1
|
Lee SJ, Logsdon AF, Yagi M, Baskin BM, Peskind ER, Raskind MM, Cook DG, Schindler AG. The dynorphin/kappa opioid receptor mediates adverse immunological and behavioral outcomes induced by repetitive blast trauma. J Neuroinflammation 2022; 19:288. [PMID: 36463243 PMCID: PMC9719647 DOI: 10.1186/s12974-022-02643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Adverse pathophysiological and behavioral outcomes related to mild traumatic brain injury (mTBI), posttraumatic stress disorder (PTSD), and chronic pain are common following blast exposure and contribute to decreased quality of life, but underlying mechanisms and prophylactic/treatment options remain limited. The dynorphin/kappa opioid receptor (KOR) system helps regulate behavioral and inflammatory responses to stress and injury; however, it has yet to be investigated as a potential mechanism in either humans or animals exposed to blast. We hypothesized that blast-induced KOR activation mediates adverse outcomes related to inflammation and affective behavioral response. METHODS C57Bl/6 adult male mice were singly or repeatedly exposed to either sham (anesthesia only) or blast delivered by a pneumatic shock tube. The selective KOR antagonist norBNI or vehicle (saline) was administered 72 h prior to repetitive blast or sham exposure. Serum and brain were collected 10 min or 4 h post-exposure for dynorphin A-like immunoreactivity and cytokine measurements, respectively. At 1-month post-exposure, mice were tested in a series of behavioral assays related to adverse outcomes reported by humans with blast trauma. RESULTS Repetitive but not single blast exposure resulted in increased brain dynorphin A-like immunoreactivity. norBNI pretreatment blocked or significantly reduced blast-induced increase in serum and brain cytokines, including IL-6, at 4 h post exposure and aversive/anxiety-like behavioral dysfunction at 1-month post-exposure. CONCLUSIONS Our findings demonstrate a previously unreported role for the dynorphin/KOR system as a mediator of biochemical and behavioral dysfunction following repetitive blast exposure and highlight this system as a potential prophylactic/therapeutic treatment target.
Collapse
Affiliation(s)
- Suhjung Janet Lee
- grid.413919.70000 0004 0420 6540VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108 USA
| | - Aric F. Logsdon
- grid.413919.70000 0004 0420 6540VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108 USA ,grid.34477.330000000122986657Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195 USA
| | - Mayumi Yagi
- grid.413919.70000 0004 0420 6540VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108 USA
| | - Britahny M. Baskin
- grid.34477.330000000122986657Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195 USA
| | - Elaine. R. Peskind
- grid.413919.70000 0004 0420 6540VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108 USA ,grid.34477.330000000122986657Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195 USA
| | - Murray M. Raskind
- grid.413919.70000 0004 0420 6540VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108 USA ,grid.34477.330000000122986657Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195 USA
| | - David G. Cook
- grid.413919.70000 0004 0420 6540VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108 USA ,grid.34477.330000000122986657Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195 USA ,grid.34477.330000000122986657Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195 USA ,grid.34477.330000000122986657Department of Pharmacology, University of Washington, Seattle, WA 98195 USA
| | - Abigail. G. Schindler
- grid.413919.70000 0004 0420 6540VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108 USA ,grid.34477.330000000122986657Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195 USA ,grid.34477.330000000122986657Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195 USA ,grid.34477.330000000122986657Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
2
|
Does diet play a role in reducing nociception related to inflammation and chronic pain? Nutrition 2019; 66:153-165. [DOI: 10.1016/j.nut.2019.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
|
3
|
