1
|
Mills SJ, Halstead H, Howie J, Hutchins S, Forte L, Unsworth D, Walters T, Jelbart M, Dodd B, van den Berg M, Killington M. Team-based rehabilitation after mild traumatic brain injury - description of the clinical pathway. Brain Inj 2024; 38:807-817. [PMID: 38695320 DOI: 10.1080/02699052.2024.2347570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/20/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE Describe clinical practice, inter-disciplinary clinical pathway and core principles of care within a mild traumatic brain injury (mTBI) rehabilitation team. METHODS An observational study examined inter-disciplinary practice, nested within an observational trial investigating team-based mTBI rehabilitation. Data were collected to describe clinical service over 12 months. Activity data quantified clinical sessions per participant, mode of service delivery and content of sessions using custom-designed codes. The clinical team gathered narrative data to confirm the inter-disciplinary clinical pathway and individual discipline practice. RESULTS 168 participants entered the rehabilitation program during the 12 months. A single Allied Health Screening Assessment identified patient priorities. Occupational Therapy (OT) and Physiotherapy (PT) provided the majority of clinical sessions; the team also comprised Social Work, Rehabilitation Medicine, Speech Pathology and Clinical Psychology. Telehealth was the most common service delivery mode (54%). Median session numbers per participant ranged 1-4 for all disciplines; mean/maximum occasions of service were highest for PT (6.9/44) and OT (6.8/39). CONCLUSION A small proportion of participants received much higher number of sessions, consistent with intractable issues after mTBI. High attendance rates indicate the predominantly telehealth-delivered model was feasible. The clinical approach included early prioritizing of discipline input and follow-up after discharge.
Collapse
Affiliation(s)
- Simon J Mills
- South Australian Brain Injury Rehabilitation Service, Repat Health Precinct, Adelaide, Australia
| | - Hannah Halstead
- South Australian Brain Injury Rehabilitation Service, Repat Health Precinct, Adelaide, Australia
| | - Joanne Howie
- South Australian Brain Injury Rehabilitation Service, Repat Health Precinct, Adelaide, Australia
| | - Selena Hutchins
- South Australian Brain Injury Rehabilitation Service, Repat Health Precinct, Adelaide, Australia
| | - Leah Forte
- South Australian Brain Injury Rehabilitation Service, Repat Health Precinct, Adelaide, Australia
| | - David Unsworth
- South Australian Brain Injury Rehabilitation Service, Repat Health Precinct, Adelaide, Australia
| | - Terri Walters
- South Australian Brain Injury Rehabilitation Service, Repat Health Precinct, Adelaide, Australia
| | - Miranda Jelbart
- South Australian Brain Injury Rehabilitation Service, Repat Health Precinct, Adelaide, Australia
| | - Beverley Dodd
- South Australian Brain Injury Rehabilitation Service, Repat Health Precinct, Adelaide, Australia
| | - Maayken van den Berg
- College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
| | - Maggie Killington
- South Australian Brain Injury Rehabilitation Service, Repat Health Precinct, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
2
|
Ayton A, Spitz G, Hicks AJ, Ponsford J. Mental and Physical Health Comorbidities in Traumatic Brain Injury: A Non-TBI Controls Comparison. Arch Phys Med Rehabil 2024; 105:1355-1363. [PMID: 38521496 DOI: 10.1016/j.apmr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVE To examine whether aging with a TBI was associated with a greater burden of health-related comorbidities compared with a non-TBI control cohort and examine the associations between comorbidity burden, emotional outcomes, and health-related quality of life (HRQoL) after TBI across ages. DESIGN Cross-sectional. SETTING Research center or telephone. PARTICIPANTS The study included 559 participants (NTBI=291, NControls=268). Participants with TBI were recruited during inpatient rehabilitation and had sustained a moderate-severe TBI 1-33 years previously. Non-TBI controls were a convenience sample recruited through advertisements in the community. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES The number of cardiovascular, general physical health, and mental health comorbidities was compared between cohorts and age strata using Poisson regression. The relationships between comorbidities, age, emotional outcomes (Generalized Anxiety Disorder Scale-7, Patient Health Questionnaire-9), and HRQoL (PROMIS Global Health Measure) were examined with linear regression. Distinct subgroups of comorbidities were identified using latent class analysis. Associations between comorbidity classes with demographic and outcome variables were evaluated using multinomial logistic and linear regressions, respectively. RESULTS TBI participants had a significantly higher comorbidity burden than controls, primarily driven by elevated rates of mental health disorders (RR=2.71, 95% confidence interval [1.37, 5.35]). Cardiovascular and physical health comorbidities were not elevated in the TBI group compared with controls. Both cohorts had 3 similar comorbidity subgroups, suggesting consistent patterns of co-occurring health conditions regardless of TBI exposure. Physical and mental health comorbidities were associated with elevated depression and anxiety symptoms and diminished HRQoL after TBI compared with controls. CONCLUSION TBI was associated with greater mental, but not physical, health comorbidities in the decades after injury. However, physical and mental health comorbidities significantly affected emotional and HRQoL status after TBI, underscoring a greater need for long-term support for individuals with TBI coping with both physical and mental health comorbidities.
Collapse
Affiliation(s)
- Amber Ayton
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; School of Psychological Sciences, Monash University, Melbourne, Australia.
| | - Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Jennie Ponsford
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
3
|
Shorland J, Douglas J, O'Halloran R. Cognitive-communication difficulties due to traumatic brain injury sustained in adults 55 years and older: A survey of speech-language pathology professional practice in Australia. INTERNATIONAL JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2024; 26:1-15. [PMID: 36920239 DOI: 10.1080/17549507.2023.2169352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
PURPOSE Limited research informs management of cognitive-communication difficulties following traumatic brain injury (TBI) in older adulthood. The purpose of this study was to understand the characteristics and practice of speech-language pathologists (SLPs) working with people who sustained TBI at ≥55 years and more specifically their management of cognitive-communication difficulties with this population. This included assessment and treatment practices, resource needs, barriers to practice, and impact to service delivery from COVID-19 restrictions. METHOD A cross-sectional survey-based design with non-probability sampling of SLPs working in Australia with adults with TBI was utilised. Descriptive statistics and content analysis were used for analysis of survey data. RESULT Fifty responses were eligible for inclusion. Participants predominantly worked in inpatient rehabilitation (48%), acute (40%), and community settings (36%). Service delivery to adults who sustained TBI at ≥55 years commonly included cognitive-communication management. Assessment and treatment trends are described. Most SLPs (74%) perceived barriers to cognitive-communication management, often relating to time and funding, that existed prior to the COVID-19 pandemic. Pandemic restrictions presented additional challenges. CONCLUSION Research relating to cognitive-communication difficulties following TBI in older adulthood is required to support evidence-based practice and inform services for older adults who sustain TBI.
Collapse
Affiliation(s)
- Joanna Shorland
- Discipline of Speech Pathology, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia
| | - Jacinta Douglas
- Living with Disability Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia
- Summer Foundation, Melbourne, Australia
| | - Robyn O'Halloran
- Discipline of Speech Pathology, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia
| |
Collapse
|
4
|
Galimberti A, Tik M, Pellegrino G, Schuler AL. Effectiveness of rTMS and tDCS treatment for chronic TBI symptoms: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110863. [PMID: 37709126 DOI: 10.1016/j.pnpbp.2023.110863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/18/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major cause of long-term disability with conventional treatments frequently falling short to restore a good quality-of-life. Non-invasive brain stimulation (NIBS) techniques have shown potential as therapeutic options for neuropsychiatric conditions, including TBI sequelae. This study aims at providing a systematic review and meta-analysis on the effectiveness of repetitive transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) on post-TBI symptoms. METHODS Fifteen randomized controlled trials (RCTs) on adult TBI patients that examined the effects of multiple treatment sessions of NIBS techniques were selected from five databases. Symptoms were clustered into four categories: depression, anxiety, headache and cognitive dysfunctions. Meta-analysis was performed using correlated and hierarchical effects models. RESULTS There were only few and heterogeneous studies with generally small sample sizes. Most studies targeted the dorsolateral prefrontal cortex (dlPFC). Overall, the effects of NIBS were small. However, there was a significant effect for overall symptoms (0.404, p = 0.031). Moreover, subgroup analyses revealed significant overall effects for anxiety (0.195, p = 0.020) and headache (0.354, p = 0.040). CONCLUSIONS To date, there is limited evidence supporting the effectiveness of NIBS concerning treatment for TBI sequelae. The observed effect sizes were modest, suggesting subtle improvements rather than drastic changes. While NIBS techniques remain promising for treating neuropsychiatric conditions, larger RCT studies with longer follow-ups, optimized stimulation parameters and standardized methodology are required to establish their efficacy in addressing TBI sequelae.
Collapse
Affiliation(s)
| | - Martin Tik
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, USA; Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Anna-Lisa Schuler
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; IRCCS San Camillo Hospital, Venice, Italy.
| |
Collapse
|
5
|
McGill MB, Schnyer DM. The Effects of Early Life History of TBI on the Progression of Normal Brain Aging with Implications for Increased Dementia Risk. ADVANCES IN NEUROBIOLOGY 2024; 42:119-143. [PMID: 39432040 DOI: 10.1007/978-3-031-69832-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
There is increasing interest in the risk conferred on neurological health by a traumatic brain injury (TBI) and how that influences the lifespan trajectory of brain aging. This chapter explores the importance of this issue, population, and methodological considerations, including injury documentation and outcome assessment. We then explore some of the findings in the neuroimaging and neuropsychological research literature examining the interaction between an earlier life history of TBI and the normal aging process. Finally, we consider the limitations of our current knowledge and where the field needs to go in the future.
Collapse
Affiliation(s)
- Makenna B McGill
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA.
| | - David M Schnyer
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
6
|
A model for estimating the brainstem volume in normal healthy individuals and its application to diffuse axonal injury patients. Sci Rep 2023; 13:33. [PMID: 36593347 PMCID: PMC9807567 DOI: 10.1038/s41598-022-27202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Diffuse axonal injury (DAI) is a subtype of traumatic brain injury that causes acute-phase consciousness disorders and widespread chronic-phase brain atrophy. Considering the importance of brainstem damage in DAI, a valid method for evaluating brainstem volume is required. We obtained volume measurements from 182 healthy adults by analyzing T1-weighted magnetic resonance images, and created an age-/sex-/intracranial volume-based quantitative model to estimate the normal healthy volume of the brainstem and cerebrum. We then applied this model to the volume measurements of 22 DAI patients, most of whom were in the long-term chronic phase and had no gross focal injury, to estimate the percentage difference in volume from the expected normal healthy volume in different brain regions, and investigated its association with the duration of posttraumatic amnesia (which is an early marker of injury severity). The average loss of the whole brainstem was 13.9%. Moreover, the percentage loss of the whole brainstem, and particularly of the pons and midbrain, was significantly negatively correlated with the duration of posttraumatic amnesia. Our findings suggest that injury severity, as denoted by the duration of posttraumatic amnesia, is among the factors affecting the chronic-phase brainstem volume in patients with DAI.
