1
|
Rau J, Joseph R, Weise L, Bryan J, Wardeh J, Konda A, Duplessis L, Hook MA. Acute Opioid Administration Undermines Recovery after SCI: Adverse Effects Are Not Restricted to Morphine. J Neurotrauma 2025. [PMID: 39912807 DOI: 10.1089/neu.2024.0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Previous studies have shown that administration of high doses of morphine in the acute phase of spinal cord injury (SCI) significantly undermines locomotor recovery and increases symptoms of chronic pain in a rat spinal contusion model. Similarly, SCI patients treated with high doses of opioid for the first 24 h postinjury have increased symptoms of chronic pain 1 year later. Whether these adverse effects are driven by morphine only or all opioids compromise recovery after SCI, however, is unknown. Based on our previous findings we hypothesized that activation of the kappa opioid receptor (KOR) is key in the morphine-induced attenuation of locomotor recovery after SCI. Thus, we posited that opioids that engage KOR-mediated signaling pathways (morphine, oxycodone) would undermine recovery, and clinically relevant opioids with less KOR activity (fentanyl and buprenorphine) would not. To test this, we compared the effects of the clinically relevant opioids on locomotor recovery and pain in a male rat spinal contusion model. Rats were given a moderate spinal contusion injury followed by 7 days of intravenous morphine, oxycodone, fentanyl, buprenorphine, or saline, and recovery was assessed for 28 days. All opioids produced analgesia on tests of thermal, mechanical, and incremented shock reactivity. However, tolerance developed rapidly with buprenorphine administration, particularly with daily administrations of 5 morphine milligram equivalent (MME) buprenorphine. Opioid-induced hyperalgesia (OIH) also developed across days following administration of higher doses (10 MME, 20 MME) of morphine and oxycodone. Fentanyl and buprenorphine did not produce OIH. Contrary to our hypothesis, however, we found that high doses of all opioids reduced recovery of locomotor function. Unlike the other opioids, the effects of buprenorphine on locomotor recovery appeared transient, but it also produced chronic pain. Morphine, oxycodone, and buprenorphine decreased reactivity thresholds on tests of mechanical and incremented shock stimulation. In sum, all opioids undermined long-term recovery in the rat model. Further interrogation of the molecular mechanisms driving the adverse effects is essential. This study provides critical insight into pain management strategies in the acute phase of SCI and potential long-term consequences of early opioid administration.
Collapse
Affiliation(s)
- Josephina Rau
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
- Texas A&M Institute for Neuroscience, College Station, Texas, USA
| | - Rose Joseph
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Lara Weise
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Jessica Bryan
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
- Texas A&M Institute for Neuroscience, College Station, Texas, USA
| | - Jad Wardeh
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Alekya Konda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Landon Duplessis
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
- Texas A&M Institute for Neuroscience, College Station, Texas, USA
| |
Collapse
|
2
|
Stefanov A, Brakel K, Rau J, Joseph RM, Guice C, Araguz K, Hemphill A, Madry J, Irion A, Dash S, Souza KA, Hook MA. Depression-like behavior is associated with deficits in cognition and hippocampal neurogenesis in a subset of spinally contused male, but not female, rats. Brain Behav Immun 2025; 123:270-287. [PMID: 39288895 DOI: 10.1016/j.bbi.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/25/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024] Open
Abstract
Depression and cognitive deficits present at higher rates among people with spinal cord injury (SCI) compared to the general population, yet these SCI comorbidities are poorly addressed. Sex and age appear to play roles in depression incidence, but consensus on the direction of their effects is limited. Systemic and cortical inflammation and disruptions in hippocampal neurogenesis have been identified as potential treatment targets, but a comprehensive understanding of these mechanisms remains elusive. We used a rodent SCI model to interrogate these gaps in knowledge. We examined post-injury depression-like behavior and cognitive deficits, as well as the association between affect, cognition, chronic hippocampal inflammation and hippocampal neurogenesis, in young and middle-aged male and female Sprague-Dawley rats. Depression-like behavior manifested in male and female subsets of SCI rats irrespective of age, at rates commensurate with the incidence of clinical depression. Changes in components of behavior were driven by sex and age, and affective outcomes were independent of common post-injury pathophysiological outcomes including locomotor functional deficits and spinal lesion severity. Interestingly, however, only male depression-like SCI rats exhibited deficits in hippocampal-associated spatial cognition. Neurogenesis was also disrupted in only SCI males in regions of the hippocampus responsible for affective outcomes. Decreased neurogenesis among middle-aged male subjects coincided with increases in numbers of the pro-inflammatory markers CD86 and iNOS, while middle-aged females had increased numbers of cells expressing Iba-1 and anti-inflammatory marker CD206. Overall, the present data suggest that post-SCI depression and cognition may be affected, in part, by sex- and age-dependent changes in hippocampal neurogenesis and inflammation. Hippocampal neurogenesis is a potential target to address psychological wellbeing after SCI, but therapeutic strategies must carefully consider sex and age as biological variables.
Collapse
Affiliation(s)
- Alex Stefanov
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843.
| | - Kiralyn Brakel
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843
| | - Josephina Rau
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843
| | - Rose M Joseph
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Corey Guice
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Kendall Araguz
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Annebel Hemphill
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Jessica Madry
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Andrew Irion
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Swapnil Dash
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Karienn A Souza
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843
| |
Collapse
|
3
|
Kumar PA, Stallman J, Kharbat Y, Hoppe J, Leonards A, Kerim E, Nguyen B, Adkins RL, Baltazar A, Milligan S, Letchuman S, Hook MA, Dulin JN. Chemogenetic Attenuation of Acute Nociceptive Signaling Enhances Functional Outcomes Following Spinal Cord Injury. J Neurotrauma 2024; 41:1060-1076. [PMID: 37905504 PMCID: PMC11564839 DOI: 10.1089/neu.2023.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Identifying novel therapeutic approaches to promote recovery of neurological functions following spinal cord injury (SCI) remains a great unmet need. Nociceptive signaling in the acute phase of SCI has been shown to inhibit recovery of locomotor function and promote the development of chronic neuropathic pain. We therefore hypothesized that inhibition of nociceptive signaling in the acute phase of SCI might improve long-term functional outcomes in the chronic phase of injury. To test this hypothesis, we took advantage of a selective strategy utilizing AAV6 to deliver inhibitory (hM4Di) Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to nociceptors of the L4-L6 dorsal root ganglia to evaluate the effects of transient nociceptor silencing on long-term sensory and motor functional outcomes in a rat thoracic contusion SCI model. Following hM4Di-mediated nociceptor inhibition from 0-14 days post-SCI, we conducted behavioral assessments until 70 days post-SCI, then performed histological assessments of lesion severity and axon plasticity. Our results show highly selective expression of hM4Di within small diameter nociceptors including calcitonin gene-related peptide (CGRP)+ and IB4-binding neurons. Expression of hM4Di in less than 25% of nociceptors was sufficient to increase hindlimb thermal withdrawal latency in naïve rats. Compared with subjects who received AAV-yellow fluorescent protein (YFP; control), subjects who received AAV-hM4Di exhibited attenuated thermal hyperalgesia, greater coordination, and improved hindlimb locomotor function. However, treatment did not impact the development of cold allodynia or mechanical hyperalgesia. Histological assessments of spinal cord tissue suggested trends toward reduced lesion volume, increased neuronal sparing and increased CGRP+ axon sprouting in hM4Di-treated animals. Together, these findings suggest that nociceptor silencing early after SCI may promote beneficial plasticity in the acute phase of injury that can impact long-term functional outcomes, and support previous work highlighting primary nociceptors as possible therapeutic targets for pain management after SCI.
Collapse
Affiliation(s)
| | - Jacob Stallman
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Yahya Kharbat
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Joseph Hoppe
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Amy Leonards
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Ethan Kerim
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Britney Nguyen
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Robert L. Adkins
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Angelina Baltazar
- Department of Biology, Texas A&M University, College Station, Texas, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Sara Milligan
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Sunjay Letchuman
- Mays Business School, Texas A&M University, College Station, Texas, USA
| | - Michelle A. Hook
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Jennifer N. Dulin
- Department of Biology, Texas A&M University, College Station, Texas, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Grau JW, Hudson KE, Johnston DT, Partipilo SR. Updating perspectives on spinal cord function: motor coordination, timing, relational processing, and memory below the brain. Front Syst Neurosci 2024; 18:1184597. [PMID: 38444825 PMCID: PMC10912355 DOI: 10.3389/fnsys.2024.1184597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Those studying neural systems within the brain have historically assumed that lower-level processes in the spinal cord act in a mechanical manner, to relay afferent signals and execute motor commands. From this view, abstracting temporal and environmental relations is the province of the brain. Here we review work conducted over the last 50 years that challenges this perspective, demonstrating that mechanisms within the spinal cord can organize coordinated behavior (stepping), induce a lasting change in how pain (nociceptive) signals are processed, abstract stimulus-stimulus (Pavlovian) and response-outcome (instrumental) relations, and infer whether stimuli occur in a random or regular manner. The mechanisms that underlie these processes depend upon signal pathways (e.g., NMDA receptor mediated plasticity) analogous to those implicated in brain-dependent learning and memory. New data show that spinal cord injury (SCI) can enable plasticity within the spinal cord by reducing the inhibitory effect of GABA. It is suggested that the signals relayed to the brain may contain information about environmental relations and that spinal cord systems can coordinate action in response to descending signals from the brain. We further suggest that the study of stimulus processing, learning, memory, and cognitive-like processing in the spinal cord can inform our views of brain function, providing an attractive model system. Most importantly, the work has revealed new avenues of treatment for those that have suffered a SCI.
Collapse
Affiliation(s)
- James W. Grau
- Lab of Dr. James Grau, Department of Psychological and Brain Sciences, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | | | | | | |
Collapse
|
5
|
Davis JA, Bopp AC, Henwood MK, Bean P, Grau JW. General Anesthesia Blocks Pain-Induced Hemorrhage and Locomotor Deficits After Spinal Cord Injury in Rats. J Neurotrauma 2023; 40:2552-2565. [PMID: 36785968 PMCID: PMC10698800 DOI: 10.1089/neu.2022.0449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Research has shown that engaging pain (nociceptive) pathways after spinal cord injury (SCI) aggravates secondary injury and undermines locomotor recovery. This is significant because SCI is commonly accompanied by additional tissue damage (polytrauma) that drives nociceptive activity. Cutting communication with the brain by means of a surgical transection, or pharmacologically transecting the cord by slowly infusing a sodium channel blocker (lidocaine) rostral to a thoracic contusion, blocks pain-induced hemorrhage. These observations suggest that the adverse effect of pain after SCI depends on supraspinal (brain) systems. We hypothesize that inhibiting brain activity using a general anesthetic (e.g., pentobarbital, isoflurane) should have a protective effect. The present study shows that placing rats in an anesthetic state with pentobarbital or isoflurane 24 h after a lower thoracic contusion injury blocks pain-induced intraspinal inflammation and hemorrhage when administered before pain. Pentobarbital also extends protective effects against locomotor deficits produced by noxious stimulation. Inducing anesthesia after noxious stimulation, however, has no effect. Similarly, subanesthetic dosages of pentobarbital were also ineffective at blocking pain-induced hemorrhage. Also examined were the hemodynamic impacts of both pain and anesthetic delivery after SCI. Peripheral pain-input induced an acute increase in systolic blood pressure; isoflurane and pentobarbital prevent this increase, which may contribute to the protective effect of anesthesia. The results suggest that placing patients with SCI in a state akin to a medically induced coma can have a protective effect that blocks the adverse effects of pain.
Collapse
Affiliation(s)
- Jacob A. Davis
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas, USA
| | - Anne C. Bopp
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas, USA
| | - Melissa K. Henwood
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas, USA
| | - Paris Bean
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas, USA
| | - James W. Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Davis JA, Grau JW. Protecting the injured central nervous system: Do anesthesia or hypothermia ameliorate secondary injury? Exp Neurol 2023; 363:114349. [PMID: 36775099 DOI: 10.1016/j.expneurol.2023.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Traumatic injury to the central nervous system (CNS) and stroke initiate a cascade of processes that expand the area of tissue loss. The current review considers recent studies demonstrating that the induction of an anesthetic state or cooling the affected tissue (hypothermia) soon after injury can have a therapeutic effect. We first provide an overview of the neurobiological processes that fuel tissue loss after traumatic brain injury (TBI), spinal cord injury (SCI) and stroke. We then examine the rehabilitative effectiveness of therapeutic anesthesia across a variety of drug categories through a systematic review of papers in the PubMed database. We also review the therapeutic benefits hypothermia, another treatment that quells neural activity. We conclude by considering factors related to the safety, efficacy and timing of treatment, as well as the mechanisms of action. Clinical implications are also discussed.