Podvin S, Yaksh T, Hook V. The Emerging Role of Spinal Dynorphin in Chronic Pain: A Therapeutic Perspective. Annu Rev Pharmacol Toxicol 2016; 56:511-33. [PMID: 26738478 DOI: 10.1146/annurev-pharmtox-010715-103042] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Notable findings point to the significance of the dynorphin peptide neurotransmitter in chronic pain. Spinal dynorphin neuropeptide levels are elevated during development of chronic pain and sustained during persistent chronic pain. Importantly, knockout of the dynorphin gene prevents development of chronic pain in mice, but acute nociception is unaffected. Intrathecal (IT) administration of opioid and nonopioid dynorphin peptides initiates allodynia through a nonopioid receptor mechanism; furthermore, antidynorphin antibodies administered by the IT route attenuate chronic pain. Thus, this review presents the compelling evidence in the field that supports the role of dynorphin in facilitating the development of a persistent pain state. These observations illustrate the importance of elucidating the control mechanisms responsible for the upregulation of spinal dynorphin in chronic pain. Also, spinal dynorphin regulation of downstream signaling molecules may be implicated in hyperpathic states. Therapeutic strategies to block the upregulation of spinal dynorphin may provide a nonaddictive approach to improve the devastating condition of chronic pain that occurs in numerous human diseases.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093;
| | | | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093; .,Department of Neurosciences, and.,Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, California 92093
| |
Collapse
|
4
|
Lin H, Hou C, Chen D. Altered expression of inducible nitric oxide synthase after sciatic nerve injury in rat. Cell Biochem Biophys 2011; 61:261-5. [PMID: 21499897 DOI: 10.1007/s12013-011-9192-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitric oxide is known to contribute to neuronal damage as well as to peripheral neuronal regeneration following injury. Sciatic nerve injury is a common and serious complication of intramuscular injections. In order to ascertain the role of inducible nitric oxide synthase (iNOS) in the injured sciatic nerve, we studied the expression of this enzyme by RT-PCR and immunohistochemistry, in a rat model of sciatic nerve injury. In sham-operated control rats iNOS expression was undetectable by immunohistochemistry and its mRNA level was also very low. In contrast, in the experimental group that was subjected to sciatic nerve injury, both mRNA and protein of iNOS were found to be significantly elevated. The protein level of iNOS, as revealed by positive immunostaining, peaked at 7 days post-surgery followed by a decrease. Similarly, the iNOS mRNA levels remained elevated at 1, 3, 7 days but declined to very low level by day 21, after surgery. This study indicates that the increased expression of iNOS after sciatic nerve injury in rats may contribute to nerve regeneration. Thus our results suggest that excessive expression of iNOS after nerve injury is not conducive to nerve regeneration.
Collapse
Affiliation(s)
- Haodong Lin
- Department of Orthopedic Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, People's Republic of China
| | | | | |
Collapse
|
5
|
Die J, Wang K, Fan L, Jiang Y, Shi Z. Rosuvastatin preconditioning provides neuroprotection against spinal cord ischemia in rats through modulating nitric oxide synthase expressions. Brain Res 2010; 1346:251-61. [DOI: 10.1016/j.brainres.2010.05.068] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 05/20/2010] [Accepted: 05/24/2010] [Indexed: 11/17/2022]
|
6
|
Nguyen XV, Liu M, Kim HC, Bing G. Effects of prodynorphin deletion on striatal dopamine in mice during normal aging and in response to MPTP. Exp Neurol 2009; 219:228-38. [PMID: 19500577 DOI: 10.1016/j.expneurol.2009.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/21/2009] [Accepted: 05/23/2009] [Indexed: 11/17/2022]
Abstract
Dynorphins, endogenous neuropeptides found in striatonigral neurons, have been observed to exhibit dopamine-inhibitory actions and under some circumstances possess intrinsic neurotoxic activity. To test the hypothesis that dynorphin suppression mitigates effects of aging on the striatal dopaminergic system, HPLC quantitation of dopamine and related amines was performed on striatal homogenates of wild-type (WT) mice and mice lacking the prodynorphin (Pdyn) gene at varying ages. Pdyn knockout (KO) mice at 10 and 20 months show significant elevations in striatal dopamine compared to 3-month mice. Differences in tyrosine hydroxylase (TH) immunoreactivity could not account for these findings, but phosphorylation of TH at Ser40, but not Ser31, was enhanced in aged Pdyn KO mice. Systemic administration of MPTP produced significant dopamine depletion in an age-dependent manner, but Pdyn deletion conferred no protection against MPTP-induced dopamine loss, arguing against a mechanism by which Pdyn deletion enhances dopaminergic neuron survival. The above findings demonstrate an age-dependent inhibitory effect of dynorphins on striatal dopamine synthesis via modulation of TH activity.
