1
|
Craine TJ, Race NS, Kutash LA, Iouchmanov AL, Moschonas EH, O'Neil DA, Sunleaf CR, Patel A, Patel N, Grobengeiser KO, Marshall IP, Magdelinic TN, Cheng JP, Bondi CO. Milnacipran Ameliorates Executive Function Impairments following Frontal Lobe Traumatic Brain Injury in Male Rats: A Multimodal Behavioral Assessment. J Neurotrauma 2023; 40:112-124. [PMID: 35979888 PMCID: PMC10024072 DOI: 10.1089/neu.2022.0289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Traumatic brain injuries (TBIs) affect more than 10 million patients annually worldwide, causing long-term cognitive and psychosocial impairments. Frontal lobe TBIs commonly impair executive function, but laboratory models typically focus primarily on spatial learning and declarative memory. We implemented a multi-modal approach for clinically relevant cognitive-behavioral assessments of frontal lobe function in rats with TBI and assessed treatment benefits of the serotonin-norepinephrine reuptake inhibitor, milnacipran (MLN). Two attentional set-shifting tasks (AST) evaluated cognitive flexibility via the rats' ability to locate food-based rewards by learning, unlearning, and relearning sequential rule sets with shifting salient cues. Adult male rats reached stable pre-injury operant AST (oAST) performance in 3-4 weeks, then were isoflurane-anesthetized, subjected to a unilateral frontal lobe controlled cortical impact (2.4 mm depth, 4 m/sec velocity) or Sham injury, and randomized to treatment conditions. Milnacipran (30 mg/kg/day) or vehicle (VEH; 10% ethanol in saline) was administered intraperitoneally via implanted osmotic minipumps (continuous infusions post-surgery, 60 μL/h). Rats had a 10-day recovery post-TBI/Sham before performing light/location-based oAST for 10 days and, subsequently, odor/media-based digging AST (dAST) on the last test day (26-27 days post-injury) before sacrifice. Both AST tests revealed significant deficits in TBI+VEH rats, seen as elevated total trials and errors (p < 0.05), which generally normalized in MLN-treated rats (p < 0.05). This first simultaneous dual AST assessment demonstrates oAST and dAST are sufficiently sensitive and robust to detect subtle attentional and cognitive flexibility executive impairments after frontal lobe TBI in rats. Chronic MLN administration shows promise for attenuation of post-TBI executive function deficits, thus meriting further investigation.
Collapse
Affiliation(s)
- Timothy J. Craine
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Bath, Claverton Down, Bath, United Kingdom
| | - Nicholas S. Race
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Association of Academic Physiatrists Rehabilitation Medicine Scientist Training Program, Owings Mills, Maryland, USA
| | - Lindsay A. Kutash
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna L. Iouchmanov
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eleni H. Moschonas
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Darik A. O'Neil
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carlson R. Sunleaf
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aarti Patel
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nima Patel
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine O. Grobengeiser
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ian P. Marshall
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Taylor N. Magdelinic
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeffrey P. Cheng
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Corina O. Bondi
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurobiology, and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Duan K, Mayer AR, Shaff NA, Chen J, Lin D, Calhoun VD, Jensen DM, Liu J. DNA methylation under the major depression pathway predicts pediatric quality of life four-month post-pediatric mild traumatic brain injury. Clin Epigenetics 2021; 13:140. [PMID: 34247653 PMCID: PMC8274037 DOI: 10.1186/s13148-021-01128-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Major depression has been recognized as the most commonly diagnosed psychiatric complication of mild traumatic brain injury (mTBI). Moreover, major depression is associated with poor outcomes following mTBI; however, the underlying biological mechanisms of this are largely unknown. Recently, genomic and epigenetic factors have been increasingly implicated in the recovery following TBI. RESULTS This study leveraged DNA methylation within the major depression pathway, along with demographic and behavior measures (features used in the clinical model) to predict post-concussive symptom burden and quality of life four-month post-injury in a cohort of 110 pediatric mTBI patients and 87 age-matched healthy controls. The results demonstrated that including DNA methylation markers in the major depression pathway improved the prediction accuracy for quality of life but not persistent post-concussive symptom burden. Specifically, the prediction accuracy (i.e., the correlation between the predicted value and observed value) of quality of life was improved from 0.59 (p = 1.20 × 10-3) (clinical model) to 0.71 (p = 3.89 × 10-5); the identified cytosine-phosphate-guanine sites were mainly in the open sea regions and the mapped genes were related to TBI in several molecular studies. Moreover, depression symptoms were a strong predictor (with large weights) for both post-concussive symptom burden and pediatric quality of life. CONCLUSION This study emphasized that both molecular and behavioral manifestations of depression symptoms played a prominent role in predicting the recovery process following pediatric mTBI, suggesting the urgent need to further study TBI-caused depression symptoms for better recovery outcome.
Collapse
Affiliation(s)
- Kuaikuai Duan
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA.,Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, 55 Park Place NE, 18th Floor, Atlanta, GA, 30303, USA
| | - Andrew R Mayer
- The Mind Research Network, Lovelace Biomedical and Environmental Research Institute, Albuquerque, USA
| | - Nicholas A Shaff
- The Mind Research Network, Lovelace Biomedical and Environmental Research Institute, Albuquerque, USA
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, 55 Park Place NE, 18th Floor, Atlanta, GA, 30303, USA
| | - Dongdong Lin
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, 55 Park Place NE, 18th Floor, Atlanta, GA, 30303, USA
| | - Vince D Calhoun
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA.,Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, 55 Park Place NE, 18th Floor, Atlanta, GA, 30303, USA.,Department of Computer Science, Georgia State University, Atlanta, USA.,Department of Psychology, Georgia State University, Atlanta, USA
| | - Dawn M Jensen
- The Neuroscience Institute, Georgia State University, Atlanta, USA
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, 55 Park Place NE, 18th Floor, Atlanta, GA, 30303, USA. .,Department of Computer Science, Georgia State University, Atlanta, USA.
| |
Collapse
|
3
|
Executive (dys)function after traumatic brain injury: special considerations for behavioral pharmacology. Behav Pharmacol 2019; 29:617-637. [PMID: 30215621 PMCID: PMC6155367 DOI: 10.1097/fbp.0000000000000430] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Executive function is an umbrella term that includes cognitive processes such as decision-making, impulse control, attention, behavioral flexibility, and working memory. Each of these processes depends largely upon monoaminergic (dopaminergic, serotonergic, and noradrenergic) neurotransmission in the frontal cortex, striatum, and hippocampus, among other brain areas. Traumatic brain injury (TBI) induces disruptions in monoaminergic signaling along several steps in the neurotransmission process - synthesis, distribution, and breakdown - and in turn, produces long-lasting deficits in several executive function domains. Understanding how TBI alters monoamingeric neurotransmission and executive function will advance basic knowledge of the underlying principles that govern executive function and potentially further treatment of cognitive deficits following such injury. In this review, we examine the influence of TBI on the following measures of executive function - impulsivity, behavioral flexibility, and working memory. We also describe monoaminergic-systems changes following TBI. Given that TBI patients experience alterations in monoaminergic signaling following injury, they may represent a unique population with regard to pharmacotherapy. We conclude this review by discussing some considerations for pharmacotherapy in the field of TBI.