Collapse
Affiliation(s)
- Jacob A Davis
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Rau J, Weise L, Moore R, Terminel M, Brakel K, Cunningham R, Bryan J, Stefanov A, Hook MA. Intrathecal minocycline does not block the adverse effects of repeated, intravenous morphine administration on recovery of function after SCI. Exp Neurol 2023; 359:114255. [PMID: 36279935 DOI: 10.1016/j.expneurol.2022.114255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/18/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
Opioids are among the most effective analgesics for the management of pain in the acute phase of a spinal cord injury (SCI), and approximately 80% of patients are treated with morphine in the first 24 h following SCI. We have found that morphine treatment in the first 7 days after SCI increases symptoms of pain at 42 days post-injury and undermines the recovery of locomotor function in a rodent model. Prior research has implicated microglia/macrophages in opioid-induced hyperalgesia and the development of neuropathic pain. We hypothesized that glial activation may also underlie the development of morphine-induced pain and cell death after SCI. Supporting this hypothesis, our previous studies found that intrathecal and intravenous morphine increase the number of activated microglia and macrophages present at the spinal lesion site, and that the adverse effects of intrathecal morphine can be blocked with intrathecal minocycline. Recognizing that the cellular expression of opioid receptors, and the intracellular signaling pathways engaged, can change with repeated administration of opioids, the current study tested whether minocycline was also protective with repeated intravenous morphine administration, more closely simulating clinical treatment. Using a rat model of SCI, we co-administered intravenous morphine and intrathecal minocycline for the first 7 days post injury and monitored sensory and locomotor recovery. Contrary to our hypothesis and previous findings with intrathecal morphine, we found that minocycline did not prevent the negative effects of morphine. Surprisingly, we also found that intrathecal minocycline alone is detrimental for locomotor recovery after SCI. Using ex vivo cell cultures, we investigated how minocycline and morphine altered microglia/macrophage function. Commensurate with published studies, we found that minocycline blocked the effects of morphine on the release of pro-inflammatory cytokines but, like morphine, it increased glial phagocytosis. While phagocytosis is critical for the removal of cellular and extracellular debris at the spinal injury site, increased phagocytosis after injury has been linked to the clearance of stressed but viable neurons and protracted inflammation. In sum, our data suggest that both morphine and minocycline alter the acute immune response, and reduce locomotor recovery after SCI.
Collapse
Affiliation(s)
- Josephina Rau
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA.
| | - Lara Weise
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA.
| | - Robbie Moore
- Department of Microbial Pathogenesis and Immunology, Texas A&M Institute for Neuroscience, Address: 8447 Riverside Parkway, Medical and Research Education Building 2, Bryan, TX 77807, USA.
| | - Mabel Terminel
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA
| | - Kiralyn Brakel
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA
| | - Rachel Cunningham
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA
| | - Jessica Bryan
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA.
| | - Alexander Stefanov
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA.
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA.
| |
Collapse
|
8
|
Rau J, Hemphill A, Araguz K, Cunningham R, Stefanov A, Weise L, Hook MA. Adverse Effects of Repeated, Intravenous Morphine on Recovery after Spinal Cord Injury in Young, Male Rats Are Blocked by a Kappa Opioid Receptor Antagonist. J Neurotrauma 2022; 39:1741-1755. [PMID: 35996351 PMCID: PMC10039279 DOI: 10.1089/neu.2022.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Immediately following spinal cord injury (SCI) patients experience pain associated with injury to the spinal cord and nerves as well as with accompanying peripheral injuries. This pain is usually treated with opioids, and most commonly with morphine. However, in a rodent model we have shown that, irrespective of the route of administration, morphine administered in the acute phase of SCI undermines long-term locomotor recovery. Our previous data suggest that activation of kappa opioid receptors (KORs) mediates these negative effects. Blocking KORs with norbinaltorphimine (norBNI), prior to a single dose of epidural morphine, prevented the morphine-induced attenuation of locomotor recovery. Because numerous cellular changes occur with chronic opioid administration compared with a single dose, the current study tested whether norBNI was also effective in a more clinically relevant paradigm of repeated, intravenous morphine administration after SCI. We hypothesized that blocking KOR activation during repeated, intravenous morphine administration would also protect recovery. Supporting this hypothesis, we found that blocking KOR activation in young, male rats prevented the negative effects of morphine on locomotor recovery, although neither norBNI nor morphine had an effect on long-term pain at the doses used. We also found that norBNI treatment blocked the adverse effects of morphine on lesion size. These data suggest that a KOR antagonist given in conjunction with morphine may provide a clinical strategy for effective analgesia without compromising locomotor recovery after SCI.
Collapse
Affiliation(s)
- Josephina Rau
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
- Texas A&M Institute for Neuroscience, Bryan, Texas, USA
| | - Annebel Hemphill
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Kendall Araguz
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Rachel Cunningham
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Alexander Stefanov
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
- Texas A&M Institute for Neuroscience, Bryan, Texas, USA
| | - Lara Weise
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Michelle A. Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA
- Texas A&M Institute for Neuroscience, Bryan, Texas, USA
| |
Collapse
|
9
|
Terminel MN, Bassil C, Rau J, Trevino A, Ruiz C, Alaniz R, Hook MA. Morphine-induced changes in the function of microglia and macrophages after acute spinal cord injury. BMC Neurosci 2022; 23:58. [PMID: 36217122 PMCID: PMC9552511 DOI: 10.1186/s12868-022-00739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background Opioids are among the most effective and commonly prescribed analgesics for the treatment of acute pain after spinal cord injury (SCI). However, morphine administration in the early phase of SCI undermines locomotor recovery, increases cell death, and decreases overall health in a rodent contusion model. Based on our previous studies we hypothesize that morphine acts on classic opioid receptors to alter the immune response. Indeed, we found that a single dose of intrathecal morphine increases the expression of activated microglia and macrophages at the injury site. Whether similar effects of morphine would be seen with repeated intravenous administration, more closely simulating clinical treatment, is not known. Methods To address this, we used flow cytometry to examine changes in the temporal expression of microglia and macrophages after SCI and intravenous morphine. Next, we explored whether morphine changed the function of these cells through the engagement of cell-signaling pathways linked to neurotoxicity using Western blot analysis. Results Our flow cytometry studies showed that 3 consecutive days of morphine administration after an SCI significantly increased the number of microglia and macrophages around the lesion. Using Western blot analysis, we also found that repeated administration of morphine increases β-arrestin, ERK-1 and dynorphin (an endogenous kappa opioid receptor agonist) production by microglia and macrophages. Conclusions These results suggest that morphine administered immediately after an SCI changes the innate immune response by increasing the number of immune cells and altering neuropeptide synthesis by these cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00739-3.
Collapse
Affiliation(s)
- Mabel N Terminel
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA.
| | - Carla Bassil
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA
| | - Josephina Rau
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA
| | - Amanda Trevino
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA
| | - Cristina Ruiz
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA
| | - Robert Alaniz
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA
| |
Collapse
|
10
|
Eller OC, Stair RN, Neal C, Rowe PS, Nelson-Brantley J, Young EE, Baumbauer KM. Comprehensive phenotyping of cutaneous afferents reveals early-onset alterations in nociceptor response properties, release of CGRP, and hindpaw edema following spinal cord injury. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100097. [PMID: 35756343 PMCID: PMC9218836 DOI: 10.1016/j.ynpai.2022.100097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
Spinal cord injury (SCI) is a complex syndrome that has profound effects on patient well-being, including the development of medically-resistant chronic pain. The mechanisms underlying SCI pain have been the subject of thorough investigation but remain poorly understood. While the majority of the research has focused on changes occurring within and surrounding the site of injury in the spinal cord, there is now a consensus that alterations within the peripheral nervous system, namely sensitization of nociceptors, contribute to the development and maintenance of chronic SCI pain. Using an ex vivo skin/nerve/DRG/spinal cord preparation to characterize afferent response properties following SCI, we found that SCI increased mechanical and thermal responding, as well as the incidence of spontaneous activity (SA) and afterdischarge (AD), in below-level C-fiber nociceptors 24 hr following injury relative to naïve controls. Interestingly, the distribution of nociceptors that exhibit SA and AD are not identical, and the development of SA was observed more frequently in nociceptors with low heat thresholds, while AD was found more frequently in nociceptors with high heat thresholds. We also found that SCI resulted in hindpaw edema and elevated cutaneous calcitonin gene-related peptide (CGRP) concentration that were not observed in naïve mice. These results suggest that SCI causes a rapidly developing nociceptor sensitization and peripheral inflammation that may contribute to the early emergence and persistence of chronic SCI pain.
Collapse
Affiliation(s)
- Olivia C. Eller
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rena N. Stair
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Christopher Neal
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Peter S.N. Rowe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States
- The Kidney Institute & Division of Nephrology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jennifer Nelson-Brantley
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Erin E. Young
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| | - Kyle M. Baumbauer
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| |
Collapse
|
11
|
Fauss GNK, Hudson KE, Grau JW. Role of Descending Serotonergic Fibers in the Development of Pathophysiology after Spinal Cord Injury (SCI): Contribution to Chronic Pain, Spasticity, and Autonomic Dysreflexia. BIOLOGY 2022; 11:234. [PMID: 35205100 PMCID: PMC8869318 DOI: 10.3390/biology11020234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022]
Abstract
As the nervous system develops, nerve fibers from the brain form descending tracts that regulate the execution of motor behavior within the spinal cord, incoming sensory signals, and capacity to change (plasticity). How these fibers affect function depends upon the transmitter released, the receptor system engaged, and the pattern of neural innervation. The current review focuses upon the neurotransmitter serotonin (5-HT) and its capacity to dampen (inhibit) neural excitation. A brief review of key anatomical details, receptor types, and pharmacology is provided. The paper then considers how damage to descending serotonergic fibers contributes to pathophysiology after spinal cord injury (SCI). The loss of serotonergic fibers removes an inhibitory brake that enables plasticity and neural excitation. In this state, noxious stimulation can induce a form of over-excitation that sensitizes pain (nociceptive) circuits, a modification that can contribute to the development of chronic pain. Over time, the loss of serotonergic fibers allows prolonged motor drive (spasticity) to develop and removes a regulatory brake on autonomic function, which enables bouts of unregulated sympathetic activity (autonomic dysreflexia). Recent research has shown that the loss of descending serotonergic activity is accompanied by a shift in how the neurotransmitter GABA affects neural activity, reducing its inhibitory effect. Treatments that target the loss of inhibition could have therapeutic benefit.
Collapse
Affiliation(s)
| | | | - James W. Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, USA; (G.N.K.F.); (K.E.H.)
| |
Collapse
|
12
|
Fauss GNK, Strain MM, Huang YJ, Reynolds JA, Davis JA, Henwood MK, West CR, Grau JW. Contribution of Brain Processes to Tissue Loss After Spinal Cord Injury: Does a Pain-Induced Rise in Blood Pressure Fuel Hemorrhage? Front Syst Neurosci 2022; 15:733056. [PMID: 34975424 PMCID: PMC8714654 DOI: 10.3389/fnsys.2021.733056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Pain (nociceptive) input soon after spinal cord injury (SCI) expands the area of tissue loss (secondary injury) and impairs long-term recovery. Evidence suggests that nociceptive stimulation has this effect because it promotes acute hemorrhage. Disrupting communication with the brain blocks this effect. The current study examined whether rostral systems exacerbate tissue loss because pain input drives an increase in systolic blood pressure (BP) and flow that fuels blood infiltration. Rats received a moderate contusion injury to the lower thoracic (T12) spinal cord. Communication with rostral processes was disrupted by cutting the spinal cord 18 h later at T2. Noxious electrical stimulation (shock) applied to the tail (Experiment 1), or application of the irritant capsaicin to one hind paw (Experiment 2), increased hemorrhage at the site of injury. Shock, but not capsaicin, increased systolic BP and tail blood flow in sham-operated rats. Cutting communication with the brain blocked the shock-induced increase in systolic BP and tail blood flow. Experiment 3 examined the effect of artificially driving a rise in BP with norepinephrine (NE) in animals that received shock. Spinal transection attenuated hemorrhage in vehicle-treated rats. Treatment with NE drove a robust increase in BP and tail blood flow but did not increase the extent of hemorrhage. The results suggest pain input after SCI can engage rostral processes that fuel hemorrhage and drive sustained cardiovascular output. An increase in BP was not, however, necessary or sufficient to drive hemorrhage, implicating other brain-dependent processes.