Collapse
|
7
|
Zhang W, Chen Y, Pei H. C1q and central nervous system disorders. Front Immunol 2023; 14:1145649. [PMID: 37033981 PMCID: PMC10076750 DOI: 10.3389/fimmu.2023.1145649] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
C1q is a crucial component of the complement system, which is activated through the classical pathway to perform non-specific immune functions, serving as the first line of defense against pathogens. C1q can also bind to specific receptors to carry out immune and other functions, playing a vital role in maintaining immune homeostasis and normal physiological functions. In the developing central nervous system (CNS), C1q functions in synapse formation and pruning, serving as a key player in the development and homeostasis of neuronal networks in the CNS. C1q has a close relationship with microglia and astrocytes, and under their influence, C1q may contribute to the development of CNS disorders. Furthermore, C1q can also have independent effects on neurological disorders, producing either beneficial or detrimental outcomes. Most of the evidence for these functions comes from animal models, with some also from human specimen studies. C1q is now emerging as a promising target for the treatment of a variety of diseases, and clinical trials are already underway for CNS disorders. This article highlights the role of C1q in CNS diseases, offering new directions for the diagnosis and treatment of these conditions.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Emergency Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of General Practice, Xingyang Sishui Central Health Center, Zhengzhou, China
| | - Yuan Chen
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Pei
- Department of Emergency Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hui Pei,
| |
Collapse
|
8
|
Ritzel R, Wu J. Functional phenotyping of microglia highlights the dark relationship between chronic traumatic brain injury and normal age-related pathology. Neural Regen Res 2023; 18:811-813. [DOI: 10.4103/1673-5374.353487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
La Rocca M, Barisano G, Bennett A, Garner R, Engel J, Gilmore EJ, McArthur DL, Rosenthal E, Stanis J, Vespa P, Willyerd F, Zimmermann LL, Toga AW, Duncan D. Distribution and volume analysis of early hemorrhagic contusions by MRI after traumatic brain injury: a preliminary report of the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx). Brain Imaging Behav 2021; 15:2804-2812. [PMID: 34985618 PMCID: PMC9433738 DOI: 10.1007/s11682-021-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 01/07/2023]
Abstract
Traumatic brain injury (TBI) can produce heterogeneous injury patterns including a variety of hemorrhagic and non-hemorrhagic lesions. The impact of lesion size, location, and interaction between total number and location of contusions may influence the occurrence of seizures after TBI. We report our methodologic approach to this question in this preliminary report of the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx). We describe lesion identification and segmentation of hemorrhagic contusions by early posttraumatic magnetic resonance imaging (MRI). We describe the preliminary methods of manual lesion segmentation in an initial cohort of 32 TBI patients from the EpiBioS4Rx cohort and the preliminary association of hemorrhagic contusion and edema location and volume to seizure incidence.
Collapse
Affiliation(s)
- Marianna La Rocca
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Giuseppe Barisano
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexis Bennett
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rachael Garner
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jerome Engel
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Emily J. Gilmore
- Comprehensive Epilepsy Center, Department of Neurology, Yale University, New Haven, CT, USA
| | - David L. McArthur
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Eric Rosenthal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James Stanis
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paul Vespa
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | - Arthur W. Toga
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dominique Duncan
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
10
|
Mollayeva T, Mollayeva S, Pacheco N, Colantonio A. Systematic Review of Sex and Gender Effects in Traumatic Brain Injury: Equity in Clinical and Functional Outcomes. Front Neurol 2021; 12:678971. [PMID: 34566834 PMCID: PMC8461184 DOI: 10.3389/fneur.2021.678971] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/09/2021] [Indexed: 01/12/2023] Open
Abstract
Background: Although traumatic brain injury (TBI) is a leading cause of death and disability in male and female patients worldwide, little is known about the effect of sex and gender on TBI outcomes. Objectives: This systematic review summarizes the evidence on the effect of sex and gender on core TBI outcomes. Methods: All English-language studies from six literature databases that addressed core outcomes in adults with TBI and included sex or gender, TBI severity, and age in their analyses were considered eligible. Two reviewers extracted data, and two reviewers assessed study quality using tools recommended by the National Institutes of Health. The results were sorted according to time post-injury, injury severity, gender equity ranking of the study's country of origin, and outcomes studied. The results from the included studies were grouped based on the approach taken in reporting their respective findings. Results and Limitations: Of 172 articles assessed, 58 studies were selected, comprising 1, 265, 955 participants with TBI (67% male across all studies) of all injury severities. All studies were conducted in countries with a very high or high human development index, while the Gender Inequality Index (GII) varied. While the heterogeneity across studies limited any meaningful conclusions with respect to the role of sex and gender, we did observe that as gender equality ranking improved, differences between male and female participants in outcomes would diminish. Inclusion of social equity parameters in the studies was limited. Conclusions and Implications: The non-uniform findings observed bring forth the need to develop and use a comprehensive and consistent methodology in the study of sex and gender post-TBI, incorporating social equity parameters to uncover the potential social underpinnings of gender effects on health and functional outcomes. Systematic Review Registration: CRD42018098697.
Collapse
Affiliation(s)
- Tatyana Mollayeva
- KITE Toronto Rehabilitation Institute University Health Network, Toronto, ON, Canada.,Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Acquired Brain Injury Research Lab, Temerty Faculty of Medicine University of Toronto, Toronto, ON, Canada.,School of Occupational Therapy, Western University, London, ON, Canada
| | - Shirin Mollayeva
- Acquired Brain Injury Research Lab, Temerty Faculty of Medicine University of Toronto, Toronto, ON, Canada
| | - Nicole Pacheco
- Acquired Brain Injury Research Lab, Temerty Faculty of Medicine University of Toronto, Toronto, ON, Canada.,School of Occupational Therapy, Western University, London, ON, Canada
| | - Angela Colantonio
- KITE Toronto Rehabilitation Institute University Health Network, Toronto, ON, Canada.,Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Acquired Brain Injury Research Lab, Temerty Faculty of Medicine University of Toronto, Toronto, ON, Canada.,Department of Epidemiology, Dalla Lana School of Public Health University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Acute pediatric traumatic brain injury severity predicts long-term verbal memory performance through suppression by white matter integrity on diffusion tensor imaging. Brain Imaging Behav 2021; 14:1626-1637. [PMID: 31134584 DOI: 10.1007/s11682-019-00093-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mediation analysis was used to investigate the role of white matter integrity in the relationship between injury severity and verbal memory performance in participants with chronic pediatric traumatic brain injury (TBI). DTI tractography was used to measure fractional anisotropy (FA) within the corpus callosum, fornix, cingulum bundles, perforant pathways, and uncinate fasciculi. Injury severity was indexed using Glasgow Coma Scale (GCS) scores obtained at the time of the injury. Verbal memory was measured by performance on the long-delay free recall (LDFR) trial of the California Verbal Learning Test-Children's version. Participants were between the ages of 10-18 and included 21 children with TBI (injured before age 9) and 19 typically-developing children (TDC). Children with TBI showed lower FA across all pathways and poorer LDFR performance relative to TDC. Within the TBI group, mediation analysis revealed neither a significant total effect of GCS on LDFR nor significant direct effects of GCS on LDFR across pathways; however, the indirect effects of GCS on LDFR through FA of the corpus callosum, left perforant pathway, and left uncinate fasciculus were significant and opposite in sign to their respective direct effects. These results suggests that the predictive validity of GCS for LDFR is initially suppressed by the substantial variance accounted for by FA, which is uncorrelated with GCS, and the predictive validity of GCS increases only when FA is considered, and the opposing path is controlled. These findings illustrate the complex associations between acute injury severity, white matter pathways, and verbal memory several years following pediatric TBI.
Collapse
|
12
|
Mol TI, van Bennekom CA, Schepers VP, Ter Hoeve N, Kruitwagen-van Reenen ET, Visser-Meily JM, Post MW. Differences in Societal Participation Across Diagnostic Groups: Secondary Analyses of 8 Studies Using the Utrecht Scale for Evaluation of Rehabilitation-Participation. Arch Phys Med Rehabil 2021; 102:1735-1745. [PMID: 33757804 DOI: 10.1016/j.apmr.2021.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To determine differences in participation problems between diagnostic groups and to examine diagnosis as a determinant of participation with and without statistically accounting for confounders. DESIGN Secondary analyses of data from 8 studies. SETTING Community, the Netherlands. PARTICIPANTS Participants (N=1735) in diagnostic groups: stroke (n=534), subarachnoid hemorrhage (n=104), other acquired brain injury (n=163), progressive neurologic diseases (n=112), acute coronary syndrome (n=536), and spinal cord injury (n=286). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Participation was measured with the Utrecht Scale for Evaluation of Rehabilitation-Participation. This measure has 3 scales: Restrictions, Satisfaction, and Frequency. In this study, scores were also computed for 3 domains across these scales: Productivity, Leisure, and Social. Scores ranged from 0 (worst) up to 100 (best). Possible confounders were age, sex, level of education, marital status, and time since onset of the condition. RESULTS Significant differences were found in levels of participation between diagnostic groups. Individuals with acute coronary syndrome showed better participation scores in all scales and domains compared with most or all other diagnostic groups, except for the Social domain. Individuals with progressive neurologic diseases showed the lowest (worst) Restriction and Satisfaction scores, whereas those with stroke showed the lowest Frequency scores. After correcting for confounders, diagnosis explained significant proportions of the variance of participation (Frequency, 6.4%; Restrictions, 15.1%; Satisfaction, 5.1%; Productivity, 13.2%; Leisure, 13.8%; Social, 6.9%). CONCLUSIONS Participation problems occurred in all 6 diagnostic groups within this study. Differences were found in participation between diagnostic groups, demonstrating diagnosis-specific participation profiles, including after correcting for confounders.
