1
|
Yang Z, Liang Z, Rao J, Lin F, Lin Y, Xu X, Wang C, Chen C. Mesenchymal stem cell-derived extracellular vesicles therapy in traumatic central nervous system diseases: a systematic review and meta-analysis. Neural Regen Res 2023; 18:2406-2412. [PMID: 37282470 PMCID: PMC10360088 DOI: 10.4103/1673-5374.371376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Although there are challenges in treating traumatic central nervous system diseases, mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have recently proven to be a promising non-cellular therapy. We comprehensively evaluated the efficacy of mesenchymal stem cell-derived extracellular vesicles in traumatic central nervous system diseases in this meta-analysis based on preclinical studies. Our meta-analysis was registered at PROSPERO (CRD42022327904, May 24, 2022). To fully retrieve the most relevant articles, the following databases were thoroughly searched: PubMed, Web of Science, The Cochrane Library, and Ovid-Embase (up to April 1, 2022). The included studies were preclinical studies of mesenchymal stem cell-derived extracellular vesicles for traumatic central nervous system diseases. The Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE)'s risk of bias tool was used to examine the risk of publication bias in animal studies. After screening 2347 studies, 60 studies were included in this study. A meta-analysis was conducted for spinal cord injury (n = 52) and traumatic brain injury (n = 8). The results indicated that mesenchymal stem cell-derived extracellular vesicles treatment prominently promoted motor function recovery in spinal cord injury animals, including rat Basso, Beattie and Bresnahan locomotor rating scale scores (standardized mean difference [SMD]: 2.36, 95% confidence interval [CI]: 1.96-2.76, P < 0.01, I2 = 71%) and mouse Basso Mouse Scale scores (SMD = 2.31, 95% CI: 1.57-3.04, P = 0.01, I2 = 60%) compared with controls. Further, mesenchymal stem cell-derived extracellular vesicles treatment significantly promoted neurological recovery in traumatic brain injury animals, including the modified Neurological Severity Score (SMD = -4.48, 95% CI: -6.12 to -2.84, P < 0.01, I2 = 79%) and Foot Fault Test (SMD = -3.26, 95% CI: -4.09 to -2.42, P = 0.28, I2 = 21%) compared with controls. Subgroup analyses showed that characteristics may be related to the therapeutic effect of mesenchymal stem cell-derived extracellular vesicles. For Basso, Beattie and Bresnahan locomotor rating scale scores, the efficacy of allogeneic mesenchymal stem cell-derived extracellular vesicles was higher than that of xenogeneic mesenchymal stem cell-derived extracellular vesicles (allogeneic: SMD = 2.54, 95% CI: 2.05-3.02, P = 0.0116, I2 = 65.5%; xenogeneic: SMD: 1.78, 95%CI: 1.1-2.45, P = 0.0116, I2 = 74.6%). Mesenchymal stem cell-derived extracellular vesicles separated by ultrafiltration centrifugation combined with density gradient ultracentrifugation (SMD = 3.58, 95% CI: 2.62-4.53, P < 0.0001, I2 = 31%) may be more effective than other EV isolation methods. For mouse Basso Mouse Scale scores, placenta-derived mesenchymal stem cell-derived extracellular vesicles worked better than bone mesenchymal stem cell-derived extracellular vesicles (placenta: SMD = 5.25, 95% CI: 2.45-8.06, P = 0.0421, I2 = 0%; bone marrow: SMD = 1.82, 95% CI: 1.23-2.41, P = 0.0421, I2 = 0%). For modified Neurological Severity Score, bone marrow-derived MSC-EVs worked better than adipose-derived MSC-EVs (bone marrow: SMD = -4.86, 95% CI: -6.66 to -3.06, P = 0.0306, I2 = 81%; adipose: SMD = -2.37, 95% CI: -3.73 to -1.01, P = 0.0306, I2 = 0%). Intravenous administration (SMD = -5.47, 95% CI: -6.98 to -3.97, P = 0.0002, I2 = 53.3%) and dose of administration equal to 100 μg (SMD = -5.47, 95% CI: -6.98 to -3.97, P < 0.0001, I2 = 53.3%) showed better results than other administration routes and doses. The heterogeneity of studies was small, and sensitivity analysis also indicated stable results. Last, the methodological quality of all trials was mostly satisfactory. In conclusion, in the treatment of traumatic central nervous system diseases, mesenchymal stem cell-derived extracellular vesicles may play a crucial role in promoting motor function recovery.
Collapse
Affiliation(s)
- Zhelun Yang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Zeyan Liang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Jian Rao
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Fabin Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Yike Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Xiongjie Xu
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Chunhua Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Chunmei Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Petrosyan HA, Alessi V, Lasek K, Gumudavelli S, Muffaletto R, Liang L, Collins WF, Levine J, Arvanian VL. AAV Vector Mediated Delivery of NG2 Function Neutralizing Antibody and Neurotrophin NT-3 Improves Synaptic Transmission, Locomotion, and Urinary Tract Function after Spinal Cord Contusion Injury in Adult Rats. J Neurosci 2023; 43:1492-1508. [PMID: 36653191 PMCID: PMC10008066 DOI: 10.1523/jneurosci.1276-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
NG2 is a structurally unique transmembrane chondroitin sulfate proteoglycan (CSPG). Its role in damaged spinal cord is dual. NG2 is considered one of key inhibitory factors restricting axonal growth following spinal injury. Additionally, we have recently detected its novel function as a blocker of axonal conduction. Some studies, however, indicate the importance of NG2 presence in the formation of synaptic contacts. We hypothesized that the optimal treatment would be neutralization of inhibitory functions of NG2 without its physical removal. Acute intraspinal injections of anti-NG2 monoclonal antibodies reportedly prevented an acute block of axonal conduction by exogenous NG2. For prolonged delivery of NG2 function neutralizing antibody, we have developed a novel gene therapy: adeno-associated vector (AAV) construct expressing recombinant single-chain variable fragment anti-NG2 antibody (AAV-NG2Ab). We examined effects of AAV-NG2Ab alone or in combination with neurotrophin NT-3 in adult female rats with thoracic T10 contusion injuries. A battery of behavioral tests was used to evaluate locomotor function. In vivo single-cell electrophysiology was used to evaluate synaptic transmission. Lower urinary tract function was assessed during the survival period using metabolic chambers. Terminal cystometry, with acquisition of external urethral sphincter activity and bladder pressure, was used to evaluate bladder function. Both the AAV-NG2Ab and AAV-NG2Ab combined with AAV-NT3 treatment groups demonstrated significant improvements in transmission, locomotion, and bladder function compared with the control (AAV-GFP) group. These functional improvements associated with improved remyelination and plasticity of 5-HT fibers. The best results were observed in the group that received combinational AAV-NG2Ab+AAV-NT3 treatment.SIGNIFICANCE STATEMENT We recently demonstrated beneficial, but transient, effects of neutralization of the NG2 proteoglycan using monoclonal antibodies delivered intrathecally via osmotic mini-pumps after spinal cord injury. Currently, we have developed a novel gene therapy tool for prolonged and clinically relevant delivery of a recombinant single-chain variable fragment anti-NG2 antibody: AAV-rh10 serotype expressing scFv-NG2 (AAV-NG2Ab). Here, we examined effects of AAV-NG2Ab combined with transgene delivery of Neurotrophin-3 (AAV-NT3) in adult rats with thoracic contusion injuries. The AAV-NG2Ab and AAV-NG2Ab+AAV-NT3 treatment groups demonstrated significant improvements of locomotor function and lower urinary tract function. Beneficial effects of this novel gene therapy on locomotion and bladder function associated with improved transmission to motoneurons and plasticity of axons in damaged spinal cord.
Collapse
Affiliation(s)
- Hayk A Petrosyan
- Northport Veterans Affairs Medical Center, Northport, New York 11768
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Valentina Alessi
- Northport Veterans Affairs Medical Center, Northport, New York 11768
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Kristin Lasek
- Northport Veterans Affairs Medical Center, Northport, New York 11768
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Sricharan Gumudavelli
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Robert Muffaletto
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Li Liang
- Northport Veterans Affairs Medical Center, Northport, New York 11768
| | - William F Collins
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Joel Levine
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Victor L Arvanian
- Northport Veterans Affairs Medical Center, Northport, New York 11768
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
3
|
Cui H, Wang Y, Li G, Huang Y, Hu Y. Different Time-frequency Distribution Patterns of Somatosensory Evoked Potentials in Dual- and Single-level Spinal Cord Compression. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1052-1059. [PMID: 35417350 DOI: 10.1109/tnsre.2022.3167260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Among patients with cervical myelopathy, the most common level of stenosis at spinal cord of all ages was reported to be between cervical levels C5-6. Previous studies found that time-frequency components (TFCs) of somatosensory evoked potentials (SEPs) possess location information of spinal cord injury (SCI) in single-level deficits in the spinal cord. However, the clinical reality is that there are multiple compressions at multiple spinal cord segments. This study proposed a new algorithm to differentiate distribution patterns of SEP TFCs between the dual-level compression and the corresponding single-level compression, which is potentials in providing precise diagnosis of cervical myelopathy. In the present animal study, a group of rats with dual-level compressive (C5+6) injury to cervical spinal cord was investigated. SEPs were collected at 2 weeks after surgery, while SEP TFCs were calculated. The SEP TFCs under dual-level compression were compared to an existent dataset with one sham control group and three single level compression groups at C4, C5, C6. Behavioral evaluation showed very similar scale of injury severity between individual rats, while histology evaluation confirmed the precise location of injury. According to time-frequency distribution patterns, it showed that the middle-energy components of dual-level showed similar patterns as that of each single-level group. In addition, the low-energy components of the dual-level C5+6 group had the highest correlation with C5 (R=0.3423, p<0.01) and C6 (R=0.4000, p<0.01) groups, but much lower with C4 group (R=0.1071, p=0.012). These results indicated that SEP TFCs components possess information regarding the location of neurological lesion after spinal cord compression. It preliminarily demonstrated that SEP TFCs are likely a useful measure to provide location information of neurological lesions after compression SCI.
Collapse
|
4
|
Bannerman CA, Ghasemlou N. Spinal Cord Injury in the Mouse Using the Infinite Horizon Spinal Cord Impactor. Methods Mol Biol 2022; 2515:193-201. [PMID: 35776353 DOI: 10.1007/978-1-0716-2409-8_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Death of central nervous system neurons is a critical feature of spinal cord injury (SCI). The Infinite Horizon spinal cord impactor can be used to create both contusion and compression SCI, with a high degree of reproducibility. The device can also be positioned at different locations along the spinal cord to evaluate how the location of injury may alter neuronal death and functional recovery. A mouse with a successful SCI can experience a period of loss of bladder function, weight loss, and paralysis of the hind limbs, with more severe injuries resulting in further deficits. This chapter describes the surgical protocol along with pre- and postoperative care, as well as mitigation strategies for any setbacks that might occur.
Collapse
Affiliation(s)
- Courtney A Bannerman
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Nader Ghasemlou
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada.
- Department of Anesthesiology & Perioperative Medicine, Queen's University, Kingston, ON, Canada.
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
5
|
Baylo-Marín O, Flores Á, García-Alías G. Long-term rehabilitation reduces task error variability in cervical spinal cord contused rats. Exp Neurol 2021; 348:113928. [PMID: 34813841 DOI: 10.1016/j.expneurol.2021.113928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/27/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022]
Abstract
To promote skilled forelimb function following a spinal cord injury, we have evaluated whether long-term voluntary sensorimotor rehabilitation can promote substantial reaching and grasping recovery. Long-Evans rats were trained to reach single pellets and then received a moderate 100 kdyn contusion to the C5 lateral funiculi. During the first eight months post-injury, a group of animals was enrolled in daily skilled reaching rehabilitation consisting of grabbing and manipulating seeds from the bottom of a grid. Single-pellet reaching and grasping recovery was tested biweekly throughout the functional follow-up and the recovery was compared to a second group of contused but non-rehabilitated animals. Following the injury, reaching and grasping success dropped to zero in both groups and remained absent for three months post-injury, followed by a slight recovery that remained constant until the end of the follow-up. No differences in reaching success were found between groups. Nevertheless, the type of gesture errors in the failed attempts were categorized and scored. The errors ranged from the animal's inability to lift the paw and initiate the movement to the final stage of the attempt, in which the pellet falls during grasping and retraction of the paw towards the mouth. Both groups of animals exhibited similar types of errors but the animals with rehabilitation showed less error variability and those that occurred at the latest stages of the attempt predominated compared to those performed by the non-trained animals. Histological examination of the injury showed that injury severity was similar between groups and that the damage was circumscribed to the site of impact, affecting mainly the dorsal and medial region of the lateral funiculi, with preservation of the dorsal component of the corticospinal tract and the interneurons and motoneurons of the spinal segments beyond the site of injury. The results indicate that activity-dependent plasticity driven by voluntary rehabilitation decreases task error variability and drives the recovery of the movement gestures. However, the plasticity achieved is insufficient to attain full functional recovery to successfully reach, grasp and release the pellets in the mouth, indicating the necessity for additional interventional therapies to promote repair.