Collapse
Affiliation(s)
- Gizelle N K Fauss
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Misty M Strain
- Department of Cellular and Integrative Physiology, University of Texas Health Science San Antonio, San Antonio, TX, United States
| | | | - Joshua A Reynolds
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Jacob A Davis
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Melissa K Henwood
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Christopher R West
- Centre for Chronic Disease Prevention and Management, Faculty of Medicine, University of British Columbia, Kelowna, BC, Canada
| | - James W Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
13
|
Baine RE, Johnston DT, Strain MM, Henwood MK, Davis JA, Reynolds JA, Giles ED, Grau JW. Noxious Stimulation Induces Acute Hemorrhage and Impairs Long-Term Recovery after Spinal Cord Injury (SCI) in Female Rats: Evidence Estrous Cycle May Have a Modulatory Effect. Neurotrauma Rep 2022; 3:70-86. [PMID: 35112109 PMCID: PMC8804264 DOI: 10.1089/neur.2021.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spinal cord injuries (SCIs) are often the result of traumatic accidents, which also produce multiple other injuries (polytrauma). Nociceptive input from associated injuries has been shown to significantly impair recovery post-SCI. Historically, work in our laboratory has focused exclusively on male animals; however, increasing incidence of SCI in females requires research to determine whether pain (nociceptive) input poses the same risk to their recovery. Some animal studies have shown that females demonstrate greater tissue preservation and better locomotor recovery post-SCI. Given this, we examined the effect of sex on SCI recovery in two pain models—intermittent electrical stimulation (shock) to the tail or capsaicin injection to the hindpaw. Female rats received a lower thoracic contusion injury and were exposed to noxious stimulation the next day. The acute effect of noxious input on cardiovascular function, locomotor performance, and hemorrhage were assessed. Treatment with capsaicin or noxious electrical stimulation disrupted locomotor performance, increased blood pressure, and disrupted stepping. Additional experiments examined the long-term consequences of noxious input, demonstrating that both noxious electrical stimulation and capsaicin impair long-term recovery in female rats. Interestingly, injury had a greater effect on behavioral performance when progesterone and estrogen were low (metestrus). Conversely, nociceptive input led to a greater disruption in locomotor performance and produced a greater rise in blood pressure in animals injured during estrus.
Collapse
Affiliation(s)
- Rachel E. Baine
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - David T. Johnston
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Misty M. Strain
- Department of Cellular and Integrative Physiology, University of Texas Health Science, San Antonio, Texas, USA
| | - Melissa K. Henwood
- Department of Neuroscience, Cell Biology, Anatomy, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jacob A. Davis
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Joshua A. Reynolds
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Erin D. Giles
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - James W. Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
14
|
Strain MM, Johnston DT, Baine RE, Reynolds JA, Huang YJ, Henwood MK, Fauss GN, Davis JA, Miranda RC, West CR, Grau JW. Hemorrhage and Locomotor Deficits Induced by Pain Input after Spinal Cord Injury Are Partially Mediated by Changes in Hemodynamics. J Neurotrauma 2021; 38:3406-3430. [PMID: 34652956 DOI: 10.1089/neu.2021.0219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nociceptive input diminishes recovery and increases lesion area after a spinal cord injury (SCI). Recent work has linked these effects to the expansion of hemorrhage at the site of injury. The current article examines whether these adverse effects are linked to a pain-induced rise in blood pressure (BP) and/or flow. Male rats with a low-thoracic SCI were treated with noxious input (electrical stimulation [shock] or capsaicin) soon after injury. Locomotor recovery and BP were assessed throughout. Tissues were collected 3 h, 24 h, or 21 days later. Both electrical stimulation and capsaicin undermined locomotor function and increased the area of hemorrhage. Changes in BP/flow varied depending on type of noxious input, with only shock producing changes in BP. Providing behavioral control over the termination of noxious stimulation attenuated the rise in BP and hemorrhage. Pretreatment with the α-1 adrenergic receptor inverse agonist, prazosin, reduced the stimulation-induced rise in BP and hemorrhage. Prazosin also attenuated the adverse effect that noxious stimulation has on long-term recovery. Administration of the adrenergic agonist, norepinephrine 1 day after injury induced an increase in BP and disrupted locomotor function, but had little effect on hemorrhage. Further, inducing a rise in BP/flow using norepinephrine undermined long-term recovery and increased tissue loss. Mediational analyses suggest that the pain-induced rise in blood flow may foster hemorrhage after SCI. Increased BP appears to act through an independent process to adversely affect locomotor performance, tissue sparing, and long-term recovery.
Collapse
Affiliation(s)
- Misty M Strain
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - David T Johnston
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Rachel E Baine
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Joshua A Reynolds
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| | | | - Melissa K Henwood
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Gizelle N Fauss
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Jacob A Davis
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Rajesh C Miranda
- Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Christopher R West
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
15
|
Brakel K, Aceves M, Garza A, Yoo C, Escobedo G, Panchani N, Shapiro L, Hook M. Inflammation increases the development of depression behaviors in male rats after spinal cord injury. Brain Behav Immun Health 2021; 14:100258. [PMID: 34589764 PMCID: PMC8474513 DOI: 10.1016/j.bbih.2021.100258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023] Open
Abstract
Following spinal cord injury, 18-26% of patients are diagnosed with depressive disorders, compared to 8-12% in the general population. As increased inflammation strongly correlates with depression in both animal and human studies, we hypothesized that the immune activation inherent to SCI could increase depression-like behavior. Thus, we proposed that reducing immune activation with minocycline, a microglial inhibitor, would decrease depression-like behavior following injury. Male Sprague-Dawley rats were given minocycline in their drinking water for 14 days following a moderate, mid-thoracic (T12) spinal contusion. An array of depression-like behaviors (social activity, sucrose preference, forced swim, open field activity) were examined prior to injury as well as on days 9-10, 19-20, and 29-30 post-injury. Peripheral cytokine levels were analyzed in serum collected prior to injury and 10 days post-injury. Hierarchical cluster analysis divided subjects into two groups based on behavior: depressed and not-depressed. Depressed subjects displayed lower levels of open field activity and social interaction relative to their not-depressed counterparts. Depressed subjects also showed significantly greater expression of pro-inflammatory cytokines both before and after injury and displayed lower levels of hippocampal neurogenesis than not-depressed subjects. Intriguingly, subjects who later showed depressive behaviors had higher baseline levels of the pro-inflammatory cytokine IL-6, which persisted throughout the duration of the experiment. Minocycline, however, did not affect serum cytokine levels and did not block the development of depression; equal numbers of minocycline versus vehicle-treated subjects appeared in both phenotypic groups. Despite this, these data overall suggest that molecular correlates of inflammation prior to injury could predict the development of depression after a physical stressor.
Collapse
Affiliation(s)
- Kiralyn Brakel
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Medical Research and Education Building, Ste. 1005 8447 Riverside Pkwy, Bryan, TX, 77807, United States
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| | - Miriam Aceves
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Medical Research and Education Building, Ste. 1005 8447 Riverside Pkwy, Bryan, TX, 77807, United States
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
- Department of Biology, Texas A&M University, Interdisciplinary Life Sciences Building, College Station, TX, United States
| | - Aryana Garza
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| | - Chaeyoung Yoo
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| | - Gabriel Escobedo
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| | - Nishah Panchani
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| | - Lee Shapiro
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Medical Research and Education Building, Ste. 1005 8447 Riverside Pkwy, Bryan, TX, 77807, United States
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| | - Michelle Hook
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Medical Research and Education Building, Ste. 1005 8447 Riverside Pkwy, Bryan, TX, 77807, United States
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| |
Collapse
|
16
|
Davis JA, Bopp AC, Henwood MK, Baine RE, Cox CC, Grau JW. Pharmacological Transection of Brain-Spinal Cord Communication Blocks Pain-Induced Hemorrhage and Locomotor Deficits after Spinal Cord Injury in Rats. J Neurotrauma 2020; 37:1729-1739. [PMID: 32368946 DOI: 10.1089/neu.2019.6973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spinal cord injury (SCI) is often accompanied by additional tissue damage (polytrauma), which engages pain (nociceptive) fibers. Prior research has shown that nociceptive input can increase cell death, expand the area of hemorrhage, and impair long-term recovery. The current study shows that these adverse effects can be blocked by the sodium channel blocker lidocaine applied rostral to a contusion injury. Rats received a lower thoracic (T12) contusion injury, and noxious electrical stimulation (shock) was applied to the tail 24 h later. Immediately before shock treatment, a pharmacological transection was performed by slowly infusing lidocaine at T2. Long-term locomotor recovery was assessed over the next 21 days. Noxious electrical stimulation impaired locomotor recovery, and this effect was blocked by rostral lidocaine. Next, the acute effect of lidocaine was assessed. Tissue was collected 3 h after noxious stimulation, and the extent of hemorrhage was evaluated by assessing hemoglobin content using Western blotting. Nociceptive stimulation increased the extent of hemorrhage. Lidocaine applied at T2 before, but not immediately after, stimulation blocked this effect. A similar pattern of results was observed when lidocaine was applied at the site of injury by means of a lumbar puncture. The results show that a pharmacological transection blocks nociception-induced hemorrhage and exacerbation of locomotor deficits.
Collapse
Affiliation(s)
- Jacob A Davis
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas, USA
| | - Anne C Bopp
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas, USA
| | - Melissa K Henwood
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas, USA
| | - Rachel E Baine
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas, USA
| | - Carol C Cox
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas, USA
| | - James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
17
|
Grau JW, Baine RE, Bean PA, Davis JA, Fauss GN, Henwood MK, Hudson KE, Johnston DT, Tarbet MM, Strain MM. Learning to promote recovery after spinal cord injury. Exp Neurol 2020; 330:113334. [PMID: 32353465 PMCID: PMC7282951 DOI: 10.1016/j.expneurol.2020.113334] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/19/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
The present review explores the concept of learning within the context of neurorehabilitation after spinal cord injury (SCI). The aim of physical therapy and neurorehabilitation is to bring about a lasting change in function-to encourage learning. Traditionally, it was assumed that the adult spinal cord is hardwired-immutable and incapable of learning. Research has shown that neurons within the lower (lumbosacral) spinal cord can support learning after communication with the brain has been disrupted by means of a thoracic transection. Noxious stimulation can sensitize nociceptive circuits within the spinal cord, engaging signal pathways analogous to those implicated in brain-dependent learning and memory. After a spinal contusion injury, pain input can fuel hemorrhage, increase the area of tissue loss (secondary injury), and undermine long-term recovery. Neurons within the spinal cord are sensitive to environmental relations. This learning has a metaplastic effect that counters neural over-excitation and promotes adaptive learning through an up-regulation of brain-derived neurotrophic factor (BDNF). Exposure to rhythmic stimulation, treadmill training, and cycling also enhances the expression of BDNF and counters the development of nociceptive sensitization. SCI appears to enable plastic potential within the spinal cord by down-regulating the Cl- co-transporter KCC2, which reduces GABAergic inhibition. This enables learning, but also fuels over-excitation and nociceptive sensitization. Pairing epidural stimulation with activation of motor pathways also promotes recovery after SCI. Stimulating motoneurons in response to activity within the motor cortex, or a targeted muscle, has a similar effect. It is suggested that a neurofunctionalist approach can foster the discovery of processes that impact spinal function and how they may be harnessed to foster recovery after SCI.
Collapse
Affiliation(s)
- James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Rachel E Baine
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Paris A Bean
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Jacob A Davis
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Gizelle N Fauss
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Melissa K Henwood
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Kelsey E Hudson
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - David T Johnston
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Megan M Tarbet
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Misty M Strain
- Battlefield Pain Research, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, BHT-1, BSA Fort Sam Houston, TX 78234, USA
| |
Collapse
|
18
|
Strain MM, Hook MA, Reynolds JD, Huang YJ, Henwood MK, Grau JW. A brief period of moderate noxious stimulation induces hemorrhage and impairs locomotor recovery after spinal cord injury. Physiol Behav 2019; 212:112695. [PMID: 31647990 DOI: 10.1016/j.physbeh.2019.112695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
Spinal cord injury (SCI) is often accompanied by additional tissue damage (polytrauma) that provides a source of pain input. Our studies suggest that this pain input may be detrimental to long-term recovery. In a rodent model, we have shown that engaging pain (nociceptive) fibers caudal to a lower thoracic contusion SCI impairs recovery of locomotor function and increases tissue loss (secondary injury) and hemorrhage at the site of injury. In these studies, nociceptive fibers were activated using intermittent electrical stimulation. The stimulation parameters were derived from earlier studies demonstrating that 6 min of noxious stimulation, at an intensity (1.5 mA) that engages unmyelinated C (pain) fibers, induces a form of maladaptive plasticity within the lumbosacral spinal cord. We hypothesized that both shorter bouts of nociceptive input and lower intensities of stimulation will decrease locomotor function and increase spinal cord hemorrhage when rats have a spinal cord contusion. To test this, the present study exposed rats to electrical stimulation 24 h after a moderate lower thoracic contusion SCI. One group of rats received 1.5 mA stimulation for 0, 14.4, 72, or 180 s. Another group received six minutes of stimulation at 0, 0.17, 0.5, and 1.5 mA. Just 72 s of stimulation induced an acute disruption in motor performance, increased hemorrhage, and undermined the recovery of locomotor function. Likewise, less intense (0.5 mA) stimulation produced an acute disruption in motor performance, fueled hemorrhage, and impaired long-term recovery. The results imply that a brief period of moderate pain input can trigger hemorrhage after SCI and undermine long-term recovery. This highlights the importance of managing nociceptive signals after concurrent peripheral and central nervous system injuries.