Collapse
Affiliation(s)
- Xuan V Nguyen
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
7
|
Sharma HS, Nyberg F, Gordh T, Alm P. Topical application of dynorphin A (1-17) antibodies attenuates neuronal nitric oxide synthase up-regulation, edema formation, and cell injury following focal trauma to the rat spinal cord. ACTA NEUROCHIRURGICA. SUPPLEMENT 2006; 96:309-15. [PMID: 16671477 DOI: 10.1007/3-211-30714-1_66] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Previous investigations from our laboratory show that up-regulation of neuronal nitric oxide synthase (NOS) following spinal cord injury (SCI) is injurious to the cord. Antiserum to dynorphin A (1-17) induces marked neuroprotection in our model of SCI, indicating an interaction between dynorphin and NOS regulation. The present investigation was undertaken to find out whether topical application of dynorphin A (1-17) antiserum has some influence on neuronal NOS up-regulation in the traumatized spinal cord. SCI was produced in anesthetized animals by making a unilateral incision into the right dorsal horn of the T10-11 segments. The antiserum to dynorphin A (1-17) was applied (1 : 20, 20 microL in 10 seconds) 5 minutes after trauma over the injured spinal cord and the rats were allowed to survive 5 hours after SCI. Topical application of dynorphin A (1-17) antiserum significantly attenuated neuronal NOS up-regulation in the adjacent T9 and T12 segments. In the antiserum-treated group, spinal cord edema and cell injury were also less marked. These observations provide new evidence that the opioid active peptide dynorphin A may be involved in the mechanisms underlying NOS regulation in the spinal cord after injury, and confirms our hypothesis that up-regulation of neuronal NOS is injurious to the cord.
Collapse
Affiliation(s)
- H S Sharma
- Laboratory of Cerebrovascular Research, Department of Anesthesiology and Intensive Care, Institute of Surgical Sciences, University Hospital, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
8
|
Hu WH, Mo XM, Walters WM, Brambilla R, Bethea JR. TNAP, a novel repressor of NF-kappaB-inducing kinase, suppresses NF-kappaB activation. J Biol Chem 2004; 279:35975-83. [PMID: 15208311 DOI: 10.1074/jbc.m405699200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
NF-kappaB-inducing kinase (NIK) has been implicated as an essential component of NF-kappaB activation. However, the regulatory mechanism of NIK signaling remains elusive. We have identified a novel NIK interacting protein, TNAP (for TRAFs and NIK-associated protein). In mammalian cells, TNAP physically interacts with NIK, TRAF2, and TRAF3 but not IKK1 or IKK2. TNAP specifically inhibits NF-kappaB activation induced by tumor necrosis factor (TNF)-alpha, TNF receptor 1, TRADD, RIP, TRAF2, and NIK but does not affect IKK1- and IKK2-mediated NF-kappaB activation. Knockdown of TNAP by lentiviral-mediated small interference RNA potentiates TNF-alpha-induced NF-kappaB activation. TNAP suppresses NIK kinase activity and subsequently reduces p100 processing, p65 phosphorylation, and IkappaBalpha degradation. These data suggest that TNAP is a repressor of NIK activity and regulates both the classical and alternative NF-kappaB signaling pathways.
Collapse
Affiliation(s)
- Wen-Hui Hu
- Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
9
|
Takahashi G, Sakurai M, Abe K, Itoyama Y, Tabayashi K. MCI-186 prevents spinal cord damage and affects enzyme levels of nitric oxide synthase and Cu/Zn superoxide dismutase after transient ischemia in rabbits. J Thorac Cardiovasc Surg 2003; 126:1461-6. [PMID: 14666020 DOI: 10.1016/s0022-5223(03)00693-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The mechanism of spinal cord injury is believed to be related to the vulnerability of spinal motor neuron cells against ischemia. We tested whether MCI-186, which is useful for treating ischemic damage in the brain, can protect against ischemic spinal cord damage. METHODS After induction of ischemia, MCI-186 or vehicle was injected intravenously. Cell damage was analyzed by observing the function of the lower limbs and by counting the number of motor neurons. To investigate the mechanism by which MCI-186 prevents ischemic spinal cord damage, we observed the immunoreactivity of Cu/Zn superoxide dismutase, neuronal nitric oxide synthase, and endothelial nitric oxide synthase. RESULTS MCI-186 eased the functional deficits and increased the number of motor neurons after ischemia. The induction of neuronal nitric oxide synthase was significantly reduced by the treatment with MCI-186. Furthermore, the increase in the induction of endothelial nitric oxide synthase and Cu/Zn superoxide dismutase was more pronounced. CONCLUSION These results indicate that MCI-186 may protect motor neurons from ischemic injury by reducing neuronal nitric oxide synthase and increasing endothelial nitric oxide synthase. MCI-186 may be a strong candidate for use as a therapeutic agent in the treatment of ischemic spinal cord injury.