Collapse
Affiliation(s)
- Olaia Baylo-Marín
- Department of Cell Biology, Physiology and Immunology & Institute of Neuroscience, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - África Flores
- Department of Cell Biology, Physiology and Immunology & Institute of Neuroscience, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Guillermo García-Alías
- Department of Cell Biology, Physiology and Immunology & Institute of Neuroscience, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain; Institut Guttmann de Neurorehabilitació, Badalona, Spain.
| |
Collapse
|
6
|
Wiggins JW, Sledd JE, Coolen LM. Spinal Cord Injury Causes Reduction of Galanin and Gastrin Releasing Peptide mRNA Expression in the Spinal Ejaculation Generator of Male Rats. Front Neurol 2021; 12:670536. [PMID: 34239493 PMCID: PMC8258150 DOI: 10.3389/fneur.2021.670536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/21/2021] [Indexed: 01/23/2023] Open
Abstract
Spinal cord injury (SCI) in men is commonly associated with sexual dysfunction, including anejaculation, and chronic mid-thoracic contusion injury in male rats also impairs ejaculatory reflexes. Ejaculation is controlled by a spinal ejaculation generator consisting of a population of lumbar spinothalamic (LSt) neurons that control ejaculation through release of four neuropeptides including galanin and gastrin releasing peptide (GRP) onto lumbar and sacral autonomic and motor nuclei. It was recently demonstrated that spinal contusion injury in male rats caused reduction of GRP-immunoreactivity, but not galanin-immunoreactivity in LSt cells, indicative of reduced GRP peptide levels, but inconclusive results for galanin. The current study further tests the hypothesis that contusion injury causes a disruption of GRP and galanin mRNA in LSt cells. Male rats received mid-thoracic contusion injury and galanin and GRP mRNA were visualized 8 weeks later in the lumbar spinal cord using fluorescent in situ hybridization. Spinal cord injury significantly reduced GRP and galanin mRNA in LSt cells. Galanin expression was higher in LSt cells compared to GRP. However, expression of the two transcripts were positively correlated in LSt cells in both sham and SCI animals, suggesting that expression for the two neuropeptides may be co-regulated. Immunofluorescent visualization of galanin and GRP peptides demonstrated a significant reduction in GRP-immunoreactivity, but not galanin in LSt cells, confirming the previous observations. In conclusion, SCI reduced GRP and galanin expression in LSt cells with an apparent greater impact on GRP peptide levels. GRP and galanin are both essential for triggering ejaculation and thus such reduction may contribute to ejaculatory dysfunction following SCI in rats.
Collapse
Affiliation(s)
- James W Wiggins
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States.,Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jonathan E Sledd
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lique M Coolen
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
7
|
Fiani B, Kondilis A, Soula M, Tao A, Alvi MA. Novel Methods of Necroptosis Inhibition for Spinal Cord Injury Using Translational Research to Limit Secondary Injury and Enhance Endogenous Repair and Regeneration. Neurospine 2021; 18:261-270. [PMID: 33494555 PMCID: PMC8255772 DOI: 10.14245/ns.2040722.361] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/02/2021] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injuries (SCIs) pose an immense challenge from a clinical perspective as current treatments and interventions have been found to provide marginal improvements in clinical outcome (with varying degrees of success) particularly in areas of motor and autonomic function. In this review, the pathogenesis of SCI will be described, particularly as it relates to the necroptotic pathway which has been implicated in limiting recovery of SCI via its roles in neuronal cell death, glial scarring, inflammation, and axonal demyelination and degeneration. Major mediators of the necroptotic pathway including receptor-interacting protein kinase 1, receptor-interacting protein kinase 3, and mixed-lineage kinase domain-like will be described in detail regarding their role in facilitating necroptosis. Additionally, due to the rapid accumulation of reactive oxygen species and inflammatory markers, the onset of necroptosis can begin within hours following SCI, thus developing therapeutics that readily cross the blood-brain barrier and inhibit necroptosis during these critical periods of inflammation are imperative in preventing irreversible damage. As such, current therapeutic interventions regarding SCI and targeting of the necroptotic pathway will be explored as will discussion of potential future therapeutics that show promise in minimizing long-term or permanent damage to the spinal cord following severe injury.
Collapse
Affiliation(s)
- Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, CA, USA
| | - Athanasios Kondilis
- Michigan State University College of Osteopathic Medicine, East Lansing, MI, USA
| | - Marisol Soula
- New York University Grossman School of Medicine, New York, NY, USA
| | - Anthony Tao
- New York University Grossman School of Medicine, New York, NY, USA
| | | |
Collapse
|
8
|
Reinhardt DR, Stehlik KE, Satkunendrarajah K, Kroner A. Bilateral cervical contusion spinal cord injury: A mouse model to evaluate sensorimotor function. Exp Neurol 2020; 331:113381. [PMID: 32561411 DOI: 10.1016/j.expneurol.2020.113381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/05/2020] [Accepted: 06/14/2020] [Indexed: 01/07/2023]
Abstract
Spinal cord injury is a severe condition, resulting in specific neurological symptoms depending on the level of damage. Approximately 60% of spinal cord injuries affect the cervical spinal cord, resulting in complete or incomplete tetraplegia and higher mortality rates than injuries of the thoracic or lumbar region. Although cervical spinal cord injuries frequently occur in humans, there are few clinically relevant models of cervical spinal cord injury. Animal models are critical for examining the cellular and molecular manifestations of human cervical spinal cord injury, which is not feasible in the clinical setting, and to develop therapeutic strategies. There is a limited number of studies using cervical, bilateral contusion SCI and providing a behavioral assessment of motor and sensory functions, which is partly due to the high mortality rate and severe impairment observed in severe cervical SCI models. The goal of this study was to develop a mouse model of cervical contusion injury with moderate severity, resulting in an apparent deficit in front and hindlimb function but still allowing for self-care of the animals. In particular, we aimed to characterize a mouse cervical injury model to be able to use genetic models and a wide range of viral techniques to carry out highly mechanistic studies into the cellular and molecular mechanisms of cervical spinal cord injury. After inducing a bilateral, cervical contusion injury at level C5, we followed the recovery of injured and sham-uninjured animals for eight weeks post-surgery. Hindlimb and forelimb motor functions were significantly impaired immediately after injury, and all mice demonstrated partial improvement over time that remained well below that of uninjured control mice. Mice also displayed a significant loss in their sensory function throughout the testing period. This loss of sensory and motor function manifested as a reduced ability to perform skilled motor tasks in all of the injured mice. Here, we describe a new mouse model of moderate bilateral cervical spinal cord injury that does not lead to mortality and provides a comprehensive assessment of histological and behavioral assessments. This model will be useful in enhancing our mechanistic understanding of cervical spinal cord injury and in the development of treatments targeted at promoting neuroprotection, neuroplasticity, and functional recovery after cervical SCI.
Collapse
Affiliation(s)
- Daniel R Reinhardt
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA; Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Kyle E Stehlik
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA; Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Kajana Satkunendrarajah
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA; Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA; Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
9
|
Ji L, Ma X, Dang X, Ji W, Song Q, Liu S. "Median paralyzing dose" and "multiple regression analysis", a new viewpoint to the research method of spinal cord injury. Med Hypotheses 2020; 140:109677. [PMID: 32203819 DOI: 10.1016/j.mehy.2020.109677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Spinal cord impact is a mature method for building models of spinal cord injury (SCI). However, a common problem is that the degree of elicited paralysis may not be identical even though animals receive the same impact. We hypothesize that this difference may be caused by the difference in the secondary injury mechanism of SCI and there might be an impact dosage named "median paralyzing dose (PD50)", similar as the "median lethal dose (LD50)" in pharmacology. In addition, since SCI is a result of multiple mechanisms, we hypothesize that it is more suitable to employ multiple regression analysis to analyze the related factors for complete paraplegia. So the present study aimed to calculate the existence of PD50 and analyze the related factors of SCI-induced complete paralysis using logistic regression under the PD50 which represents identical primary injury. MATERIAL AND METHODS Rat models of SCI were built using the weight-drop method under PD50. PD50 was calculated by Karber's method. Rats were allocated into two groups according to whether they developed complete or incomplete paralysis 2 weeks after injury. Cavity and spared tissues in the two groups were compared. Neuronal preservation, microglia/macrophage reaction, T-lymphocyte infiltration, astrocyte activation and neuronal apoptotic were compared by immunohistochemistry. The logistic regression model was constructed and significant related factors of complete paralysis were selected. RESULTS Of the two groups, the cavity in the injured spinal cord of the complete-paralysis rats was significantly larger and the spared white matter volume (SWMV%) was obviously smaller. Whereas, the spared grey matter volume was not different between groups. Macrophage reaction, T-lymphocyte infiltration and neuronal apoptosis were significantly more severe in the complete-paralysis rats. Astrocyte activation and neuronal preservation showed no difference between groups. Logistic regression analysis showed that cavity volume, SWMV%, microglia/macrophage reaction and neuronal apoptosis were significantly correlated with SCI-induced complete paralysis. CONCLUSION As a non-mainstream method, it is feasible to analyze the secondary factors of SCI-induced complete paralysis using multiple regression analysis in the condition of identical primary injury (PD50). SWMV% and microglia/macrophage reaction are important factors that contribute to complete paralysis at the early phase of severe SCI.
Collapse
Affiliation(s)
- Le Ji
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Xi'an Jiaotong University (Shaanxi Provincial People's Hospital), Xi'an, China.
| | - Xiaoying Ma
- Department of Gastroenterology, The Third Affiliated Hospital of Xi'an Jiaotong University (Shaanxi Provincial People's Hospital), Xi'an, China
| | - Xiaoqian Dang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wenchen Ji
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qichun Song
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shizhang Liu
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Xi'an Jiaotong University (Shaanxi Provincial People's Hospital), Xi'an, China
| |
Collapse
|
10
|
David G, Mohammadi S, Martin AR, Cohen-Adad J, Weiskopf N, Thompson A, Freund P. Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nat Rev Neurol 2019; 15:718-731. [PMID: 31673093 DOI: 10.1038/s41582-019-0270-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 01/23/2023]
Abstract
Pathophysiological changes in the spinal cord white and grey matter resulting from injury can be observed with MRI techniques. These techniques provide sensitive markers of macrostructural and microstructural tissue integrity, which correlate with histological findings. Spinal cord MRI findings in traumatic spinal cord injury (tSCI) and nontraumatic spinal cord injury - the most common form of which is degenerative cervical myelopathy (DCM) - have provided important insights into the pathophysiological processes taking place not just at the focal injury site but also rostral and caudal to the spinal injury. Although tSCI and DCM have different aetiologies, they show similar degrees of spinal cord pathology remote from the injury site, suggesting the involvement of similar secondary degenerative mechanisms. Advanced quantitative MRI protocols that are sensitive to spinal cord pathology have the potential to improve diagnosis and, more importantly, predict outcomes in patients with tSCI or nontraumatic spinal cord injury. This Review describes the insights into tSCI and DCM that have been revealed by neuroimaging and outlines current activities and future directions for the field.
Collapse
Affiliation(s)
- Gergely David
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Siawoosh Mohammadi
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Allan R Martin
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Nikolaus Weiskopf
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alan Thompson
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland. .,Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK. .,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. .,Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK. .,Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Bamrungsuk K, Vattarakorn A, Thongta N, Tilokskulchai K, Tapechum S, Chompoopong S. Behavioral and histopathological studies of cervical spinal cord contusion injury in rats caused by an adapted weight-drop device. ASIAN BIOMED 2019. [DOI: 10.1515/abm-2019-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
Models of spinal cord injury (SCI) caused by weight-drop devices to cause contusion have been used extensively, and transient behavioral deficits after thoracic injury have been demonstrated. The severity of the injury caused by the device should be mild enough to allow recovery.
Objective
To determine whether our adapted weight-drop device with a small tip can effectively induce mild hemicontusion at the level of the fifth cervical vertebra.
Methods
We divided 15 adult male Sprague Dawley rats into groups of 5 for the following treatments: sham (SH, laminectomy only), mild (MSCI) or severe SCI (SSCI). Behavioral tests and histopathology were used before (day 1) and after the treatment on days 3, 7, 14, 21, 28, and 35 to assess the injury.
Results
Rats with SSCI showed a significant somatosensory deficit on days 3 and 7 compared with rats in the SH group, recovering by day 14. In a horizontal-ladder test of skilled locomotion, rats with SSCI showed a significant increase in error scores and percentage of total rungs used, and a decrease in the percentage of correct paw placement compared with rats in the SH group. There was greater recovery to normal paw placement by rats with MSCI than by rats with SSCI. These behavioral deficits were consistent with histopathology using hematoxylin and eosin counterstained Luxol fast blue, indicating the degree of injury and lesion area.
Conclusions
Mild hemicontusion caused by the adapted device can be used to evaluate SCI and provides a model with which to test the efficacy of translational therapies for SCI.