Collapse
Affiliation(s)
- Misty M Strain
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Michelle A Hook
- Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Joshua D Reynolds
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Yung-Jen Huang
- ChemPartner, 998 Halei Rd., Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, 201203 China
| | - Melissa K Henwood
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
19
|
Reynolds JA, Henwood MK, Turtle JD, Baine RE, Johnston DT, Grau JW. Brain-Dependent Processes Fuel Pain-Induced Hemorrhage After Spinal Cord Injury. Front Syst Neurosci 2019; 13:44. [PMID: 31551720 PMCID: PMC6746957 DOI: 10.3389/fnsys.2019.00044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
Pain (nociceptive) input caudal to a spinal contusion injury can undermine long-term recovery and increase tissue loss (secondary injury). Prior work suggests that nociceptive stimulation has this effect because it fosters the breakdown of the blood-spinal cord barrier (BSCB) at the site of injury, allowing blood to infiltrate the tissue. The present study examined whether these effects impact tissue rostral and caudal to the site of injury. In addition, the study evaluated whether cutting communication with the brain, by means of a rostral transection, affects the development of hemorrhage. Eighteen hours after rats received a lower thoracic (T11-12) contusion injury, half underwent a spinal transection at T2. Noxious electrical stimulation (shock) was applied 6 h later. Cellular assays showed that, in non-transected rats, nociceptive stimulation increased hemoglobin content, activated pro-inflammatory cytokines and engaged signals related to cell death at the site of injury. These effects were not observed in transected animals. In the next experiment, the spinal transection was performed at the time of contusion injury. Nociceptive stimulation was applied 24 h later and tissue was sectioned for microscopy. In non-transected rats, nociceptive stimulation increased the area of hemorrhage and this effect was blocked by spinal transection. These findings imply that the adverse effect of noxious stimulation depends upon spared ascending fibers and the activation of rostral (brain) systems. If true, stimulation should induce less hemorrhage after a severe contusion injury that blocks transmission to the brain. To test this, rats were given a mild, moderate, or severe, injury and electrical stimulation was applied 24 h later. Histological analyses of longitudinal sections showed that nociceptive stimulation triggered less hemorrhage after a severe contusion injury. The results suggest that brain-dependent processes drive pain-induced hemorrhage after spinal cord injury (SCI).
Collapse
Affiliation(s)
- Joshua A Reynolds
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Melissa K Henwood
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Joel D Turtle
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel E Baine
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - David T Johnston
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - James W Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
20
|
Huot-Lavoie M, Ting WKC, Demers M, Mercier C, Ethier C. Impaired Motor Learning Following a Pain Episode in Intact Rats. Front Neurol 2019; 10:927. [PMID: 31507526 PMCID: PMC6718695 DOI: 10.3389/fneur.2019.00927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/09/2019] [Indexed: 01/22/2023] Open
Abstract
Motor learning and pain are important factors influencing rehabilitation. Despite being mostly studied independently from each other, important interactions exist between them in the context of spinal cord injury, whether to the spinal cord or the body. Ongoing or recent past episodes of nociceptive activity can prevent motor learning in spinalized rats. In intact animals, it has been proposed that supraspinal activity could counter the repressive effect of nociception on motor system plasticity, but this has not yet been verified in behavioral conditions. The aim of this study was to test whether a recent episode of nociception affects subsequent motor learning in intact animals. We trained rodents to walk on a custom-made horizontal ladder. After initial training, the rats underwent a week-long rest, during which they were randomly assigned to a control group, or one out of two pain conditions. Nociceptive stimuli of different durations were induced through capsaicin or Complete Freund's Adjuvant injections and timed so that the mechanical hypersensitivity had entirely subsided by the end of the resting period. Training then resumed on a modified version of the horizontal ladder. We evaluated the animals' ability to adapt to the modified task by measuring their transit time and paw misplacements over 4 days. Our results show that prior pain episodes do affect motor learning in neurologically intact rats. Motor learning deficits also seem to be influenced by the duration of the pain episode. Rats receiving a subcutaneous injection of capsaicin displayed immediate signs of mechanical hypersensitivity, which subsided rapidly. Nonetheless, they still showed learning deficits 24 h after injection. Rats who received a Complete Freund's Adjuvant injection displayed mechanical hypersensitivity for up to 7 days during the resting period. When trained on the modified ladder task upon returning to normal sensitivity levels, these rats exhibited more prolonged motor learning deficits, extending over 3 days. Our results suggest that prior pain episodes can negatively influence motor learning, and that the duration of the impairment relates to the duration of the pain episode. Our results highlight the importance of addressing pain together with motor training after injury.
Collapse
Affiliation(s)
- Maxime Huot-Lavoie
- CERVO Research Center, Psychiatry and Neurosciences Department, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Windsor Kwan-Chun Ting
- CERVO Research Center, Psychiatry and Neurosciences Department, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Maxime Demers
- CERVO Research Center, Psychiatry and Neurosciences Department, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Catherine Mercier
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Christian Ethier
- CERVO Research Center, Psychiatry and Neurosciences Department, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
21
|
Aceves M, Terminel MN, Okoreeh A, Aceves AR, Gong YM, Polanco A, Sohrabji F, Hook MA. Morphine increases macrophages at the lesion site following spinal cord injury: Protective effects of minocycline. Brain Behav Immun 2019; 79:125-138. [PMID: 30684649 DOI: 10.1016/j.bbi.2019.01.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/05/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
Opioids are among the most effective and widely prescribed medications for the treatment of pain following spinal cord injury (SCI). Spinally-injured patients receive opioids within hours of arrival at the emergency room, and prolonged opioid regimens are often employed for the management of post-SCI chronic pain. However, previous studies in our laboratory suggest that the effects of opioids such as morphine may be altered in the pathophysiological context of neurotrauma. Specifically, we have shown that morphine administration in a rodent model of SCI increases mortality and tissue loss at the injury site, and decreases recovery of motor and sensory function, and overall health, even weeks after treatment. The literature suggests that opioids may produce these adverse effects by acting as endotoxins and increasing glial activation and inflammation. To better understand the effects of morphine following SCI, in this study we used flow cytometry to assess immune-competent cells at the lesion site. We observed a morphine-induced increase in the overall number of CD11b+ cells, with marked effects on microglia, in SCI subjects. Next, to investigate whether this increase in the inflammatory profile is necessary to produce morphine's effects, we challenged morphine treatment with minocycline. We found that pre-treatment with minocycline reduced the morphine-induced increase in microglia at the lesion site. More importantly, minocycline also blocked the adverse effects of morphine on recovery of function without disrupting the analgesic efficacy of this opioid. Together, our findings suggest that following SCI, morphine may exacerbate the inflammatory response, increasing cell death at the lesion site and negatively affecting functional recovery.
Collapse
Affiliation(s)
- Miriam Aceves
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, United States.
| | - Mabel N Terminel
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, United States.
| | - Andre Okoreeh
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, United States.
| | - Alejandro R Aceves
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, United States.
| | - Yan Ming Gong
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, United States.
| | - Alan Polanco
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, United States.
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, United States.
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, United States.
| |
Collapse
|
22
|
Keller AV, Hainline C, Rees K, Krupp S, Prince D, Wood BD, Shum-Siu A, Burke DA, Petruska JC, Magnuson DSK. Nociceptor-dependent locomotor dysfunction after clinically-modeled hindlimb muscle stretching in adult rats with spinal cord injury. Exp Neurol 2019; 318:267-276. [PMID: 30880143 DOI: 10.1016/j.expneurol.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 01/10/2023]
Abstract
In the course of investigating how common clinical treatments and adaptive technologies affect recovery after spinal cord injury (SCI), we discovered that a clinically-modeled hindlimb stretching protocol dramatically, but transiently, reduces locomotor function. Nociceptive sensory input is capable of altering motor output at the spinal level, and nociceptive neurons are sensitized after SCI. Here we tested the hypotheses that stretch-induced locomotor deficits are dependent on nociceptive afferents by depleting TRPV1+ sensory afferents using capsaicin injections in neonatal rats. Following maturation, animals received 25g-cm contusive SCI at T10. After plateau of locomotor recovery at 6 weeks, daily stretching was performed for 3 weeks, followed by 2 weeks without stretch, and again for two additional weeks. Animals were sacrificed 2 h after the last stretching session for histological assessments. Consistent with previous findings, stretch-induced drops in locomotor function were observed in nociceptor-intact animals but were nearly absent in nociceptor-depleted animals. These functional changes were accompanied by corresponding increases in the number of c-Fos+ nuclei throughout the lumbar enlargement. As expected, nociceptor-depleted animals had very little CGRP+ axonal innervation of the dorsal horn. Nociceptor-intact stretched animals had significantly higher levels of CGRP+ as compared to non-stretched SCI rats, suggesting that stretching promoted intraspinal CGRP+ sprouting. These results indicate that stretch-induced locomotor dysfunction in animals with incomplete SCI involves C-fibers, adding a negative post-SCI role to their adaptive roles (e.g., bladder control), and suggesting that the clinical use of muscle stretching to combat contractures and spasticity may be unintentionally detrimental to locomotor function.
Collapse
Affiliation(s)
- Anastasia V Keller
- Department of Physiology, University of Louisville, School of Medicine, HSC A 1115, 500 South Preston Street, Louisville, KY 40292, USA
| | - Casey Hainline
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Kathleen Rees
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Sarah Krupp
- Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, 511 South Floyd, Room 111, Louisville, KY 40202, USA
| | - Daniella Prince
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Brittney D Wood
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Alice Shum-Siu
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Darlene A Burke
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Jeffrey C Petruska
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA; Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, 511 South Floyd, Room 111, Louisville, KY 40202, USA
| | - David S K Magnuson
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA; Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, 511 South Floyd, Room 111, Louisville, KY 40202, USA; Department of Physiology, University of Louisville, School of Medicine, HSC A 1115, 500 South Preston Street, Louisville, KY 40292, USA.
| |
Collapse
|
23
|
Martin KK, Parvin S, Garraway SM. Peripheral Inflammation Accelerates the Onset of Mechanical Hypersensitivity after Spinal Cord Injury and Engages Tumor Necrosis Factor α Signaling Mechanisms. J Neurotrauma 2019; 36:2000-2010. [PMID: 30520675 DOI: 10.1089/neu.2018.5953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Previously, we showed that noxious stimulation of the tail produces numerous detrimental effects after spinal cord injury (SCI), including an earlier onset and increased magnitude of mechanical hypersensitivity. Expanding on these observations, this study sought to determine whether localized peripheral inflammation similarly impacts the expression of mechanical hypersensitivity after SCI. Adult rats received a moderate contusion injury at the thoracic level (Tl0) or sham surgery, and were administered complete Freund's adjuvant (CFA) or vehicle in one hindpaw 24 hours later. Examination of locomotor recovery (Basso, Beattie, and Bresnahan [BBB] score) showed no adverse effect of CFA. Mechanical testing with von Frey hairs was done at time-points ranging from 1 h to 28 days after CFA or vehicle treatment, and rats were sacrificed at 1, 7, or 28 days for cellular assessment. Unlike vehicle-treated SCI rats where mechanical hypersensitivity emerged at 14 days, CFA-treated SCI rats showed mechanical hypersensitivity as early as 1 h after CFA administration, which lasted at least 28 days. CFA-treated sham subjects also showed an early onset of mechanical hypersensitivity, but this was maintained up to 7 days after treatment. Cellular assessments revealed congruent findings. Expression levels of c-fos, tumor necrosis factor α (TNFα), TNF receptors, and members of the TNFα signaling pathway such as caspase 8 and phosphorylated extracellular related kinase (pERK) were preferentially upregulated in the lumbar spinal cord of SCI-CFA rats. Meanwhile, c-jun was significantly increased in both CFA-treated groups. Overall, these results together with our previous reports, suggest that peripheral noxious input after SCI facilitates the development of pain by mechanisms that may require TNFα signaling.