Collapse
Affiliation(s)
- Tanja I Mol
- Center of Excellence for Rehabilitation Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, and De Hoogstraat Rehabilitation, Utrecht; University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen
| | - Coen A van Bennekom
- Heliomare Rehabilitation Center, Research and Development and Institute of Vocational Assessment and Education, Wijk aan Zee; Academic Medical Center, University of Amsterdam, Coronel Institute of Occupational Health, Amsterdam
| | - Vera P Schepers
- Center of Excellence for Rehabilitation Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, and De Hoogstraat Rehabilitation, Utrecht; Department of Rehabilitation, Physical Therapy Science & Sports, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht
| | - Nienke Ter Hoeve
- Capri Cardiac Rehabilitation, Rotterdam; Department of Rehabilitation Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Esther T Kruitwagen-van Reenen
- Center of Excellence for Rehabilitation Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, and De Hoogstraat Rehabilitation, Utrecht; Department of Rehabilitation, Physical Therapy Science & Sports, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht
| | - Johanna M Visser-Meily
- Center of Excellence for Rehabilitation Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, and De Hoogstraat Rehabilitation, Utrecht; Department of Rehabilitation, Physical Therapy Science & Sports, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht
| | - Marcel W Post
- Center of Excellence for Rehabilitation Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, and De Hoogstraat Rehabilitation, Utrecht; University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen.
| |
Collapse
|
13
|
Biegon A. Considering Biological Sex in Traumatic Brain Injury. Front Neurol 2021; 12:576366. [PMID: 33643182 PMCID: PMC7902907 DOI: 10.3389/fneur.2021.576366] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/08/2021] [Indexed: 11/23/2022] Open
Abstract
Published epidemiological studies of traumatic brain injury (TBI) of all severities consistently report higher incidence in men. Recent increases in the participation of women in sports and active military service as well as increasing awareness of the very large number of women who sustain but do not report TBI as a result of intimate partner violence (IPV) suggest that the number of women with TBI is significantly larger than previously believed. Women are also grossly under-represented in clinical and natural history studies of TBI, most of which include relatively small numbers of women, ignore the role of sex- and age-related gonadal hormone levels, and report conflicting results. The emerging picture from recent studies powered to detect effects of biological sex as well as age (as a surrogate of hormonal status) suggest young (i.e., premenopausal) women are more likely to die from TBI relative to men of the same age group, but this is reversed in the 6th and 7th decades of life, coinciding with postmenopausal status in women. New data from concussion studies in young male and female athletes extend this finding to mild TBI, since female athletes who sustained mild TBI are significantly more likely to report more symptoms than males. Studies including information on gonadal hormone status at the time of injury are still too scarce and small to draw reliable conclusions, so there is an urgent need to include biological sex and gonadal hormone status in the design and analysis of future studies of TBI.
Collapse
Affiliation(s)
- Anat Biegon
- Department of Radiology and Neurology, Stony Brook University School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
14
|
Ponsford J, Carrier S, Hicks A, McKay A. Assessment and Management of Patients in the Acute Stages of Recovery after Traumatic Brain Injury in Adults: A Worldwide Survey. J Neurotrauma 2020; 38:1060-1067. [PMID: 33121375 DOI: 10.1089/neu.2020.7299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most individuals with traumatic brain injury (TBI) experience a period of confusion after emergence from coma, termed post-traumatic amnesia, post-traumatic confusional state, or delirium. Recent guidelines suggest the importance of assessment and consistent management during this phase, but current practice worldwide remains unknown. This survey aimed to elucidate current international practice in assessment and treatment of patients in the acute stages of recovery after TBI. The web-based survey was distributed to clinicians working with patients with acute TBI. There were 400 participants (68.8% females), from 41 countries, mostly neuropsychologists, rehabilitation physicians, and occupational therapists (OTs), with an average 12.8 years of experience. Of those working with adults (n = 376, 94%), most described this acute period as post-traumatic amnesia and used its duration to indicate injury severity. More than 85% used a tool to assess patients; in order of frequency, the Glasgow Coma Scale (GCS), Westmead PTA Scale (WPTAS), Galveston Orientation and Amnesia Test, Rancho Los Amigos Scale, and O-Log. Meeting criteria on the assessment tool or clinical judgment determined emergence from this phase, indicated by recovery of orientation, day-to-day memories, and ability to follow commands or participate in rehabilitation. Most patients had physiotherapy, OT, speech therapy, and environmental changes, with a third of participants indicating sedating medication was prescribed during this phase. Findings suggest that, consistent with guidelines, PTA is a widely recognized and measured TBI recovery phase, used to determine injury severity and readiness for therapy.
Collapse
Affiliation(s)
- Jennie Ponsford
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia.,Monash-Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Victoria, Australia.,Epworth Healthcare, Melbourne, Victoria, Australia
| | - Sarah Carrier
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia.,Monash-Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Victoria, Australia
| | - Amelia Hicks
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia.,Monash-Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Victoria, Australia
| | - Adam McKay
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia.,Monash-Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Victoria, Australia.,Epworth Healthcare, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Cusimano MD, Zhang S, Huang G, Wolfe D, Carpino M. Associations between Traumatic Brain Injury, Drug Abuse, Alcohol Use, Adverse Childhood Events, and Aggression Levels in Individuals with Foster Care History. Neurotrauma Rep 2020; 1:241-252. [PMID: 33409507 PMCID: PMC7774879 DOI: 10.1089/neur.2020.0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nearly 50,000 Canadian children live in foster care. Compared with their peers, foster children experience greater independence and decreased guidance, predisposing them to harmful exposures such as traumatic brain injury (TBI), illicit drugs, and alcohol. Foster children also report a higher level of childhood abuse compared with the general population. This study aimed to: 1) investigate substance/alcohol use disorder, adverse childhood events (ACE), TBI, aggression levels, and the difference between normalized percentages of brain regions of interest (ROIs) in a sample of Canadian youths with and without foster care history; 2) determine the prevalence of substance/alcohol use disorder, ACE, and aggression levels within individuals with foster care history when stratified by likelihood of TBI; and 3) determine the significant correlates of elevated aggression levels within this population. Participants completed standardized questionnaires that measured the prevalence of TBI, substance and alcohol use disorder, ACE, and aggression. Magnetic resonance imaging (MRI) was used to measure differences in brain ROI. Regression and network analysis were used to study interactions between variables. Seventy-four participants (51 individuals with foster care history and 23 age-matched controls from the general population) completed standardized questionnaires. Fifty-five of these individuals (39 foster participants and 16 controls) underwent brain MRI. Foster participants had higher prevalence of substance use disorder (p < 0.001), alcohol use disorder (p = 0.003), ACE (p < 0.001), and elevated aggression levels (p < 0.001) than healthy controls. No significant difference was found among brain ROI. The prevalence of TBI in foster participants was 65%. Foster participants with moderate or high likelihood of TBI exposure had higher levels of drug use and aggression than those with no or low likelihood of exposure. Brain volumes were not associated with substance/alcohol use disorder or ACE. No significant associations were found between aggression levels and the studied variables.
Collapse
Affiliation(s)
- Michael D Cusimano
- Injury Prevention Research Office, Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Stanley Zhang
- Injury Prevention Research Office, Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Grace Huang
- Injury Prevention Research Office, Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - David Wolfe
- Center for School Mental Health, Faculty of Education, Western University, London, Ontario, Canada
| | - Melissa Carpino
- Injury Prevention Research Office, Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Östberg A, Ledig C, Katila A, Maanpää HR, Posti JP, Takala R, Tallus J, Glocker B, Rueckert D, Tenovuo O. Volume Change in Frontal Cholinergic Structures After Traumatic Brain Injury and Cognitive Outcome. Front Neurol 2020; 11:832. [PMID: 32903569 PMCID: PMC7438550 DOI: 10.3389/fneur.2020.00832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/03/2020] [Indexed: 01/02/2023] Open
Abstract
The cholinergic nuclei in the basal forebrain innervate frontal cortical structures regulating attention. Our aim was to investigate if cognitive test results measuring attention relate to the longitudinal volume change of cholinergically innervated structures following traumatic brain injury (TBI). During the prospective, observational TBIcare project patients with all severities of TBI (n = 114) and controls with acute orthopedic injuries (n = 17) were recruited. Head MRI was obtained in both acute (mean 2 weeks post-injury) and late (mean 8 months) time points. T1-weighted 3D MR images were analyzed with an automatic segmentation method to evaluate longitudinal, structural brain volume change. The cognitive outcome was assessed with the Cambridge Neuropsychological Test Automated Battery (CANTAB). Analyses included 16 frontal cortical structures, of which four showed a significant correlation between post-traumatic volume change and the CANTAB test results. The strongest correlation was found between the volume loss of the supplementary motor cortex and motor screening task results (R-sq 0.16, p < 0.0001), where poorer test results correlated with greater atrophy. Of the measured sum structures, greater cortical gray matter atrophy rate showed a significant correlation with the poorer CANTAB test results. TBI caused volume loss of frontal cortical structures that are heavily innervated by cholinergic neurons is associated with neuropsychological test results measuring attention.
Collapse
Affiliation(s)
- Anna Östberg
- Division of Clinical Neurosciences, Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Neurology, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Christian Ledig
- Department of Computing, Imperial College London, London, United Kingdom
| | - Ari Katila
- Department of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland
| | - Henna-Riikka Maanpää
- Department of Neurology, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Jussi P Posti
- Division of Clinical Neurosciences, Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Neurology, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Riikka Takala
- Department of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland
| | - Jussi Tallus
- Department of Neurology, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Ben Glocker
- Department of Computing, Imperial College London, London, United Kingdom
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, United Kingdom
| | - Olli Tenovuo
- Division of Clinical Neurosciences, Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Neurology, Institute of Clinical Medicine, University of Turku, Turku, Finland
| |
Collapse
|
17
|
Early AN, Gorman AA, Van Eldik LJ, Bachstetter AD, Morganti JM. Effects of advanced age upon astrocyte-specific responses to acute traumatic brain injury in mice. J Neuroinflammation 2020; 17:115. [PMID: 32290848 PMCID: PMC7158022 DOI: 10.1186/s12974-020-01800-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/01/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Older-age individuals are at the highest risk for disability from a traumatic brain injury (TBI). Astrocytes are the most numerous glia in the brain, necessary for brain function, yet there is little known about unique responses of astrocytes in the aged-brain following TBI. METHODS Our approach examined astrocytes in young adult, 4-month-old, versus aged, 18-month-old mice, at 1, 3, and 7 days post-TBI. We selected these time points to span the critical period in the transition from acute injury to presumably irreversible tissue damage and disability. Two approaches were used to define the astrocyte contribution to TBI by age interaction: (1) tissue histology and morphological phenotyping, and (2) transcriptomics on enriched astrocytes from the injured brain. RESULTS Aging was found to have a profound effect on the TBI-induced loss of astrocyte function needed for maintaining water transport and edema-namely, aquaporin-4. The aged brain also demonstrated a progressive exacerbation of astrogliosis as a function of time after injury. Moreover, clasmatodendrosis, an underrecognized astrogliopathy, was found to be significantly increased in the aged brain, but not in the young brain. As a function of TBI, we observed a transitory refraction in the number of these astrocytes, which rebounded by 7 days post-injury in the aged brain. Transcriptomic data demonstrated disproportionate changes in genes attributed to reactive astrocytes, inflammatory response, complement pathway, and synaptic support in aged mice following TBI compared to young mice. Additionally, our data highlight that TBI did not evoke a clear alignment with the previously defined "A1/A2" dichotomy of reactive astrogliosis. CONCLUSIONS Overall, our findings point toward a progressive phenotype of aged astrocytes following TBI that we hypothesize to be maladaptive, shedding new insights into potentially modifiable astrocyte-specific mechanisms that may underlie increased fragility of the aged brain to trauma.