Collapse
Affiliation(s)
- Kanyaratana Bamrungsuk
- Department of Physiology, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Thailand
| | - Anchalee Vattarakorn
- Department of Physiology, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Thailand
| | - Namphung Thongta
- Department of Physiology, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Thailand
| | - Kanokwan Tilokskulchai
- Department of Physiology, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Thailand
| | - Sompol Tapechum
- Department of Physiology, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Thailand
| | - Supin Chompoopong
- Department of Anatomy, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Thailand
| |
Collapse
|
12
|
Wiggins JW, Kozyrev N, Sledd JE, Wilson GG, Coolen LM. Chronic Spinal Cord Injury Reduces Gastrin-Releasing Peptide in the Spinal Ejaculation Generator in Male Rats. J Neurotrauma 2019; 36:3378-3393. [PMID: 31111794 DOI: 10.1089/neu.2019.6509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Spinal cord injury (SCI) causes sexual dysfunction, including anejaculation in men. Likewise, chronic mid-thoracic contusion injury impairs ejaculatory reflexes in male rats. Ejaculation is controlled by a spinal ejaculation generator (SEG) comprised of a population of lumbar spinothalamic (LSt) neurons. LSt neurons co-express four neuropeptides, including gastrin-releasing peptide (GRP) and galanin and control ejaculation via release of these peptides in lumbar and sacral autonomic and motor nuclei. Here, we tested the hypothesis that contusion injury causes a disruption of the neuropeptides that are expressed in LSt cell bodies and axon terminals, thereby causing ejaculatory dysfunction. Male Sprague Dawley rats received contusion or sham surgery at spinal levels T6-7. Five to six weeks later, animals were perfused and spinal cords were immunoprocessed for galanin and GRP. Results showed that numbers of cells immunoreactive for galanin were not altered by SCI, suggesting that LSt cells are not ablated by SCI. In contrast, GRP immunoreactivity was decreased in LSt cells following SCI, evidenced by fewer GRP and galanin/GRP dual labeled cells. However, SCI did not affect efferent connections of LSt, cells as axon terminals containing galanin or GRP in contact with autonomic cells were not reduced following SCI. Finally, no changes in testosterone plasma levels or androgen receptor expression were noted after SCI. In conclusion, chronic contusion injury decreased immunoreactivity for GRP in LSt cell soma, but did not affect LSt neurons per se or LSt connections within the SEG. Since GRP is essential for triggering ejaculation, such loss may contribute to ejaculatory dysfunction following SCI.
Collapse
Affiliation(s)
- J Walker Wiggins
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi.,Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, Mississippi
| | - Natalie Kozyrev
- Robarts Institute, Western University, London, Ontario, Canada
| | - Jonathan E Sledd
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - George G Wilson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lique M Coolen
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Biological Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
13
|
Pinchi E, Frati A, Cantatore S, D'Errico S, Russa RL, Maiese A, Palmieri M, Pesce A, Viola RV, Frati P, Fineschi V. Acute Spinal Cord Injury: A Systematic Review Investigating miRNA Families Involved. Int J Mol Sci 2019; 20:E1841. [PMID: 31013946 PMCID: PMC6515063 DOI: 10.3390/ijms20081841] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/06/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
Acute traumatic spinal cord injury (SCI) involves primary and secondary injury mechanisms. The primary mechanism is related to the initial traumatic damage caused by the damaging impact and this damage is irreversible. Secondary mechanisms, which begin as early as a few minutes after the initial trauma, include processes such as spinal cord ischemia, cellular excitotoxicity, ionic dysregulation, and free radical-mediated peroxidation. SCI is featured by different forms of injury, investigating the pathology and degree of clinical diagnosis and treatment strategies, the animal models that have allowed us to better understand this entity and, finally, the role of new diagnostic and prognostic tools such as miRNA could improve our ability to manage this pathological entity. Autopsy could benefit from improvements in miRNA research: the specificity and sensitivity of miRNAs could help physicians in determining the cause of death, besides the time of death.
Collapse
Affiliation(s)
- Enrica Pinchi
- Department SAIMLAL, "Sapienza" University of Roma, 00161 Rome, Italy.
| | - Alessandro Frati
- IRCCS "Neuromed" ⁻ Neurosurgery Division, 86077 Pozzilli. (IS) Italy.
- NESMOS Department ⁻ Neurosurgery Division, "Sapienza" University of Roma, 00189 Rome, Italy.
| | - Santina Cantatore
- Forensic Pathology Institute, University of Foggia, 71122 Foggia, Italy.
| | - Stefano D'Errico
- Department SAIMLAL, "Sapienza" University of Roma, 00161 Rome, Italy.
- Legal Medicine Division, Ospedale Sant'Andrea, 00189 Rome, Italy.
| | - Raffaele La Russa
- Department SAIMLAL, "Sapienza" University of Roma, 00161 Rome, Italy.
- IRCCS "Neuromed" ⁻ Neurosurgery Division, 86077 Pozzilli. (IS) Italy.
| | - Aniello Maiese
- Department SAIMLAL, "Sapienza" University of Roma, 00161 Rome, Italy.
- IRCCS "Neuromed" ⁻ Neurosurgery Division, 86077 Pozzilli. (IS) Italy.
| | - Mauro Palmieri
- NESMOS Department ⁻ Neurosurgery Division, "Sapienza" University of Roma, 00189 Rome, Italy.
| | - Alessandro Pesce
- IRCCS "Neuromed" ⁻ Neurosurgery Division, 86077 Pozzilli. (IS) Italy.
- NESMOS Department ⁻ Neurosurgery Division, "Sapienza" University of Roma, 00189 Rome, Italy.
| | | | - Paola Frati
- Department SAIMLAL, "Sapienza" University of Roma, 00161 Rome, Italy.
- IRCCS "Neuromed" ⁻ Neurosurgery Division, 86077 Pozzilli. (IS) Italy.
| | - Vittorio Fineschi
- Department SAIMLAL, "Sapienza" University of Roma, 00161 Rome, Italy.
- IRCCS "Neuromed" ⁻ Neurosurgery Division, 86077 Pozzilli. (IS) Italy.
| |
Collapse
|
14
|
Lucas E, Whyte T, Liu J, Russell C, Tetzlaff W, Cripton PA. High-Speed Fluoroscopy to Measure Dynamic Spinal Cord Deformation in an In Vivo Rat Model. J Neurotrauma 2018; 35:2572-2580. [PMID: 29786472 DOI: 10.1089/neu.2017.5478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although spinal cord deformation is thought to be a predictor of injury severity, few researchers have investigated dynamic cord deformation, in vivo, during impact. This is needed to establish correlations among impact parameters, internal cord deformation, and histological and functional outcomes. Relying on surface deformations alone may not sufficiently represent spinal cord deformation. The objective of this study was to develop a high-speed fluoroscopic method of tracking the surface and internal cord deformations of rat spinal cord during experimental cord injury. Two radio-opaque beads were injected into the cord at C5/6 in the dorsal and ventral white matter. Four additional beads were glued to the surface of the cord. Dynamic bead displacement was tracked during a dorsal impact (130 mm/sec, 1 mm depth) by high-speed radiographic imaging at 3000 FPS, laterally. The internal spinal cord beads displaced significantly more than the surface beads in the ventral direction (1.1-1.9 times) and more than most surface beads in the cranial direction (1.2-1.5 times). The dorsal beads (internal and surface) displaced more than the ventral beads during all impacts. The bead displacement pattern implies that the spinal cord undergoes complex internal and surface deformations during impact. Residual displacement of the internal beads was significantly greater than that of the surface beads in the cranial-caudal direction but not the dorsoventral direction. Finite element simulation confirmed that the additional bead mass likely had little effect on the internal cord deformations. These results support the merit of this technique for measuring in vivo spinal cord deformation.
Collapse
Affiliation(s)
- Erin Lucas
- 1 Orthopaedic Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and the School of Biomedical Engineering, The University of British Columbia , Vancouver, British Columbia, Canada .,2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| | - Thomas Whyte
- 1 Orthopaedic Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and the School of Biomedical Engineering, The University of British Columbia , Vancouver, British Columbia, Canada .,2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| | - Jie Liu
- 2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| | - Colin Russell
- 1 Orthopaedic Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and the School of Biomedical Engineering, The University of British Columbia , Vancouver, British Columbia, Canada .,2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| | - Wolfram Tetzlaff
- 2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| | - Peter Alec Cripton
- 1 Orthopaedic Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and the School of Biomedical Engineering, The University of British Columbia , Vancouver, British Columbia, Canada .,2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Zhang Y, Sun C, Zhao C, Hao J, Zhang Y, Fan B, Li B, Duan H, Liu C, Kong X, Wu P, Yao X, Feng S. Ferroptosis inhibitor SRS 16-86 attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury. Brain Res 2018; 1706:48-57. [PMID: 30352209 DOI: 10.1016/j.brainres.2018.10.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/30/2018] [Accepted: 10/19/2018] [Indexed: 01/18/2023]
Abstract
Cell death is a key issue in spinal cord secondary injury. Ferroptosis is recently discovered as an iron-dependent type of cell death that is distinct from other forms of cell death pathways such as apoptosis and necrosis. This research is aimed to investigate the role of ferroptosis in spinal cord injury (SCI) pathophysiology, and to explore the effectiveness of ferroptosis inhibitor on SCI. We examined the ferroptosis markers and the factors in a rat contusion SCI model. Seen from transmission electron microscopy (TEM) following SCI, mitochondria showed ferroptotic characteristic changes. Treatment with a ferroptosis inhibitor SRS 16-86 enhanced functional recovery after SCI through the upregulation of anti-ferroptosis factor GPX4, GSH and xCT, and the downregulation of the lipid peroxidation marker 4HNE. SRS 16-86 treatment alleviated astrogliosis and enhanced neuronal survival after SCI. The inflammatory cytokine levels (IL-1β, TNF-α and ICAM-1) were decreased significantly post SRS 16-86 treatment after SCI. These findings suggest strong correlation between ferroptosis and the secondary injury of SCI. The effectiveness of ferroptosis inhibitor SRS-16-86 on SCI repair leads to the identification of a novel therapeutic target for SCI.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China
| | - Chao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China
| | - Chenxi Zhao
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China
| | | | - Yiling Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Baoyou Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China
| | - Bo Li
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China
| | - Huiquan Duan
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaohong Kong
- School of Medicine, Nankai University, Tianjin, China
| | - Ping Wu
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, United States.
| | - Xue Yao
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China.
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.
| |
Collapse
|
16
|
Wang W, Huang X, Lin W, Qiu Y, He Y, Yu J, Xi Y, Ye X. Hypoxic preconditioned bone mesenchymal stem cells ameliorate spinal cord injury in rats via improved survival and migration. Int J Mol Med 2018; 42:2538-2550. [PMID: 30106084 PMCID: PMC6192716 DOI: 10.3892/ijmm.2018.3810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
The unique hypoxic inflammatory microenvironment observed in the spinal cord following spinal cord injury (SCI) limits the survival and efficacy of transplanted bone mesenchymal stem cells (BMSCs). The aim of the present study was to determine whether hypoxic preconditioning (HP) increased the therapeutic effects of BMSC on SCI. BMSCs were pretreated with cobalt chloride (CoCl2) in vitro, and the proliferative apoptotic and migratory abilities of these hypoxic BMSCs (H‑BMSCs) were assessed. BMSCs and H‑BMSCs derived from green fluorescent protein (GFP) rats were transplanted into SCI rats in vivo. The neurological function, histopathology, inflammation, and number and migration of transplanted cells were examined. HP significantly enhanced BMSC migration (increased hypoxia inducible factor 1α and C‑X‑C motif chemokine receptor 4 expression) and tolerance to apoptotic conditions (decreased caspase‑3 and increased B‑cell lymphoma 2 expression) in vitro. In vivo, H‑BMSC transplantation significantly improved neurological function, decreased spinal cord damage and suppressed the inflammatory response associated with microglial activation. The number of GFP‑positive cells in the SCI core and peripheral region of H‑BMSC animals was increased compared with that in those of BMSC animals, suggesting that HP may increase the survival and migratory abilities of BMSCs and highlights their therapeutic potential for SCI.