Collapse
Affiliation(s)
- Karmarcha K Martin
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Shangrila Parvin
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Sandra M Garraway
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
24
|
Engaging pain fibers after a spinal cord injury fosters hemorrhage and expands the area of secondary injury. Exp Neurol 2018; 311:115-124. [PMID: 30268767 DOI: 10.1016/j.expneurol.2018.09.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/07/2018] [Accepted: 09/27/2018] [Indexed: 11/24/2022]
Abstract
In humans, spinal cord injury (SCI) is often accompanied by additional tissue damage (polytrauma) that can engage pain (nociceptive) fibers. Prior work has shown that this nociceptive input can expand the area of tissue damage (secondary injury), undermine behavioral recovery, and enhance the development of chronic pain. Here, it is shown that nociceptive input given a day after a lower thoracic contusion injury in rats enhances the infiltration of red blood cells at the site of injury, producing an area of hemorrhage that expands secondary injury. Peripheral nociceptive fibers were engaged 24 h after injury by means of electrical stimulation (shock) applied at an intensity that engages unmyelinated pain (C) fibers or through the application of the irritant capsaicin. Convergent western immunoblot and cyanmethemoglobin colorimetric assays showed that both forms of stimulation increased the concentration of hemoglobin at the site of injury, with a robust effect observed 3-24 h after stimulation. Histopathology confirmed that shock treatment increased the area of hemorrhage and the infiltration of red blood cells. SCI can lead to hemorrhage by engaging the sulfonylurea receptor 1 (SUR1) transient receptor potential melastatin 4 (TRPM4) channel complex in neurovascular endothelial cells, which leads to cell death and capillary fragmentation. Histopathology confirmed that areas of hemorrhage showed capillary fragmentation. Co-immunoprecipitation of the SUR1-TRPM4 complex showed that it was up-regulated by noxious stimulation. Shock-induced hemorrhage was associated with an acute disruption in locomotor performance. These results imply that noxious stimulation impairs long-term recovery because it amplifies the breakdown of the blood spinal cord barrier (BSCB) and the infiltration of red blood cells, which expands the area of secondary injury.
Collapse
|
25
|
Turtle JD, Strain MM, Reynolds JA, Huang YJ, Lee KH, Henwood MK, Garraway SM, Grau JW. Pain Input After Spinal Cord Injury (SCI) Undermines Long-Term Recovery and Engages Signal Pathways That Promote Cell Death. Front Syst Neurosci 2018; 12:27. [PMID: 29977195 PMCID: PMC6021528 DOI: 10.3389/fnsys.2018.00027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/17/2018] [Indexed: 12/19/2022] Open
Abstract
Pain (nociceptive) input caudal to a spinal contusion injury increases tissue loss and impairs long-term recovery. It was hypothesized that noxious stimulation has this effect because it engages unmyelinated pain (C) fibers that produce a state of over-excitation in central pathways. The present article explored this issue by assessing the effect of capsaicin, which activates C-fibers that express the transient receptor potential vanilloid receptor-1 (TRPV1). Rats received a lower thoracic (T11) contusion injury and capsaicin was applied to one hind paw the next day. For comparison, other animals received noxious electrical stimulation at an intensity that engages C fibers. Both forms of stimulation elicited similar levels of c-fos mRNA expression, a cellular marker of nociceptive activation, and impaired long-term behavioral recovery. Cellular assays were then performed to compare the acute effect of shock and capsaicin treatment. Both forms of noxious stimulation increased expression of tumor necrosis factor (TNF) and caspase-3, which promotes apoptotic cell death. Shock, but not capsaicin, enhanced expression of signals related to pyroptotic cell death [caspase-1, inteleukin-1 beta (IL-1ß)]. Pyroptosis has been linked to the activation of the P2X7 receptor and the outward flow of adenosine triphosphate (ATP) through the pannexin-1 channel. Blocking the P2X7 receptor with Brilliant Blue G (BBG) reduced the expression of signals related to pyroptotic cell death in contused rats that had received shock. Blocking the pannexin-1 channel with probenecid paradoxically had the opposite effect. BBG enhanced long-term recovery and lowered reactivity to mechanical stimulation applied to the girdle region (an index of chronic pain), but did not block the adverse effect of nociceptive stimulation. The results suggest that C-fiber input after injury impairs long-term recovery and that this effect may arise because it induces apoptotic cell death.
Collapse
Affiliation(s)
- Joel D Turtle
- Lab of Dr. James Grau, Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | - Misty M Strain
- United States Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, TX, United States
| | - Joshua A Reynolds
- Lab of Dr. James Grau, Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | - Yung-Jen Huang
- Lab of Dr. James Grau, Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | - Kuan H Lee
- Lab of Dr. James Grau, Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | - Melissa K Henwood
- Lab of Dr. James Grau, Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | - Sandra M Garraway
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - James W Grau
- Lab of Dr. James Grau, Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
26
|
Grau JW, Huang YJ. Metaplasticity within the spinal cord: Evidence brain-derived neurotrophic factor (BDNF), tumor necrosis factor (TNF), and alterations in GABA function (ionic plasticity) modulate pain and the capacity to learn. Neurobiol Learn Mem 2018; 154:121-135. [PMID: 29635030 DOI: 10.1016/j.nlm.2018.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/01/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022]
Abstract
Evidence is reviewed that behavioral training and neural injury can engage metaplastic processes that regulate adaptive potential. This issue is explored within a model system that examines how training affects the capacity to learn within the lower (lumbosacral) spinal cord. Response-contingent (controllable) stimulation applied caudal to a spinal transection induces a behavioral modification indicative of learning. This behavioral change is not observed in animals that receive stimulation in an uncontrollable manner. Exposure to uncontrollable stimulation also engages a process that disables spinal learning for 24-48 h. Controllable stimulation has the opposite effect; it engages a process that enables learning and prevents/reverses the learning deficit induced by uncontrollable stimulation. These observations suggest that a learning episode can impact the capacity to learn in future situations, providing an example of behavioral metaplasticity. The protective/restorative effect of controllable stimulation has been linked to an up-regulation of brain-derived neurotrophic factor (BDNF). The disruption of learning has been linked to the sensitization of pain (nociceptive) circuits, which is enabled by a reduction in GABA-dependent inhibition. After spinal cord injury (SCI), the co-transporter (KCC2) that regulates the outward flow of Cl- is down-regulated. This causes the intracellular concentration of Cl- to increase, reducing (and potentially reversing) the inward flow of Cl- through the GABA-A receptor. The shift in GABA function (ionic plasticity) increases neural excitability caudal to injury and sets the stage for nociceptive sensitization. The injury-induced shift in KCC2 is related to the loss of descending serotonergic (5HT) fibers that regulate plasticity within the spinal cord dorsal horn through the 5HT-1A receptor. Evidence is presented that these alterations in spinal plasticity impact pain in a brain-dependent task (place conditioning). The findings suggest that ionic plasticity can affect learning potential, shifting a neural circuit from dampened/hard-wired to excitable/plastic.
Collapse
Affiliation(s)
- James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.
| | - Yung-Jen Huang
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA
| |
Collapse
|
27
|
Grau JW, Huang YJ, Turtle JD, Strain MM, Miranda RC, Garraway SM, Hook MA. When Pain Hurts: Nociceptive Stimulation Induces a State of Maladaptive Plasticity and Impairs Recovery after Spinal Cord Injury. J Neurotrauma 2017; 34:1873-1890. [PMID: 27788626 PMCID: PMC5444485 DOI: 10.1089/neu.2016.4626] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is often accompanied by other tissue damage (polytrauma) that provides a source of pain (nociceptive) input. Recent findings are reviewed that show SCI places the caudal tissue in a vulnerable state that exaggerates the effects nociceptive stimuli and promotes the development of nociceptive sensitization. Stimulation that is both unpredictable and uncontrollable induces a form of maladaptive plasticity that enhances nociceptive sensitization and impairs spinally mediated learning. In contrast, relational learning induces a form of adaptive plasticity that counters these adverse effects. SCI sets the stage for nociceptive sensitization by disrupting serotonergic (5HT) fibers that quell overexcitation. The loss of 5HT can enhance neural excitability by reducing membrane-bound K+-Cl- cotransporter 2, a cotransporter that regulates the outward flow of Cl-. This increases the intracellular concentration of Cl-, which reduces the hyperpolarizing (inhibitory) effect of gamma-aminobutyric acid. Uncontrollable noxious stimulation also undermines the recovery of locomotor function, and increases behavioral signs of chronic pain, after a contusion injury. Nociceptive stimulation has a greater effect if experienced soon after SCI. This adverse effect has been linked to a downregulation in brain-derived neurotrophic factor and an upregulation in the cytokine, tumor necrosis factor. Noxious input enhances tissue loss at the site of injury by increasing the extent of hemorrhage and apoptotic/pyroptotic cell death. Intrathecal lidocaine blocks nociception-induced hemorrhage, cellular indices of cell death, and its adverse effect on behavioral recovery. Clinical implications are discussed.
Collapse
Affiliation(s)
- James W. Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas
| | - Yung-Jen Huang
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas
| | - Joel D. Turtle
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas
| | - Misty M. Strain
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas
| | - Rajesh C. Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas
| | - Sandra M. Garraway
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Michelle A. Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas
| |
Collapse
|
28
|
Fixed spaced stimulation restores adaptive plasticity within the spinal cord: Identifying the eliciting conditions. Physiol Behav 2017; 174:1-9. [PMID: 28238778 DOI: 10.1016/j.physbeh.2017.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/22/2017] [Indexed: 01/21/2023]
Abstract
Prior work has shown that neurons within the spinal cord are sensitive to temporal relations and that stimulus regularity impacts nociceptive processing and adaptive plasticity. Application of brief (80ms) shocks (180-900) in a variable manner induces a form of maladaptive plasticity that inhibits spinally-mediated learning and enhances nociceptive reactivity. In contrast, an extended exposure (720-900) to stimuli given at regular (fixed spaced) intervals has a restorative effect that counters nociceptive sensitization and enables learning. The present paper explores the stimulus parameters under which this therapeutic effect of fixed spaced stimulation emerges. Spinally transected rats received variably spaced stimulation (180 shocks) to the sciatic nerve at an intensity (40-V) that recruits pain (C) fibers, producing a form of maladaptive plasticity that impairs spinal learning. As previously shown, exposure to 720 fixed spaced shocks had a therapeutic effect that restored adaptive learning. This therapeutic effect was most robust at a lower shock intensity (20V) and was equally strong irrespective of pulse duration (20-80ms). A restorative effect was observed when stimuli were given at a frequency between 0.5 and 5Hz, but not at a higher (50Hz) or lower (0.05Hz) rate. The results are consistent with prior work implicating neural systems related to the central pattern generator that drives stepping behavior. Clinical implications are discussed.
Collapse
|
29
|
Huie JR, Morioka K, Haefeli J, Ferguson AR. What Is Being Trained? How Divergent Forms of Plasticity Compete To Shape Locomotor Recovery after Spinal Cord Injury. J Neurotrauma 2017; 34:1831-1840. [PMID: 27875927 DOI: 10.1089/neu.2016.4562] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating syndrome that produces dysfunction in motor and sensory systems, manifesting as chronic paralysis, sensory changes, and pain disorders. The multi-faceted and heterogeneous nature of SCI has made effective rehabilitative strategies challenging. Work over the last 40 years has aimed to overcome these obstacles by harnessing the intrinsic plasticity of the spinal cord to improve functional locomotor recovery. Intensive training after SCI facilitates lower extremity function and has shown promise as a tool for retraining the spinal cord by engaging innate locomotor circuitry in the lumbar cord. As new training paradigms evolve, the importance of appropriate afferent input has emerged as a requirement for adaptive plasticity. The integration of kinematic, sensory, and loading force information must be closely monitored and carefully manipulated to optimize training outcomes. Inappropriate peripheral input may produce lasting maladaptive sensory and motor effects, such as central pain and spasticity. Thus, it is important to closely consider the type of afferent input the injured spinal cord receives. Here we review preclinical and clinical input parameters fostering adaptive plasticity, as well as those producing maladaptive plasticity that may undermine neurorehabilitative efforts. We differentiate between passive (hindlimb unloading [HU], limb immobilization) and active (peripheral nociception) forms of aberrant input. Furthermore, we discuss the timing of initiating exposure to afferent input after SCI for promoting functional locomotor recovery. We conclude by presenting a candidate rapid synaptic mechanism for maladaptive plasticity after SCI, offering a pharmacological target for restoring the capacity for adaptive spinal plasticity in real time.
Collapse
Affiliation(s)
- J Russell Huie
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Kazuhito Morioka
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Jenny Haefeli
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Adam R Ferguson
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California.,2 San Francisco Veterans Affairs Medical Center , San Francisco, California
| |
Collapse
|
30
|
Mercier C, Roosink M, Bouffard J, Bouyer LJ. Promoting Gait Recovery and Limiting Neuropathic Pain After Spinal Cord Injury. Neurorehabil Neural Repair 2016; 31:315-322. [PMID: 27913797 PMCID: PMC5405804 DOI: 10.1177/1545968316680491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Most persons living with a spinal cord injury experience neuropathic pain in the months following their lesion, at the moment where they receive intensive gait rehabilitation. Based on studies using animal models, it has been proposed that central sensitization in nociceptive pathways (maladaptive plasticity) and plasticity related to motor learning (adaptive plasticity) share common neural mechanisms and compete with each other. This article aims to address the discrepancy between the growing body of basic science literature supporting this hypothesis and the general belief in rehabilitation research that pain and gait rehabilitation represent two independent problems. First, the main findings from basic research showing interactions between nociception and learning in the spinal cord will be summarized, focusing both on evidence demonstrating the impact of nociception on motor learning and of motor learning on central sensitization. Then, the generalizability of these findings in animal models to humans will be discussed. Finally, the way potential interactions between nociception and motor learning are currently taken into account in clinical research in patients with spinal cord injury will be presented. To conclude, recommendations will be proposed to better integrate findings from basic research into future clinical research in persons with spinal cord injury.