Collapse
|
4
|
McGuire JL, Ngwenya LB, McCullumsmith RE. Neurotransmitter changes after traumatic brain injury: an update for new treatment strategies. Mol Psychiatry 2019; 24:995-1012. [PMID: 30214042 DOI: 10.1038/s41380-018-0239-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a pervasive problem in the United States and worldwide, as the number of diagnosed individuals is increasing yearly and there are no efficacious therapeutic interventions. A large number of patients suffer with cognitive disabilities and psychiatric conditions after TBI, especially anxiety and depression. The constellation of post-injury cognitive and behavioral symptoms suggest permanent effects of injury on neurotransmission. Guided in part by preclinical studies, clinical trials have focused on high-yield pathophysiologic mechanisms, including protein aggregation, inflammation, metabolic disruption, cell generation, physiology, and alterations in neurotransmitter signaling. Despite successful treatment of experimental TBI in animal models, clinical studies based on these findings have failed to translate to humans. The current international effort to reshape TBI research is focusing on redefining the taxonomy and characterization of TBI. In addition, as the next round of clinical trials is pending, there is a pressing need to consider what the field has learned over the past two decades of research, and how we can best capitalize on this knowledge to inform the hypotheses for future innovations. Thus, it is critically important to extend our understanding of the pathophysiology of TBI, particularly to mechanisms that are associated with recovery versus development of chronic symptoms. In this review, we focus on the pathology of neurotransmission after TBI, reflecting on what has been learned from both the preclinical and clinical studies, and we discuss new directions and opportunities for future work.
Collapse
Affiliation(s)
- Jennifer L McGuire
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA.
| | - Laura B Ngwenya
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA.,Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA.,Neurotrauma Center, University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, 45219, USA
| | - Robert E McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.,Department of Psychiatry, Cincinnati Veterans Administration Medical Center, Cincinnati, OH, USA
| |
Collapse
|
5
|
Garg C, Seo JH, Ramachandran J, Loh JM, Calderon F, Contreras JE. Trovafloxacin attenuates neuroinflammation and improves outcome after traumatic brain injury in mice. J Neuroinflammation 2018; 15:42. [PMID: 29439712 PMCID: PMC5812039 DOI: 10.1186/s12974-018-1069-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 01/17/2018] [Indexed: 12/20/2022] Open
Abstract
Background Trovafloxacin is a broad-spectrum antibiotic, recently identified as an inhibitor of pannexin-1 (Panx1) channels. Panx1 channels are important conduits for the adenosine triphosphate (ATP) release from live and dying cells that enhances the inflammatory response of immune cells. Elevated extracellular levels ATP released upon injury activate purinergic pathways in inflammatory cells that promote migration, proliferation, phagocytosis, and apoptotic signals. Here, we tested whether trovafloxacin administration attenuates the neuroinflammatory response and improves outcomes after brain trauma. Methods The murine controlled cortical impact (CCI) model was used to determine whether in vivo delivery of trovafloxacin has anti-inflammatory and neuroprotective actions after brain trauma. Locomotor deficit was assessed using the rotarod test. Levels of tissue damage markers and inflammation were measured using western blot, qPCR, and immunofluorescence. In vitro assays were used to evaluate whether trovafloxacin blocks ATP release and cell migration in a chemotactic-stimulated microglia cell line. Results Trovafloxacin treatment of CCI-injured mice significantly reduced tissue damage markers and improved locomotor deficits. In addition, trovafloxacin treatment significantly reduced mRNA levels of several pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), which correlates with an overall reduction in the accumulation of inflammatory cell types (neutrophils, microglia/macrophages, and astroglia) at the injury zone. To determine whether trovafloxacin exerted these effects by direct action on immune cells, we evaluated its effect on ATP release and cell migration using a chemotactic-stimulated microglial cell line. We found that trovafloxacin significantly inhibited both ATP release and migration of these cells. Conclusion Our results show that trovafloxacin administration has pronounced anti-inflammatory and neuroprotective effects following brain injury. These findings lay the foundation for future studies to directly test a role for Panx1 channels in pathological inflammation following brain trauma. Electronic supplementary material The online version of this article (10.1186/s12974-018-1069-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charu Garg
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Joon Ho Seo
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Jayalakshmi Ramachandran
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Ji Meng Loh
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Frances Calderon
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA.
| | - Jorge E Contreras
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
6
|
Abstract
ABSTRACT:Despite much progress in stroke prevention and acute intervention, recovery and rehabilitation have traditionally received relatively little scientific attention. There is now increasing interest in the development of stroke recovery drugs and innovative rehabilitation techniques to promote functional recovery after completed stroke. Experimental work over the past two decades indicates that pharmacologic intervention to enhance recovery may be possible in the subacute stage, days to weeks poststroke, after irreversible injury has occurred. This paper discusses the concept of “rehabilitation pharmacology” and reviews the growing literature from animal studies and pilot clinical trials on noradrenergic pharmacotherapy, a new experimental strategy in stroke rehabilitation. Amphetamine, a monoamine agonist that increases brain norepinephrine levels, is the most extensively studied drug shown to promote recovery of function in animal models of focal brain injury. Further research is needed to investigate the mechanisms and clinical efficacy of amphetamine and other novel therapeutic interventions on the recovery process.
Collapse
|
7
|
Jenkins PO, Mehta MA, Sharp DJ. Catecholamines and cognition after traumatic brain injury. Brain 2016; 139:2345-71. [PMID: 27256296 PMCID: PMC4995357 DOI: 10.1093/brain/aww128] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/20/2016] [Indexed: 01/11/2023] Open
Abstract
Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person’s catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain ‘networks’ that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner.
Collapse
Affiliation(s)
- Peter O Jenkins
- 1 The Division of Brain Sciences, The Department of Medicine, Imperial College London, UK
| | - Mitul A Mehta
- 2 Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - David J Sharp
- 1 The Division of Brain Sciences, The Department of Medicine, Imperial College London, UK
| |
Collapse
|
8
|
Bondi CO, Cheng JP, Tennant HM, Monaco CM, Kline AE. Old dog, new tricks: the attentional set-shifting test as a novel cognitive behavioral task after controlled cortical impact injury. J Neurotrauma 2014; 31:926-37. [PMID: 24397572 DOI: 10.1089/neu.2013.3295] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cognitive impairment associated with prefrontal cortical dysfunction is a major component of disability in traumatic brain injury (TBI) survivors. Specifically, deficits of cognitive flexibility and attentional set-shifting are present across all levels of injury severity. Though alterations in spatial learning have been extensively described in experimental models of TBI, studies investigating more complex cognitive deficits are relatively scarce. Hence, the aim of this preclinical study was to expand on this important issue by evaluating the effect of three injury levels on executive function and behavioral flexibility performance as assessed using an attentional set-shifting test (AST). Isoflurane-anesthetized male rats received a controlled cortical impact (CCI) injury (2.6, 2.8, and 3.0 mm cortical depth at 4 m/sec) or sham injury, whereas an additional group had no surgical manipulation (naïve). Four weeks postsurgery, rats were tested on the AST, which involved a series of discriminative tasks of increasing difficulty, such as simple and compound discriminations, stimulus reversals, and intra- and extradimensional (ED) shifts. TBI produced accompanying impact depth-dependent increases in cortical lesion volumes, with the 3.0-mm cortical depth group displaying significantly larger injury volumes than the 2.6-mm group (p=0.05). Further, injury severity-induced deficits in ED set-shifting and stimulus reversals, as well as increases in total response error rates and total set loss errors, were observed. These novel findings demonstrate executive function and behavioral flexibility deficits in our animal model of CCI injury and provide the impetus to integrate the AST in the standard neurotrauma behavioral battery to further evaluate cognitive dysfunction after TBI. Ongoing experiments in our laboratory are assessing AST performance after pharmacological and rehabilitative therapies post-TBI, as well as elucidating possible mechanisms underlying the observed neuropsychological deficits.