Collapse
Affiliation(s)
- Weiheng Wang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xiaodong Huang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Wenbo Lin
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yuanyuan Qiu
- Department of Respiration, Shanghai Electric Power Hospital, Shanghai 200050, P.R. China
| | - Yunfei He
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jiangming Yu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yanhai Xi
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xiaojian Ye
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
17
|
Wu TL, Wang F, Mishra A, Wilson GH, Byun N, Chen LM, Gore JC. Resting-state functional connectivity in the rat cervical spinal cord at 9.4 T. Magn Reson Med 2018; 79:2773-2783. [PMID: 28905408 PMCID: PMC5821555 DOI: 10.1002/mrm.26905] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/25/2017] [Accepted: 08/16/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Numerous studies have adopted resting-state functional MRI methods to infer functional connectivity between cortical regions, but very few have translated them to the spinal cord, despite its critical role in the central nervous system. Resting-state functional connectivity between gray matter horns of the spinal cord has previously been shown to be detectable in humans and nonhuman primates, but it has not been reported previously in rodents. METHODS Resting-state functional MRI of the cervical spinal cord of live anesthetized rats was performed at 9.4 T. The quality of the functional images acquired was assessed, and quantitative analyses of functional connectivity in C4-C7 of the spinal cord were derived. RESULTS Robust gray matter horn-to-horn connectivity patterns were found that were statistically significant when compared with adjacent control regions. Specifically, dorsal-dorsal and ventral-ventral connectivity measurements were most prominent, while ipsilateral dorsal-ventral connectivity was also observed but to a lesser extent. Quantitative evaluation of reproducibility also revealed moderate robustness in the bilateral sensory and motor networks that was weaker in the dorsal-ventral connections. CONCLUSIONS This study reports the first evidence of resting-state functional circuits within gray matter in the rat spinal cord, and verifies their detectability using resting-state functional MRI at 9.4 T. Magn Reson Med 79:2773-2783, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Tung-Lin Wu
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
- Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
- Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States
| | - George H. Wilson
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
| | - Nellie Byun
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
- Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
- Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
18
|
Huber E, David G, Thompson AJ, Weiskopf N, Mohammadi S, Freund P. Dorsal and ventral horn atrophy is associated with clinical outcome after spinal cord injury. Neurology 2018; 90:e1510-e1522. [PMID: 29592888 PMCID: PMC5921039 DOI: 10.1212/wnl.0000000000005361] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/24/2018] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE To investigate whether gray matter pathology above the level of injury, alongside white matter changes, also contributes to sensorimotor impairments after spinal cord injury. METHODS A 3T MRI protocol was acquired in 17 tetraplegic patients and 21 controls. A sagittal T2-weighted sequence was used to characterize lesion severity. At the C2-3 level, a high-resolution T2*-weighted sequence was used to assess cross-sectional areas of gray and white matter, including their subcompartments; a diffusion-weighted sequence was used to compute voxel-based diffusion indices. Regression models determined associations between lesion severity and tissue-specific neurodegeneration and associations between the latter with neurophysiologic and clinical outcome. RESULTS Neurodegeneration was evident within the dorsal and ventral horns and white matter above the level of injury. Tract-specific neurodegeneration was associated with prolonged conduction of appropriate electrophysiologic recordings. Dorsal horn atrophy was associated with sensory outcome, while ventral horn atrophy was associated with motor outcome. White matter integrity of dorsal columns and corticospinal tracts was associated with daily-life independence. CONCLUSION Our results suggest that, next to anterograde and retrograde degeneration of white matter tracts, neuronal circuits within the spinal cord far above the level of injury undergo transsynaptic neurodegeneration, resulting in specific gray matter changes. Such improved understanding of tissue-specific cord pathology offers potential biomarkers with more efficient targeting and monitoring of neuroregenerative (i.e., white matter) and neuroprotective (i.e., gray matter) agents.
Collapse
Affiliation(s)
- Eveline Huber
- From the Spinal Cord Injury Center (E.H., G.D., P.F.), Balgrist University Hospital, Zurich, Switzerland; Department of Brain Repair and Rehabilitation (A.J.T., P.F.) and Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, University College London, UK; Department of Neurophysics (N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Germany
| | - Gergely David
- From the Spinal Cord Injury Center (E.H., G.D., P.F.), Balgrist University Hospital, Zurich, Switzerland; Department of Brain Repair and Rehabilitation (A.J.T., P.F.) and Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, University College London, UK; Department of Neurophysics (N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Germany
| | - Alan J Thompson
- From the Spinal Cord Injury Center (E.H., G.D., P.F.), Balgrist University Hospital, Zurich, Switzerland; Department of Brain Repair and Rehabilitation (A.J.T., P.F.) and Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, University College London, UK; Department of Neurophysics (N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Germany
| | - Nikolaus Weiskopf
- From the Spinal Cord Injury Center (E.H., G.D., P.F.), Balgrist University Hospital, Zurich, Switzerland; Department of Brain Repair and Rehabilitation (A.J.T., P.F.) and Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, University College London, UK; Department of Neurophysics (N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Germany
| | - Siawoosh Mohammadi
- From the Spinal Cord Injury Center (E.H., G.D., P.F.), Balgrist University Hospital, Zurich, Switzerland; Department of Brain Repair and Rehabilitation (A.J.T., P.F.) and Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, University College London, UK; Department of Neurophysics (N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Germany
| | - Patrick Freund
- From the Spinal Cord Injury Center (E.H., G.D., P.F.), Balgrist University Hospital, Zurich, Switzerland; Department of Brain Repair and Rehabilitation (A.J.T., P.F.) and Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, University College London, UK; Department of Neurophysics (N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Germany.
| |
Collapse
|
19
|
Walker CL, Zhang YP, Liu Y, Li Y, Walker MJ, Liu NK, Shields CB, Xu XM. Anatomical and functional effects of lateral cervical hemicontusion in adult rats. Restor Neurol Neurosci 2018; 34:389-400. [PMID: 27163248 DOI: 10.3233/rnn-150597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Cervical injuries are the most common form of spinal cord injury (SCI), and are often complicated by pathological secondary damage. Therefore, cervical SCI is of great clinical importance for understanding pathology and potential therapies. Here we utilize a weight drop cervical hemi-contusion injury model using a NYU/MASCIS impactor that produced graded anatomical and functional deficits. METHODS Three groups of rats were established: 1) Sham (laminectomy only) (n = 6), 12.5 mm weight drop (n = 10), and 25 mm weight drop (n = 10) SCI groups. Forelimb functional assessments of grooming ability, cereal manipulation, and forepaw adhesive removal were performed weekly after injury. Using transcranial magnetic motor evoked potentials (tcMMEPs), supraspinal motor stimulations were recorded in both forelimbs and hindlimbs at 5 and 28d post-injury. Lesion volume and myelinated tissue area were assessed through histological analysis. RESULTS A 12.5 mm weight drop height produced considerable tissue damage compared to Sham animals, while a 25 mm drop induced even greater damage than the 12.5 mm drop (p < 0.05). Forelimb functional assessments showed that increased injury severity and tissue damage was correlated to the degree of forelimb functional deficits. Interestingly, the hindlimbs showed little to no motor function loss. Upon tcMMEP stimulation, surprisingly little motor signal was recorded in the hindlimbs despite outward evidence of hindlimb motor recovery. CONCLUSIONS Our findings highlight a correlation between anatomical damage and functional outcome in a graded cervical hemi-contusion model, and support a loss of descending motor control from supraspinal inputs and intraspinal plasticity that promote spontaneous hindlimb functional recovery in this model.
Collapse
Affiliation(s)
- Chandler L Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Yucheng Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yiping Li
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa J Walker
- Medical Neuroscience Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Medical Neuroscience Program, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
20
|
Ishii H, Petrenko AB, Sasaki M, Satoh Y, Kamiya Y, Tobita T, Furutani K, Matsuhashi M, Kohno T, Baba H. Free radical scavenger edaravone produces robust neuroprotection in a rat model of spinal cord injury. Brain Res 2017; 1682:24-35. [PMID: 29294349 DOI: 10.1016/j.brainres.2017.12.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 12/06/2017] [Accepted: 12/26/2017] [Indexed: 11/26/2022]
Abstract
We used a multimodal approach to evaluate the effects of edaravone in a rat model of spinal cord injury (SCI). SCI was induced by extradural compression of thoracic spinal cord. In experiment 1, 30 min prior to compression, rats received a 3 mg/kg intravenous bolus of edaravone followed by a maintenance infusion of 1 (low-dose), 3 (moderate-dose), or 10 (high-dose) mg/kg/h edaravone. Although both moderate- and high-dose edaravone regimens promoted recovery of spinal motor-evoked potentials (MEPs) at 2 h post-SCI, the effect of the moderate dose was more pronounced. In experiment 2, moderate-dose edaravone was administered 30 min prior to compression, at the start of compression, or 10 min after decompression. Although both preemptive and coincident administration resulted in significantly improved spinal MEPs at 2 h post-SCI, the effect of preemptive administration was more pronounced. A moderate dose of edaravone resulted in significant attenuation of lipid peroxidation, as evidenced by lower concentrations of the free radical malonyldialdehyde in the spinal cord 3 h post-SCI. Malonyldialdehyde levels in the high-dose edaravone group were not reduced. Both moderate- and high-dose edaravone resulted in significant functional improvements, evidenced by better Basso-Beattie-Bresnahan (BBB) scores and better performance on an inclined plane during an 8 week period post-SCI. Both moderate- and high-dose edaravone significantly attenuated neuronal loss in the spinal cord at 8 weeks post-SCI, as evidenced by quantitative immunohistochemical analysis of NeuN-positive cells. In conclusion, early administration of a moderate dose of edaravone minimized the negative consequences of SCI and facilitated functional recovery.
Collapse
Affiliation(s)
- Hideaki Ishii
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan.
| | - Andrey B Petrenko
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan.
| | - Mika Sasaki
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan.
| | - Yukio Satoh
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan.
| | - Yoshinori Kamiya
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan.
| | - Toshiyuki Tobita
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan; Department of Anesthesiology, Saiseikai Niigata Daini Hospital, 280-7 Teraji, Nishi-ku, Niigata 950-1104, Japan.
| | - Kenta Furutani
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan.
| | - Mari Matsuhashi
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan; Department of Anesthesiology, Niigata Prefectural Central Hospital, 205 Joetsu, Shinnancho, Niigata 943-0192, Japan.
| | - Tatsuro Kohno
- Department of Anesthesiology, Tohoku Medical and Pharmaceutical University, 1-12-1 Fukumuro, Miyaginoku, Sendai, Miyagi 983-8512, Japan.
| | - Hiroshi Baba
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan.
| |
Collapse
|
21
|
Collis J. Therapeutic hypothermia in acute traumatic spinal cord injury. J ROY ARMY MED CORPS 2017; 164:214-220. [PMID: 29025962 DOI: 10.1136/jramc-2017-000792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/29/2017] [Accepted: 08/11/2017] [Indexed: 01/21/2023]
Abstract
Therapeutic hypothermia is already widely acknowledged as an effective neuroprotective intervention, especially within the acute care setting in relation to conditions such as cardiac arrest and neonatal encephalopathy. Its multifactorial mechanisms of action, including lowering metabolic rate and reducing acute inflammatory cellular processes, ultimately provide protection for central nervous tissue from continuing injury following ischaemic or traumatic insult. Its clinical application within acute traumatic spinal cord injury would therefore seem very plausible, it having the potential to combat the pathophysiological secondary injury processes that can develop in the proceeding hours to days following the initial injury. As such it could offer invaluable assistance to lessen subsequent sensory, motor and autonomic dysfunction for an individual affected by this devastating condition. Yet research surrounding this intervention's applicability in this field is somewhat lacking, the majority being experimental. Despite a recent resurgence of interest, which in turn has produced encouraging results, there is a real possibility that this potentially transformational intervention for treating traumatic spinal cord injury could remain an experimental therapy and never reach clinical implementation.
Collapse
Affiliation(s)
- James Collis
- Acute/Emergency Medicine, St Richards Hospital, Western Sussex Hospitals NHS Trust, Chichester, West Sussex PO19 6SE, UK
| |
Collapse
|
22
|
Schaal SM, Kitay BM, Cho KS, Lo TP, Barakat DJ, Marcillo AE, Sanchez AR, Andrade CM, Pearse DD. Schwann Cell Transplantation Improves Reticulospinal Axon Growth and Forelimb Strength after Severe Cervical Spinal Cord Contusion. Cell Transplant 2017; 16:207-28. [PMID: 17503734 DOI: 10.3727/000000007783464768] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Schwann cell (SC) implantation alone has been shown to promote the growth of propriospinal and sensory axons, but not long-tract descending axons, after thoracic spinal cord injury (SCI). In the current study, we examined if an axotomy close to the cell body of origin (so as to enhance the intrinsic growth response) could permit supraspinal axons to grow onto SC grafts. Adult female Fischer rats received a severe (C5) cervical contusion (1.1 mm displacement, 3 KDyn). At 1 week postinjury, 2 million SCs ex vivo transduced with lentiviral vector encoding enhanced green fluorescent protein (EGFP) were implanted within media into the injury epicenter; injury-only animals served as controls. Animals were tested weekly using the BBB score for 7 weeks postimplantation and received at end point tests for upper body strength: self-supported forelimb hanging, forearm grip force, and the incline plane. Following behavioral assessment, animals were anterogradely traced bilaterally from the reticular formation using BDA-Texas Red. Stereological quantification revealed a twofold increase in the numbers of preserved NeuN+ neurons rostral and caudal to the injury/graft site in SC implanted animals, corroborating previous reports of their neuroprotective efficacy. Examination of labeled reticulospinal axon growth revealed that while rarely an axon was present within the lesion site of injury-only controls, numerous reticulospinal axons had penetrated the SC implant/lesion milieu. This has not been observed following implantation of SCs alone into the injured thoracic spinal cord. Significant behavioral improvements over injury-only controls in upper limb strength, including an enhanced grip strength (a 296% increase) and an increased self-supported forelimb hanging, accompanied SC-mediated neuroprotection and reticulospinal axon growth. The current study further supports the neuroprotective efficacy of SC implants after SCI and demonstrates that SCs alone are capable of supporting modest supraspinal axon growth when the site of axon injury is closer to the cell body of the axotomized neuron.