Collapse
Affiliation(s)
- Catherine Mercier
- 1 Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Quebec City, Quebec, Canada.,2 Laval University, Quebec City, Quebec, Canada
| | - Meyke Roosink
- 1 Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Quebec City, Quebec, Canada
| | - Jason Bouffard
- 1 Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Quebec City, Quebec, Canada.,2 Laval University, Quebec City, Quebec, Canada
| | - Laurent J Bouyer
- 1 Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Quebec City, Quebec, Canada.,2 Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
31
|
Turtle JD, Strain MM, Aceves M, Huang YJ, Reynolds JA, Hook MA, Grau JW. Pain Input Impairs Recovery after Spinal Cord Injury: Treatment with Lidocaine. J Neurotrauma 2016; 34:1200-1208. [PMID: 27912032 DOI: 10.1089/neu.2016.4778] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
More than 90% of spinal cord injuries are caused by traumatic accidents and are often associated with other tissue damage (polytrauma) that can provide a source of continued pain input during recovery. In a clinically relevant spinal cord contusion injury model, prior work has shown that noxious stimulation at an intensity that engages pain (C) fibers soon after injury augments secondary injury and impairs functional recovery. Noxious input increases the expression of pro-inflammatory cytokines (interleukin 1β and 18), cellular signals associated with cell death (caspase 3 and 8), and physiological signs of hemorrhage. Here, it is shown that reducing neural excitability after spinal cord injury (SCI) with the local anesthetic lidocaine (micro-injected by means of a lumbar puncture) blocks these adverse cellular effects. In contrast, treatment with an analgesic dose of morphine had no effect. Contused rats that received nociceptive stimulation soon after injury exhibited poor locomotor recovery, less weight gain, and greater tissue loss at the site of injury. Prophylactic application of lidocaine blocked the adverse effect of nociceptive stimulation on behavioral recovery and reduced tissue loss from secondary injury. The results suggest that quieting neural excitability using lidocaine can reduce the adverse effect of pain input (from polytrauma or surgery) after SCI.
Collapse
Affiliation(s)
- Joel D Turtle
- 1 Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University , College Station, Texas
| | - Misty M Strain
- 1 Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University , College Station, Texas
| | - Miriam Aceves
- 2 Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University , College Station, Texas
| | - Yung-Jen Huang
- 1 Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University , College Station, Texas
| | - Joshua A Reynolds
- 1 Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University , College Station, Texas
| | - Michelle A Hook
- 2 Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University , College Station, Texas
| | - James W Grau
- 1 Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University , College Station, Texas
| |
Collapse
|
32
|
Aceves M, Bancroft EA, Aceves AR, Hook MA. Nor-Binaltorphimine Blocks the Adverse Effects of Morphine after Spinal Cord Injury. J Neurotrauma 2016; 34:1164-1174. [PMID: 27736318 DOI: 10.1089/neu.2016.4601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Opioids are frequently used for the treatment of pain following spinal cord injury (SCI). Unfortunately, we have shown that morphine administered in the acute phase of SCI results in significant, adverse secondary consequences including compromised locomotor and sensory recovery. Similarly, we showed that selective activation of the κ-opioid receptor (KOR), even at a dose 32-fold lower than morphine, is sufficient to attenuate recovery of locomotor function. In the current study, we tested whether activation of the KOR is necessary to produce morphine's adverse effects using nor-Binaltorphimine (norBNI), a selective KOR antagonist. Rats received a moderate spinal contusion (T12) and 24 h later, baseline locomotor function and nociceptive reactivity were assessed. Rats were then administered norBNI (0, 0.02, 0.08, or 0.32 μmol) followed by morphine (0 or 0.32 μmol). Nociception was reassessed 30 min after drug treatment, and recovery was evaluated for 21 days. The effects of norBNI on morphine-induced attenuation of recovery were dose dependent. At higher doses, norBNI blocked the adverse effects of morphine on locomotor recovery, but analgesia was also significantly decreased. Conversely, at low doses, analgesia was maintained, but the adverse effects on recovery persisted. A moderate dose of norBNI, however, adequately protected against morphine's adverse effects without eliminating its analgesic efficacy. This suggests that activation of the KOR system plays a significant role in the morphine-induced attenuation of recovery. Our research suggests that morphine, and other opioid analgesics, may be contraindicated for the SCI population. Blocking KOR activity may be a viable strategy for improving the safety of clinical opioid use.
Collapse
Affiliation(s)
- Miriam Aceves
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center , Bryan, Texas
| | - Eric A Bancroft
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center , Bryan, Texas
| | - Alejandro R Aceves
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center , Bryan, Texas
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center , Bryan, Texas
| |
Collapse
|
33
|
Hook MA, Woller SA, Bancroft E, Aceves M, Funk MK, Hartman J, Garraway SM. Neurobiological Effects of Morphine after Spinal Cord Injury. J Neurotrauma 2016; 34:632-644. [PMID: 27762659 DOI: 10.1089/neu.2016.4507] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Opioids and non-steroidal anti-inflammatory drugs are used commonly to manage pain in the early phase of spinal cord injury (SCI). Despite its analgesic efficacy, however, our studies suggest that intrathecal morphine undermines locomotor recovery and increases lesion size in a rodent model of SCI. Similarly, intravenous (IV) morphine attenuates locomotor recovery. The current study explores whether IV morphine also increases lesion size after a spinal contusion (T12) injury and quantifies the cell types that are affected by early opioid administration. Using an experimenter-administered escalating dose of IV morphine across the first seven days post-injury, we quantified the expression of neuron, astrocyte, and microglial markers at the injury site. SCI decreased NeuN expression relative to shams. In subjects with SCI treated with IV morphine, virtually no NeuN+ cells remained across the rostral-caudal extent of the lesion. Further, whereas SCI per se increased the expression of astrocyte and microglial markers (glial fibrillary acidic protein and OX-42, respectively), morphine treatment decreased the expression of these markers. These cellular changes were accompanied by attenuation of locomotor recovery (Basso, Beattie, Bresnahan scores), decreased weight gain, and the development of opioid-induced hyperalgesia (increased tactile reactivity) in morphine-treated subjects. These data suggest that morphine use is contraindicated in the acute phase of a spinal injury. Faced with a lifetime of intractable pain, however, simply removing any effective analgesic for the management of SCI pain is not an ideal option. Instead, these data underscore the critical need for further understanding of the molecular pathways engaged by conventional medications within the pathophysiological context of an injury.
Collapse
Affiliation(s)
- Michelle A Hook
- 1 Texas A&M University Institute for Neuroscience, Texas A&M University , College Station, Texas.,2 Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center , Bryan, Texas
| | - Sarah A Woller
- 3 Department of Anesthesiology, University of California , San Diego, California
| | - Eric Bancroft
- 2 Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center , Bryan, Texas
| | - Miriam Aceves
- 1 Texas A&M University Institute for Neuroscience, Texas A&M University , College Station, Texas.,2 Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center , Bryan, Texas
| | - Mary Katherine Funk
- 2 Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center , Bryan, Texas
| | - John Hartman
- 2 Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center , Bryan, Texas
| | - Sandra M Garraway
- 4 Department of Physiology, Emory University School of Medicine , Atlanta, Georgia
| |
Collapse
|
34
|
Spinal Plasticity and Behavior: BDNF-Induced Neuromodulation in Uninjured and Injured Spinal Cord. Neural Plast 2016; 2016:9857201. [PMID: 27721996 PMCID: PMC5046018 DOI: 10.1155/2016/9857201] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/27/2016] [Accepted: 08/10/2016] [Indexed: 12/26/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family of signaling molecules. Since its discovery over three decades ago, BDNF has been identified as an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity and has been shown to function in the formation and maintenance of certain forms of memory. Neural plasticity that underlies learning and memory in the hippocampus shares distinct characteristics with spinal cord nociceptive plasticity. Research examining the role BDNF plays in spinal nociception and pain overwhelmingly suggests that BDNF promotes pronociceptive effects. BDNF induces synaptic facilitation and engages central sensitization-like mechanisms. Also, peripheral injury-induced neuropathic pain is often accompanied with increased spinal expression of BDNF. Research has extended to examine how spinal cord injury (SCI) influences BDNF plasticity and the effects BDNF has on sensory and motor functions after SCI. Functional recovery and adaptive plasticity after SCI are typically associated with upregulation of BDNF. Although neuropathic pain is a common consequence of SCI, the relation between BDNF and pain after SCI remains elusive. This article reviews recent literature and discusses the diverse actions of BDNF. We also highlight similarities and differences in BDNF-induced nociceptive plasticity in naïve and SCI conditions.
Collapse
|
35
|
Training-Induced Functional Gains following SCI. Neural Plast 2016; 2016:4307694. [PMID: 27403345 PMCID: PMC4926009 DOI: 10.1155/2016/4307694] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/27/2016] [Indexed: 12/30/2022] Open
Abstract
We previously demonstrated that daily, hour-long training sessions significantly improved both locomotor (limb kinematics, gait, and hindlimb flexor-extensor bursting patterns) and nonlocomotor (bladder function and at-level mechanical allodynia) functions following a moderate contusive spinal cord injury. The amount of training needed to achieve this recovery is unknown. Furthermore, whether this recovery is induced primarily by neuronal activity below the lesion or other aspects related to general exercise is unclear. Therefore, the current study objectives were to (1) test the efficacy of 30 minutes of step training for recovery following a clinically relevant contusion injury in male Wistar rats and (2) test the efficacy of training without hindlimb engagement. The results indicate that as little as 30 minutes of step training six days per week enhances overground locomotion in male rats with contusive spinal cord injury but does not alter allodynia or bladder function. Thirty minutes of forelimb-only exercise did not alter locomotion, allodynia, or bladder function, and neither training protocol altered the amount of in-cage activity. Taken together, locomotor improvements were facilitated by hindlimb step training for 30 minutes, but longer durations of training are required to affect nonlocomotor systems.
Collapse
|
36
|
Hubscher CH, Montgomery LR, Fell JD, Armstrong JE, Poudyal P, Herrity AN, Harkema SJ. Effects of exercise training on urinary tract function after spinal cord injury. Am J Physiol Renal Physiol 2016; 310:F1258-68. [PMID: 26984956 DOI: 10.1152/ajprenal.00557.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/09/2016] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) causes dramatic changes in the quality of life, including coping with bladder dysfunction which requires repeated daily and nightly catheterizations. Our laboratory has recently demonstrated in a rat SCI model that repetitive sensory information generated through task-specific stepping and/or loading can improve nonlocomotor functions, including bladder function (Ward PJ, Herrity AN, Smith RR, Willhite A, Harrison BJ, Petruska JC, Harkema SJ, Hubscher CH. J Neurotrauma 31: 819-833, 2014). To target potential underlying mechanisms, the current study included a forelimb-only exercise group to ascertain whether improvements may be attributed to general activity effects that impact target organ-neural interactions or to plasticity of the lumbosacral circuitry that receives convergent somatovisceral inputs. Male Wistar rats received a T9 contusion injury and were randomly assigned to three groups 2 wk postinjury: quadrupedal locomotion, forelimb exercise, or a nontrained group. Throughout the study (including preinjury), all animals were placed in metabolic cages once a week for 24 h to monitor water intake and urine output. Following the 10-wk period of daily 1-h treadmill training, awake cystometry data were collected and bladder and kidney tissue harvested for analysis. Metabolic cage frequency-volume measurements of voiding and cystometry reveal an impact of exercise training on multiple SCI-induced impairments related to various aspects of urinary tract function. Improvements in both the quadrupedal and forelimb-trained groups implicate underlying mechanisms beyond repetitive sensory information from the hindlimbs driving spinal network excitability of the lumbosacral urogenital neural circuitry. Furthermore, the impact of exercise training on the upper urinary tract (kidney) underscores the health benefit of activity-based training on the entire urinary system within the SCI population.