Collapse
Affiliation(s)
- Goro Takahashi
- Department of Cardiovascular Surgery, Tohuko University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | |
Collapse
|
10
|
Hu WH, Walters WM, Xia XM, Karmally SA, Bethea JR. Neuronal glutamate transporter EAAT4 is expressed in astrocytes. Glia 2003; 44:13-25. [PMID: 12951653 DOI: 10.1002/glia.10268] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
High-affinity excitatory amino acid transporters (EAATs) are essential to terminate glutamatergic neurotransmission and to prevent excitotoxicity. To date, five distinct EAATs have been cloned from animal and human tissues: GLAST (EAAT1), GLT-1 (EAAT2), EAAC1 (EAAT3), EAAT4, and EAAT5. EAAT1 and EAAT2 are commonly known as glial glutamate transporters, whereas EAAT3, EAAT4, and EAAT5 are neuronal. EAAT4 is largely expressed in cerebellar Purkinje cells. In this study, using immunohistochemistry and Western blotting, we found that EAAT4-like immunoreactivity (ir) is enriched in the spinal cord and forebrain. Double-labeled fluorescent immunostaining and confocal image analysis indicated that EAAT4-like ir colocalizes with an astrocytic marker, glial fibrillary acidic protein (GFAP). The astrocytic localization of EAAT4 was further confirmed in astrocyte cultures by double-labeled fluorescent immunocytochemistry and Western blotting. Reverse transcriptase-polymerase chain reaction analysis demonstrated mRNA expression of EAAT4 in astrocyte cultures. Sequencing confirmed the specificity of the amplified fragment. These results demonstrate that EAAT4 is expressed in astrocytes. This astrocytic localization of neuronal EAAT4 may reveal a new function of EAAT4 in the central nervous system.
Collapse
Affiliation(s)
- Wen-Hui Hu
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
11
|
Goody RJ, Martin KM, Goebel SM, Hauser KF. Dynorphin A toxicity in striatal neurons via an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor mechanism. Neuroscience 2003; 116:807-16. [PMID: 12573721 DOI: 10.1016/s0306-4522(02)00563-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dynorphin A (1-17) is an endogenous opioid peptide that is antinociceptive at physiological concentrations, but in excess can elicit a number of pathological effects. Both kappa-opioid and N-methyl-D-aspartate receptor antagonists modulate dynorphin toxicity, suggesting that dynorphin is acting directly or indirectly through these receptor types. We found in spinal cord neurons that the neurotoxic effects of dynorphin A and several dynorphin-derived peptide fragments are largely mediated by N-methyl-D-aspartate receptors. Despite these findings, aspects of dynorphin A toxicity could not be accounted for by opioid or N-methyl-D-aspartate receptor mechanisms. To address this issue, neurons enriched in kappa-opioid, N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors were isolated from embryonic day-15 mouse striata and the effects of extracellularly administered dynorphin A (1-17) and (13-17) on neuronal survival were examined in vitro. Unlike spinal cord neurons, N-methyl-D-aspartate receptors mature later than alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptors in striatal neurons, thus providing a strategy to elucidate non-N-methyl-D-aspartate receptor-mediated mechanisms of toxicity. Time-lapse photography was used to repeatedly follow the same neurons before and during experimental treatments. Dynorphin A (1-17 or 13-17; 10 microM) caused significant neuronal losses after 48 to 72 hours versus untreated controls. Dynorphin A or A (13-17) toxicity was unaffected by the opioid receptor antagonist naloxone (10 microM) or by dizocilpine (10 microM). In contrast, the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline- 2,3-dione (10 microM) significantly attenuated only dynorphin A (1-17)-induced neuronal losses and not that induced by dynorphin A (13-17). Dynorphin A (1-17) toxicity was accompanied by a proportional loss of R2 and R3 subunits of the AMPA receptor complex, but not non-N-methyl-D-aspartateR1, expressing neurons and was mimicked by the ampakine 1-(1,4-benzodioxan-6-ylcarbonyl)piperidine. Although it is unclear whether dynorphin A activates alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptors directly or indirectly via glutamate release, our culture conditions do not support glutamate retention or accumulation. Our findings suggest that dynorphin A (1-17) can exert toxic effects on striatal neurons via an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor mechanism.