Collapse
Affiliation(s)
- S M Schaal
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nardone R, Florea C, Höller Y, Brigo F, Versace V, Lochner P, Golaszewski S, Trinka E. Rodent, large animal and non-human primate models of spinal cord injury. ZOOLOGY 2017; 123:101-114. [PMID: 28720322 DOI: 10.1016/j.zool.2017.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 01/05/2023]
Abstract
In this narrative review we aimed to assess the usefulness of the different animal models in identifying injury mechanisms and developing therapies for humans suffering from spinal cord injury (SCI). Results obtained from rodent studies are useful but, due to the anatomical, molecular and functional differences, confirmation of these findings in large animals or non-human primates may lead to basic discoveries that cannot be made in rodent models and that are more useful for developing treatment strategies in humans. SCI in dogs can be considered as intermediate between rodent models and human clinical trials, but the primate models could help to develop appropriate methods that might be more relevant to humans. Ideally, an animal model should meet the requirements of availability and repeatability as well as reproduce the anatomical features and the clinical pathological changing process of SCI. An animal model that completely simulates SCI in humans does not exist. The different experimental models of SCI have advantages and disadvantages for investigating the different aspects of lesion development, recovery mechanisms and potential therapeutic interventions. The potential advantages of non-human primate models include genetic similarities, similar caliber/length of the spinal cord as well as biological and physiological responses to injury which are more similar to humans. Among the potential disadvantages, high operating costs, infrastructural requirements and ethical concerns should be considered. The translation from experimental repair strategies to clinical applications needs to be investigated in future carefully designed studies.
Collapse
Affiliation(s)
- Raffaele Nardone
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Ignaz-Harrer-Str. 79, A-5020, Salzburg, Austria; Department of Neurology, Franz Tappeiner Hospital, Via Rossini 5, I-39012, Merano, Italy; Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Ignaz-Harrer-Str. 79, A-5020, Salzburg, Austria.
| | - Cristina Florea
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Ignaz-Harrer-Str. 79, A-5020, Salzburg, Austria
| | - Yvonne Höller
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Ignaz-Harrer-Str. 79, A-5020, Salzburg, Austria
| | - Francesco Brigo
- Department of Neurology, Franz Tappeiner Hospital, Via Rossini 5, I-39012, Merano, Italy; Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Piazzale L.A. Scuro, I-37134 Verona, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno, Via Santa Margherita 24, I-39049, Italy
| | - Piergiorgio Lochner
- Department of Neurology, Saarland University Medical Center, Kirrberger-Str. 100, D-66421 Homburg, Germany
| | - Stefan Golaszewski
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Ignaz-Harrer-Str. 79, A-5020, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Ignaz-Harrer-Str. 79, A-5020, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Ignaz-Harrer-Str. 79, A-5020, Salzburg, Austria
| |
Collapse
|
24
|
Generating level-dependent models of cervical and thoracic spinal cord injury: Exploring the interplay of neuroanatomy, physiology, and function. Neurobiol Dis 2017; 105:194-212. [PMID: 28578003 DOI: 10.1016/j.nbd.2017.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/10/2017] [Accepted: 05/29/2017] [Indexed: 01/01/2023] Open
Abstract
The majority of spinal cord injuries (SCI) occur at the cervical level, which results in significant impairment. Neurologic level and severity of injury are primary endpoints in clinical trials; however, how level-specific damages relate to behavioural performance in cervical injury is incompletely understood. We hypothesized that ascending level of injury leads to worsening forelimb performance, and correlates with loss of neural tissue and muscle-specific neuron pools. A direct comparison of multiple models was made with injury realized at the C5, C6, C7 and T7 vertebral levels using clip compression with sham-operated controls. Animals were assessed for 10weeks post-injury with numerous (40) outcome measures, including: classic behavioural tests, CatWalk, non-invasive MRI, electrophysiology, histologic lesion morphometry, neuron counts, and motor compartment quantification, and multivariate statistics on the total dataset. Histologic staining and T1-weighted MR imaging revealed similar structural changes and distinct tissue loss with cystic cavitation across all injuries. Forelimb tests, including grip strength, F-WARP motor scale, Inclined Plane, and forelimb ladder walk, exhibited stratification between all groups and marked impairment with C5 and C6 injuries. Classic hindlimb tests including BBB, hindlimb ladder walk, bladder recovery, and mortality were not different between cervical and thoracic injuries. CatWalk multivariate gait analysis showed reciprocal and progressive changes forelimb and hindlimb function with ascending level of injury. Electrophysiology revealed poor forelimb axonal conduction in cervical C5 and C6 groups alone. The cervical enlargement (C5-T2) showed progressive ventral horn atrophy and loss of specific motor neuron populations with ascending injury. Multivariate statistics revealed a robust dataset, rank-order contribution of outcomes, and allowed prediction of injury level with single-level discrimination using forelimb performance and neuron counts. Level-dependent models were generated using clip-compression SCI, with marked and reliable differences in forelimb performance and specific neuron pool loss.
Collapse
|
25
|
Maggio DM, Singh A, Iorgulescu JB, Bleicher DH, Ghosh M, Lopez MM, Tuesta LM, Flora G, Dietrich WD, Pearse DD. Identifying the Long-Term Role of Inducible Nitric Oxide Synthase after Contusive Spinal Cord Injury Using a Transgenic Mouse Model. Int J Mol Sci 2017; 18:ijms18020245. [PMID: 28125047 PMCID: PMC5343782 DOI: 10.3390/ijms18020245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/05/2017] [Accepted: 01/15/2017] [Indexed: 02/07/2023] Open
Abstract
Inducible nitric oxide synthase (iNOS) is a potent mediator of oxidative stress during neuroinflammation triggered by neurotrauma or neurodegeneration. We previously demonstrated that acute iNOS inhibition attenuated iNOS levels and promoted neuroprotection and functional recovery after spinal cord injury (SCI). The present study investigated the effects of chronic iNOS ablation after SCI using inos-null mice. iNOS-/- knockout and wild-type (WT) control mice underwent a moderate thoracic (T8) contusive SCI. Locomotor function was assessed weekly, using the Basso Mouse Scale (BMS), and at the endpoint (six weeks), by footprint analysis. At the endpoint, the volume of preserved white and gray matter, as well as the number of dorsal column axons and perilesional blood vessels rostral to the injury, were quantified. At weeks two and three after SCI, iNOS-/- mice exhibited a significant locomotor improvement compared to WT controls, although a sustained improvement was not observed during later weeks. At the endpoint, iNOS-/- mice showed significantly less preserved white and gray matter, as well as fewer dorsal column axons and perilesional blood vessels, compared to WT controls. While short-term antagonism of iNOS provides histological and functional benefits, its long-term ablation after SCI may be deleterious, blocking protective or reparative processes important for angiogenesis and tissue preservation.
Collapse
Affiliation(s)
- Dominic M Maggio
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institute of Heath, Bethesda, MD 20824, USA.
| | - Amanpreet Singh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - J Bryan Iorgulescu
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Drew H Bleicher
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Michael M Lopez
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Luis M Tuesta
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Govinder Flora
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA.
| |
Collapse
|
26
|
Animal models of spinal cord injury: a systematic review. Spinal Cord 2017; 55:714-721. [PMID: 28117332 DOI: 10.1038/sc.2016.187] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 11/08/2016] [Accepted: 11/27/2016] [Indexed: 02/06/2023]
Abstract
STUDY DESIGN PRISMA-guided systematic review. OBJECTIVES To provide a comprehensive framework of the current animal models for investigating spinal cord injury (SCI) and categorize them based on the aims, patterns and levels of injury, and outcome measurements as well as animal species. SETTING Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran. METHODS An electronic search of the Medline database for literature describing animal models of SCI was performed on 1 January 2016 using the following keywords: 'spinal cord injuries' and 'animal models'. The search retrieved 2870 articles. Reviews and non-original articles were excluded. Data extraction was independently performed by two reviewers. RESULTS Among the 2209 included studies, testing the effects of drug's or growth factor's interventions was the most common aim (36.6%) followed by surveying pathophysiologic changes (30.2%). The most common spinal region involved was thoracic (81%). Contusion was the most common pattern of injury (41%) followed by transection (32.5%) and compression (19.4%). The most common species involved in animal models of SCI was the rat (72.4%). Two or more types of outcome assessments were used in the majority of the studies, and the most common assessment method was biological plus behavioral (50.8%). CONCLUSIONS Prior to choosing an animal model, the objectives of the proposed study must precisely be defined. Contusion and compression models better simulate the biomechanics and neuropathology of human injury, whereas transection models are valuable to study anatomic regeneration. Rodents are the most common and probably best-suited species for preliminary SCI studies.
Collapse
|
27
|
Li XM, Meng J, Li LT, Guo T, Yang LK, Shi QX, Li XB, Chen Y, Yang Q, Zhao JN. Effect of ZBD-2 on chronic pain, depressive-like behaviors, and recovery of motor function following spinal cord injury in mice. Behav Brain Res 2017; 322:92-99. [PMID: 28108322 PMCID: PMC5339413 DOI: 10.1016/j.bbr.2017.01.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 02/06/2023]
Abstract
ZBD-2 significantly attenuated the symptoms of chronic SCI-pain and pain-induced depressive-like behaviors. ZBD-2 inhibited the decreases in the expression of synaptic plasticity-related signaling proteins. ZBD-2 reversed chronic, SCI-induced gliocyte activation at the lesion site.
In addition to debilitating sensory and motor deficits, patients with spinal cord injury (SCI) may experience chronic hyperpathic pain (SCI-pain). Recent studies have revealed that translocator protein (TSPO) is involved in repairing neural cells as well as reducing anxiety and depression. However, the role of TSPO in SCI-pain and pain-induced depression remains unknown. The present study aimed to determine the effects of a new TSPO ligand, ZBD-2, on SCI-pain and consequent pain-induced depressive-like behaviors in mice. Treatment with ZBD-2 at either dose significantly attenuated the symptoms of chronic SCI-pain and pain-induced depressive-like behaviors. ZBD-2 reversed SCI-induced elevation of serum corticosterone levels, an index of hyper-activation of the hypothalamic–pituitary–adrenal (HPA) axis. Additionally, administration of ZBD-2 inhibited decreases in the expression of synaptic plasticity-related signaling proteins, including brain-derived neurotrophic factor (BDNF) and cyclic AMP-responsive element binding protein (CREB). Moreover, ZBD-2 administration reversed chronic, SCI-induced gliocyte activation at the lesion site. Therefore, ZBD-2 may improve chronic SCI-pain and pain-induced depressive-like behaviors via suppression of gliocyte activation and restoration of the synaptic plasticity-related signaling systems.
Collapse
Affiliation(s)
- Xiao-Ming Li
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, 210002, China
| | - Jia Meng
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, 210002, China
| | - Lin Tao Li
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, 210002, China
| | - Ting Guo
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, 210002, China
| | - Liu-Kun Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Qi-Xin Shi
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yong Chen
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, 210002, China.
| | - Qi Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jian-Ning Zhao
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, 210002, China.
| |
Collapse
|
28
|
Kozyrev N, Staudt MD, Brown A, Coolen LM. Chronic Contusion Spinal Cord Injury Impairs Ejaculatory Reflexes in Male Rats: Partial Recovery by Systemic Infusions of Dopamine D3 Receptor Agonist 7OHDPAT. J Neurotrauma 2016; 33:943-53. [DOI: 10.1089/neu.2015.4232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Natalie Kozyrev
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
- Department of Physiology, University of Michigan, Ann Arbor, Michigan
| | - Michael D. Staudt
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
| | - Arthur Brown
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Lique M. Coolen
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
- Department of Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
29
|
Acute Putrescine Supplementation with Schwann Cell Implantation Improves Sensory and Serotonergic Axon Growth and Functional Recovery in Spinal Cord Injured Rats. Neural Plast 2015; 2015:186385. [PMID: 26550496 PMCID: PMC4621347 DOI: 10.1155/2015/186385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/25/2015] [Accepted: 07/02/2015] [Indexed: 01/29/2023] Open
Abstract
Schwann cell (SC) transplantation exhibits significant potential for spinal cord injury (SCI) repair and its use as a therapeutic modality has now progressed to clinical trials for subacute and chronic human SCI. Although SC implants provide a receptive environment for axonal regrowth and support functional recovery in a number of experimental SCI models, axonal regeneration is largely limited to local systems and the behavioral improvements are modest without additional combinatory approaches. In the current study we investigated whether the concurrent delivery of the polyamine putrescine, started either 30 min or 1 week after SCI, could enhance the efficacy of SCs when implanted subacutely (1 week after injury) into the contused rat spinal cord. Polyamines are ubiquitous organic cations that play an important role in the regulation of the cell cycle, cell division, cytoskeletal organization, and cell differentiation. We show that the combination of putrescine with SCs provides a significant increase in implant size, an enhancement in axonal (sensory and serotonergic) sparing and/or growth, and improved open field locomotion after SCI, as compared to SC implantation alone. These findings demonstrate that polyamine supplementation can augment the effectiveness of SCs when used as a therapeutic approach for subacute SCI repair.