Collapse
Affiliation(s)
- Corina O Bondi
- 1 Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | | | | | | |
Collapse
|
9
|
Abstract
There are more than 3.17 million people coping with long-term disabilities due to traumatic brain injury (TBI) in the United States. The majority of TBI research is focused on developing acute neuroprotective treatments to prevent or minimize these long-term disabilities. Therefore, chronic TBI survivors represent a large, underserved population that could significantly benefit from a therapy that capitalizes on the endogenous recovery mechanisms occurring during the weeks to months following brain trauma. Previous studies have found that the hippocampus is highly vulnerable to brain injury, in both experimental models of TBI and during human TBI. Although often not directly mechanically injured by the head injury, in the weeks to months following TBI, the hippocampus undergoes atrophy and exhibits deficits in long-term potentiation (LTP), a persistent increase in synaptic strength that is considered to be a model of learning and memory. Decoding the chronic hippocampal LTP and cell signaling deficits after brain trauma will provide new insights into the molecular mechanisms of hippocampal-dependent learning impairments caused by TBI and facilitate the development of effective therapeutic strategies to improve hippocampal-dependent learning for chronic survivors of TBI.
Collapse
Affiliation(s)
- Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
10
|
Mollayeva T, Colantonio A, Mollayeva S, Shapiro CM. Screening for sleep dysfunction after traumatic brain injury. Sleep Med 2013; 14:1235-46. [PMID: 24211035 DOI: 10.1016/j.sleep.2013.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
Abstract
Numerous studies on the high prevalence of sleep disorders in individuals with traumatic brain injury (TBI) have been conducted in the past few decades. These disorders can accentuate other consequences of TBI, negatively impacting mood, exacerbating pain, heightening irritability, and diminishing cognitive abilities and the potential for recovery. Nevertheless, sleep is not routinely assessed in this population. In our review, we examined the selective screening criteria and the scientific evidence regarding screening for post-TBI sleep disorders to identify gaps in our knowledge that are in need of resolution. We retrieved papers written in the English-language literature before June 2012 pertinent to the discussion on sleep after TBI found through a PubMed search. Within our research, we found that sleep dysfunction is highly burdensome after TBI, treatment interventions for some sleep disorders result in favorable outcomes, sensitive and specific tests to detect sleep disorders are available, and the cost-effectiveness and sustainability of screening have been determined from other populations. The evidence we reviewed supports screening for post-TBI sleep dysfunction. This approach could improve the outcomes and reduce the risks for post-TBI adverse health and nonhealth effects (e.g., secondary injuries). A joint sleep and brain injury collaboration focusing on outcomes is needed to improve our knowledge.
Collapse
Affiliation(s)
- Tatyana Mollayeva
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario M5G 2A2, Canada; University of Toronto, Toronto, Ontario M5G 1V7, Canada.
| | | | | | | |
Collapse
|
11
|
Pulmonary edema and hemorrhage, possible causes of pulmonary infection and respiratory failure in the early stage of lower spinal cord injury. Med Hypotheses 2012; 79:299-301. [PMID: 22683446 DOI: 10.1016/j.mehy.2012.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 05/06/2012] [Accepted: 05/09/2012] [Indexed: 11/19/2022]
Abstract
Pulmonary infection and respiratory failure are frequently encountered in the early stage of acute spinal cord injury (SCI) and are thought of as the chief causes of death. Unfortunately, there is little knowledge concerned with the pathogenesis of pulmonary infection, respiratory failure and other pathological changes in the lung in the early stage of SCI. Pulmonary embolism, respiratory muscle dysfunction, poor expectoration caused by position, and decreased ability to cough up respiratory secretions were the main causes. These explanations may be beyond criticism in high-level paraplegia in SCI, but are unconvincing in lower SCI such as in low-thoracic cord injury where the phenomenon of pneumonia and respiratory dysfunction remains. There might be some more important factors that lead to pulmonary infection and respiratory failure in the early stage of SCI. In SCI rats, pulmonary edema and hemorrhage were occurred in the early stage of SCI while the other organs were almost normal. And the location of lung edema and hemorrhage were the same as that of pulmonary infection. The purpose of this paper is to propose pathological changes in the lung and possible causes for pulmonary infection and respiratory failure. We hypothesize that pulmonary edema and hemorrhage in the early stage of SCI might be the chief factor contributing to pulmonary infection and respiratory failure in lower SCI.
Collapse
|
12
|
McAllister TW, Flashman LA, McDonald BC, Ferrell RB, Tosteson TD, Yanofsky NN, Grove MR, Saykin AJ. Dopaminergic challenge with bromocriptine one month after mild traumatic brain injury: altered working memory and BOLD response. J Neuropsychiatry Clin Neurosci 2011; 23:277-86. [PMID: 21948888 PMCID: PMC4074527 DOI: 10.1176/jnp.23.3.jnp277] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Catecholamines, particularly dopamine, modulate working memory (WM). Altered sensitivity to dopamine might play a role in WM changes observed after traumatic brain injury (TBI). Thirty-one healthy controls (HC) and 26 individuals with mild TBI (MTBI) 1 month after injury were challenged with bromocriptine versus placebo before administration of a verbal WM functional MRI task. Bromocriptine was associated with improved WM performance in the HC but not the MTBI group. On bromocriptine, the MTBI group showed increased activation outside of a task-specific region of interest. Findings are consistent with the hypothesis that individuals with MTBI have altered responsivity to dopamine.
Collapse
|
13
|
Flanagan SR, Cantor JB, Ashman TA. Traumatic brain injury: future assessment tools and treatment prospects. Neuropsychiatr Dis Treat 2008; 4:877-92. [PMID: 19183780 PMCID: PMC2626927 DOI: 10.2147/ndt.s1985] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is widespread and leads to death and disability in millions of individuals around the world each year. Overall incidence and prevalence of TBI are likely to increase in absolute terms in the future. Tackling the problem of treating TBI successfully will require improvements in the understanding of normal cerebral anatomy, physiology, and function throughout the lifespan, as well as the pathological and recuperative responses that result from trauma. New treatment approaches and combinations will need to be targeted to the heterogeneous needs of TBI populations. This article explores and evaluates the research evidence in areas that will likely lead to a reduction in TBI-related morbidity and improved outcomes. These include emerging assessment instruments and techniques in areas of structural/chemical and functional neuroimaging and neuropsychology, advances in the realms of cell-based therapies and genetics, promising cognitive rehabilitation techniques including cognitive remediation and the use of electronic technologies including assistive devices and virtual reality, and the emerging field of complementary and alternative medicine.
Collapse
Affiliation(s)
- Steven R Flanagan
- New York University School of Medicine, The Rusk Institute of Rehabilitation, New York, NY, USA.
| | | | | |
Collapse
|
14
|
Abstract
Traumatic brain injury (TBI) is a worldwide public health problem. Over the last several decades, improvements in acute care have resulted in higher survival rates. Unfortunately, the majority of survivors of moderate and severe TBI have chronic neurobehavioral sequelae, including cognitive deficits, changes in personality and increased rates of psychiatric illness. These neurobehavioral problems are understandable in the context of the typical profile of regional brain damage associated with trauma. This paper presents an overview of the neurobehavioral sequelae of TBI and outlines issues to consider in the evaluation and management of these challenges.