Collapse
Affiliation(s)
- R J Goody
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536-0298, USA
| | | | | | | |
Collapse
|
12
|
Chatzipanteli K, Garcia R, Marcillo AE, Loor KE, Kraydieh S, Dietrich WD. Temporal and segmental distribution of constitutive and inducible nitric oxide synthases after traumatic spinal cord injury: effect of aminoguanidine treatment. J Neurotrauma 2002; 19:639-51. [PMID: 12042098 DOI: 10.1089/089771502753754109] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nitric oxide (NO) has been shown to play an important role in the pathophysiology of traumatic brain injury (TBI) and cerebral ischemia. However, its contribution to the pathogenesis of traumatic spinal cord injury (SCI) remains to be clarified. This study determined the time course of constitutive and inducible nitric oxide synthases (cNOS and iNOS, respectively) after SCI. Rats underwent moderate SCI at T10 using the NYU impactor device and were allowed to survive for 3, 6, or 24 h and 3 days after SCI (n = 5 in each group). For the determination of enzymatic activities, spinal cords were dissected into five segments, including levels rostral and caudal (remote) to the injury site. Other rats were perfusion fixed for the immunohistochemical localization of iNOS protein levels. cNOS activity was significantly decreased at 3 and 6 h within the traumatized T10 segment and at 3, 6, and 24 h at the rostral (T9) level (p < 0.05). Rostral (T8) and caudal (T11, T12) to the injury site cNOS activity was also decreased at 3 h after injury (p < 0.05). However, cNOS activity returned to control levels within 6 h at T8, T11 and T12 and at one day at T10 and T9 segments. iNOS enzymatic activity was elevated at all time points tested (p < 0.05), with the most robust increase observed at 24 h. Immunostaining for iNOS at 24 h revealed that a significant cellular source of iNOS protein appeared to be invading polymorphonuclear leukocytes (PMNLs). To assess the functional consequences of iNOS inhibition, aminoguanidine treatment was initiated 5 min after SCI and rats tested using the BBB open field locomotor score. Treated rats demonstrated significantly improved hindlimb function up to 7 weeks after SCI. Histopathological analysis of contusion volume showed that aminoguanidine treatment decreased lesion volume by 37% (p < 0.05). In conclusion, these results indicate that (1) cNOS and iNOS activities are regionally and temporally affected after moderate SCI, (2) the early accumulation of PMNLs are a potentially significant source of NO-induced cytotoxic products, and (3) acute aminoguanidine treatment significantly improves functional and histopathological outcome after SCI.