Collapse
Affiliation(s)
- Alexandria N Early
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Amy A Gorman
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Josh M Morganti
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA. .,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA. .,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
18
|
Warnock A, Toomey LM, Wright AJ, Fisher K, Won Y, Anyaegbu C, Fitzgerald M. Damage Mechanisms to Oligodendrocytes and White Matter in Central Nervous System Injury: The Australian Context. J Neurotrauma 2020; 37:739-769. [DOI: 10.1089/neu.2019.6890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Lillian M. Toomey
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Alexander J. Wright
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Katherine Fisher
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yerim Won
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
19
|
Fraser EE, Downing MG, Biernacki K, McKenzie DP, Ponsford JL. Cognitive Reserve and Age Predict Cognitive Recovery after Mild to Severe Traumatic Brain Injury. J Neurotrauma 2019; 36:2753-2761. [DOI: 10.1089/neu.2019.6430] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Elinor E. Fraser
- Monash-Epworth Rehabilitation Research Centre, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia
| | - Marina G. Downing
- Monash-Epworth Rehabilitation Research Centre, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia
| | - Kathryn Biernacki
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey
| | - Dean P. McKenzie
- Epworth HealthCare, Melbourne, Victoria, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Jennie L. Ponsford
- Monash-Epworth Rehabilitation Research Centre, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
The Effects of Moderate-to-Severe Traumatic Brain Injury on Episodic Memory: a Meta-Analysis. Neuropsychol Rev 2019; 29:270-287. [DOI: 10.1007/s11065-019-09413-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 07/30/2019] [Indexed: 12/22/2022]
|
21
|
Relationships Between Subcortical Shape Measures and Subjective Symptom Reporting in US Service Members With Mild Traumatic Brain Injury. J Head Trauma Rehabil 2019. [PMID: 29517591 DOI: 10.1097/htr.0000000000000379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To assess interactions of subcortical structure with subjective symptom reporting associated with mild traumatic brain injury (mTBI), using advanced shape analysis derived from volumetric MRI. PARTICIPANTS Seventy-six cognitively symptomatic individuals with mTBI and 59 service members sustaining only orthopedic injury. DESIGN Descriptive cross-sectional study. MAIN MEASURES Self-report symptom measures included the PTSD Checklist-Military, Neurobehavioral Symptom Inventory, and Symptom Checklist-90-Revised. High-dimensional measures of shape characteristics were generated from volumetric MRI for 7 subcortical structures in addition to standard volume measures. RESULTS Several significant interactions between group status and symptom measures were observed across the various shape measures. These interactions were revealed in the right thalamus and globus pallidus for each of the shape measures, indicating differences in structure thickness and expansion/contraction for these regions. No relationships with volume were observed. CONCLUSION Results provide evidence for the sensitivity of shape measures in differentiating symptomatic mTBI individuals from controls, while volumetric measures did not exhibit this same sensitivity. Disruptions to thalamic nuclei identified here highlight the role of the thalamus in the spectrum of symptoms associated with mTBI. Additional work is needed to prospectively, and longitudinally, assess these measures along with cognitive performance and advanced multimodal imaging methods to extend the utility of shape analysis in relation to functional outcomes in this population.
Collapse
|
22
|
Traumatic Brain Injury in Aged Mice Induces Chronic Microglia Activation, Synapse Loss, and Complement-Dependent Memory Deficits. Int J Mol Sci 2018; 19:ijms19123753. [PMID: 30486287 PMCID: PMC6321529 DOI: 10.3390/ijms19123753] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/01/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) is of particular concern for the aging community since there is both increased incidence of TBI and decreased functional recovery in this population. In addition, TBI is the strongest environmental risk factor for development of Alzheimer’s disease and other dementia-related neurodegenerative disorders. Critical changes that affect cognition take place over time following the initial insult. Our previous work identified immune system activation as a key contributor to cognitive deficits observed in aged animals. Using a focal contusion model in the current study, we demonstrate a brain lesion and cavitation formation, as well as prolonged blood–brain barrier breakdown. These changes were associated with a prolonged inflammatory response, characterized by increased microglial cell number and phagocytic activity 30 days post injury, corresponding to significant memory deficits. We next aimed to identify the injury-induced cellular and molecular changes that lead to chronic cognitive deficits in aged animals, and measured increases in complement initiation components C1q, C3, and CR3, which are known to regulate microglial–synapse interactions. Specifically, we found significant accumulation of C1q on synapses within the hippocampus, which was paralleled by synapse loss 30 days post injury. We used genetic and pharmacological approaches to determine the mechanistic role of complement initiation on cognitive loss in aging animals after TBI. Notably, both genetic and pharmacological blockade of the complement pathway prevented memory deficits in aged injured animals. Thus, therapeutically targeting early components of the complement cascade represents a significant avenue for possible clinical intervention following TBI in the aging population.
Collapse
|
23
|
Abstract
OBJECTIVES Anecdotal reports suggest that following traumatic brain injury (TBI) retrograde memories are initially impaired and recover in order of remoteness. However, there has been limited empirical research investigating whether a negative gradient in retrograde amnesia-relative preservation of remote over recent memory-exists during post-traumatic amnesia (PTA) compared with the acute phase post-emergence. This study used a repeated-measures design to examine the pattern of personal semantic (PS) memory performance during PTA and within two weeks of emergence to improve understanding of the nature of the memory deficit during PTA and its relationship with recovery. METHODS Twenty patients with moderate-severe TBI and 20 healthy controls (HCs) were administered the Personal Semantic Schedule of the Autobiographical Memory Interview. The TBI group was assessed once during PTA and post-emergence. Analysis of variance was used to compare the gradient across lifetime periods during PTA relative to post-emergence, and between groups. RESULTS PS memory was significantly lower during PTA than post-emergence from PTA, with no relative preservation of remote memories. The TBI group was still impaired relative to HCs following emergence from PTA. Lower overall PS memory scores during PTA were associated with increased days to emerge from PTA post-interview. CONCLUSIONS These results suggest a global impairment in PS memory across lifetime periods particularly during PTA, but still present within 2 weeks of emergence from PTA. PS memory performance may be sensitive to the diffuse nature of TBI and may, therefore, function as a clinically valuable indicator of the likely time to emerge from PTA. (JINS, 2018, 24, 1064-1072).
Collapse
|
24
|
Wardlaw C, Hicks AJ, Sherer M, Ponsford JL. Psychological Resilience Is Associated With Participation Outcomes Following Mild to Severe Traumatic Brain Injury. Front Neurol 2018; 9:563. [PMID: 30061858 PMCID: PMC6054998 DOI: 10.3389/fneur.2018.00563] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/22/2018] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) causes physical and cognitive-behavioral impairments that reduce participation in employment, leisure, and social relationships. Demographic and injury-related factors account for a small proportion of variance in participation post-injury. Personal factors such as resilience may also impact outcomes. This study aimed to examine the association of resilience alongside demographic, injury-related, cognitive, emotional, and family factors with participation following TBI. It was hypothesized that resilience would make an independent contribution to participation outcomes after TBI. Participants included 245 individuals with mild-severe TBI [Mage = 44.41, SDage = 16.09; post traumatic amnesia (PTA) duration M 24.95 days, SD 45.99] who completed the Participation Assessment with Recombined Tools-Objective (PART-O), TBI Quality of Life Resilience scale, Family Assessment Device General Functioning Scale, Rey Auditory Verbal Learning Test, National Adult Reading Test, and Hospital Anxiety and Depression Scale an average 4.63 years post-injury (SD 3.02, R 0.5-13). Multiple regression analyses were used to examine predictors of PART-O scores as the participation measure. Variables in the model accounted for a significant 38% of the variability in participation outcomes, F(13, 211) = 9.93, p < 0.05, R2 = 0.38, adjusted R2 = 0.34. Resilience was a significant predictor of higher participation, along with shorter PTA duration, more years since injury, higher education and IQ, and younger age. Mediation analyses revealed depression mediated the relationship between resilience and participation. As greater resilience may protect against depression and enhance participation this may be a focus of intervention.
Collapse
Affiliation(s)
- Carla Wardlaw
- Monash-Epworth Rehabilitation Research Centre, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, VIC, Australia
| | - Amelia J. Hicks
- Monash-Epworth Rehabilitation Research Centre, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, VIC, Australia
| | - Mark Sherer
- TIRR Memorial Hermann, Houston, TX, United States
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States
| | - Jennie L. Ponsford
- Monash-Epworth Rehabilitation Research Centre, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Persistent Infiltration and Impaired Response of Peripherally-Derived Monocytes after Traumatic Brain Injury in the Aged Brain. Int J Mol Sci 2018; 19:ijms19061616. [PMID: 29848996 PMCID: PMC6032263 DOI: 10.3390/ijms19061616] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause for neurological disabilities world-wide. TBI occurs most frequently among the elderly population, and elderly TBI survivors suffer from reduced recovery and poorer quality of life. The effect of age on the pathophysiology of TBI is still poorly understood. We previously established that peripherally-derived monocytes (CCR2+) infiltrate the injured brain and contribute to chronic TBI-induced cognitive deficits in young animals. Furthermore, age was shown to amplify monocyte infiltration acutely after injury. In the current study, we investigated the impact of age on the subchronic response of peripherally-derived monocytes (CD45hi; CCR2+) and their role in the development of chronic cognitive deficits. In the aged brain, there was a significant increase in the number of peripherally-derived monocytes after injury compared to young, injured animals. The infiltration rate of peripherally-derived monocytes remained elevated subchronically and corresponded with enhanced expression of CCR2 chemotactic ligands. Interestingly, the myeloid cell populations observed in injured aged brains had impaired anti-inflammatory responses compared to those in young animals. Additionally, in the aged animals, there was an expansion of the blood CCR2+ monocyte population after injury that was not present in the young animals. Importantly, knocking out CCR2 to inhibit infiltration of peripherally-derived monocytes prevented chronic TBI-induced spatial memory deficits in the aged mice. Altogether, these results demonstrate the critical effects of age on the peripherally-derived monocyte response during the progression of TBI pathophysiology.