Collapse
Affiliation(s)
- THOMAS W. MCALLISTER
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
| |
Collapse
|
15
|
Wagner AK, Postal BA, Darrah SD, Chen X, Khan AS. Deficits in novelty exploration after controlled cortical impact. J Neurotrauma 2007; 24:1308-20. [PMID: 17711392 DOI: 10.1089/neu.2007.0274] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Experimental models of traumatic brain injury (TBI) have been utilized to characterize the behavioral derangements associated with brain trauma. Several studies exist characterizing motor function in the controlled cortical impact (CCI) injury model of TBI, but less research has focused on how CCI affects exploratory behavior. The goal of this study was to characterize deficits in three novelty exploration tasks after the CCI. Under anesthesia, 37 adult male Sprague Dawley rats received CCI (2.7 mm and 2.9 mm; 4 m/sec) over the right parietal cortex or sham surgery. For days 1-6 post-surgery, the beam balance and beam walking tasks were used to assess motor deficits. The Open Field, Y-Maze, and Free Choice Novelty (FCN) tasks were used to measure exploratory deficits from days 7-14 post-surgery. Injured rats displayed a significant, but transient, deficit on each motor task (p < 0.0001). Open Field results showed that injured rats had lower activity levels than shams (p < 0.0001), displayed less habituation to the task, and had more anxiety related behaviors (thigmotaxis) across days (p < 0.0001). Y-maze results suggest that injured rats spent less time in the novel arm versus the familiar arms when compared to shams (p < 0.0001). For FCN, injured rats were less active (p < 0.05) and spent less time and had fewer interactions with objects in the novel environment compared to shams (p < 0.05). These results suggest that several ethological factors contribute to exploratory deficits after CCI and can be effectively characterized with the behavioral tasks described. Future work will utilize these tasks to evaluate the neural substrates underlying exploratory deficits after TBI.
Collapse
Affiliation(s)
- Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
16
|
McAllister TW, Flashman LA, McDonald BC, Saykin AJ. Mechanisms of working memory dysfunction after mild and moderate TBI: evidence from functional MRI and neurogenetics. J Neurotrauma 2006; 23:1450-67. [PMID: 17020482 DOI: 10.1089/neu.2006.23.1450] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cognitive complaints are a frequent source of distress and disability after mild and moderate traumatic brain injury (TBI). While there are deficits in several cognitive domains, many aspects of these complaints and deficits suggest that problems in working memory (WM) play an important role. Functional imaging studies in healthy individuals have outlined the neural substrate of WM and have shown that regions important in WM circuitry overlap with regions commonly vulnerable to damage in TBI. Use of functional MRI (fMRI) in individuals with mild and moderate TBI suggests that they can have problems in the activation and allocation of WM, and several lines of evidence suggest that subtle alterations in central catecholaminergic sensitivity may underlie these problems. We review the evidence from fMRI and neurogenetic studies that support the role of catecholaminergic dysregulation in the etiology of WM complaints and deficits after mild and moderate TBI.
Collapse
Affiliation(s)
- Thomas W McAllister
- Section of Neuropsychiatry, Neuropsychology Program, Brain Imaging Laboratory, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.
| | | | | | | |
Collapse
|
17
|
Roosevelt RW, Smith DC, Clough RW, Jensen RA, Browning RA. Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res 2006; 1119:124-32. [PMID: 16962076 PMCID: PMC1751174 DOI: 10.1016/j.brainres.2006.08.048] [Citation(s) in RCA: 284] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 08/03/2006] [Accepted: 08/14/2006] [Indexed: 01/24/2023]
Abstract
The vagus nerve is an important source of afferent information about visceral states and it provides input to the locus coeruleus (LC), the major source of norepinephrine (NE) in the brain. It has been suggested that the effects of electrical stimulation of the vagus nerve on learning and memory, mood, seizure suppression, and recovery of function following brain damage are mediated, in part, by the release of brain NE. The hypothesis that left vagus nerve stimulation (VNS) at the cervical level results in increased extracellular NE concentrations in the cortex and hippocampus was tested at four stimulus intensities: 0.0, 0.25, 0.5, and 1.0 mA. Stimulation at 0.0 and 0.25 mA had no effect on NE concentrations, while the 0.5 mA stimulation increased NE concentrations significantly in the hippocampus (23%), but not the cortex. However, 1.0 mA stimulation significantly increased NE concentrations in both the cortex (39%) and hippocampus (28%) bilaterally. The increases in NE were transient and confined to the stimulation periods. VNS did not alter NE concentrations in either structure during the inter-stimulation baseline periods. No differences were observed between NE levels in the initial baseline and the post-stimulation baselines. These findings support the hypothesis that VNS increases extracellular NE concentrations in both the hippocampus and cortex.
Collapse
Affiliation(s)
- Rodney W. Roosevelt
- Brain and Cognitive Sciences Program, Department of Psychology, Southern Illinois University
| | - Douglas C. Smith
- Brain and Cognitive Sciences Program, Department of Psychology, Southern Illinois University
- Department of Physiology, Southern Illinois University School of Medicine
- Department of Anatomy, Southern Illinois University School of Medicine
| | - Richard W. Clough
- Department of Physiology, Southern Illinois University School of Medicine
- Department of Anatomy, Southern Illinois University School of Medicine
| | - Robert A. Jensen
- Brain and Cognitive Sciences Program, Department of Psychology, Southern Illinois University
| | - Ronald A. Browning
- Department of Physiology, Southern Illinois University School of Medicine
- Department of Pharmacology, Southern Illinois University School of Medicine
| |
Collapse
|
18
|
McAllister TW, Flashman LA, Sparling MB, Saykin AJ. Working memory deficits after traumatic brain injury: catecholaminergic mechanisms and prospects for treatment -- a review. Brain Inj 2004; 18:331-50. [PMID: 14742148 DOI: 10.1080/02699050310001617370] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PRIMARY OBJECTIVE To review the neural circuitry and neurochemistry of working memory and outline the evidence for working memory deficits after traumatic brain injury, and the evidence for the use of catecholaminergic agents in the amelioration of these deficits. Current knowledge gaps and research needs are identified. MAIN OUTCOMES AND RESULTS Impairments in working memory are a core component of the cognitive deficits associated with traumatic brain injury. Recent progress in understanding the neural circuitry and neurochemistry of working memory suggests that catecholamines play a central role in the activation and regulation of working memory and thus lays a framework in which to consider the use of catecholaminergic agents (dopaminergic and alpha-2 adrenergic agonists) in the treatment of specific cognitive deficits after traumatic brain injury. CONCLUSIONS The combined methods of cognitive neuroscience, functional brain imaging and neuropharmacology are proposed as an excellent method for studying working memory deficits. A strong rationale exists for the targeted use of catecholaminergic agonists in the treatment of working memory deficits after traumatic brain injury.
