029002. [PMID: 34313140 PMCID: PMC8481746 DOI: 10.1177/14791641211029002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To evaluate regional calf muscle microcirculation in people with diabetes mellitus (DM) with and without foot ulcers, compared to healthy control people without DM, using contrast-free magnetic resonance imaging methods. METHODS Three groups of subjects were recruited: non-DM controls, DM, and DM with foot ulcers (DM + ulcer), all with ankle brachial index (ABI) > 0.9. Skeletal muscle blood flow (SMBF) and oxygen extraction fraction (SMOEF) in calf muscle were measured at rest and during a 5-min isometric ankle plantarflexion exercise. Subjects completed the Yale physical activity survey. RESULTS The exercise SMBF (ml/min/100 g) of the medial gastrocnemius muscle were progressively impaired: 63.7 ± 18.9 for controls, 42.9 ± 6.7 for DM, and 36.2 ± 6.2 for DM + ulcer, p < 0.001. Corresponding exercise SMOEF was the lowest in DM + ulcers (0.48 ± 0.09). Exercise SMBF in the soleus muscle was correlated moderately with the Yale physical activity survey (r = 0.39, p < 0.01). CONCLUSIONS Contrast-free MR imaging identified progressively impaired regional microcirculation in medial gastrocnemius muscles of people with DM with and without foot ulcers. Exercise SMBF in the medial gastrocnemius muscle was the most sensitive index and was associated with HbA1c. Lower exercise SMBF in the soleus muscle was associated with lower Yale score.
Collapse
Affiliation(s)
- Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Jie Zheng, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Ave, Room 3114, St. Louis, MO 63130-4899, USA.
| | - Christopher Sorensen
- The Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Ran Li
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Hildebolt
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohamed A Zayed
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J Mueller
- The Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Mary K Hastings
- The Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Schweighofer N, Genser B, Maerz W, Kleber ME, Trummer O, Pieber TR, Obermayer-Pietsch B. Intronic Variants in OCT1 are Associated with All-Cause and Cardiovascular Mortality in Metformin Users with Type 2 Diabetes. Diabetes Metab Syndr Obes 2020; 13:2069-2080. [PMID: 32606866 PMCID: PMC7308180 DOI: 10.2147/dmso.s235663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/01/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Organic cation transporters (Octs) use cations like endogenous compounds, toxins, and drugs, such as metformin, as substrates. Therefore, these proteins determine the pharmacokinetics and -dynamics of metformin and thus its efficacy. Of note, metformin is today the most commonly used pharmaceutical in the treatment of type 2 diabetes (T2DM) with nevertheless a great variability in clinical response, which attributes to genetic variances. The aim of this study was to determine the influence of intronic OCT1 SNPs on prevalence of all-cause and cardiovascular death. PATIENTS AND METHODS Genotypes of 27 intronic SNPs in OCT1 were investigated in the LURIC study, a prospective cohort of 3316 participants scheduled for coronary angiography. We investigated whether these variants were associated with all-cause and cardiovascular death in 73 individuals with T2DM under metformin therapy, in individuals without diabetes, individuals with T2DM and individuals with T2DM without metformin therapy. RESULTS In a multivariate Cox regression analysis adjusted for classical cardiovascular risk factors, 4 intronic OCT1 SNPs were significantly associated with all-cause and cardiovascular mortality in individuals with T2DM on metformin therapy. CONCLUSION According to their OCT1 genotype, some individuals with T2DM on metformin therapy might be prone to an increased risk of cardiovascular death.