Collapse
Affiliation(s)
- Katina Chatzipanteli
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, Florida 33101, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Hu WH, Hausmann ON, Yan MS, Walters WM, Wong PKY, Bethea JR. Identification and characterization of a novel Nogo-interacting mitochondrial protein (NIMP). J Neurochem 2002; 81:36-45. [PMID: 12067236 DOI: 10.1046/j.1471-4159.2002.00788.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nogo is a potent inhibitor of regeneration following spinal cord injury. To develop a better understanding of the mechanisms responsible for regenerative failure we used a yeast two-hybrid approach to try and identify proteins that interact with Nogo. We identified a novel mitochondrial protein designated Nogo-interacting mitochondrial protein (NIMP) in a screen of an adult human brain cDNA library. This interaction was confirmed by co-immunoprecipitation in both brain tissue (endogenous) and transfected HEK293T cells (overexpressed). In support of these studies we demonstrate that Nogo interacts with the UQCRC1 and UQCRC2 components of complex III, within the mitochondrial respiratory chain. The mitochondrial localization of NIMP was evidenced by confocal image analysis and western blot analysis of isolated mitochondria. NIMP is highly conserved and ubiquitously expressed in mitochondria-enriched tissues. Within the CNS, NIMP-like immunoreactivity is present in neurons and astrocytes. These data suggest that NIMP is a novel mitochondrial protein that interacts with Nogo. The interaction of Nogo with mitochondrial proteins may provide insight into the mechanisms for Nogo-induced inhibition of neurite growth.
Collapse
Affiliation(s)
- Wen-Hui Hu
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Florida 33136, USA
| | | | | | | | | | | |
Collapse
|
14
|
Lautenschlager M, Onufriev MV, Gulyaeva NV, Harms C, Freyer D, Sehmsdorf U, Ruscher K, Moiseeva YV, Arnswald A, Victorov I, Dirnagl U, Weber JR, Hörtnagl H. Role of nitric oxide in the ethylcholine aziridinium model of delayed apoptotic neurodegeneration in vivo and in vitro. Neuroscience 2000; 97:383-93. [PMID: 10799770 DOI: 10.1016/s0306-4522(99)00599-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The involvement of nitric oxide in neurodegenerative processes still remains incompletely characterized. Although nitric oxide has been reported to be an important mediator in neuronal degeneration in different models of cell death involving NMDA-receptor activation, increasing evidence for protective mechanisms has been obtained. In this study the role of nitric oxide was investigated in a model of NMDA-independent, delayed apoptotic cell death, induced by the neurotoxin ethylcholine aziridinium ethylcholine aziridinium both in vivo and in vitro. For the in vivo evaluation rats received bilateral intracerebroventricular injections of ethylcholine aziridinium (2nmol/ventricle) or vehicle. In the hippocampus a transient decrease in nitric oxide synthase activity occurred, reaching its lowest levels three days after ethylcholine aziridinium treatment (51.7+/-9.8% of controls). The decrease coincided with the maximal reduction in choline acetyltransferase activity as marker for the extent of cholinergic lesion. The effect of pharmacological inhibition of nitric oxide synthase was tested by application of various nitric oxide synthase inhibitors with different selectivity for the nitric oxide synthase-isoforms. Unspecific nitric oxide synthase inhibition resulted in a significant potentiation of the loss of choline acetyltransferase activity in the hippocampus measured seven days after ethylcholine aziridinium application, whereas the specific inhibition of neuronal or inducible nitric oxide synthase was ineffective. These pharmacological data are suggestive for a neuroprotective role of nitric oxide generated by endothelial nitric oxide synthase. In vitro experiments were performed using serum-free primary neuronal cell cultures from hippocampus, cortex and septum of E15-17 Wistar rat embryos. Ethylcholine aziridinium-application in a range of 5-80microM resulted in delayed apoptotic neurodegeneration with a maximum after three days as confirmed by morphological criteria, life-death assays and DNA laddering. Nitric oxide synthase activity in harvested cells decreased in a dose- and time-dependent manner. Nitric oxide production as determined by measurement of the accumulated metabolite nitrite in the medium was equally low in controls and in ethylcholine aziridinium treated cells (range 0.77-1.86microM nitrite). An expression of inducible nitric oxide synthase messenger RNA could not be detected by semiquantitative RT-PCR 13h after ethylcholine aziridinium application. The present data indicate that in a model of delayed apoptotic neurodegeneration as induced by ethylcholine aziridinium neuronal cell death in vitro and in vivo is independent of the cytotoxic potential of nitric oxide. This is confirmed by a decrease in nitric oxide synthase activity, absence of nitric oxide production and absence of inducible nitric oxide synthase expression. In contrast, evidence for a neuroprotective role of nitric oxide was obtained in vivo as indicated by the exaggeration of the cholinergic lesion after unspecific nitric oxide synthase inhibition by N-nitro-L-arginine methylester.