Collapse
Affiliation(s)
- Thomas W McAllister
- Department of Psychiatry, Section of Neuropsychiatry and the Brain Imaging Laboratory, Dartmouth Medical School, Lebanon, NH 03756, USA.
| | | | | | | |
Collapse
|
19
|
Kroppenstedt SN, Sakowitz OW, Thomale UW, Unterberg AW, Stover JF. Influence of norepinephrine and dopamine on cortical perfusion, EEG activity, extracellular glutamate, and brain edema in rats after controlled cortical impact injury. J Neurotrauma 2002; 19:1421-32. [PMID: 12490007 DOI: 10.1089/089771502320914651] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Following traumatic brain injury, catecholamines given to ameliorate cerebral perfusion may induce brain damage via cerebral arteriolar constriction and increased neuronal excitation. In the present study the acute effects of norepinephrine and dopamine on pericontusional cortical perfusion (rCBF), electroencephalographic (EEG) activity, extracellular glutamate, and brain edema were investigated in rats following controlled cortical impact injury (CCI). rCBF, cerebral perfusion pressure (CPP), EEG activity, and glutamate were determined before, during, and after infusing norepinephrine or dopamine, increasing MABP to 120 mm Hg for 90 min at 4 h after CCI. Control rats received physiological saline. At 8 h after CCI, hemispheric swelling and water content were determined gravimetrically. Following CCI, rCBF was significantly decreased. In parallel to elevating MABP and CPP, rCBF was significantly increased by norepinephrine and dopamine, being mostly pronounced with norepinephrine (+44% vs. +29%). In controls, rCBF remained diminished (-45%). EEG activity was significantly increased by norepinephrine and dopamine, while pericontusional glutamate was only elevated by norepinephrine (28 +/- 6 vs. 8 +/- 4 microM). Brain edema was not increased compared to control rats. Despite significantly increasing MABP and CPP to the same extent, norepinephrine and dopamine seem to differentially influence pericontusional cortical perfusion and glutamatergic transmission. In addition to the pressure-passive increase in CPP local cerebral effects seem to account for the sustained norepinephrine-induced increase in pericontusional cortical perfusion. The significantly elevated pericontusional glutamate concentrations in conjunction with the increased EEG activity suggest a sustained metabolically driven increase in cortical perfusion during norepinephrine infusion.
Collapse
|
20
|
McAllister TW, Sparling MB, Flashman LA, Guerin SJ, Mamourian AC, Saykin AJ. Differential working memory load effects after mild traumatic brain injury. Neuroimage 2001; 14:1004-12. [PMID: 11697932 DOI: 10.1006/nimg.2001.0899] [Citation(s) in RCA: 332] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to explore the effects of increasing working memory (WM) processing load on previously observed abnormalities in activation of WM circuitry shortly after mild traumatic brain injury (MTBI). Brain activation patterns in response to increasing WM processing load (auditory n-back: 0-, 1-, 2-, and 3-back conditions) were assessed with fMRI in 18 MTBI patients within 1 month of their injury and in 12 healthy controls. Performance accuracy on these tasks was also measured. Brain activation patterns differed between MTBI patients and controls in response to increasing WM processing loads. Controls maintained their ability to increase activation in regions of WM circuitry with each increase in WM processing load. MTBI patients showed disproportionately increased activation during the moderate processing load condition, but very little increase in activation associated with the highest processing load condition. Task performance did not differ significantly between groups on any task condition. MTBI patients showed a different pattern of allocation of processing resources associated with a high processing load condition compared to healthy controls, despite similar task performance. This suggests that injury-related changes in ability to activate or modulate WM processing resources might underlie some of the memory complaints after MTBI.
Collapse
Affiliation(s)
- T W McAllister
- Section of Neuropsychiatry and Brain Imaging Laboratory, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire 03756, USA
| | | | | | | | | | | |
Collapse
|
21
|
Stibick DL, Feeney DM. Enduring vulnerability to transient reinstatement of hemiplegia by prazosin after traumatic brain injury. J Neurotrauma 2001; 18:303-12. [PMID: 11284550 DOI: 10.1089/08977150151070955] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A single dose of an alpha1-noradrenergic antagonist transiently reinstates hemiplegia after recovery from brain injury, which suggests that noradrenaline (NA) is required to maintain recovery. No systematic studies have determined the postinjury duration of this vulnerability. This study used a within-subject, dose-response design to determine whether prazosin (PRAZ), an alpha1-NA antagonist, or propranolol (PROP), a beta-NA antagonist, would continue to reinstate hemiplegia over time after recovery from weight-drop traumatic brain injury (TBI). PRAZ transiently reinstated hemiplegia as measured by beam walk (BW) score in a dose-dependent manner, with the same degree of symptom reinstatement at 1, 3, 6, and 12 months post-TBI. Between-animal variability in reinstatement of hemiplegia by PRAZ was predicted by severity of deficits in BW ability 24 h after TBI. In contrast, PRAZ did not reinstate tactile placing deficits at 1 month post-TBI suggesting a different mechanism of maintaining recovery for each task. Reinstatement of symptoms are not due to sedation. Only TBI rats receiving PRAZ, not high, sedating doses of PROP or saline (SAL), showed return of hemiplegia. These data indicate that vulnerability to transient reinstatement of hemiplegia on some tasks endures long after functional recovery from TBI.
Collapse
Affiliation(s)
- D L Stibick
- Department of Psychology, University of New Mexico, Albuquerque 87131, USA
| | | |
Collapse
|
22
|
Zhu J, Hamm RJ, Reeves TM, Povlishock JT, Phillips LL. Postinjury administration of L-deprenyl improves cognitive function and enhances neuroplasticity after traumatic brain injury. Exp Neurol 2000; 166:136-52. [PMID: 11031090 DOI: 10.1006/exnr.2000.7484] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rat model of combined central fluid percussion traumatic brain injury (TBI) and bilateral entorhinal cortical lesion (BEC) produces profound, persistent cognitive deficits, sequelae associated with human TBI. In contrast to percussive TBI alone, this combined injury induces maladaptive hippocampal plasticity. Recent reports suggest a potential role for dopamine in CNS plasticity after trauma. We have examined the effect of the dopamine enhancer l-deprenyl on cognitive function and neuroplasticity following TBI. Rats received fluid percussion TBI, BEC alone, or combined TBI + BEC lesion and were treated once daily for 7 days with l-deprenyl, beginning 24 h after TBI alone and 15 min after BEC or TBI + BEC. Postinjury motor assessment showed no effect of l-deprenyl treatment. Cognitive performance was assessed on days 11-15 postinjury and brains from the same cases examined for dopamine beta-hydroxylase immunoreactivity (DBH-IR) and acetylcholinesterase (AChE) histochemistry. Significant cognitive improvement relative to untreated injured cases was observed in both TBI groups following l-deprenyl treatment; however, no drug effects were seen with BEC alone. l-Deprenyl attenuated injury-induced loss in DBH-IR over CA1 and CA3 after TBI alone. However, after combined TBI + BEC, l-deprenyl was only effective in protecting CA1 DBH-IR. AChE histostaining in CA3 was significantly elevated with l-deprenyl in both injury models. After TBI + BEC, l-deprenyl also increased AChE in the dentate molecular layer relative to untreated injured cases. These results suggest that dopaminergic/noradrenergic enhancement facilitates cognitive recovery after brain injury and that noradrenergic fiber integrity is correlated with enhanced synaptic plasticity in the injured hippocampus.
Collapse
Affiliation(s)
- J Zhu
- Department of Anatomy, Medical College of Virginia, Richmond, Virginia 23298-0709, USA
| | | | | | | | | |
Collapse
|
23
|
Kikuchi K, Nishino K, Ohyu H. Increasing CNS norepinephrine levels by the precursor L-DOPS facilitates beam-walking recovery after sensorimotor cortex ablation in rats. Brain Res 2000; 860:130-5. [PMID: 10727631 DOI: 10.1016/s0006-8993(00)02034-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present investigation was conducted to document a role of L-threo-3,4-dihydroxyphenylserine (L-DOPS), precursor of L-norepinephrine (NE), in the functional recovery from beam-walking performance deficits in rats after unilateral sensorimotor cortex ablation. L-DOPS was administered simultaneously with benserazide (BSZ; a peripheral aromatic amino acid decarboxylase inhibitor), and the regional contents of NE in the cerebral cortex, hippocampus, and cerebellum were assayed. Behavioral recovery was demonstrated by the rats treated with L-DOPS and BSZ, and the rate of recovery was significantly different from that of either BSZ-treated or vehicle-treated control rats. The NE tissue levels in the three discrete regions of the rat brain were significantly elevated in the experimental rats receiving both L-DOPS and BSZ. The present studies indicate that increasing NE levels by the precursor L-DOPS may be responsible for facilitating behavioral recovery from beam-walking performance deficits in rats, and further suggest that L-DOPS may become one of the candidate compounds for further clinical human trials promoting functional recovery after injuries to the cerebral cortex.