Collapse
Affiliation(s)
- Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky;
| | - Lynnette R Montgomery
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Jason D Fell
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky
| | - James E Armstrong
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky
| | - Pradeepa Poudyal
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky
| | - April N Herrity
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky; Frazier Rehab Institute, University of Louisville, Louisville, Kentucky; and
| | - Susan J Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky; Frazier Rehab Institute, University of Louisville, Louisville, Kentucky; and Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| |
Collapse
|
37
|
Aceves M, Mathai BB, Hook MA. Evaluation of the effects of specific opioid receptor agonists in a rodent model of spinal cord injury. Spinal Cord 2016; 54:767-777. [PMID: 26927293 PMCID: PMC5009008 DOI: 10.1038/sc.2016.28] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/07/2016] [Accepted: 01/14/2016] [Indexed: 12/18/2022]
Abstract
Objective The current study aimed to evaluate the contribution(s) of specific
opioid receptor systems to the analgesic and detrimental effects of
morphine, observed after spinal cord injury in prior studies. Study Design We used specific opioid receptor agonists to assess the effects of
µ- (DAMGO), δ- (DPDPE), and κ- (GR89696) opioid
receptor activation on locomotor (BBB, tapered beam, ladder tests) and
sensory (girdle, tactile, and tail-flick tests) recovery in a rodent
contusion model (T12). We also tested the contribution of non-classic opioid
binding using [+]- morphine. Methods First, a dose-response curve for analgesic efficacy was generated for
each opioid agonist. Baseline locomotor and sensory reactivity was assessed
24 h after injury. Subjects were then treated with an intrathecal dose of a
specific agonist and re-tested after 30 min. To evaluate effects on
recovery, subjects were treated with a single dose of an agonist and both
locomotor and sensory function were monitored for 21 d. Results All agonists for the classic opioid receptors, but not the [+]-
morphine enantiomer, produced antinociception at a concentration equivalent
to a dose of morphine previously shown to produce strong analgesic effects
(0.32 μmol). DAMGO and [+]- morphine did not affect long-term
recovery. GR89696, however, significantly undermined recovery of locomotor
function at all doses tested. Conclusions Based on these data, we hypothesize that the analgesic efficacy of
morphine is primarily mediated by binding to the classic μ-opioid
receptor. Conversely, the adverse effects of morphine may be linked to
activation of the κ-opioid receptor. Ultimately, elucidating the
molecular mechanisms underlying the effects of morphine is imperative in
order to develop safe and effective pharmacological interventions in a
clinical setting. Setting USA
Collapse
Affiliation(s)
- M Aceves
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, USA
| | - B B Mathai
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, USA
| | - M A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, USA
| |
Collapse
|
38
|
Lee KH, Huang YJ, Grau JW. Learning about Time within the Spinal Cord II: Evidence that Temporal Regularity Is Encoded by a Spinal Oscillator. Front Behav Neurosci 2016; 10:14. [PMID: 26903830 PMCID: PMC4749712 DOI: 10.3389/fnbeh.2016.00014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/28/2016] [Indexed: 11/13/2022] Open
Abstract
How a stimulus impacts spinal cord function depends upon temporal relations. When intermittent noxious stimulation (shock) is applied and the interval between shock pulses is varied (unpredictable), it induces a lasting alteration that inhibits adaptive learning. If the same stimulus is applied in a temporally regular (predictable) manner, the capacity to learn is preserved and a protective/restorative effect is engaged that counters the adverse effect of variable stimulation. Sensitivity to temporal relations implies a capacity to encode time. This study explores how spinal neurons discriminate variable and fixed spaced stimulation. Communication with the brain was blocked by means of a spinal transection and adaptive capacity was tested using an instrumental learning task. In this task, subjects must learn to maintain a hind limb in a flexed position to minimize shock exposure. To evaluate the possibility that a distinct class of afferent fibers provide a sensory cue for regularity, we manipulated the temporal relation between shocks given to two dermatomes (leg and tail). Evidence for timing emerged when the stimuli were applied in a coherent manner across dermatomes, implying that a central (spinal) process detects regularity. Next, we show that fixed spaced stimulation has a restorative effect when half the physical stimuli are randomly omitted, as long as the stimuli remain in phase, suggesting that stimulus regularity is encoded by an internal oscillator Research suggests that the oscillator that drives the tempo of stepping depends upon neurons within the rostral lumbar (L1-L2) region. Disrupting communication with the L1-L2 tissue by means of a L3 transection eliminated the restorative effect of fixed spaced stimulation. Implications of the results for step training and rehabilitation after injury are discussed.
Collapse
Affiliation(s)
- Kuan H Lee
- Department of Neurobiology, Center for Pain Research, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Yung-Jen Huang
- Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University College Station, TX, USA
| | - James W Grau
- Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University College Station, TX, USA
| |
Collapse
|
39
|
AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury. eNeuro 2015; 2:eN-NWR-0091-15. [PMID: 26668821 PMCID: PMC4677690 DOI: 10.1523/eneuro.0091-15.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/05/2015] [Accepted: 10/05/2015] [Indexed: 12/22/2022] Open
Abstract
Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity.
Collapse
|
40
|
Lee KH, Turtle JD, Huang YJ, Strain MM, Baumbauer KM, Grau JW. Learning about time within the spinal cord: evidence that spinal neurons can abstract and store an index of regularity. Front Behav Neurosci 2015; 9:274. [PMID: 26539090 PMCID: PMC4612497 DOI: 10.3389/fnbeh.2015.00274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/28/2015] [Indexed: 01/06/2023] Open
Abstract
Prior studies have shown that intermittent noxious stimulation has divergent effects on spinal cord plasticity depending upon whether it occurs in a regular (fixed time, FT) or irregular (variable time, VT) manner: In spinally transected animals, VT stimulation to the tail or hind leg impaired spinal learning whereas an extended exposure to FT stimulation had a restorative/protective effect. These observations imply that lower level systems are sensitive to temporal relations. Using spinally transected rats, it is shown that the restorative effect of FT stimulation emerges after 540 shocks; fewer shocks generate a learning impairment. The transformative effect of FT stimulation is related to the number of shocks administered, not the duration of exposure. Administration of 360 FT shocks induces a learning deficit that lasts 24 h. If a second bout of FT stimulation is given a day after the first, it restores the capacity to learn. This savings effect implies that the initial training episode had a lasting (memory-like) effect. Two bouts of shock have a transformative effect when applied at different locations or at difference frequencies, implying spinal systems abstract and store an index of regularity (rather than a specific interval). Implications of the results for step training and rehabilitation after injury are discussed.
Collapse
Affiliation(s)
- Kuan H Lee
- Department of Neurobiology, Center for Pain Research, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Joel D Turtle
- Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University College Station, TX, USA
| | - Yung-Jen Huang
- Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University College Station, TX, USA
| | - Misty M Strain
- Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University College Station, TX, USA
| | | | - James W Grau
- Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University College Station, TX, USA
| |
Collapse
|
41
|
Abstract
In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as “neurons that fire together, wire together.” This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical stimulation (FES) has long been used to activate sacral nerves to treat bladder and pelvic dysfunction and to augment motor function. In theory, FES should facilitate synaptic formation and motor recovery after regenerative therapies. Upcoming clinical trials provide unique opportunities to test the theory.
Collapse
Affiliation(s)
- Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
42
|
Strickland ER, Woller SA, Garraway SM, Hook MA, Grau JW, Miranda RC. Regulatory effects of intermittent noxious stimulation on spinal cord injury-sensitive microRNAs and their presumptive targets following spinal cord contusion. Front Neural Circuits 2014; 8:117. [PMID: 25278846 PMCID: PMC4166958 DOI: 10.3389/fncir.2014.00117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/03/2014] [Indexed: 11/13/2022] Open
Abstract
Uncontrollable nociceptive stimulation adversely affects recovery in spinally contused rats. Spinal cord injury (SCI) results in altered microRNA (miRNA) expression both at, and distal to the lesion site. We hypothesized that uncontrollable nociception further influences SCI-sensitive miRNAs and associated gene targets, potentially explaining the progression of maladaptive plasticity. Our data validated previously described sensitivity of miRNAs to SCI alone. Moreover, following SCI, intermittent noxious stimulation decreased expression of miR124 in dorsal spinal cord 24 h after stimulation and increased expression of miR129-2 in dorsal, and miR1 in ventral spinal cord at 7 days. We also found that brain-derived neurotrophic factor (BDNF) mRNA expression was significantly down-regulated 1 day after SCI alone, and significantly more so, after SCI followed by tailshock. Insulin-like growth factor-1 (IGF-1) mRNA expression was significantly increased at both 1 and 7 days post-SCI, and significantly more so, 7 days post-SCI with shock. MiR1 expression was positively and significantly correlated with IGF-1, but not BDNF mRNA expression. Further, stepwise linear regression analysis indicated that a significant proportion of the changes in BDNF and IGF-1 mRNA expression were explained by variance in two groups of miRNAs, implying co-regulation. Collectively, these data show that uncontrollable nociception which activates sensorimotor circuits distal to the injury site, influences SCI-miRNAs and target mRNAs within the lesion site. SCI-sensitive miRNAs may well mediate adverse consequences of uncontrolled sensorimotor activation on functional recovery. However, their sensitivity to distal sensory input also implicates these miRNAs as candidate targets for the management of SCI and neuropathic pain.
Collapse
Affiliation(s)
- Eric R Strickland
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center Bryan, TX, USA
| | - Sarah A Woller
- Department of Psychology, Texas A&M University, College Station TX, USA
| | - Sandra M Garraway
- Department of Psychology, Texas A&M University, College Station TX, USA
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center Bryan, TX, USA
| | - James W Grau
- Department of Psychology, Texas A&M University, College Station TX, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center Bryan, TX, USA
| |
Collapse
|
43
|
Tonic pain experienced during locomotor training impairs retention despite normal performance during acquisition. J Neurosci 2014; 34:9190-5. [PMID: 25009252 DOI: 10.1523/jneurosci.5303-13.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many patients are in pain when they receive gait training during rehabilitation. Based on animal studies, it has been proposed that central sensitization associated to nociception (maladaptive plasticity) and plasticity related to the sensorimotor learning (adaptive plasticity) share similar neural mechanisms and compete with each other. The aim of this study was to evaluate whether experimental tonic pain influences motor learning (acquisition and next-day retention) of a new locomotor task. Thirty healthy human subjects performed a locomotor adaptation task (perturbing force field applied to the ankle during swing using a robotized orthosis) on 2 consecutive days. Learning was assessed using kinematic measures (peak and mean absolute plantarflexion errors) and electromyographic (EMG) activity. Half of the participants performed the locomotor adaptation task with pain on Day 1 (capsaicin cream around the ankle), while the task was performed pain-free for all subjects on Day 2 to assess retention. Pain had no significant effect on baseline gait parameters nor on performance during the locomotor adaptation task (for either kinematic or EMG measures) on Day 1. Despite this apparently normal motor acquisition, pain-free Day 2 performance was markedly and significantly impaired in the Pain group, indicating that pain during training had an impact on the retention of motor memories (interfering with consolidation and/or retrieval). These results suggest that the same motor rehabilitation intervention could be less effective if administered in the presence of pain.
Collapse
|
44
|
Grau JW, Huie JR, Lee KH, Hoy KC, Huang YJ, Turtle JD, Strain MM, Baumbauer KM, Miranda RM, Hook MA, Ferguson AR, Garraway SM. Metaplasticity and behavior: how training and inflammation affect plastic potential within the spinal cord and recovery after injury. Front Neural Circuits 2014; 8:100. [PMID: 25249941 PMCID: PMC4157609 DOI: 10.3389/fncir.2014.00100] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/31/2014] [Indexed: 12/30/2022] Open
Abstract
Research has shown that spinal circuits have the capacity to adapt in response to training, nociceptive stimulation and peripheral inflammation. These changes in neural function are mediated by physiological and neurochemical systems analogous to those that support plasticity within the hippocampus (e.g., long-term potentiation and the NMDA receptor). As observed in the hippocampus, engaging spinal circuits can have a lasting impact on plastic potential, enabling or inhibiting the capacity to learn. These effects are related to the concept of metaplasticity. Behavioral paradigms are described that induce metaplastic effects within the spinal cord. Uncontrollable/unpredictable stimulation, and peripheral inflammation, induce a form of maladaptive plasticity that inhibits spinal learning. Conversely, exposure to controllable or predictable stimulation engages a form of adaptive plasticity that counters these maladaptive effects and enables learning. Adaptive plasticity is tied to an up-regulation of brain derived neurotrophic factor (BDNF). Maladaptive plasticity is linked to processes that involve kappa opioids, the metabotropic glutamate (mGlu) receptor, glia, and the cytokine tumor necrosis factor (TNF). Uncontrollable nociceptive stimulation also impairs recovery after a spinal contusion injury and fosters the development of pain (allodynia). These adverse effects are related to an up-regulation of TNF and a down-regulation of BDNF and its receptor (TrkB). In the absence of injury, brain systems quell the sensitization of spinal circuits through descending serotonergic fibers and the serotonin 1A (5HT 1A) receptor. This protective effect is blocked by surgical anesthesia. Disconnected from the brain, intracellular Cl- concentrations increase (due to a down-regulation of the cotransporter KCC2), which causes GABA to have an excitatory effect. It is suggested that BDNF has a restorative effect because it up-regulates KCC2 and re-establishes GABA-mediated inhibition.