Collapse
Affiliation(s)
- M Lautenschlager
- Institute of Pharmacology and Toxicology, Medical Faculty Charité, Humboldt-University Berlin, Dorotheenstrasse 94, D-10098, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Toborek M, Garrido R, Malecki A, Kaiser S, Mattson MP, Hennig B, Young B. Nicotine attenuates arachidonic acid-induced overexpression of nitric oxide synthase in cultured spinal cord neurons. Exp Neurol 2000; 161:609-20. [PMID: 10686080 DOI: 10.1006/exnr.1999.7308] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary spinal cord trauma can initiate a cascade of pathophysiologic events which markedly contribute to the expansion and amplification of the primary insult. The detailed mechanisms of these secondary neurochemical reactions are largely unknown; however, they involve membrane lipid derangements with the release of free fatty acids, in particular, arachidonic acid (AA). AA can induce several injury effects on spinal cord neurons. We hypothesize that upregulation of nitric oxide synthase (NOS) is among the most important mechanisms of arachidonic-acid-induced neuronal dysfunction and that nicotine can attenuate this effect. To study these hypotheses, spinal cord neurons were exposed to AA and/or nicotine, and several markers of neuronal nitric oxide synthase (nNOS) metabolism were measured. In addition, cotreatments with either inhibitors of nicotinic receptors or inhibitors of specific NOS isoforms were employed. Treatment with AA markedly increased activity of nNOS, as well as mRNA and protein levels of this enzyme. Changes in nNOS expression were accompanied by an increase in cellular cGMP and medium nitrite levels. Pretreatment with nicotine decreased AA-induced overexpression of nNOS and elevation of nitrite levels. In addition, it appeared that these nicotine effects could be partially modulated both by the alpha7 nicotinic receptors or by nonreceptor mechanisms. Alternatively, the observed changes could also be mediated by an alternate nicotinic receptor mechanism which is not blocked by alpha-bungarotoxin or mecamylamine. Results of the present study indicate that exposure to AA can lead to induction of nNOS in cultured spinal cord neurons. In addition, nicotine can exert a neuroprotective effect by attenuation of AA-induced upregulation of nNOS metabolism. These data may have therapeutic implications for the treatment of acute spinal cord trauma.
Collapse
Affiliation(s)
- M Toborek
- Department of Surgery, University of Kentucky, Lexington, Kentucky, 40536, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Hu WH, Qiang WA, Li F, Liu N, Wang GQ, Wang HY, Wan XS, Liao WH, Liu JS, Jen MF. Constitutive and inducible nitric oxide synthases after dynorphin-induced spinal cord injury. J Chem Neuroanat 2000; 17:183-97. [PMID: 10697245 DOI: 10.1016/s0891-0618(99)00039-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It has recently been demonstrated that selective inhibition of both neuronal constitutive and inducible nitric oxide synthases (ncNOS and iNOS) is neuroprotective in a model of dynorphin (Dyn) A(1-17)-induced spinal cord injury. In the present study, various methods including the conversion of 3H-L-arginine to 3H-citrulline, immunohistochemistry and in situ hybridization are employed to determine the temporal profiles of the enzymatic activities, immunoreactivities, and mRNA expression for both ncNOS and iNOS after intrathecal injection of a neurotoxic dose (20 nmol) of Dyn A(1-17). The expression of ncNOS immunoreactivity and mRNA increased as early as 30 min after injection and persisted for 1-4 h. At 24-48 h, the number of ncNOS positive cells remained elevated while most neurons died. The cNOS enzymatic activity in the ventral spinal cord also significantly increased at 30 min 48 h, but no significant changes in the dorsal spinal cord were observed. However, iNOS mRNA expression increased later at 2 h, iNOS immunoreactivity and enzymatic activity increased later at 4 h and persisted for 24-48 h after injection of 20 nmol Dyn A(1-17). These results indicate that both ncNOS and iNOS are associated with Dyn-induced spinal cord injury, with ncNOS predominantly involved at an early stage and iNOS at a later stage.
Collapse
Affiliation(s)
- W H Hu
- Department of Spinal Cord Injury, Research Institute of Surgery and Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|