Collapse
Affiliation(s)
- K Kikuchi
- Department of Neurosurgery, Akita University School of Medicine, 1-1-1 Hondo, Akita, Japan
| | | | | |
Collapse
|
24
|
Golding EM, Robertson CS, Bryan RM. The consequences of traumatic brain injury on cerebral blood flow and autoregulation: a review. Clin Exp Hypertens 1999; 21:299-332. [PMID: 10369378 DOI: 10.3109/10641969909068668] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this decade, the brain argueably stands as one of the most exciting and challenging organs to study. Exciting in as far as that it remains an area of research vastly unknown and challenging due to the very nature of its anatomical design: the skull provides a formidable barrier and direct observations of intraparenchymal function in vivo are impractical. Moreover, traumatic brain injury (TBI) brings with it added complexities and nuances. The development of irreversible damage following TBI involves a plethora of biochemical events, including impairment of the cerebral vasculature, which render the brain at risk to secondary insults such as ischemia and intracranial hypertension. The present review will focus on alterations in the cerebrovasculature following TBI, and more specifically on changes in cerebral blood flow (CBF), mediators of CBF including local chemical mediators such as K+, pH and adenosine, endothelial mediators such as nitric oxide and neurogenic mediators such as catecholamines, as well as pressure autoregulation. It is emphasized that further research into these mechanisms may help attenuate the prevalence of secondary insults and therefore improve outcome following TBI.
Collapse
Affiliation(s)
- E M Golding
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
25
|
Carbary T, Dhillon HS, Scheff SW, Prasad RM. Immunohistochemistry of tyrosine and dopamine-β-hydroxylases after experimental brain injury in the rat. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1520-6769(199603)18:2<79::aid-nrc143>3.0.co;2-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Shen PJ, Gundlach AL. Differential spatiotemporal alterations in adrenoceptor mRNAs and binding sites in cerebral cortex following spreading depression: selective and prolonged up-regulation of alpha1B-adrenoceptors. Exp Neurol 1998; 154:612-27. [PMID: 9878196 DOI: 10.1006/exnr.1998.6915] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Noradrenaline, an important transmitter in the CNS, is involved in cerebral plasticity and functional recovery after injury. Experimental brain injury, including KCl application onto the brain surface, induces a slow-moving cortical depolarization/depression wave called cortical spreading depression (CSD). Interestingly, CSD does not produce neuronal damage but can protect cortical neurons against subsequent neurotoxic insults, although the mechanisms involved are unknown. This study examined the status of alpha- and beta-adrenoceptors (ARs) in cerebral cortex following CSD. Anesthetized rats had unilateral CSD induced by a 10-min topical application of KCl to the frontoparietal cortex and were killed at various times thereafter. Levels of alpha1-, alpha2-, beta1-, and beta2-AR mRNA and binding were examined using in situ hybridization histochemistry and radioligand autoradiography. Levels of alpha1b-AR mRNA in the affected neocortex were significantly increased by 20-40% at 1, 2, and 7 days (P </= 0.01) compared with contralateral levels, but were not significantly above control values at 2 and 4 weeks after CSD induction. Cortical alpha1B-AR binding sites were also increased by 45-65% 1 and 2 weeks (P </= 0.01) after CSD in a similar, but delayed, profile to alpha1b-AR mRNA. CSD rapidly increased beta1-AR mRNA by 45% at 1 h (P </= 0.01) and produced a delayed decrease of 25% in alpha2a-AR mRNA at 2 days and 1 week (P </= 0.05), but had no effect on corresponding levels of binding sites. In contrast, CSD had no effect on the remaining AR-subtype mRNAs or binding levels in neocortex under identical conditions. These results reveal a long-term up-regulation of alpha1B-ARs induced by an acute cortical stimulation/depression. Subtype-selective responses of ARs to CSD reflect an important differential regulation of expression of each receptor in vivo and suggest that alpha1B-ARs are particularly likely to be involved in cortical adaptive responses to physical injury at both local and distant locations.
Collapse
Affiliation(s)
- P J Shen
- The University of Melbourne, Department of Medicine, Austin and Repatriation Medical Centre, Heidelberg, Victoria, 3084, Australia
| | | |
Collapse
|
27
|
Teasdale GM, Graham DI. Craniocerebral trauma: protection and retrieval of the neuronal population after injury. Neurosurgery 1998; 43:723-37; discussion 737-8. [PMID: 9766298 DOI: 10.1097/00006123-199810000-00001] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To review the consequences of mechanical injury to the brain with an emphasis on factors that may explain the variability of outcomes and how this might be influenced. METHODS Information regarding the pathophysiology of traumatic brain damage contained in original scientific reports and in review articles published in recent years was reviewed from the perspective of a clinical neurosurgeon and a neuropathologist, each with major research interests in traumatic brain damage. The information was compiled on the basis of the knowledge of and personal selection of articles that were identified through selective literature searches and current awareness profiles. A systematic literature review was not conducted. RESULTS Mechanical input affects neuronal and vascular elements and is translated into biological effects on the brain through a complex series of interacting cellular and molecular events. Whether these lead to permanent structural damage or to resolution and recovery is determined by the balance between processes that, on the one hand, mediate the effects of initial injury and subsequent secondary insults and, on the other, are manifestations of the brain's protective, reparative response. Experimental and clinical research has identified opportunities for altering the balance in a way that might promote recovery, but data demonstrating that this can lead to substantial clinical benefit are lacking. Recent evidence of genetically determined, individual susceptibility to the effects of injury may explain some of the puzzling variability in outcome after apparently similar insults and may also provide new opportunities for treatment. CONCLUSION The understanding of traumatic brain damage that is being gained from recent research is widening and broadening perspectives from the traditional focus on mechanical, vascular, and metabolic effects to encompass wider, neurobiological issues, drawn from the fields of neurodevelopment, neuroplasticity, neurodegeneration, and neurogenetics. Neurotrauma is a fascinating area of neuroscience research, with promise for the translation of knowledge to improved clinical management and outcome.
Collapse
Affiliation(s)
- G M Teasdale
- Institute of Neurological Sciences, Southern General Hospital NHS Trust, Glasgow, Scotland
| | | |
Collapse
|
28
|
Drugs in the Management of Cute Traumatic Brain Injury. Phys Med Rehabil Clin N Am 1997. [DOI: 10.1016/s1047-9651(18)30294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Dose JM, Dhillon HS, Maki A, Kraemer PJ, Prasad RM. Lack of delayed effects of amphetamine, methoxamine, and prazosin (adrenergic drugs) on behavioral outcome after lateral fluid percussion brain injury in the rat. J Neurotrauma 1997; 14:327-37. [PMID: 9199398 DOI: 10.1089/neu.1997.14.327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study examined the delayed effects of the administration of d-amphetamine, methoxamine (an alpha1-adrenergic receptor agonist), and prazosin (an alpha1-adrenergic receptor antagonist) on the behavioral outcome of lateral fluid-percussion (FP) brain injury. Rats trained to perform a beam-walking task were subjected to brain injury of moderate severity (2.1 to 2.2 atm). Twenty-four hours after injury, rats were treated with amphetamine, methoxamine, or prazosin at two or three different dose levels. Amphetamine-treated animals displayed no significant improvement in beam-walking ability either during or after drug intoxication (from days 3 to 5 after brain injury). Similarly, neither methoxamine nor prazosin significantly affected beam-walking ability during or after drug intoxication. Neither amphetamine treatment at three different doses nor treatment with methoxamine or prazosin at two different doses affected the spatial learning disabilities of brain-injured animals. These results suggest that (1) unlike amphetamine administration after sensorimotor cortex (SMC) ablation or contusion brain injury models, amphetamine administration at 24 h after concussive FP brain injury does not improve beam-walking performance; (2) unlike amphetamine administration 10 min after concussive FP brain injury amphetamine administration 24 h after injury does not improve cognitive function; and (3) unlike prazosin administration after SMC ablation brain injury, prazosin administration 24 h after concussive FP brain injury does not effect beam-walking performance.