Collapse
|
26
|
Gardner RC, Dams-O'Connor K, Morrissey MR, Manley GT. Geriatric Traumatic Brain Injury: Epidemiology, Outcomes, Knowledge Gaps, and Future Directions. J Neurotrauma 2018; 35:889-906. [PMID: 29212411 PMCID: PMC5865621 DOI: 10.1089/neu.2017.5371] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This review of the literature on traumatic brain injury (TBI) in older adults focuses on incident TBI sustained in older adulthood ("geriatric TBI") rather than on the separate, but related, topic of older adults with a history of earlier-life TBI. We describe the epidemiology of geriatric TBI, the impact of comorbidities and pre-injury function on TBI risk and outcomes, diagnostic testing, management issues, outcomes, and critical directions for future research. The highest incidence of TBI-related emergency department visits, hospitalizations, and deaths occur in older adults. Higher morbidity and mortality rates among older versus younger individuals with TBI may contribute to an assumption of futility about aggressive management of geriatric TBI. However, many older adults with TBI respond well to aggressive management and rehabilitation, suggesting that chronological age and TBI severity alone are inadequate prognostic markers. Yet there are few geriatric-specific TBI guidelines to assist with complex management decisions, and TBI prognostic models do not perform optimally in this population. Major barriers in management of geriatric TBI include under-representation of older adults in TBI research, lack of systematic measurement of pre-injury health that may be a better predictor of outcome and response to treatment than age and TBI severity alone, and lack of geriatric-specific TBI common data elements (CDEs). This review highlights the urgent need to develop more age-inclusive TBI research protocols, geriatric TBI CDEs, geriatric TBI prognostic models, and evidence-based geriatric TBI consensus management guidelines aimed at improving short- and long-term outcomes for the large and growing geriatric TBI population.
Collapse
Affiliation(s)
- Raquel C. Gardner
- Department of Neurology, University of California San Francisco, and San Francisco VA Medical Center, San Francisco, California
- University of California San Francisco Weill Institute for Neurosciences, San Francisco, California
| | - Kristen Dams-O'Connor
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Molly Rose Morrissey
- Department of Neurosurgery, Brain and Spinal Injury Center, University of California San Francisco and Zuckerberg San Francisco General Hospital, San Francisco, California
| | - Geoffrey T. Manley
- University of California San Francisco Weill Institute for Neurosciences, San Francisco, California
- Department of Neurosurgery, Brain and Spinal Injury Center, University of California San Francisco and Zuckerberg San Francisco General Hospital, San Francisco, California
| |
Collapse
|
27
|
Moe HK, Moen KG, Skandsen T, Kvistad KA, Laureys S, Håberg A, Vik A. The Influence of Traumatic Axonal Injury in Thalamus and Brainstem on Level of Consciousness at Scene or Admission: A Clinical Magnetic Resonance Imaging Study. J Neurotrauma 2018; 35:975-984. [PMID: 29334825 PMCID: PMC5865618 DOI: 10.1089/neu.2017.5252] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to investigate how traumatic axonal injury (TAI) lesions in the thalamus, basal ganglia, and brainstem on clinical brain magnetic resonance imaging (MRI) are associated with level of consciousness in the acute phase in patients with moderate to severe traumatic brain injury (TBI). There were 158 patients with moderate to severe TBI (7-70 years) with early 1.5T MRI (median 7 days, range 0-35) without mass lesion included prospectively. Glasgow Coma Scale (GCS) scores were registered before intubation or at admission. The TAI lesions were identified in T2*gradient echo, fluid attenuated inversion recovery, and diffusion weighted imaging scans. In addition to registering TAI lesions in hemispheric white matter and the corpus callosum, TAI lesions in the thalamus, basal ganglia, and brainstem were classified as uni- or bilateral. Twenty percent of patients had TAI lesions in the thalamus (7% bilateral), 18% in basal ganglia (2% bilateral), and 29% in the brainstem (9% bilateral). One of 26 bilateral lesions in the thalamus or brainstem was found on computed tomography. The GCS scores were lower in patients with bilateral lesions in the thalamus (median four) and brainstem (median five) than in those with corresponding unilateral lesions (median six and eight, p = 0.002 and 0.022). The TAI locations most associated with low GCS scores in univariable ordinal regression analyses were bilateral TAI lesions in the thalamus (odds ratio [OR] 35.8; confidence interval [CI: 10.5-121.8], p < 0.001), followed by bilateral lesions in basal ganglia (OR 13.1 [CI: 2.0-88.2], p = 0.008) and bilateral lesions in the brainstem (OR 11.4 [CI: 4.0-32.2], p < 0.001). This Trondheim TBI study showed that patients with bilateral TAI lesions in the thalamus, basal ganglia, or brainstem had particularly low consciousness at admission. We suggest these bilateral lesions should be evaluated further as possible biomarkers in a new TAI-MRI classification as a worst grade, because they could explain low consciousness in patients without mass lesions.
Collapse
Affiliation(s)
- Hans Kristian Moe
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kent Gøran Moen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Medical Imaging, Levanger Hospital, Levanger, Norway
| | - Toril Skandsen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olavs University Hospital, Trondheim, Norway
| | - Kjell Arne Kvistad
- Department of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Steven Laureys
- Coma Science Group, Cyclotron Research Center and University Hospital of Liège, University of Liège, Liège, Belgium
| | - Asta Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Anne Vik
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Neurosurgery, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
28
|
Rojas N, Laguë-Beauvais M, Belisle A, Lamoureux J, AlSideiri G, Marcoux J, Maleki M, Alturki AY, Anchouche S, Alquraini H, Feyz M, Guise ED. Frontal assessment battery (FAB) performance following traumatic brain injury hospitalized in an acute care setting. APPLIED NEUROPSYCHOLOGY-ADULT 2018; 26:319-330. [DOI: 10.1080/23279095.2017.1422506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Natalia Rojas
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
- Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR), Montreal, Quebec, Canada
| | - Maude Laguë-Beauvais
- Traumatic Brain Injury Program, McGill University Health Center, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Arielle Belisle
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
- Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR), Montreal, Quebec, Canada
| | - Julie Lamoureux
- Department of Preventive Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Ghusn AlSideiri
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Judith Marcoux
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Mohammed Maleki
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Abdulrahman Y. Alturki
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Neurosurgery, National Neurosciences Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Sonia Anchouche
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Hanan Alquraini
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Mitra Feyz
- Traumatic Brain Injury Program, McGill University Health Center, Montreal, Quebec, Canada
| | - Elaine de Guise
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
- Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR), Montreal, Quebec, Canada
- Research Institute, McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Ledig C, Kamnitsas K, Koikkalainen J, Posti JP, Takala RSK, Katila A, Frantzén J, Ala-Seppälä H, Kyllönen A, Maanpää HR, Tallus J, Lötjönen J, Glocker B, Tenovuo O, Rueckert D. Regional brain morphometry in patients with traumatic brain injury based on acute- and chronic-phase magnetic resonance imaging. PLoS One 2017; 12:e0188152. [PMID: 29182625 PMCID: PMC5705131 DOI: 10.1371/journal.pone.0188152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 11/01/2017] [Indexed: 02/02/2023] Open
Abstract
Traumatic brain injury (TBI) is caused by a sudden external force and can be very heterogeneous in its manifestation. In this work, we analyse T1-weighted magnetic resonance (MR) brain images that were prospectively acquired from patients who sustained mild to severe TBI. We investigate the potential of a recently proposed automatic segmentation method to support the outcome prediction of TBI. Specifically, we extract meaningful cross-sectional and longitudinal measurements from acute- and chronic-phase MR images. We calculate regional volume and asymmetry features at the acute/subacute stage of the injury (median: 19 days after injury), to predict the disability outcome of 67 patients at the chronic disease stage (median: 229 days after injury). Our results indicate that small structural volumes in the acute stage (e.g. of the hippocampus, accumbens, amygdala) can be strong predictors for unfavourable disease outcome. Further, group differences in atrophy are investigated. We find that patients with unfavourable outcome show increased atrophy. Among patients with severe disability outcome we observed a significantly higher mean reduction of cerebral white matter (3.1%) as compared to patients with low disability outcome (0.7%).
Collapse
Affiliation(s)
- Christian Ledig
- Imperial College London, Department of Computing, London, United Kingdom
- * E-mail:
| | | | - Juha Koikkalainen
- Combinostics, Tampere, Finland
- VTT Technical Research Centre of Finland, Tampere, Finland
| | - Jussi P. Posti
- Department of Clinical Medicine, University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku Brain Injury Centre, Turku University Hospital, Turku, Finland
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland
| | - Riikka S. K. Takala
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Turku, Finland
| | - Ari Katila
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Turku, Finland
| | - Janek Frantzén
- Department of Clinical Medicine, University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku Brain Injury Centre, Turku University Hospital, Turku, Finland
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland
| | - Henna Ala-Seppälä
- Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Anna Kyllönen
- Department of Clinical Medicine, University of Turku, Turku, Finland
| | | | - Jussi Tallus
- Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Jyrki Lötjönen
- Combinostics, Tampere, Finland
- VTT Technical Research Centre of Finland, Tampere, Finland
| | - Ben Glocker
- Imperial College London, Department of Computing, London, United Kingdom
| | - Olli Tenovuo
- Department of Clinical Medicine, University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku Brain Injury Centre, Turku University Hospital, Turku, Finland
| | - Daniel Rueckert
- Imperial College London, Department of Computing, London, United Kingdom
| |
Collapse
|
30
|
Aging of cerebral white matter. Ageing Res Rev 2017; 34:64-76. [PMID: 27865980 DOI: 10.1016/j.arr.2016.11.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022]
Abstract
White matter (WM) occupies a large volume of the human cerebrum and is mainly composed of myelinated axons and myelin-producing glial cells. The myelinated axons within WM are the structural foundation for efficient neurotransmission between cortical and subcortical areas. Similar to neuron-enriched gray matter areas, WM undergoes a series of changes during the process of aging. WM malfunction can induce serious neurobehavioral and cognitive impairments. Thus, age-related changes in WM may contribute to the functional decline observed in the elderly. In addition, aged WM becomes more susceptible to neurological disorders, such as stroke, traumatic brain injury (TBI), and neurodegeneration. In this review, we summarize the structural and functional alterations of WM in natural aging and speculate on the underlying mechanisms. We also discuss how age-related WM changes influence the progression of various brain disorders, including ischemic and hemorrhagic stroke, TBI, Alzheimer's disease, and Parkinson's disease. Although the physiology of WM is still poorly understood relative to gray matter, WM is a rational therapeutic target for a number of neurological and psychiatric conditions.