Collapse
Affiliation(s)
- Natascha Schweighofer
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, Graz, Austria
- CBmed GmbH, Center for Biomarker Research in Medicine, Graz, Austria
| | - Bernd Genser
- BG Stats Consulting, Vienna, Austria
- Institute of Public Health, Social and Preventive Medicine, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Winfried Maerz
- Medical Clinic V (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- SynLaboratory Academy, SynLaboratory Holding Deutschland GmbH, Mannheim and Augsburg, Germany
| | - Marcus E Kleber
- Medical Clinic V (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Olivia Trummer
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, Graz, Austria
| | - Thomas R Pieber
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, Graz, Austria
- CBmed GmbH, Center for Biomarker Research in Medicine, Graz, Austria
| | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, Graz, Austria
- CBmed GmbH, Center for Biomarker Research in Medicine, Graz, Austria
| |
Collapse
|
3
|
Al-Sulaiti H, Diboun I, Agha MV, Mohamed FFS, Atkin S, Dömling AS, Elrayess MA, Mazloum NA. Metabolic signature of obesity-associated insulin resistance and type 2 diabetes. J Transl Med 2019; 17:348. [PMID: 31640727 PMCID: PMC6805293 DOI: 10.1186/s12967-019-2096-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
Background Obesity is associated with an increased risk of insulin resistance and type 2 diabetes mellitus (T2DM). However, some obese individuals maintain their insulin sensitivity and exhibit a lower risk of associated comorbidities. The underlying metabolic pathways differentiating obese insulin sensitive (OIS) and obese insulin resistant (OIR) individuals remain unclear. Methods In this study, 107 subjects underwent untargeted metabolomics of serum samples using the Metabolon platform. Thirty-two subjects were lean controls whilst 75 subjects were obese including 20 OIS, 41 OIR, and 14 T2DM individuals. Results Our results showed that phospholipid metabolites including choline, glycerophosphoethanolamine and glycerophosphorylcholine were significantly altered from OIS when compared with OIR and T2DM individuals. Furthermore, our data confirmed changes in metabolic markers of liver disease, vascular disease and T2DM, such as 3-hydroxymyristate, dimethylarginine and 1,5-anhydroglucitol, respectively. Conclusion This pilot data has identified phospholipid metabolites as potential novel biomarkers of obesity-associated insulin sensitivity and confirmed the association of known metabolites with increased risk of obesity-associated insulin resistance, with possible diagnostic and therapeutic applications. Further studies are warranted to confirm these associations in prospective cohorts and to investigate their functionality.
Collapse
Affiliation(s)
- Haya Al-Sulaiti
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Ilhame Diboun
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | | | | | - Stephen Atkin
- Weill Cornell Medicine-Qatar, Doha, Qatar.,Royal College of Surgeons, Ireland, Bahrain
| | - Alex S Dömling
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | | | | |
Collapse
|
4
|
Loader J, Khouri C, Taylor F, Stewart S, Lorenzen C, Cracowski JL, Walther G, Roustit M. The continuums of impairment in vascular reactivity across the spectrum of cardiometabolic health: A systematic review and network meta-analysis. Obes Rev 2019; 20:906-920. [PMID: 30887713 DOI: 10.1111/obr.12831] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
This study aimed to assess, for the first time, the change in vascular reactivity across the full spectrum of cardiometabolic health. Systematic searches were conducted in MEDLINE and EMBASE databases from their inception to March 13, 2017, including studies that assessed basal vascular reactivity in two or more of the following health groups (aged ≥18 years old): healthy, overweight, obesity, impaired glucose tolerance, metabolic syndrome, or type 2 diabetes with or without complications. Direct and indirect comparisons of vascular reactivity were combined using a network meta-analysis. Comparing data from 193 articles (7226 healthy subjects and 19344 patients), the network meta-analyses revealed a progressive impairment in vascular reactivity (flow-mediated dilation data) from the clinical onset of an overweight status (-0.41%, 95% CI, -0.98 to 0.15) through to the development of vascular complications in those with type 2 diabetes (-4.26%, 95% CI, -4.97 to -3.54). Meta-regressions revealed that for every 1 mmol/l increase in fasting blood glucose concentration, flow-mediated dilation decreased by 0.52%. Acknowledging that the time course of disease may vary between patients, this study demonstrates multiple continuums of vascular dysfunction where the severity of impairment in vascular reactivity progressively increases throughout the pathogenesis of obesity and/or insulin resistance, providing information that is important to enhancing the timing and effectiveness of strategies that aim to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Jordan Loader