Collapse
|
30
|
Mondello SE, Sunshine MD, Fischedick AE, Moritz CT, Horner PJ. A Cervical Hemi-Contusion Spinal Cord Injury Model for the Investigation of Novel Therapeutics Targeting Proximal and Distal Forelimb Functional Recovery. J Neurotrauma 2015; 32:1994-2007. [PMID: 25929319 DOI: 10.1089/neu.2014.3792] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cervical spinal cord contusion is the most common human spinal cord injury, yet few rodent models replicate the pathophysiological and functional sequela of this injury. Here, we modified an electromechanical injury device and characterized the behavioral and histological changes occurring in response to a lateralized C4 contusion injury in rats. A key feature of the model includes a non-injurious touch phase where the spinal cord surface is dimpled with a consistent starting force. Animals were either left intact as a control, received a non-injury-producing touch on the surface of the cord ("sham"), or received a 0.6 mm or a 0.8 mm displacement injury. Rats were then tested on the forelimb asymmetry use test, CatWalk, and the Irvine, Beatties, and Bresnahan (IBB) cereal manipulation task to assess proximal and distal upper limb function for 12 weeks. Injuries of moderate (0.6 mm) and large (0.8 mm) displacement showed consistent differences in forelimb asymmetry, metrics of the CatWalk, and sub-scores of the IBB. Overall findings indicated long lasting proximal and distal upper limb deficits following 0.8 mm injury but transient proximal with prolonged distal limb deficits following 0.6 mm injury. Significant differences in loss of ipsilateral unmyelinated and myelinated white matter was detected between injury severities. Demyelination was primarily localized to the dorsolateral region of the hemicord and extended further rostral following 0.8 mm injury. These findings establish the C4 hemi-contusion injury as a consistent, graded model for testing novel treatments targeting forelimb functional recovery.
Collapse
Affiliation(s)
- Sarah E Mondello
- 1 Department of Rehabilitation Medicine, University of Washington , Seattle, Washington.,2 The Center for Sensorimotor Neural Engineering , Seattle, Washington.,4 The Institute for Stem Cell and Regenerative Medicine , Seattle, Washington
| | - Michael D Sunshine
- 1 Department of Rehabilitation Medicine, University of Washington , Seattle, Washington
| | - Amanda E Fischedick
- 3 Department of Neurological Surgery, University of Washington , Seattle, Washington.,4 The Institute for Stem Cell and Regenerative Medicine , Seattle, Washington
| | - Chet T Moritz
- 1 Department of Rehabilitation Medicine, University of Washington , Seattle, Washington.,2 The Center for Sensorimotor Neural Engineering , Seattle, Washington.,5 Department of Physiology and Biophysics, University of Washington , Seattle, Washington
| | - Philip J Horner
- 3 Department of Neurological Surgery, University of Washington , Seattle, Washington.,4 The Institute for Stem Cell and Regenerative Medicine , Seattle, Washington
| |
Collapse
|
31
|
Lin CM, Tsai JT, Chang CK, Cheng JT, Lin JW. Development of telmisartan in the therapy of spinal cord injury: pre-clinical study in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4709-17. [PMID: 26316709 PMCID: PMC4544623 DOI: 10.2147/dddt.s86616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Decrease of peroxisome proliferator-activated receptors-δ (PPARδ) expression has been observed after spinal cord injury (SCI). Increase of PPARδ may improve the damage in SCI. Telmisartan, the antihypertensive agent, has been mentioned to increase the expression of PPARδ. Thus, we are going to screen the effectiveness of telmisartan in SCI for the development of it in clinical application. METHODS In the present study, we used compressive SCI in rats. Telmisartan was then used to evaluate the influence in rats after SCI. Change in PPARδ expression was identified by Western blots. Also, behavioral tests were performed to check the recovery of damage. RESULTS Recovery of damage from SCI was observed in telmisartan-treated rats. Additionally, this action of telmisartan was inhibited by GSK0660 at the dose sufficient to block PPARδ. However, metformin at the dose enough to activate adenosine monophosphate-activated protein kinase failed to produce similar action as telmisartan. Thus, mediation of adenosine monophosphate-activated protein kinase in this action of telmisartan can be rule out. Moreover, telmisartan reversed the expressions of PPARδ in rats with SCI. CONCLUSION The obtained data suggest that telmisartan can improve the damage of SCI in rats through an increase in PPARδ expression. Thus, telmisartan is useful to be developed as an agent in the therapy of SCI.
Collapse
Affiliation(s)
- Chien-Min Lin
- Department of Neurosurgery, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| | - Jo-Ting Tsai
- Department of Radiation Oncology, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| | - Chen Kuei Chang
- Department of Neurosurgery, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| | - Juei-Tang Cheng
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan City, Taiwan
| | - Jia-Wei Lin
- Department of Neurosurgery, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| |
Collapse
|
32
|
Jin Y, Bouyer J, Haas C, Fischer I. Evaluation of the anatomical and functional consequences of repetitive mild cervical contusion using a model of spinal concussion. Exp Neurol 2015; 271:175-88. [PMID: 26070306 DOI: 10.1016/j.expneurol.2015.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
Spinal cord concussion is characterized by a transient loss of motor and sensory function that generally resolves without permanent deficits. Spinal cord concussions usually occur during vehicular accidents, falls, and sport activity, but unlike brain concussions, have received much less attention despite the potential for repeated injury leading to permanent neurological sequelae. Consequently, there is no consensus regarding decisions related to return to play following an episode of spinal concussion, nor an understanding of the short- and long-term consequences of repeated injury. Importantly, there are no models of spinal concussion to study the anatomical and functional sequelae of single or repeated injury. We have developed a new model of spinal cord concussion focusing on the anatomical and behavioral outcomes of single and repeated injury. Rats received a very mild (50 kdyn, IH impactor) spinal contusion at C5 and were separated into two groups three weeks after the initial injury--C1, which received a second, sham surgery, and C2, which received a second contusion at the same site. To track motor function and recovery, animals received weekly behavioral tests--BBB, CatWalk™, cylinder, and Von Frey. Analysis of locomotor activity by BBB demonstrated that rats rapidly recovered, regaining near-normal function by one week after the first and second injury, which was confirmed using the more detailed CatWalk™ analysis. The cylinder test showed that a single contusion did not induce significant deficits of the affected limb, but that repeated injury resulted in significant alteration in paw preference, with animals favoring the unaffected limb. Intriguingly, Von Frey analysis demonstrated an increased sensitivity in the contralateral hindlimb in the C2 group vs. the C1 group. Anatomical analyses revealed that while the lesion volume of both groups was minimal, the area of spared white matter in the C2 group was significantly reduced 1 and 2mm rostral to the lesion epicenter. Reactive astrocytes were present in both groups, with the majority found at the lesion epicenter in the C1 group, whereas the C2 group demonstrated increased reactive astrocytes extending 1mm caudal to the lesion epicenter. Macrophages accumulated within the injured, dorsal and ipsilateral spinal cord, with significant increases at 2 and 3mm rostral to the epicenter in the C2 group. Our model is designed to represent the clinical presentation of spinal cord concussion, and highlight the susceptibility and functional sequelae of repeated injury. Future experiments will examine the temporal and spatial windows of vulnerability for repeated injuries.
Collapse
Affiliation(s)
- Ying Jin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Julien Bouyer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Christopher Haas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Itzhak Fischer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
33
|
Datto JP, Bastidas JC, Miller NL, Shah AK, Arheart KL, Marcillo AE, Dietrich WD, Pearse DD. Female Rats Demonstrate Improved Locomotor Recovery and Greater Preservation of White and Gray Matter after Traumatic Spinal Cord Injury Compared to Males. J Neurotrauma 2015; 32:1146-57. [PMID: 25715192 DOI: 10.1089/neu.2014.3702] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The possibility of a gender-related difference in recovery after spinal cord injury (SCI) remains a controversial subject. Current empirical animal research lacks sizable test groups to definitively determine whether significant differences exist. Evaluating locomotor recovery variances between sexes following a precise, clinically relevant spinal cord contusion model can provide valuable insight into a possible gender-related advantage in outcome post-SCI. In the current study, we hypothesized that by employing larger sample sizes in a reproducible contusive SCI paradigm, subtle distinctions in locomotor recovery between sexes, if they exist, would be elucidated through a broad range of behavioral tests. During 13 weeks of functional assessment after a thoracic (T8) contusive SCI in rat, significant differences owing to gender existed for the Basso, Beattie, and Bresnahan score and CatWalk hindlimb swing, support four, and single stance analyses. Significant differences in locomotor performance were noticeable as early as 4 weeks post-SCI. Stereological tissue-volume analysis determined that females, more so than males, also exhibited greater volumes of preserved gray and white matter within the injured cord segment as well as more spared ventral white matter area at the center of the lesion. The stereological tissue analysis differences favoring females directly correlated with the female rats' greater functional improvement observed at endpoint.
Collapse
Affiliation(s)
- Jeffrey P Datto
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Johana C Bastidas
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Nicole L Miller
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Anna K Shah
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Kristopher L Arheart
- 2 The Departments of Public Health Sciences, University of Miami Miller School of Medicine , Miami, Florida
| | - Alexander E Marcillo
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - W Dalton Dietrich
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida.,3 The Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida.,4 The Department of Cell Biology, University of Miami Miller School of Medicine , Miami, Florida.,5 The Department of Neurology, University of Miami Miller School of Medicine , Miami, Florida.,6 The Neuroscience Program, University of Miami Miller School of Medicine , Miami, Florida
| | - Damien D Pearse
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida.,3 The Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida.,6 The Neuroscience Program, University of Miami Miller School of Medicine , Miami, Florida.,7 The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine , Miami, Florida
| |
Collapse
|
34
|
Walker MJ, Walker CL, Zhang YP, Shields LBE, Shields CB, Xu XM. A novel vertebral stabilization method for producing contusive spinal cord injury. J Vis Exp 2015:e50149. [PMID: 25590284 PMCID: PMC4354509 DOI: 10.3791/50149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Clinically-relevant animal cervical spinal cord injury (SCI) models are essential for developing and testing potential therapies; however, producing reliable cervical SCI is difficult due to lack of satisfactory methods of vertebral stabilization. The conventional method to stabilize the spine is to suspend the rostral and caudal cervical spine via clamps attached to cervical spinous processes. However, this method of stabilization fails to prevent tissue yielding during the contusion as the cervical spinal processes are too short to be effectively secured by the clamps (Figure 1). Here we introduce a new method to completely stabilize the cervical vertebra at the same level of the impact injury. This method effectively minimizes movement of the spinal column at the site of impact, which greatly improves the production of consistent SCIs. We provide visual description of the equipment (Figure 2-4), methods, and a step-by-step protocol for the stabilization of the cervical 5 vertebra (C5) of adult rats, to perform laminectomy (Figure 5) and produce a contusive SCI thereafter. Although we only demonstrate a cervical hemi-contusion using the NYU/MASCIS impactor device, this vertebral stabilization technique can be applied to other regions of the spinal cord, or be adapted to other SCI devices. Improving spinal cord exposure and fixation through vertebral stabilization may be valuable for producing consistent and reliable injuries to the spinal cord. This vertebral stabilization method can also be used for stereotactic injections of cells and tracers, and for imaging using two-photon microscopy in various neurobiological studies.
Collapse
Affiliation(s)
- Melissa J Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman and Campbell Brain and Spine, Indiana University School of Medicine; Medical Neuroscience Graduate Program, Indiana University School of Medicine
| | - Chandler L Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman and Campbell Brain and Spine, Indiana University School of Medicine; Department of Anatomy and Cell Biology, Indiana University School of Medicine
| | - Y Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare
| | | | | | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman and Campbell Brain and Spine, Indiana University School of Medicine; Department of Anatomy and Cell Biology, Indiana University School of Medicine;
| |
Collapse
|
35
|
|
36
|
Lam CJ, Assinck P, Liu J, Tetzlaff W, Oxland TR. Impact depth and the interaction with impact speed affect the severity of contusion spinal cord injury in rats. J Neurotrauma 2014; 31:1985-97. [PMID: 24945364 DOI: 10.1089/neu.2014.3392] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spinal cord injury (SCI) biomechanics suggest that the mechanical factors of impact depth and speed affect the severity of contusion injury, but their interaction is not well understood. The primary aim of this work was to examine both the individual and combined effects of impact depth and speed in contusion SCI on the cervical spinal cord. Spinal cord contusions between C5 and C6 were produced in anesthetized rats at impact speeds of 8, 80, or 800 mm/s with displacements of 0.9 or 1.5 mm (n=8/group). After 7 days postinjury, rats were assessed for open-field behavior, euthanized, and spinal cords were harvested. Spinal cord tissue sections were stained for demyelination (myelin-based protein) and tissue sparing (Luxol fast blue). In parallel, a finite element model of rat spinal cord was used to examine the resulting maximum principal strain in the spinal cord during impact. Increasing impact depth from 0.9 to 1.5 mm reduced open-field scores (p<0.01) above 80 mm/s, reduced gray (GM) and white matter (WM) sparing (p<0.01), and increased the amount of demyelination (p<0.01). Increasing impact speed showed similar results at the 1.5-mm impact depth, but not the 0.9-mm impact depth. Linear correlation analysis with finite element analysis strain showed correlations (p<0.001) with nerve fiber damage in the ventral (R(2)=0.86) and lateral (R(2)=0.74) regions of the spinal cord and with WM (R(2)=0.90) and GM (R(2)=0.76) sparing. The results demonstrate that impact depth is more important in determining the severity of SCI and that threshold interactions exist between impact depth and speed.