Collapse
|
31
|
Drijkoningen D, Chalavi S, Sunaert S, Duysens J, Swinnen SP, Caeyenberghs K. Regional Gray Matter Volume Loss Is Associated with Gait Impairments in Young Brain-Injured Individuals. J Neurotrauma 2017; 34:1022-1034. [DOI: 10.1089/neu.2016.4500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- David Drijkoningen
- University Medical Center Utrecht, Utrecht, the Netherlands
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven, Belgium
| | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven, Belgium
| | - Stefan Sunaert
- Department of Radiology, University Hospital, Leuven, Belgium
| | - Jacques Duysens
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven, Belgium
| | - Stephan P. Swinnen
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven, Belgium
- Leuven Research Institute for Neuroscience and Disease, Leuven, Belgium
| | - Karen Caeyenberghs
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven, Belgium
- Australian Catholic University, Melbourne, Australia
| |
Collapse
|
32
|
Valle Alonso J, Fonseca del Pozo FJ, Vaquero Álvarez M, Lopera Lopera E, Garcia Segura M, García Arévalo R. Comparación de la regla canadiense y los criterios de New Orleans en el traumatismo craneal leve en un hospital español. Med Clin (Barc) 2016; 147:523-530. [DOI: 10.1016/j.medcli.2016.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/02/2016] [Accepted: 07/13/2016] [Indexed: 10/20/2022]
|
33
|
Tate DF, Wade BSC, Velez CS, Drennon AM, Bolzenius J, Gutman BA, Thompson PM, Lewis JD, Wilde EA, Bigler ED, Shenton ME, Ritter JL, York GE. Volumetric and shape analyses of subcortical structures in United States service members with mild traumatic brain injury. J Neurol 2016; 263:2065-79. [PMID: 27435967 PMCID: PMC5564450 DOI: 10.1007/s00415-016-8236-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
Mild traumatic brain injury (mTBI) is a significant health concern. The majority who sustain mTBI recover, although ~20 % continue to experience symptoms that can interfere with quality of life. Accordingly, there is a critical need to improve diagnosis, prognostic accuracy, and monitoring (recovery trajectory over time) of mTBI. Volumetric magnetic resonance imaging (MRI) has been successfully utilized to examine TBI. One promising improvement over standard volumetric approaches is to analyze high-dimensional shape characteristics of brain structures. In this study, subcortical shape and volume in 76 Service Members with mTBI was compared to 59 Service Members with orthopedic injury (OI) and 17 with post-traumatic stress disorder (PTSD) only. FreeSurfer was used to quantify structures from T1-weighted 3 T MRI data. Radial distance (RD) and Jacobian determinant (JD) were defined vertex-wise on parametric mesh-representations of subcortical structures. Linear regression was used to model associations between morphometry (volume and shape), TBI status, and time since injury (TSI) correcting for age, sex, intracranial volume, and level of education. Volumetric data was not significantly different between the groups. JD was significantly increased in the accumbens and caudate and significantly reduced in the thalamus of mTBI participants. Additional significant associations were noted between RD of the amygdala and TSI. Positive trend-level associations between TSI and the amygdala and accumbens were observed, while a negative association was observed for third ventricle. Our findings may aid in the initial diagnosis of mTBI, provide biological targets for functional examination, and elucidate regions that may continue remodeling after injury.
Collapse
Affiliation(s)
- David F Tate
- Missouri Institute of Mental Health, University of Missouri, St. Louis, 4633 World Parkway Circle, Berkeley, MO, 63134-3115, USA.
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA.
| | - Benjamin S C Wade
- Imaging Genetics Center, University of Southern California, Marina del Rey, CA, USA
| | - Carmen S Velez
- Missouri Institute of Mental Health, University of Missouri, St. Louis, 4633 World Parkway Circle, Berkeley, MO, 63134-3115, USA
| | - Ann Marie Drennon
- Defense and Veterans Brain Injury Centers, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Jacob Bolzenius
- Missouri Institute of Mental Health, University of Missouri, St. Louis, 4633 World Parkway Circle, Berkeley, MO, 63134-3115, USA
| | - Boris A Gutman
- Imaging Genetics Center, University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, University of Southern California, Marina del Rey, CA, USA
| | - Jeffrey D Lewis
- Department of Neurology, Uniformed Services University of the Health Sciences School of Medicine, Bethesda, MD, USA
| | - Elisabeth A Wilde
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Erin D Bigler
- Departments of Psychology and Neuroscience, Brigham Young University, Provo, UT, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Brockton Division, VA Boston Healthcare System, Brockton, MA, USA
| | - John L Ritter
- Department of Radiology, Brooke Army Medical Center, San Antonio, TX, USA
| | - Gerald E York
- Alaska Radiology Associates, TBI Imaging and Research, Anchorage, AK, USA
| |
Collapse
|
34
|
Cho YE, Latour LL, Kim H, Turtzo LC, Olivera A, Livingston WS, Wang D, Martin C, Lai C, Cashion A, Gill J. Older Age Results in Differential Gene Expression after Mild Traumatic Brain Injury and Is Linked to Imaging Differences at Acute Follow-up. Front Aging Neurosci 2016; 8:168. [PMID: 27468266 PMCID: PMC4942460 DOI: 10.3389/fnagi.2016.00168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/23/2016] [Indexed: 12/21/2022] Open
Abstract
Older age consistently relates to a lesser ability to fully recover from a traumatic brain injury (TBI); however, there is limited data to explicate the nature of age-related risks. This study was undertaken to determine the relationship of age on gene-activity following a TBI, and how this biomarker relates to changes in neuroimaging findings. A young group (between the ages of 19 and 35 years), and an old group (between the ages of 60 and 89 years) were compared on global gene-activity within 48 h following a TBI, and then at follow-up within 1-week. At each time-point, gene expression profiles, and imaging findings from both magnetic resonance imaging (MRI) and computed tomography were obtained and compared. The young group was found to have greater gene expression of inflammatory regulatory genes at 48 h and 1-week in genes such as basic leucine zipper transcription factor 2 (BACH2), leucine-rich repeat neuronal 3 (LRRN3), and lymphoid enhancer-binding factor 1 (LEF1) compared to the old group. In the old group, there was increased activity in genes within S100 family, including calcium binding protein P (S100P) and S100 calcium binding protein A8 (S100A8), which previous studies have linked to poor recovery from TBI. The old group also had reduced activity of the noggin (NOG) gene, which is a member of the transforming growth factor-β superfamily and is linked to neurorecovery and neuroregeneration compared to the young group. We link these gene expression findings that were validated to neuroimaging, reporting that in the old group with a MRI finding of TBI-related damage, there was a lesser likelihood to then have a negative MRI finding at follow-up compared to the young group. Together, these data indicate that age impacts gene activity following a TBI, and suggest that this differential activity related to immune regulation and neurorecovery contributes to a lesser likelihood of neuronal recovery in older patients as indicated through neuroimaging.
Collapse
Affiliation(s)
- Young-Eun Cho
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Lawrence L Latour
- National Institute of Neurological Disorders, National Institutes of Health, Bethesda MD, USA
| | - Hyungsuk Kim
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - L Christine Turtzo
- National Institute of Neurological Disorders, National Institutes of Health, Bethesda MD, USA
| | - Anlys Olivera
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Whitney S Livingston
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Dan Wang
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Christiana Martin
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Chen Lai
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Ann Cashion
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Jessica Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| |
Collapse
|
35
|
Age exacerbates the CCR2/5-mediated neuroinflammatory response to traumatic brain injury. J Neuroinflammation 2016; 13:80. [PMID: 27090212 PMCID: PMC4835854 DOI: 10.1186/s12974-016-0547-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/11/2016] [Indexed: 11/10/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a major risk factor for the development of multiple neurodegenerative diseases, including Alzheimer’s disease (AD) and numerous recent reports document the development of dementia after TBI. Age is a significant factor in both the risk of and the incidence of acquired brain injury. TBI-induced inflammatory response is associated with activation of brain resident microglia and accumulation of infiltrating monocytes, which plays a pivotal role in chronic neurodegeneration and loss of neurological function after TBI. Despite the extensive clinical evidence implicating neuroinflammation with the TBI-related sequelae, the specific role of these different myeloid cells and the influence of age on TBI-initiated innate immune response remain unknown and poorly studied. Methods We used gene profiling and pathway analysis to define the effect of age on inflammatory response at the time of injury. The recruitment of peripheral CCR2+ macrophages was delineated using the CX3CR1GFP/+CCR2RFP/+ reporter mouse. These responses were examined in the context of CCR2/5 antagonism using cenicriviroc. Results Unsupervised gene clustering and pathway analysis revealed that age predisposes exacerbated inflammatory response related to the recruitment and activation of peripheral monocytes to the injured brain. Using a unique reporter animal model able to discriminate resident versus peripherally derived myeloid cells, we demonstrate that in the aged brain, there is an increased accumulation of peripherally derived CCR2+ macrophages after TBI compared to young animals. Exaggerated recruitment of this population of cells was associated with an augmented inflammatory response in the aged TBI animals. Targeting this cellular response with cenicriviroc, a dual CCR2/5 antagonist, significantly ameliorated injury-induced sequelae in the aged TBI animals. Conclusions Importantly, these findings demonstrate that peripheral monocytes play a non-redundant and contributing role to the etiology of trauma-induced inflammatory sequelae in the aged brain.
Collapse
|
36
|
Schönberger M, Reutens D, Beare R, O'Sullivan R, Rajaratnam SMW, Ponsford J. Brain lesion correlates of fatigue in individuals with traumatic brain injury. Neuropsychol Rehabil 2016; 27:1056-1070. [PMID: 26957190 DOI: 10.1080/09602011.2016.1154875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to investigate the neurological correlates of both subjective fatigue as well as objective fatigability in individuals with traumatic brain injury (TBI). The study has a cross-sectional design. Participants (N = 53) with TBI (77% male, mean age at injury 38 years, mean time since injury 1.8 years) underwent a structural magnetic resonance imaging (MRI) scan and completed the Fatigue Severity Scale (FSS), while a subsample (N = 36) was also tested with a vigilance task. While subjective fatigue (FSS) was not related to measures of brain lesions, multilevel analyses showed that a change in the participants' decision time was significantly predicted by grey matter (GM) lesions in the right frontal lobe. The time-dependent development of the participants' error rate was predicted by total brain white matter (WM) lesion volumes, as well as right temporal GM and WM lesion volumes. These findings could be explained by decreased functional connectivity of attentional networks, which results in accelerated exhaustion during cognitive task performance. The disparate nature of objectively measurable fatigability on the one hand and the subjective experience of fatigue on the other needs further investigation.