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia.,LAPEC EA4278, Avignon Université, Avignon, France
| | - Charles Khouri
- Inserm U1042, Université Grenoble Alpes, Grenoble, France.,Clinical Pharmacology, Grenoble Alpes University Hospital, Grenoble, France
| | - Frances Taylor
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Simon Stewart
- Hatter Institute for Reducing Cardiovascular Disease in Africa, The University of Cape Town, Cape Town, South Africa
| | - Christian Lorenzen
- School of Exercise Science, Australian Catholic University, Melbourne, Australia
| | - Jean-Luc Cracowski
- Inserm U1042, Université Grenoble Alpes, Grenoble, France.,Clinical Pharmacology, Grenoble Alpes University Hospital, Grenoble, France
| | - Guillaume Walther
- LAPEC EA4278, Avignon Université, Avignon, France.,School of Exercise Science, Australian Catholic University, Melbourne, Australia
| | - Matthieu Roustit
- Inserm U1042, Université Grenoble Alpes, Grenoble, France.,Clinical Pharmacology, Grenoble Alpes University Hospital, Grenoble, France
| |
Collapse
|
5
|
La Fountaine MF, Cirnigliaro CM, Azarelo F, Hobson JC, Tascione O, Swonger KN, Dyson-Hudson T, Bauman WA. Cutaneous microvascular perfusion responses to insulin iontophoresis are differentially affected by insulin resistance after spinal cord injury. Exp Physiol 2017; 102:1234-1244. [PMID: 28671307 DOI: 10.1113/ep086239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/29/2017] [Indexed: 01/06/2023]
Abstract
NEW FINDINGS What is the central question of this study? What impact does insulin resistance have on cutaneous perfusion responses to insulin iontophoresis in vascular beds with markedly reduced or functionally ablated sympathetic nervous system vasomotor function resulting from spinal cord injury? What is the main finding and its importance? Persons with spinal cord injury have sublesional microvascular endothelial dysfunction, as indicated by a blunted cutaneous perfusion response to acetylcholine iontophoresis, and the presence of insulin resistance has a further confounding effect on endothelium-mediated changes to cutaneous perfusion in the lower extremities. Endothelium-mediated mechanisms that regulate skin blood flow might play an integral role in optimizing skin perfusion in vascular beds with sympathetic nervous system vasomotor impairment, such as in spinal cord injury (SCI). Insulin is a vasoactive hormone and second messenger of nitric oxide that facilitates endothelium-mediated dilatation. The effects of insulin resistance (IR) on sublesional cutaneous perfusion responses to insulin provocation have yet to be described in persons with SCI. Persons with SCI and an able-bodied (AB) cohort were divided into subgroups based upon fasting plasma insulin concentration cut-offs for IR (≥13.13 mIU ml-1 ) or insulin sensitivity (IS; <13.13 mIU ml-1 ), as follows: AB, IS (ABIS, n = 21); SCI, IS (SCIS, n = 21); AB, IR (ABIR, n = 9); and SCI, IR (SCIR, n = 11). Laser Doppler flowmetry characterized peak blood perfusion unit (BPU) responses (percentage change from baseline) to insulin, acetylcholine or placebo iontophoresis in the lower extremities; BPU responses were log10 transformed to facilitate comparisons, and the net insulin response (NetIns) BPU response was calculated (insulin minus placebo BPU response). The NetIns was significantly greater in both IS groups compared with their corresponding IR group. The acetylcholine-mediated BPU responses in the SCI subgroups were significantly lower than those in the ABIS group. The proportional BPU responses of NetIns to acetylcholine in the IS cohorts (i.e. ABIS and SCIS) were significantly greater (P < 0.05) than that of each IR subgroup. The presence of IR has a confounding effect on sublesional microvascular endothelium-mediated cutaneous perfusion responses to provocation. Preservation of endothelial sensitivity to its agonists appears to be an important modifiable risk factor to optimize cutaneous perfusion in the lower extremities of persons with SCI.