Collapse
Affiliation(s)
- Cameron J Lam
- 1 Orthopedic and Injury Biomechanics Lab, Departments of Mechanical Engineering and Orthopedics, University of British Columbia , Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
37
|
Forgione N, Karadimas SK, Foltz WD, Satkunendrarajah K, Lip A, Fehlings MG. Bilateral contusion-compression model of incomplete traumatic cervical spinal cord injury. J Neurotrauma 2014; 31:1776-88. [PMID: 24949719 DOI: 10.1089/neu.2014.3388] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite the increasing incidence and prevalence of cervical spinal cord injury (cSCI), we lack clinically relevant animal models that can be used to study the pathomechanisms of this injury and test new therapies. Here, we characterize a moderate cervical contusion-compression model in rats that is similar to incomplete traumatic cSCI in humans. We characterized the effects of 18-g clip-compression injury at cervical level C6 over an 8-week recovery period. Using Luxol fast blue/hematoxylin-eosin staining in combination with quantitative stereology, we determined that 18-g injury results in loss of gray matter (GM), white matter (WM), as well as in cavity formation. Magnetization transfer and T2-weighted magnetic resonance imaging were used to analyze lesion dynamics in vivo. This analysis demonstrated that both techniques are able to differentiate between the injury epicenter, subpial rim, and WM distal to the injury. Neurobehavioral assessment of locomotor function using Basso, Beattie, and Bresnahan (BBB) scoring and CatWalk revealed limited recovery from clip-compression injury at C6. Testing of forelimb function using grip strength demonstrated significant forelimb dysfunction, similar to the loss of upper-limb motor function observed in human cSCI. Sensory-evoked potentials recorded from the forelimb and Hoffman reflex recorded from the hindlimb confirmed the fore- and hindlimb deficits observed in our neurobehavioral analysis. Here, we have characterized a clip-compression model of incomplete cSCI that closely models this condition in humans. This work directly addresses the current lack of clinically relevant models of cSCI and will thus contribute to improved success in the translation of putative therapies into the clinic.
Collapse
Affiliation(s)
- Nicole Forgione
- 1 Division of Genetics and Development, Toronto Western Research Institute, Krembil Neuroscience Center, University Health Network , Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Sherman AL, Wang MY. Hypothermia as a Clinical Neuroprotectant. Phys Med Rehabil Clin N Am 2014; 25:519-29, vii. [DOI: 10.1016/j.pmr.2014.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Irvine KA, Ferguson AR, Mitchell KD, Beattie SB, Lin A, Stuck ED, Huie JR, Nielson JL, Talbott JF, Inoue T, Beattie MS, Bresnahan JC. The Irvine, Beatties, and Bresnahan (IBB) Forelimb Recovery Scale: An Assessment of Reliability and Validity. Front Neurol 2014; 5:116. [PMID: 25071704 PMCID: PMC4083223 DOI: 10.3389/fneur.2014.00116] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/20/2014] [Indexed: 12/24/2022] Open
Abstract
The IBB scale is a recently developed forelimb scale for the assessment of fine control of the forelimb and digits after cervical spinal cord injury [SCI; (1)]. The present paper describes the assessment of inter-rater reliability and face, concurrent and construct validity of this scale following SCI. It demonstrates that the IBB is a reliable and valid scale that is sensitive to severity of SCI and to recovery over time. In addition, the IBB correlates with other outcome measures and is highly predictive of biological measures of tissue pathology. Multivariate analysis using principal component analysis (PCA) demonstrates that the IBB is highly predictive of the syndromic outcome after SCI (2), and is among the best predictors of bio-behavioral function, based on strong construct validity. Altogether, the data suggest that the IBB, especially in concert with other measures, is a reliable and valid tool for assessing neurological deficits in fine motor control of the distal forelimb, and represents a powerful addition to multivariate outcome batteries aimed at documenting recovery of function after cervical SCI in rats.
Collapse
Affiliation(s)
- Karen-Amanda Irvine
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Adam R. Ferguson
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Kathleen D. Mitchell
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Stephanie B. Beattie
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Amity Lin
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ellen D. Stuck
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - J. Russell Huie
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jessica L. Nielson
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jason F. Talbott
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Tomoo Inoue
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Michael S. Beattie
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jacqueline C. Bresnahan
- Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
40
|
Spinal cord injury models: a review. Spinal Cord 2014; 52:588-95. [PMID: 24912546 DOI: 10.1038/sc.2014.91] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 04/23/2014] [Accepted: 05/05/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Animal spinal cord injury (SCI) models have proved invaluable in better understanding the mechanisms involved in traumatic SCI and evaluating the effectiveness of experimental therapeutic interventions. Over the past 25 years, substantial gains have been made in developing consistent, reproducible and reliable animal SCI models. STUDY DESIGN Review. OBJECTIVE The objective of this review was to consolidate current knowledge on SCI models and introduce newer paradigms that are currently being developed. RESULTS SCI models are categorized based on the mechanism of injury into contusion, compression, distraction, dislocation, transection or chemical models. Contusion devices inflict a transient, acute injury to the spinal cord using a weight-drop technique, electromagnetic impactor or air pressure. Compression devices compress the cord at specific force and duration to cause SCI. Distraction SCI devices inflict graded injury by controlled stretching of the cord. Mechanical displacement of the vertebrae is utilized to produce dislocation-type SCI. Surgical transection of the cord, partial or complete, is particularly useful in regenerative medicine. Finally, chemically induced SCI replicates select components of the secondary injury cascade. Although rodents remain the most commonly used species and are best suited for preliminary SCI studies, large animal and nonhuman primate experiments better approximate human SCI. CONCLUSION All SCI models aim to replicate SCI in humans as closely as possible. Given the recent improvements in commonly used models and development of newer paradigms, much progress is anticipated in the coming years.
Collapse
|
41
|
Hou J, Nelson R, Nissim N, Parmer R, Thompson FJ, Bose P. Effect of combined treadmill training and magnetic stimulation on spasticity and gait impairments after cervical spinal cord injury. J Neurotrauma 2014; 31:1088-106. [PMID: 24552465 DOI: 10.1089/neu.2013.3096] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spasticity and gait impairments are two common disabilities after cervical spinal cord injury (C-SCI). In this study, we tested the therapeutic effects of early treadmill locomotor training (Tm) initiated at postoperative (PO) day 8 and continued for 6 weeks with injury site transcranial magnetic stimulation (TMSsc) on spasticity and gait impairments after low C6/7 moderate contusion C-SCI in a rat model. The combined treatment group (Tm+TMSsc) showed the most robust decreases in velocity-dependent ankle torques and triceps surae electromyography burst amplitudes that were time locked to the initial phase of lengthening, as well as the most improvement in limb coordination quantitated using three-dimensional kinematics and CatWalk gait analyses, compared to the control or single-treatment groups. These significant treatment-associated decreases in measures of spasticity and gait impairment were also accompanied by marked treatment-associated up-regulation of dopamine beta-hydroxylase, glutamic acid decarboxylase 67, gamma-aminobutyric acid B receptor, and brain-derived neurotrophic factor in the lumbar spinal cord (SC) segments of the treatment groups, compared to tissues from the C-SCI nontreated animals. We propose that the treatment-induced up-regulation of these systems enhanced the adaptive plasticity in the SC, in part through enhanced expression of pre- and postsynaptic reflex regulatory processes. Further, we propose that locomotor exercise in the setting of C-SCI may decrease aspects of the spontaneous maladaptive segmental and descending plasticity. Accordingly, TMSsc treatment is characterized as an adjuvant stimulation that may further enhance this capacity. These data are the first to suggest that a combination of Tm and TMSsc across the injury site can be an effective treatment modality for C-SCI-induced spasticity and gait impairments and provided a pre-clinical demonstration for feasibility and efficacy of early TMSsc intervention after C-SCI.
Collapse
Affiliation(s)
- Jiamei Hou
- 1 Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | | | | | | | | | | |
Collapse
|
42
|
Decrease of PPARδ in Type-1-Like Diabetic Rat for Higher Mortality after Spinal Cord Injury. PPAR Res 2014; 2014:456386. [PMID: 24817882 PMCID: PMC4003751 DOI: 10.1155/2014/456386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/16/2014] [Accepted: 03/17/2014] [Indexed: 12/24/2022] Open
Abstract
Changes in the peroxisome proliferator-activated receptors-δ (PPARδ) expression in rats after spinal cord injury (SCI) have been previously reported. Diabetic animals show a higher mortality after SCI. However, the relationship between the progress of diabetes and PPARδ in SCI remains unknown. In the present study, we used compressive SCI in streptozotocin-(STZ-) induced diabetic rats. GW0742, a PPARδ agonist, was used to evaluate its merit in STZ rats after SCI. Changes in PPARδ expression were detected by Western blot. Survival rates were also estimated. A lower expression of PPARδ in spinal cords of STZ-diabetic rats was observed. In addition, the survival times in two-week induction diabetes were longer than those in eight-week induction group, which is consistent with the expression of PPARδ in the spinal cord. Moreover, GW0742 significantly increased the survival time of STZ rats. Furthermore, their motor function and pain response were attenuated by GSK0660, a selective PPARδ antagonist, but were enhanced by GW0742. In conclusion, the data suggest that higher mortality rate in STZ-diabetic rats with SCI is associated with the decrease of PPARδ expression. Thus, change of PPARδ expression with the progress of diabetes seems responsible for the higher mortality rate after SCI.
Collapse
|
43
|
Flora G, Joseph G, Patel S, Singh A, Bleicher D, Barakat DJ, Louro J, Fenton S, Garg M, Bunge MB, Pearse DD. Combining Neurotrophin-Transduced Schwann Cells and Rolipram to Promote Functional Recovery from Subacute Spinal Cord Injury. Cell Transplant 2013; 22:2203-17. [DOI: 10.3727/096368912x658872] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Following spinal cord injury (SCI), both an inhibitory environment and lack of intrinsic growth capacity impede axonal regeneration. In a previous study, prevention of cyclic adenosine monophosphate (AMP) hydrolysis by the phosphodiesterase-4 inhibitor rolipram, in combination with Schwann cell (SC) grafts, promoted significant supraspinal and proprioceptive fiber growth and/or sparing and improved locomotion. In another study, transplanted SCs transduced to generate a bifunctional neurotrophin (D15A) led to significant increases in graft SCs and axons, including supraspinal and myelinated axons. Here we studied the growth and myelination of local and supraspinal axons and functional outcome following the combination of rolipram administration and neurotrophin-transduced SC implantation after SCI. Rolipram was administered subcutaneously for 4 weeks immediately after contusion at vertebral T8 (25.0-mm weight drop, MASCIS impactor). GFP or GFP-D15A-transduced SCs were injected into the injury epicenter 1 week after SCI. GFP-D15A SC grafts and GFP SC grafts with rolipram contained significantly more serotonergic fibers compared to GFP SCs. SC myelinated axons were increased significantly in GFP SC with rolipram-treated animals compared to animals receiving SCI alone. Rolipram administered with either GFP or GFP-D15A SCs significantly increased numbers of brain stem-derived axons below the lesion/implant area and improved hindlimb function. Compared to the single treatments, the combination led to the largest SC grafts, the highest numbers of serotonergic fibers in the grafts, and increased numbers of axons from the reticular formation below the lesion/implant area and provided the greatest improvement in hindlimb function. These findings demonstrate the therapeutic potential for a combination therapy involving the maintenance of cyclic AMP levels and neurotrophin-transduced SCs to repair the subacutely injured spinal cord.