Collapse
Affiliation(s)
- Michael Schönberger
- a Department of Rehabilitation Psychology , Institute of Psychology, University of Freiburg , Freiburg , Germany.,b School of Psychological Sciences , Monash University Melbourne , Melbourne , Australia.,c Monash-Epworth Rehabilitation Research Centre , Epworth Hospital , Melbourne , Australia
| | - David Reutens
- d Department of Medicine, Monash Medical Centre , Monash University Melbourne , Melbourne , Australia.,e Centre for Advanced Imaging , The University of Queensland , St Lucia , Australia
| | - Richard Beare
- d Department of Medicine, Monash Medical Centre , Monash University Melbourne , Melbourne , Australia.,f Murdoch Childrens Research Institute, Royal Children's Hospital , Melbourne , Australia
| | | | - Shantha M W Rajaratnam
- b School of Psychological Sciences , Monash University Melbourne , Melbourne , Australia
| | - Jennie Ponsford
- b School of Psychological Sciences , Monash University Melbourne , Melbourne , Australia.,c Monash-Epworth Rehabilitation Research Centre , Epworth Hospital , Melbourne , Australia.,h National Trauma Research Institute , Melbourne , Australia
| |
Collapse
|
37
|
Comparing Prospectively Recorded Posttraumatic Amnesia Duration With Retrospective Accounts. J Head Trauma Rehabil 2016; 31:E71-7. [DOI: 10.1097/htr.0000000000000154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Padgett CR, Summers MJ, Vickers JC, McCormack GH, Skilbeck CE. Exploring the effect of the apolipoprotein E (APOE) gene on executive function, working memory, and processing speed during the early recovery period following traumatic brain injury. J Clin Exp Neuropsychol 2016; 38:551-60. [PMID: 26898659 DOI: 10.1080/13803395.2015.1137557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION There is evidence that the e4 allele of the apolipoprotein E (APOE) gene is detrimental to cognitive function, but results from traumatic brain injury (TBI) populations are mixed. A possible explanation is that APOEe2 carriers have routinely been incorporated into APOEe4 and non-e4 groups, despite APOEe2 being proposed to have an ameliorative effect. Our primary aim was to investigate the influence of APOEe4 on cognitive impairment during early recovery following TBI, excluding the potential confound of APOEe2 possession. A secondary objective was to explore whether APOEe4 displays more pronounced effects in moderate to severe TBI and to consider the potential postinjury protective influence of the APOEe2 allele. METHOD Participants who recently sustained a TBI (posttraumatic amnesia > 5 minutes) were assessed on measures of information processing speed, executive function, and working memory upon remission of posttraumatic amnesia. APOE genotype was determined by buccal saliva DNA extraction (APOEe4 n = 37, APOEe3 n = 92, APOEe2 n = 13). RESULTS Stepwise multiple regressions were performed to compare APOEe4 carriers to APOEe3 homozygotes, with injury severity, age, and estimated premorbid IQ included in the first step. This model was found to significantly predict performance on all tasks, accounting for 17.3-24.3% of the variance. When APOEe4 status was added for the second step, there were no significant changes on any tasks (additional variance <1%). The effect of APOEe4 in moderate to severe TBI and the effect of APOEe2 were explored by analysis of covariance (ANCOVA), with no significant effects revealed. CONCLUSIONS It is unlikely that APOE genotype influences cognitive function in the initial recovery period following TBI, regardless of injury severity. However, a more nuanced and long-term exploration of the effect of APOE genotype in the TBI population is warranted.
Collapse
Affiliation(s)
- Christine R Padgett
- a School of Medicine , University of Tasmania , Launceston , TAS , Australia.,b Tasmanian Neurotrauma Register , Royal Hobart Hospital , Hobart , TAS , Australia
| | - Mathew J Summers
- c School of Social Sciences , University of the Sunshine Coast , Maroochydore , QLD , Australia.,d Wicking Dementia Research and Education Centre , University of Tasmania , Hobart , TAS , Australia
| | - James C Vickers
- d Wicking Dementia Research and Education Centre , University of Tasmania , Hobart , TAS , Australia
| | - Graeme H McCormack
- d Wicking Dementia Research and Education Centre , University of Tasmania , Hobart , TAS , Australia
| | - Clive E Skilbeck
- a School of Medicine , University of Tasmania , Launceston , TAS , Australia.,b Tasmanian Neurotrauma Register , Royal Hobart Hospital , Hobart , TAS , Australia
| |
Collapse
|
39
|
Frasnelli J, Laguë-Beauvais M, LeBlanc J, Alturki A, Champoux M, Couturier C, Anderson K, Lamoureux J, Marcoux J, Tinawi S, Dagher J, Maleki M, Feyz M, de Guise E. Olfactory function in acute traumatic brain injury. Clin Neurol Neurosurg 2016; 140:68-72. [DOI: 10.1016/j.clineuro.2015.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 11/16/2015] [Accepted: 11/21/2015] [Indexed: 12/16/2022]
|
40
|
Abstract
Traumatic brain injury (TBI) represents a significant public health problem in modern societies. It is primarily a consequence of traffic-related accidents and falls. Other recently recognized causes include sports injuries and indirect forces such as shock waves from battlefield explosions. TBI is an important cause of death and lifelong disability and represents the most well-established environmental risk factor for dementia. With the growing recognition that even mild head injury can lead to neurocognitive deficits, imaging of brain injury has assumed greater importance. However, there is no single imaging modality capable of characterizing TBI. Current advances, particularly in MR imaging, enable visualization and quantification of structural and functional brain changes not hitherto possible. In this review, we summarize data linking TBI with dementia, emphasizing the imaging techniques currently available in clinical practice along with some advances in medical knowledge.
Collapse
Affiliation(s)
- Joana Ramalho
- Centro Hospitalar de Lisboa Central, Lisboa, Portugal; University of North Carolina at Chapel Hill, Chapel Hill, NC, US
| | | |
Collapse
|
41
|
Winkler EA, Yue JK, McAllister TW, Temkin NR, Oh SS, Burchard EG, Hu D, Ferguson AR, Lingsma HF, Burke JF, Sorani MD, Rosand J, Yuh EL, Barber J, Tarapore PE, Gardner RC, Sharma S, Satris GG, Eng C, Puccio AM, Wang KKW, Mukherjee P, Valadka AB, Okonkwo DO, Diaz-Arrastia R, Manley GT. COMT Val 158 Met polymorphism is associated with nonverbal cognition following mild traumatic brain injury. Neurogenetics 2015; 17:31-41. [PMID: 26576546 DOI: 10.1007/s10048-015-0467-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/22/2015] [Indexed: 11/28/2022]
Abstract
Mild traumatic brain injury (mTBI) results in variable clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism in catechol-o-methyltransferase (COMT), an enzyme which degrades catecholamine neurotransmitters, may influence cognitive deficits following moderate and/or severe head trauma. However, this has been disputed, and its role in mTBI has not been studied. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val (158) Met polymorphism influences outcome on a cognitive battery 6 months following mTBI--Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), Trail Making Test (TMT) Trail B minus Trail A time, and California Verbal Learning Test, Second Edition Trial 1-5 Standard Score (CVLT-II). All patients had an emergency department Glasgow Coma Scale (GCS) of 13-15, no acute intracranial pathology on head CT, and no polytrauma as defined by an Abbreviated Injury Scale (AIS) score of ≥3 in any extracranial region. Results in 100 subjects aged 40.9 (SD 15.2) years (COMT Met (158) /Met (158) 29 %, Met (158) /Val (158) 47 %, Val (158) /Val (158) 24 %) show that the COMT Met (158) allele (mean 101.6 ± SE 2.1) associates with higher nonverbal processing speed on the WAIS-PSI when compared to Val (158) /Val (158) homozygotes (93.8 ± SE 3.0) after controlling for demographics and injury severity (mean increase 7.9 points, 95 % CI [1.4 to 14.3], p = 0.017). The COMT Val (158) Met polymorphism did not associate with mental flexibility on the TMT or with verbal learning on the CVLT-II. Hence, COMT Val (158) Met may preferentially modulate nonverbal cognition following uncomplicated mTBI.Registry: ClinicalTrials.gov Identifier NCT01565551.
Collapse
Affiliation(s)
- Ethan A Winkler
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - John K Yue
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Thomas W McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nancy R Temkin
- Departments of Neurological Surgery and Biostatistics, University of Washington, Seattle, WA, USA
| | - Sam S Oh
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Esteban G Burchard
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Donglei Hu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Adam R Ferguson
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Hester F Lingsma
- Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands
| | - John F Burke
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Marco D Sorani
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Jonathan Rosand
- Department of Neurology, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Esther L Yuh
- Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA.,Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | - Jason Barber
- Departments of Neurological Surgery and Biostatistics, University of Washington, Seattle, WA, USA
| | - Phiroz E Tarapore
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Raquel C Gardner
- Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Neurology, San Francisco Veterans Administration Medical Center, San Francisco, CA, USA
| | - Sourabh Sharma
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Gabriela G Satris
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Celeste Eng
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kevin K W Wang
- Center for Neuroproteomics and Biomarkers Research, Departments of Psychiatry and Neuroscience, University of Florida, Gainesville, FL, USA
| | - Pratik Mukherjee
- Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA.,Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | | | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine, Bethesda, MD, USA
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA. .,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA.
| | | |
Collapse
|
42
|
Dahm J, Ponsford J. Predictors of global functioning and employment 10 years following traumatic brain injury compared with orthopaedic injury. Brain Inj 2015; 29:1539-46. [DOI: 10.3109/02699052.2015.1075141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Sours C, Zhuo J, Roys S, Shanmuganathan K, Gullapalli RP. Disruptions in Resting State Functional Connectivity and Cerebral Blood Flow in Mild Traumatic Brain Injury Patients. PLoS One 2015; 10:e0134019. [PMID: 26241476 PMCID: PMC4524606 DOI: 10.1371/journal.pone.0134019] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/03/2015] [Indexed: 12/27/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is often occult to conventional imaging techniques. However, there is growing evidence that mTBI patients who lack evidence of structural intracranial injury may develop post-concussive syndrome (PCS). We investigated longitudinal alterations in resting state functional connectivity (rs-FC) in brain networks in a population of 28 patients compared to 28 matched control participants. Rs-FC and cerebral blood flow (CBF) within the nodes of the Default Mode Network (DMN) and Task Positive Network (TPN) were assessed at three time points including acute, sub-acute, and chronic stages following mTBI. Participants received the Automated Neuropsychological Assessment Metrics (ANAM) to assess cognitive performance. Main findings indicate that despite normalized cognitive performance, chronic mTBI patients demonstrate increased rs-FC between the DMN and regions associated with the salience network (SN) and TPN compared to the control populations, as well as reduced strength of rs-FC within the DMN at the acute stage of injury. In addition, chronic mTBI patients demonstrate an imbalance in the ratio of CBF between nodes of the DMN and TPN. Furthermore, preliminary exploratory analysis suggests that compared to those without chronic PCS, patients with chronic PCS reveal an imbalance in the ratio of CBF between the DMN nodes and TPN nodes across multiple stages of recovery. Findings suggest that the altered network perfusion with the associated changes in rs-FC may be a possible predictor of which mTBI patients will develop chronic PCS.