Collapse
Affiliation(s)
- J M Dose
- Department of Surgery, University of Kentucky Chandler Medical Center, Lexington 40536, USA
| | | | | | | | | |
Collapse
|
30
|
Dunn-Meynell AA, Yarlagadda Y, Levin BE. Alpha 1-adrenoceptor blockade increases behavioral deficits in traumatic brain injury. J Neurotrauma 1997; 14:43-52. [PMID: 9048310 DOI: 10.1089/neu.1997.14.43] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Experimental enhancement of noradrenergic activity following traumatic brain injury (TBI) accelerates behavioral recovery if performed at a time when brain norepinephrine (NE) turnover is decreased. But, since NE turnover is markedely increased immediately after TBI, the present study was undertaken to evaluate the effect of modulating these early changes in NE metabolism on recovery of function. Rats were pretrained on a modified beam walking task. Thirty minutes prior to unilateral somatosensory cortex contusion they were treated with a NE reuptake blocker [desmethy-limipramine (DMI); 10 mg/kg, ip, n = 6] or an alpha 1-adrenoreceptor antagonist [prazosin (PRZ); 3 mg/kg, ip, n = 6]. PRZ pretreatment markedly worsened beam walking performance throughout the 3 weeks following injury, whilst DMI pretreatment did not affect performance compared to injured controls (n = 4). Despite the marked behavioral deficits, PRZ-treated animals showed no apparent worsening of histological damage (n = 11 per group) and lesion size was the same in all groups. In separate experiments (n = 4 per group), PRZ lowered basal blood pressure and prevented the rise in pressure immediately following TBI. However, blood pressures in the three groups came to the same level within 20 sec following TBI. This suggest that the action of PRZ was not simply due to hypotension-induced ischemia. It is possible that blockade of alpha 1-adrenoreceptors in the immediate posttrauma period leads to enhancement of excitatory neurotransmission, which exacerbates behavioral deficits.
Collapse
Affiliation(s)
- A A Dunn-Meynell
- Department of Veterans Affairs Medical Center, East Orange, New Jersey 07018-1095, USA
| | | | | |
Collapse
|
31
|
|
32
|
Yamaguchi T, Ozawa Y, Suzuki M, Yamamoto M, Nakamura T, Yamaura A. Indeloxazine hydrochloride improves impairment of passive avoidance performance after fluid percussion brain injury in rats. Neuropharmacology 1996; 35:329-36. [PMID: 8783208 DOI: 10.1016/0028-3908(95)00171-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We studied behavioral and histological changes after fluid percussion brain injury and the effects of indeloxazine hydrochloride, a cerebral activator, on these post-traumatic changes in rats. An acquisition trial in passive avoidance task was conducted on the 3rd day after injury. The latency of step-through in injured rats was significantly (p < 0.05) shorter than that in sham-operated rats on the 4th, 10th and 14th days after the operation. There were injury-induced neurological deficits on days 1-4 post-injury. Histological changes were observed in the peripheral area of the cortical lesion at the impact site and in the thalamus but not in the hippocampus on the 14th day. Indeloxazine (10 and 20 mg/kg, p.o.) administered once a day from the 3rd (30 min prior to the acquisition trial) to the 9th day after injury significantly (p < 0.05) improved the impairment of the passive avoidance performance without affecting locomotor activity. Indeloxazine showed no significant effects on either neurological deficits or the cortical lesion area. These results suggest that impairment of passive avoidance performance occurs without apparent histological damage in the hippocampus after fluid percussion brain injury and is attenuated by post-traumatic treatment with indeloxazine.
Collapse
Affiliation(s)
- T Yamaguchi
- Pharmacology Department, Yamanouchi Pharmaceutical, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Dhillon HS, Yang L, Padmaperuma B, Dempsey RJ, Fiscus RR, Renuka Prasad M. Regional concentrations of cyclic nucleotides after experimental brain injury. J Neurotrauma 1995; 12:1035-43. [PMID: 8742132 DOI: 10.1089/neu.1995.12.1035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Regional concentrations of lactate, glucose, cAMP, and cGMP were measured after lateral fluid percussion brain injury in rats. At 5 min after injury, while tissue concentrations of lactate were elevated in the cortices and hippocampi of both the ipsilateral and contralateral hemispheres, those of glucose were decreased in these brain regions. By 20 min after injury, increases of lactate concentrations and decreases of glucose concentrations were observed only in the cortices and in the hippocampus of the ipsilateral hemisphere. Whereas the cAMP concentrations were unchanged in the cortices and hippocampi of the ipsilateral and contralateral hemispheres at 5 min after injury, decreases were found in the injured cortex and ipsilateral hippocampus at 20 min after injury. The tissue concentrations of cGMP were found to be elevated only in the ipsilateral hippocampus at 5 min after injury. The present observation that tissue glucose decreases in the injured cortex and the ipsilateral hippocampus are consistent with the published findings of increased hyperglycolysis and oxidative metabolism in brain immediately after injury. The present findings that the concentrations of cAMP and cGMP change in the cortex and hippocampus provide biochemical evidence for the neurotransmitter's surge after brain injury.
Collapse
Affiliation(s)
- H S Dhillon
- Department of Surgery, University of Kentucky, Lexington 40536-0084, USA
| | | | | | | | | | | |
Collapse
|
34
|
Levin BE, Brown KL, Pawar G, Dunn-Meynell A. Widespread and lateralization effects of acute traumatic brain injury on norepinephrine turnover in the rat brain. Brain Res 1995; 674:307-13. [PMID: 7796111 DOI: 10.1016/0006-8993(95)00032-l] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Norepinephrine (NE) has been implicated in recovery of function following traumatic brain injury (TBI). While bilateral decrease in brain NE turnover occur at 6-24 h after TBI, it is unknown what effects unilateral TBI might have on brain NE turnover the first few minutes after injury. Her male Sprague-Dawley rats had unilateral confusions of either the right or left somatosensory cortex produced by an air between piston. At 30 min after TBI, brain NE turnover was assessed by measuring the ratio of 3-methoxy-4 hydroxyphenylglycol (MHPG) to NE levels in various brain regions. Both right and left TBI produced 32-103% increases in NE turnover at the injury site and in the ipsilateral cerebral cortex surrounding, rostral and caudal to the injury as compared to the contralateral, uninjured site or to the homologous sites in uninjured controls. NE turnover was also altered selectively in some brain areas not affected by right TBI. Left TBI decreased NE turnover by 29% in the frontal cortex contralateral to the injury and by 24% bilaterally in the hypothalamus while increasing locus coeruleus NE turnover by 72% compared to uninjured controls. Thus, unilateral cortical TBI produced predominantly ipsilateral increases in cortical NE turnover but variable, bilateral changes in NE turnover in subcortical areas which were dependent upon the side of injury. These subcortical differences may explain some of the lateralized effects of cortical injury on post-injury behavior.