Collapse
Affiliation(s)
- Govinder Flora
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gravil Joseph
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Samik Patel
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amanpreet Singh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Drew Bleicher
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David J. Barakat
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jack Louro
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephanie Fenton
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maneesh Garg
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
44
|
Awad BI, Warren PM, Steinmetz MP, Alilain WJ. The role of the crossed phrenic pathway after cervical contusion injury and a new model to evaluate therapeutic interventions. Exp Neurol 2013; 248:398-405. [PMID: 23886671 DOI: 10.1016/j.expneurol.2013.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/25/2013] [Accepted: 07/16/2013] [Indexed: 11/29/2022]
Abstract
More than 50% of all spinal cord injury (SCI) cases are at the cervical level and usually result in the impaired ability to breathe. This is caused by damage to descending bulbospinal inspiratory tracts and the phrenic motor neurons which innervate the diaphragm. Most investigations have utilized a lateral C2 hemisection model of cervical SCI to study the resulting respiratory motor deficits and potential therapies. However, recent studies have emerged which incorporate experimental contusion injuries at the cervical level of the spinal cord to more closely reflect the type of trauma encountered in humans. Nonetheless, a common deficit observed in these contused animals is the inability to increase diaphragm motor activity in the face of respiratory challenge. In this report we tested the hypothesis that, following cervical contusion, all remaining tracts to the phrenic nucleus are active, including the crossed phrenic pathway (CPP). Additionally, we investigated the potential function these spared tracts might possess after injury. We find that, following a lateral C3/4 contusion injury, not all remaining pathways are actively exciting downstream phrenic motor neurons. However, removing some of these pathways through contralateral hemisection results in a cessation of all activity ipsilateral to the contusion. This suggests an important modulatory role for these pathways. Additionally, we conclude that this dual injury, hemi-contusion and post contra-hemisection, is a more effective and relevant model of cervical SCI as it results in a more direct compromise of diaphragmatic motor activity. This model can thus be used to test potential therapies with greater accuracy and clinical relevance than cervical contusion models currently allow.
Collapse
Affiliation(s)
- Basem I Awad
- Department of Neurosciences, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Neurological Surgery, Mansoura University School of Medicine, Mansoura, Egypt
| | | | | | | |
Collapse
|
45
|
Sun C, Shao J, Su L, Zhao J, Bi J, Yang S, Zhang S, Gao J, Miao J. Cholinergic Neuron-Like Cells Derived from Bone Marrow Stromal Cells Induced by Tricyclodecane-9-yl-Xanthogenate Promote Functional Recovery and Neural Protection after Spinal Cord Injury. Cell Transplant 2013; 22:961-75. [PMID: 23031841 DOI: 10.3727/096368912x657413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rate of neuronal differentiation of bone marrow stromal cells (BMSCs) in vivo is very low; therefore, it is necessary to elevate the number of BMSC-derived neurons to cure neurodegenerative diseases. We previously reported that tricyclodecane-9-yl-xanthogenate (D609), an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), induced BMSCs to differentiate into neuron-like cells in vitro. However, the neuronal type is not clear, and it is still unknown whether these neuron-like cells possess physiological properties of functional neurons and whether they can contribute to the recovery of neuron dysfunction. To answer these questions, we investigated their characteristics by detecting neuronal function-related neurotransmitters and calcium image. The results showed that these cells exhibited functional cholinergic neurons in vitro. Transplantation of these cholinergic neuron-like cells promoted the recovery of spinal cord-injured mice, and they were more effective than BMSCs. The number of cholinergic neurons was increased after injection with BMSC-derived cholinergic neuron-like cells, indicating their high differentiation rate in vivo. Moreover, the proportion of cholinergic neurons in host cells and secretion of acetylcholine were increased, and preservation of neurofilament was also observed in the lesion of mice implanted with BMSC-derived neurons, suggesting the neuronal protection of BMSC-derived neurons. Our findings provide both a simple method to induce the differentiation of BMSCs into cholinergic neuron-like cells and a putative strategy for the therapy of spinal cord injuries.
Collapse
Affiliation(s)
- Chunhui Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | - Jing Shao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, China
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, China
| | - Jianzhong Bi
- Department of Neural Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Shaonan Yang
- Department of Neural Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Shangli Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, China
| | - Jiangang Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | - Junying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, China
| |
Collapse
|
46
|
Rangasamy SB. Locomotor recovery after spinal cord hemisection/contusion injures in bonnet monkeys: footprint testing--a minireview. Synapse 2013; 67:427-53. [PMID: 23401170 DOI: 10.1002/syn.21645] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/01/2013] [Indexed: 12/12/2022]
Abstract
Spinal cord injuries usually produce loss or impairment of sensory, motor and reflex function below the level of damage. In the absence of functional regeneration or manipulations that promote regeneration, spontaneous improvements in motor functions occur due to the activation of multiple compensatory mechanisms in animals and humans following the partial spinal cord injury. Many studies were performed on quantitative evaluation of locomotor recovery after induced spinal cord injury in animals using behavioral tests and scoring techniques. Although few studies on rodents have led to clinical trials, it would appear imperative to use nonhuman primates such as macaque monkeys in order to relate the research outcomes to recovery of functions in humans. In this review, we will discuss some of our research evidences concerning the degree of spontaneous recovery in bipedal locomotor functions of bonnet monkeys that underwent spinal cord hemisection/contusion lesions. To our knowledge, this is the first report to discuss on the extent of spontaneous recovery in bipedal locomotion of macaque monkeys through the application of footprint analyzing technique. In addition, the results obtained were compared with the published data on recovery of quadrupedal locomotion of spinally injured rodents. We propose that the mechanisms underlying spontaneous recovery of functions in spinal cord lesioned monkeys may be correlated to the mature function of spinal pattern generator for locomotion under the impact of residual descending and afferent connections. Moreover, based on analysis of motor functions observed in locomotion in these subjected monkeys, we understand that spinal automatism and development of responses by afferent stimuli from outside the cord could possibly contribute to recovery of paralyzed hindlimbs. This report also emphasizes the functional contribution of progressive strengthening of undamaged nerve fibers through a collateral sprouts/synaptic plasticity formed in partially lesioned cord of monkeys.
Collapse
Affiliation(s)
- Suresh Babu Rangasamy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, 60612, USA.
| |
Collapse
|
47
|
Lim SN, Gladman SJ, Dyall SC, Patel U, Virani N, Kang JX, Priestley JV, Michael-Titus AT. Transgenic mice with high endogenous omega-3 fatty acids are protected from spinal cord injury. Neurobiol Dis 2013; 51:104-12. [DOI: 10.1016/j.nbd.2012.10.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 09/23/2012] [Accepted: 10/24/2012] [Indexed: 12/24/2022] Open
|
48
|
López-Dolado E, Lucas-Osma AM, Collazos-Castro JE. Dynamic motor compensations with permanent, focal loss of forelimb force after cervical spinal cord injury. J Neurotrauma 2013; 30:191-210. [PMID: 23249275 PMCID: PMC3565556 DOI: 10.1089/neu.2012.2530] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Incomplete cervical lesion is the most common type of human spinal cord injury (SCI) and causes permanent paresis of arm muscles, a phenomenon still incompletely understood in physiopathological and neuroanatomical terms. We performed spinal cord hemisection in adult rats at the caudal part of the segment C6, just rostral to the bulk of triceps brachii motoneurons, and analyzed the forces and kinematics of locomotion up to 4 months postlesion to determine the nature of motor function loss and recovery. A dramatic (50%), immediate and permanent loss of extensor force occurred in the forelimb but not in the hind limb of the injured side, accompanied by elbow and wrist kinematic impairments and early adaptations of whole-body movements that initially compensated the balance but changed continuously over the follow-up period to allow effective locomotion. Overuse of both contralateral legs and ipsilateral hind leg was evidenced since 5 days postlesion. Ipsilateral foreleg deficits resulted mainly from interruption of axons that innervate the spinal cord segments caudal to the lesion, because chronic loss (about 35%) of synapses was detected at C7 while only 14% of triceps braquii motoneurons died, as assessed by synaptophysin immunohistochemistry and retrograde neural tracing, respectively. We also found a large pool of propriospinal neurons projecting from C2-C5 to C7 in normal rats, with topographical features similar to the propriospinal premotoneuronal system of cats and primates. Thus, concurrent axotomy at C6 of brain descending axons and cervical propriospinal axons likely hampered spontaneous recovery of the focal neurological impairments.
Collapse
Affiliation(s)
- Elisa López-Dolado
- Neural Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain
| | | | | |
Collapse
|
49
|
Maggio DM, Chatzipanteli K, Masters N, Patel SP, Dietrich WD, Pearse DD. Acute molecular perturbation of inducible nitric oxide synthase with an antisense approach enhances neuronal preservation and functional recovery after contusive spinal cord injury. J Neurotrauma 2012; 29:2244-9. [PMID: 22708918 DOI: 10.1089/neu.2012.2371] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inducible nitric oxide synthase (iNOS) is a key mediator of inflammation and oxidative stress produced during pathological conditions, including neurodegenerative diseases and central nervous system (CNS) injury. iNOS is responsible for the formation of high levels of nitric oxide (NO). The production of highly reactive and cytotoxic NO species, such as peroxynitrite, plays an important role in secondary tissue damage. We have previously demonstrated that acute administration of iNOS antisense oligonucleotides (ASOs) 3 h after moderate contusive spinal cord injury (SCI) potently inhibits iNOS-mediated increases in NO levels, leading to reduced blood-spinal cord barrier permeability, decreased neutrophil accumulation, and less neuronal cell death. In the current study we investigated if iNOS ASOs could also provide long-term (10-week) histological and behavioral improvements after moderate thoracic T8 contusive SCI. Adult rats were randomly assigned to three groups (n=10/group): SCI alone, SCI and mixed base control oligonucleotides (MBOs), or SCI and iNOS ASOs (200 nM). Oligonucleotides were administered by spinal superfusion 3 h after injury. Behavioral analysis (Basso-Beattie-Bresnahan [BBB] score and subscore) was employed weekly for 10 weeks post-SCI. Although animals treated with iNOS ASOs demonstrated no significant differences in BBB scores compared to controls, subscore analysis revealed a significant improvement in foot positioning, trunk stability, and tail clearance. Histologically, while no gross improvement in preserved white and gray matter was observed, greater numbers of surviving neurons were present adjacent to the lesion site in iNOS ASO-treated animals than controls. These results support the effectiveness of targeting iNOS acutely as a therapeutic approach after SCI.
Collapse
Affiliation(s)
- Dominic M Maggio
- The Miami Project to Cure Paralysis, The Neuroscience Program, The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | | | | | | | | | | |
Collapse
|
50
|
Schaal SM, Garg MS, Ghosh M, Lovera L, Lopez M, Patel M, Louro J, Patel S, Tuesta L, Chan WM, Pearse DD. The therapeutic profile of rolipram, PDE target and mechanism of action as a neuroprotectant following spinal cord injury. PLoS One 2012; 7:e43634. [PMID: 23028463 PMCID: PMC3446989 DOI: 10.1371/journal.pone.0043634] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 07/24/2012] [Indexed: 01/08/2023] Open
Abstract
The extent of damage following spinal cord injury (SCI) can be reduced by various neuroprotective regimens that include maintaining levels of cyclic adenosine monophosphate (cyclic AMP), via administration of the phosphodiesterase 4 (PDE4) inhibitor Rolipram. The current study sought to determine the optimal neuroprotective dose, route and therapeutic window for Rolipram following contusive SCI in rat as well as its prominent PDE target and putative mechanism of protection. Rolipram or vehicle control (10% ethanol) was given subcutaneously (s.c.) daily for 2 wk post-injury (PI) after which the preservation of oligodendrocytes, neurons and central myelinated axons was stereologically assessed. Doses of 0.1 mg/kg to 1.0 mg/kg (given at 1 h PI) increased neuronal survival; 0.5 mg to 1.0 mg/kg protected oligodendrocytes and 1.0 mg/kg produced optimal preservation of central myelinated axons. Ethanol also demonstrated significant neuronal and oligo-protection; though the preservation provided was significantly less than Rolipram. Subsequent use of this optimal Rolipram dose, 1.0 mg/kg, via different routes (i.v., s.c. or oral, 1 h PI), demonstrated that i.v. administration produced the most significant and consistent cyto- and axo- protection, although all routes were effective. Examination of the therapeutic window for i.v. Rolipram (1.0 mg/kg), when initiated between 1 and 48 h after SCI, revealed maximal neuroprotection at 2 h post-SCI, although the protective efficacy of Rolipram could still be observed when administration was delayed for up to 48 h PI. Importantly, use of the optimal Rolipram regimen significantly improved locomotor function after SCI as measured by the BBB score. Lastly we show SCI-induced changes in PDE4A, B and D expression and phosphorylation as well as cytokine expression and immune cell infiltration. We demonstrate that Rolipram abrogates SCI-induced PDE4B1 and PDE4A5 production, PDE4A5 phosphorylation, MCP-1 expression and immune cell infiltration, while preventing post-injury reductions in IL-10. This work supports the use of Rolipram as an acute neuroprotectant following SCI and defines an optimal administration protocol and target for its therapeutic application.
Collapse
Affiliation(s)
- Sandra Marie Schaal
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- The Neuroscience Program, University of Miami, Miami, Florida, United States of America
| | - Maneesh Sen Garg
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Lilie Lovera
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Michael Lopez
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Monal Patel
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jack Louro
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Samik Patel
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Luis Tuesta
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Wai-Man Chan
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Damien Daniel Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- The Neuroscience Program, University of Miami, Miami, Florida, United States of America
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|