Collapse
Affiliation(s)
- Chandler Sours
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jiachen Zhuo
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Steven Roys
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kathirkamanthan Shanmuganathan
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Rao P. Gullapalli
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
44
|
Mathias JL, Wheaton P. Contribution of brain or biological reserve and cognitive or neural reserve to outcome after TBI: A meta-analysis (prior to 2015). Neurosci Biobehav Rev 2015; 55:573-93. [PMID: 26054792 DOI: 10.1016/j.neubiorev.2015.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 05/22/2015] [Accepted: 06/02/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Jane L Mathias
- School of Psychology, University of Adelaide, Adelaide, South Australia, Australia.
| | - Patricia Wheaton
- School of Psychology, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
45
|
Dang Q, Simon J, Catino J, Puente I, Habib F, Zucker L, Bukur M. More fateful than fruitful? Intracranial pressure monitoring in elderly patients with traumatic brain injury is associated with worse outcomes. J Surg Res 2015; 198:482-8. [PMID: 25972315 DOI: 10.1016/j.jss.2015.03.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND In an expanding elderly population, traumatic brain injury (TBI) remains a significant cause of death and disability. Guidelines for management of TBI, according to the Brain Trauma Foundation (BTF), include intracranial pressure (ICP) monitoring. Whether ICP monitoring contributes to outcomes in the elderly patients with TBI has not been explored. METHODS This is a retrospective study extracted from the National Trauma Database 2007-2008 research datasets. Patients were included if aged >55 y and they met BTF indications for ICP monitoring. Patients that had nonsurvivable injuries (any body region, abbreviated injury score = 6), were dead on arrival, had withdrawal of care, or length of stay <48 h were excluded. Outcomes were then stratified based on ICP monitoring. The primary outcomes were inhospital mortality and favorable discharge. Logistic regression was used to analyze the effect of ICP monitoring on outcomes. RESULTS A total of 4437 patients were included with 11.2% having an ICP monitor placed. Patients requiring an ICP monitor were younger overall, more likely to present hypertensive, had higher injury severity, and more likely to require operative intervention. Median initial Glasgow coma scale (3) was similar between groups. Of those patients with ICP monitoring, overall mortality was significantly higher, and they were less likely to have favorable discharge status. Craniotomy itself was not associated with increased mortality (P = 0.450). CONCLUSIONS Our findings suggest that the use of ICP monitoring according to BTF guidelines in elderly TBI patients does not provide outcomes superior to treatment without monitoring. The ideal group to benefit from ICP monitor placement remains to be elucidated.
Collapse
Affiliation(s)
- Quoc Dang
- Department of Surgery, Larkin Community Hospital, South Miami, Florida; Division of Trauma and Critical Care, Delray Medical Center, Delray Beach, Florida.
| | - Joshua Simon
- Department of Surgery, Larkin Community Hospital, South Miami, Florida; Division of Trauma and Critical Care, Delray Medical Center, Delray Beach, Florida
| | - Joe Catino
- Division of Trauma and Critical Care, Delray Medical Center, Delray Beach, Florida; Division of Trauma and Critical Care, Broward General Hospital, Fort Lauderdale, Florida
| | - Ivan Puente
- Division of Trauma and Critical Care, Delray Medical Center, Delray Beach, Florida; Division of Trauma and Critical Care, Broward General Hospital, Fort Lauderdale, Florida
| | - Fahim Habib
- Division of Trauma and Critical Care, Delray Medical Center, Delray Beach, Florida; Division of Trauma and Critical Care, Broward General Hospital, Fort Lauderdale, Florida
| | - Lloyd Zucker
- Division of Trauma and Critical Care, Delray Medical Center, Delray Beach, Florida
| | - Marko Bukur
- Division of Trauma and Critical Care, Delray Medical Center, Delray Beach, Florida; Division of Trauma and Critical Care, Broward General Hospital, Fort Lauderdale, Florida
| |
Collapse
|
46
|
Bigler ED, Stern Y. Traumatic brain injury and reserve. HANDBOOK OF CLINICAL NEUROLOGY 2015; 128:691-710. [DOI: 10.1016/b978-0-444-63521-1.00043-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Willmott C, Withiel T, Ponsford J, Burke R. COMT Val158Met and cognitive and functional outcomes after traumatic brain injury. J Neurotrauma 2014; 31:1507-14. [PMID: 24786534 DOI: 10.1089/neu.2013.3308] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
There is significant variability in long-term outcomes after traumatic brain injury (TBI), making accurate prognosis difficult. In seeking to enhance understanding of outcomes, this study aimed to investigate whether COMT Val(158)Met allele status was associated with performance on neuropsychological measures of attention and working memory, executive functioning, learning and memory, and speed of information processing in the early rehabilitation phase. The study also aimed to examine whether the COMT polymorphism was associated with longer-term functional outcomes. A total of 223 participants (71.3% male) with moderate-to-severe TBI were recruited as rehabilitation inpatients to participate in a prospective, longitudinal head injury outcome study. The three COMT genotype groups (Val/Val, Val/Met, and Met/Met) were well matched for estimated full-scale IQ, years of education, age at injury, and injury severity. Results showed no significant difference between genotypes on neuropsychological measures (all p>0.05) or functional outcome, as measured by the Glasgow Outcome Scale-Extended (GOS-E), after controlling for age, education, and severity of injury. The presence of frontal lobe pathology was also not associated with cognitive performance. Those with greater injury severity (i.e., longer duration of post-traumatic amnesia) performed more poorly on measures of processing speed and verbal new learning and recall. It was concluded that there was little support for the influence of COMT Val(158)Met on cognitive function, or functional outcome measures, in the acute rehabilitation phase after TBI.
Collapse
Affiliation(s)
- Catherine Willmott
- 1 School of Psychological Sciences, Monash University , Clayton, VIC, Australia
| | | | | | | |
Collapse
|
48
|
Ponsford J, Janzen S, McIntyre A, Bayley M, Velikonja D, Tate R. INCOG Recommendations for Management of Cognition Following Traumatic Brain Injury, Part I. J Head Trauma Rehabil 2014; 29:307-20. [DOI: 10.1097/htr.0000000000000074] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Holli-Helenius K, Luoto TM, Brander A, Wäljas M, Iverson GL, Ohman J. Structural integrity of medial temporal lobes of patients with acute mild traumatic brain injury. J Neurotrauma 2014; 31:1153-60. [PMID: 24579770 DOI: 10.1089/neu.2013.2978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Post-traumatic amnesia (PTA) is an acute characteristic of traumatic brain injury (TBI) and the duration of PTA is commonly used to estimate the severity of brain injury. In the context of mild traumatic brain injury (MTBI), PTA is an essential part of the routine clinical assessment. Macroscopic lesions in temporal lobes, especially hippocampal regions, are thought to be connected to memory loss. However, conventional neuroimaging has failed to reveal neuropathological correlates of PTA in MTBI. Texture analysis (TA) is an image analysis technique that quantifies the minor MRI signal changes among image pixels and, therefore, the variations in intensity patterns within the image. The objective of this work was to apply the TA technique to MR images of MTBI patients and control subjects, and to assess the microstructural damage in medial temporal lobes of patients with MTBI with definite PTA. TA was performed for fluid-attenuated inversion recovery (FLAIR) images of 50 MTBI patients and 50 age- and gender-matched controls in the regions of the amygdala, hippocampus, and thalamus. It was hypothesized that 1) there would be statistically significant differences in TA parameters between patients with MTBIs and controls, and 2) the duration of PTA would be related to TA parameters in patients with MTBI. No significant textural differences were observed between patients and controls in the regions of interest (p>0.01). No textural features were observed to correlate with the duration of PTA. Subgroup analyses were conducted on patients with PTA of>1 h, (n=33) and compared the four TA parameters to the age- and gender-matched controls (n=33). The findings were similar. This study did not reveal significant textural changes in medial temporal structures that could be related to the duration of PTA.
Collapse
Affiliation(s)
- Kirsi Holli-Helenius
- 1 Medical Imaging Centre and Hospital Pharmacy, Department of Radiology, Tampere University Hospital , Tampere, Finland
| | | | | | | | | | | |
Collapse
|
50
|
Roitman P, Gilad M, Ankri YLE, Shalev AY. Head injury and loss of consciousness raise the likelihood of developing and maintaining PTSD symptoms. J Trauma Stress 2013; 26:727-34. [PMID: 24265212 DOI: 10.1002/jts.21862] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mild traumatic brain injury has been associated with higher prevalence of posttraumatic stress disorder (PTSD). The extent to which head injury or loss of consciousness predicts PTSD is unknown. To evaluate the contribution of head injury and loss of consciousness to the occurrence of PTSD, we made a longitudinal evaluation of 1,260 road accident survivors admitted to the emergency department with head injury (n = 287), head injury and loss of consciousness (n = 115), or neither (n = 858). A telephone-administered posttraumatic symptoms scale inferred PTSD and quantified PTSD symptoms at 10 days and 8 months after admission. The study groups had similar heart rate, blood pressure, and pain levels in the emergency department. Survivors with loss of consciousness and head injury had higher prevalence of PTSD and higher levels of PTSD symptoms, suggesting that patients with head injury and loss of consciousness reported in the emergency department are at higher risk for PTSD.
Collapse
Affiliation(s)
- Pablo Roitman
- Department of Psychiatry, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | |
Collapse
|