Collapse
Affiliation(s)
- B E Levin
- Neurology Service, Department of Veterans Affairs Medical Center, East Orange, NJ 07018, USA
| | | | | | | |
Collapse
|
35
|
Dyve S, Yang YJ, McHugh M, Gjedde A, Pappius HM. Effect of injury on the bi-affinity alpha 1-adrenoreceptor binding in rat brain in vivo. Synapse 1995; 19:88-96. [PMID: 7725246 DOI: 10.1002/syn.890190204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Focal freezing lesions in rats cause a widespread decrease of cortical glucose utilization in the lesioned hemisphere, probably as a reflection of depressed cortical activity. The noradrenergic neurotransmitter system was implicated in these alterations when it was demonstrated that prazosin, a specific norepinephrine (NE) antagonist at alpha 1-adrenergic receptors, prevented their development. In normal rat brain, specific binding of [125I]HEAT [(+/-)2-(3-[125I]iodo-4-hydroxyphenyl)-ethyl-aminomethyl-tetralone], another selective alpha 1-adrenoreceptor ligand, was demonstrated in vivo at sites consistent with the alpha 1A- and alpha 1B-adrenoreceptor subtypes. In the present study, the effect of a freezing lesion on specific binding of [125I]HEAT in rat brain in vivo was determined three days after traumatization when cortical glucose use suggested the greatest degree of functional depression. The steady-state volumes of distribution of [125I]HEAT three days after injury were significantly increased in all the cortical areas of the lesioned hemisphere, but not in the subcortical structures. Injury did not modify the binding affinities for HEAT. However, a statistically significant increase in the number of low-affinity binding sites for this ligand was demonstrated in all cortical areas of the lesioned hemisphere, but not in subcortical structures. The traumatization did not modify Bmax estimates for the high-affinity binding of HEAT. The results support the hypothesis that changes in the noradrenergic system are of functional importance in brain injury and that at least some effects of injury are mediated by alpha 1B-adrenergic receptors.
Collapse
Affiliation(s)
- S Dyve
- Positron Imaging Laboratories, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
36
|
Dunn-Meynell A, Pan S, Levin BE. Focal traumatic brain injury causes widespread reductions in rat brain norepinephrine turnover from 6 to 24 h. Brain Res 1994; 660:88-95. [PMID: 7828006 DOI: 10.1016/0006-8993(94)90842-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of right sensorimotor traumatic brain injury (TBI) in male Sprague-Dawley rats on brain norepinephrine (NE) turnover was assessed by measuring the decline of endogenous NE levels following tyrosine hydroxylase inhibition produced with alpha-methyl-p-tyrosine. Right sensorimotor cortex contusions were produced by a pneumatically driven piston which depressed the dural surface by 2 mm at 3.2 m/s. TBI rats were compared to uninjured, anesthetized controls at 6 h and 24 h after surgery. While NE turnover was not affected at the lesion site at 6 h after TBI, it was either abolished or decreased by 33-75% bilaterally in the hypothalamus and in the cerebral cortex surrounding and rostral to the lesion site. In the cortex caudal to the lesion site, NE turnover was completely abolished. NE turnover in cerebral cortex opposite the lesion site and in the contralateral cerebellum was decreased by 51 and 43%, respectively, at 6 h. At 24 h, NE turnover was either abolished or decreased bilaterally by 45-92% in all cortical areas, in the hypothalamus, cerebellum, locus coeruleus and medulla. Thus, right sensorimotor cortex contusion causes a marked, early and widespread depression of brain NE turnover. Since amphetamine increases NE turnover, this may explain the dramatic improvement in behavioral deficits which occurs following amphetamine administration at 24 h after such lesions.
Collapse
Affiliation(s)
- A Dunn-Meynell
- Neurology Service, Department of Veterans Affairs Medical Center, East Orange, NJ 07018
| | | | | |
Collapse
|
37
|
Kline AE, Chen MJ, Tso-Olivas DY, Feeney DM. Methylphenidate treatment following ablation-induced hemiplegia in rat: experience during drug action alters effects on recovery of function. Pharmacol Biochem Behav 1994; 48:773-9. [PMID: 7938134 DOI: 10.1016/0091-3057(94)90345-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two experiments examined the effects of single or multiple administrations of methylphenidate (MPH; Ritalin) and differing amounts of beam-walking trials (symptom relevant experience) during the period of drug action on recovery from hemiplegia following unilateral sensorimotor cortex ablation in rat. The first study tested multiple doses of MPH (10 mg/kg) or sterile saline given once daily, followed by four beam-walk (BW) trials at 1, 2, 3, and 6 h on 3 consecutive days. A significant and enduring enhancement of recovery was only observed 24 h after the third administration of MPH, compared to saline controls. In the second study, a single dose of MPH (10 mg/kg) or saline was administered 24 h after ablation, followed by 12 BW trials beginning 1 h and continuing at 15-min intervals until 3 h after MPH or saline administration. A significant and enduring facilitation of BW ability was produced by this single MPH treatment regimen. These data further support the importance of an interaction between symptom-relevant experience and drugs that increase norepinephrine transmission to enhance functional recovery after brain damage.
Collapse
Affiliation(s)
- A E Kline
- Department of Psychology, University of New Mexico, Albuquerque 87131-1161
| | | | | | | |
Collapse
|
38
|
Shibata M, Einhaus S, Schweitzer JB, Zuckerman S, Leffler CW. Cerebral blood flow decreased by adrenergic stimulation of cerebral vessels in anesthetized newborn pigs with traumatic brain injury. J Neurosurg 1993; 79:696-704. [PMID: 8105043 DOI: 10.3171/jns.1993.79.5.0696] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Changes in cerebral blood flow (CBF), pial arteriolar diameter, and arterial blood pressure, gases, and pH were examined before and for 3 hours after fluid-percussion brain injury in alpha-chloralose-anesthetized piglets. The brain injury was induced by a percussion of 2.28 +/- 0.06 atm applied for 23.7 +/- 0.5 msec to the right parietal cortex. Regional CBF was measured with radiolabeled microspheres, and changes in pial arteriolar diameter were monitored in the left parietal cortex using closed cranial windows. Immediately following brain injury, mean blood pressure transiently (for approximately 10 minutes) either increased or decreased and then exhibited a prolonged decrease in all of the animals. The brains showed changes consistent with traumatic brain injury such as subarachnoid hemorrhage, contusions, or reactive axonal swelling; none showed histological evidence of a global alternative pathogenetic mechanism such as hypoxic ischemic damage. While CBF of uninjured control animals did not change over a 3-hour observation period, after brain injury blood flow decreased 30% +/- 1% below the baseline level within 10 minutes and remained there for 2 to 3 hours posttrauma. After adrenergic blockade, CBF did not decrease at any time during the 3-hour period in either the uninjured control or the injured animals. Concomitant with the decreased blood flow after brain injury, pial arteriolar diameter decreased 14% below the preinjury level. However, in piglets treated with adrenoceptor antagonists, uninjured control and brain-injured animals did not show a decrease in pial arteriolar diameter. The present results support the hypothesis that increased sympathetic outflow to the cephalic vasculature following the fluid-percussion brain injury causes cerebral vasoconstriction decreasing pial arteriolar diameter and regional CBF.
Collapse
Affiliation(s)
- M Shibata
- Department of Physiology and Biophysics, University of Tennessee, Memphis
| | | | | | | | | |
Collapse
|