Collapse
Affiliation(s)
- James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station TX, USA
| | - J Russell Huie
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California San Francisco San Francisco, CA, USA
| | - Kuan H Lee
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station TX, USA
| | - Kevin C Hoy
- Department of Neurosciences, MetroHealth Medical Center and Case Western Reserve University Cleveland, OH, USA
| | - Yung-Jen Huang
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station TX, USA
| | - Joel D Turtle
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station TX, USA
| | - Misty M Strain
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station TX, USA
| | | | - Rajesh M Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center Bryan, TX, USA
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center Bryan, TX, USA
| | - Adam R Ferguson
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California San Francisco San Francisco, CA, USA
| | - Sandra M Garraway
- Department of Physiology, Emory University School of Medicine Atlanta, GA, USA
| |
Collapse
|
45
|
Garraway SM, Woller SA, Huie JR, Hartman JJ, Hook MA, Miranda RC, Huang YJ, Ferguson AR, Grau JW. Peripheral noxious stimulation reduces withdrawal threshold to mechanical stimuli after spinal cord injury: role of tumor necrosis factor alpha and apoptosis. Pain 2014; 155:2344-59. [PMID: 25180012 DOI: 10.1016/j.pain.2014.08.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/12/2014] [Accepted: 08/26/2014] [Indexed: 01/23/2023]
Abstract
We previously showed that peripheral noxious input after spinal cord injury (SCI) inhibits beneficial spinal plasticity and impairs recovery of locomotor and bladder functions. These observations suggest that noxious input may similarly affect the development and maintenance of chronic neuropathic pain, an important consequence of SCI. In adult rats with a moderate contusion SCI, we investigated the effect of noxious tail stimulation, administered 1 day after SCI on mechanical withdrawal responses to von Frey stimuli from 1 to 28 days after treatment. In addition, because the proinflammatory cytokine tumor necrosis factor alpha (TNFα) is implicated in numerous injury-induced processes including pain hypersensitivity, we assessed the temporal and spatial expression of TNFα, TNF receptors, and several downstream signaling targets after stimulation. Our results showed that unlike sham surgery or SCI only, nociceptive stimulation after SCI induced mechanical sensitivity by 24h. These behavioral changes were accompanied by increased expression of TNFα. Cellular assessments of downstream targets of TNFα revealed that nociceptive stimulation increased the expression of caspase 8 and the active subunit (12 kDa) of caspase 3, indicative of active apoptosis at a time point consistent with the onset of mechanical allodynia. In addition, immunohistochemical analysis revealed distinct morphological signs of apoptosis in neurons and microglia at 24h after stimulation. Interestingly, expression of the inflammatory mediator NFκB was unaltered by nociceptive stimulation. These results suggest that noxious input caudal to the level of SCI can increase the onset and expression of behavioral responses indicative of pain, potentially involving TNFα signaling.
Collapse
Affiliation(s)
- Sandra M Garraway
- Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Sarah A Woller
- Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - J Russell Huie
- Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), University of California, San Francisco, 1001 Potrero Ave, Bldg 1, Room 101, San Francisco, CA 94110, USA
| | - John J Hartman
- Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Michelle A Hook
- Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Medical Research and Education Bldg, 8447 State Highway 47, Bryan, TX 77807-3260, USA
| | - Yung-Jen Huang
- Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Adam R Ferguson
- Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), University of California, San Francisco, 1001 Potrero Ave, Bldg 1, Room 101, San Francisco, CA 94110, USA
| | - James W Grau
- Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
46
|
Irvine KA, Ferguson AR, Mitchell KD, Beattie SB, Lin A, Stuck ED, Huie JR, Nielson JL, Talbott JF, Inoue T, Beattie MS, Bresnahan JC. The Irvine, Beatties, and Bresnahan (IBB) Forelimb Recovery Scale: An Assessment of Reliability and Validity. Front Neurol 2014; 5:116. [PMID: 25071704 PMCID: PMC4083223 DOI: 10.3389/fneur.2014.00116] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/20/2014] [Indexed: 12/24/2022] Open
Abstract
The IBB scale is a recently developed forelimb scale for the assessment of fine control of the forelimb and digits after cervical spinal cord injury [SCI; (1)]. The present paper describes the assessment of inter-rater reliability and face, concurrent and construct validity of this scale following SCI. It demonstrates that the IBB is a reliable and valid scale that is sensitive to severity of SCI and to recovery over time. In addition, the IBB correlates with other outcome measures and is highly predictive of biological measures of tissue pathology. Multivariate analysis using principal component analysis (PCA) demonstrates that the IBB is highly predictive of the syndromic outcome after SCI (2), and is among the best predictors of bio-behavioral function, based on strong construct validity. Altogether, the data suggest that the IBB, especially in concert with other measures, is a reliable and valid tool for assessing neurological deficits in fine motor control of the distal forelimb, and represents a powerful addition to multivariate outcome batteries aimed at documenting recovery of function after cervical SCI in rats.
Collapse
Affiliation(s)
- Karen-Amanda Irvine
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Adam R. Ferguson
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Kathleen D. Mitchell
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Stephanie B. Beattie
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Amity Lin
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ellen D. Stuck
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - J. Russell Huie
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jessica L. Nielson
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jason F. Talbott
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Tomoo Inoue
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Michael S. Beattie
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jacqueline C. Bresnahan
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
47
|
Luedtke K, Bouchard SM, Woller SA, Funk MK, Aceves M, Hook MA. Assessment of depression in a rodent model of spinal cord injury. J Neurotrauma 2014; 31:1107-21. [PMID: 24564232 DOI: 10.1089/neu.2013.3204] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite an increased incidence of depression in patients after spinal cord injury (SCI), there is no animal model of depression after SCI. To address this, we used a battery of established tests to assess depression after a rodent contusion injury. Subjects were acclimated to the tasks, and baseline scores were collected before SCI. Testing was conducted on days 9-10 (acute) and 19-20 (chronic) postinjury. To categorize depression, subjects' scores on each behavioral measure were averaged across the acute and chronic stages of injury and subjected to a principal component analysis. This analysis revealed a two-component structure, which explained 72.2% of between-subjects variance. The data were then analyzed with a hierarchical cluster analysis, identifying two clusters that differed significantly on the sucrose preference, open field, social exploration, and burrowing tasks. One cluster (9 of 26 subjects) displayed characteristics of depression. Using these data, a discriminant function analysis was conducted to derive an equation that could classify subjects as "depressed" on days 9-10. The discriminant function was used in a second experiment examining whether the depression-like symptoms could be reversed with the antidepressant, fluoxetine. Fluoxetine significantly decreased immobility in the forced swim test (FST) in depressed subjects identified with the equation. Subjects that were depressed and treated with saline displayed significantly increased immobility on the FST, relative to not depressed, saline-treated controls. These initial experiments validate our tests of depression, generating a powerful model system for further understanding the relationships between molecular changes induced by SCI and the development of depression.
Collapse
Affiliation(s)
- Kelsey Luedtke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center , Bryan, Texas
| | | | | | | | | | | |
Collapse
|
48
|
Ward PJ, Herrity AN, Smith RR, Willhite A, Harrison BJ, Petruska JC, Harkema SJ, Hubscher CH. Novel multi-system functional gains via task specific training in spinal cord injured male rats. J Neurotrauma 2014; 31:819-33. [PMID: 24294909 DOI: 10.1089/neu.2013.3082] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Locomotor training (LT) after spinal cord injury (SCI) is a rehabilitative therapy used to enhance locomotor recovery. There is evidence, primarily anecdotal, also associating LT with improvements in bladder function and reduction in some types of SCI-related pain. In the present study, we determined if a step training paradigm could improve outcome measures of locomotion, bladder function, and pain/allodynia. After a T10 contusive SCI trained animals (adult male Wistar rats), trained animals began quadrupedal step training beginning 2 weeks post-SCI for 1 h/day. End of study experiments (3 months of training) revealed significant changes in limb kinematics, gait, and hindlimb flexor-extensor bursting patterns relative to non-trained controls. Importantly, micturition function, evaluated with terminal transvesical cystometry, was significantly improved in the step trained group (increased voiding efficiency, intercontraction interval, and contraction amplitude). Because both SCI and LT affect neurotrophin signaling, and neurotrophins are involved with post-SCI plasticity in micturition pathways, we measured bladder neurotrophin mRNA. Training regulated the expression of nerve growth factor (NGF) but not BDNF or NT3. Bladder NGF mRNA levels were inversely related to bladder function in the trained group. Monitoring of overground locomotion and neuropathic pain throughout the study revealed significant improvements, beginning after 3 weeks of training, which in both cases remained consistent for the study duration. These novel findings, improving non-locomotor in addition to locomotor functions, demonstrate that step training post-SCI could contribute to multiple quality of life gains, targeting patient-centered high priority deficits.
Collapse
Affiliation(s)
- Patricia J Ward
- 1 Department of Anatomical Sciences and Neurobiology, University of Louisville , Louisville, Kentucky
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chakrabarti M, Banik NL, Ray SK. MiR-7-1 potentiated estrogen receptor agonists for functional neuroprotection in VSC4.1 motoneurons. Neuroscience 2014; 256:322-33. [PMID: 24157932 PMCID: PMC4378839 DOI: 10.1016/j.neuroscience.2013.10.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 01/28/2023]
Abstract
Protection of motoneurons is an important goal in the treatment of spinal cord injury (SCI). We tested whether neuroprotective microRNAs (miRs) like miR-206, miR-17, miR-21, miR-7-1, and miR-106a could enhance efficacy of estrogen receptor (ER) agonists such as 1,3,5-tris (4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT, ERα agonist), Way200070 (WAY, ERβ agonist), and estrogen (EST, ERα and ERβ agonist) in preventing apoptosis in the calcium ionophore (CI)-insulted ventral spinal cord 4.1 (VSC4.1) motoneurons. We determined that 200 nM CI induced 70% cell death. Treatment with 50 nM PPT, 100 nM WAY, and 150 nM EST induced overexpression of ERα, ERβ, and both receptors, respectively, at mRNA and protein levels. Treatment with ER agonists significantly upregulated miR-206, miR-17, and miR-7-1 in the CI-insulted VSC4.1 motoneurons. Transfection with miR-206, miR-17, or miR-7-1 mimic potentiated WAY or EST to inhibit apoptosis in the CI-insulted VSC4.1 motoneurons. Overexpression of miR-7-1 maximally increased efficacy of WAY and EST for down regulation of pro-apoptotic Bax and upregulation of anti-apoptotic Bcl-2. A search using microRNA database (miRDB) indicated that miR-7-1 could inhibit the expression of L-type Ca(2+) channel protein alpha 1C (CPα1C). miR-7-1 overexpression and WAY or EST treatment down regulated CPα1C but upregulated p-Akt to trigger cell survival signaling. The same therapeutic strategy increased expression of the Ca(2+)/calmodulin-dependent protein kinase II beta (CaMKIIβ) and the phosphorylated cAMP response element binding protein (p-CREB) so as to promote Bcl-2 transcription. Whole cell membrane potential and mitochondrial membrane potential studies indicated that miR-7-1 highly potentiated EST to preserve functionality in the CI-insulted VSC4.1 motoneurons. In conclusion, our data indicated that miR-7-1 most significantly potentiated efficacy of EST for functional neuroprotection and this therapeutic strategy could be used in the future to attenuate apoptosis of motoneurons in SCI.
Collapse
Affiliation(s)
- M Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - N L Banik
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | - S K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States.
| |
Collapse
|
50
|
Woller SA, Hook MA. Opioid administration following spinal cord injury: implications for pain and locomotor recovery. Exp Neurol 2013; 247:328-41. [PMID: 23501709 PMCID: PMC3742731 DOI: 10.1016/j.expneurol.2013.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/18/2022]
Abstract
Approximately one-third of people with a spinal cord injury (SCI) will experience persistent neuropathic pain following injury. This pain negatively affects quality of life and is difficult to treat. Opioids are among the most effective drug treatments, and are commonly prescribed, but experimental evidence suggests that opioid treatment in the acute phase of injury can attenuate recovery of locomotor function. In fact, spinal cord injury and opioid administration share several common features (e.g. central sensitization, excitotoxicity, aberrant glial activation) that have been linked to impaired recovery of function, as well as the development of pain. Despite these effects, the interactions between opioid use and spinal cord injury have not been fully explored. A review of the literature, described here, suggests that caution is warranted when administering opioids after SCI. Opioid administration may synergistically contribute to the pathology of SCI to increase the development of pain, decrease locomotor recovery, and leave individuals at risk for infection. Considering these negative implications, it is important that guidelines are established for the use of opioids following spinal cord and other central nervous system injuries.
Collapse
Affiliation(s)
- Sarah A Woller
- Texas A&M Institute for Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.
| | | |
Collapse
|