Collapse
Affiliation(s)
- Michael F La Fountaine
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.,School of Health and Medical Sciences, Seton Hall University, South Orange, NJ, USA.,The Institute for Advanced Study of Rehabilitation and Sports Science, School of Health and Medical Sciences, Seton Hall University, South Orange, NJ, USA
| | - Christopher M Cirnigliaro
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Frank Azarelo
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Joshua C Hobson
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Oriana Tascione
- State University of New York Downstate College of Medicine, Brooklyn, NY, USA
| | - Kirsten N Swonger
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, USA
| | - Trevor Dyson-Hudson
- Kessler Foundation, West Orange, NJ, USA.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - William A Bauman
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Lenasi H, Klonizakis M. Assessing the evidence: Exploring the effects of exercise on diabetic microcirculation. Clin Hemorheol Microcirc 2017; 64:663-678. [PMID: 27767975 DOI: 10.3233/ch-168022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus (DM) is associated with cardiovascular complications. Impairment of glycemic control induces noxious glycations, an increase in oxydative stress and dearangement of various metabolic pathways. DM leads to dysfunction of micro- and macrovessels, connected to metabolic, endothelial and autonomic nervous system. Thus, assessing vascular reactivity might be one of the clinical tools to evaluate the impact of harmful effects of DM and potential benefit of treatment; skin and skeletal muscle microcirculation have usually been tested. Physical exercise improves vascular dysfunction through various mechanisms, and is regarded as an additional effective treatment strategy of DM as it positively impacts glycemic control, improves insulin sensitivity and glucose uptake in the target tissues, thus affecting glucose and lipid metabolism, and increases the endothelium dependent vasodilation. Yet, not all patients respond in the same way so titrating the exercise type individualy would be desirable. Resistance training has, apart from aerobic one, been shown to positively correlate to glycemic control, and improve vascular reactivity. It has been prescribed in various forms or in combination with aerobic training. This review would assess the impact of different modes of exercise, the mechanisms involved, and its potential positive and negative effects on treating patients with Type I and Type II DM, focusing on the recent literature.
Collapse
Affiliation(s)
- Helena Lenasi
- Institute of Physiology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Markos Klonizakis
- Centre for Sport and Exercise Science, Sheffield Hallam University, UK
| |
Collapse
|
7
|
Wenner MM, Taylor HS, Stachenfeld NS. Peripheral Microvascular Vasodilatory Response to Estradiol and Genistein in Women with Insulin Resistance. Microcirculation 2016; 22:391-9. [PMID: 25996650 DOI: 10.1111/micc.12208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/14/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVE E2 enhances vasodilation in healthy women, but vascular effects of the phytoestrogen GEN are still under investigation. IR compromises microvascular function. We therefore examined the interaction of E2 , GEN, and IR on microvascular vasodilatory responsiveness. METHODS We hypothesized that E2 and GEN increase microvascular vasodilation in healthy women (control, n = 8, 23 ± 2 year, BMI: 25.9 ± 2.9 kg/m2) but not in women with IR (n = 7, 20 ± 1 year, BMI: 27.3 ± 3.0 kg/m2). We used the cutaneous circulation as a model of microvascular vasodilatory function. We determined CVC with laser Doppler flowmetry and beat-to-beat blood pressure during local cutaneous heating (42 °C) with E2 or GEN microdialysis perfusions. Because heat-induced vasodilation is primarily an NO-mediated response, we examined microvascular vasodilation with and without L-NMMA. RESULTS In C, E2 enhanced CVC (94.4 ± 2.6% vs. saline 81.6 ± 4.2% CVCmax , p < 0.05), which was reversed with L-NMMA (80.9 ± 7.8% CVCmax , p < 0.05), but GEN did not affect vasodilation. Neither E2 nor GEN altered CVC in IR, although L-NMMA attenuated CVC during GEN. CONCLUSIONS Our study does not support improved microvascular responsiveness during GEN exposure in healthy young women, and demonstrates that neither E2 nor GEN improves microvascular vasodilatory responsiveness in women with IR.
Collapse
Affiliation(s)
- Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nina S Stachenfeld
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.,The John B. Pierce Laboratory, New Haven, Connecticut.,Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Sarno L, Maruotti GM, Saccone G, Morlando M, Sirico A, Martinelli P. Maternal body mass index influences umbilical artery Doppler velocimetry in physiologic pregnancies. Prenat Diagn 2014; 35:125-8. [DOI: 10.1002/pd.4499] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Laura Sarno
- Department of Neuroscience, Reproductive and Dentistry Sciences; University Federico II; Naples Italy
| | - Giuseppe Maria Maruotti
- Department of Neuroscience, Reproductive and Dentistry Sciences; University Federico II; Naples Italy
| | - Gabriele Saccone
- Department of Neuroscience, Reproductive and Dentistry Sciences; University Federico II; Naples Italy
| | - Maddalena Morlando
- Department of Neuroscience, Reproductive and Dentistry Sciences; University Federico II; Naples Italy
| | - Angelo Sirico
- Department of Neuroscience, Reproductive and Dentistry Sciences; University Federico II; Naples Italy
| | - Pasquale Martinelli
- Department of Neuroscience, Reproductive and Dentistry Sciences; University Federico II; Naples Italy
| |
Collapse
|