1
|
Jaldeep L, Lipi B, Prakash P. Neurotrophomodulatory effect of TNF-α through NF-κB in rat cortical astrocytes. Cytotechnology 2025; 77:37. [PMID: 39776978 PMCID: PMC11700960 DOI: 10.1007/s10616-024-00698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Tumor necrosis factor alpha (TNF-α) is a well-known pro-inflammatory cytokine originally recognized for its ability to induce apoptosis and cell death. However, recent research has revealed that TNF-α also plays a crucial role as a mediator of cell survival, influencing a wide range of cellular functions. The signaling of TNF-α is mediated through two distinct receptors, TNFR1 and TNFR2, which trigger various intracellular pathways, including NF-κB, JNK, and caspase signaling cascades. Both TNFR1 and TNFR2 are expressed in astrocytes, which are specialized glial cells essential for maintaining the structural and functional integrity of the central nervous system (CNS). Astrocytes support neuronal function by regulating brain homeostasis, maintaining synaptic function, and supplying metabolic substrates. In addition, astrocytes are known to secrete a variety of growth factors and neurotrophins, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and NT-4/5. These neurotrophins play a critical role in supporting neuronal survival, synaptic plasticity, and myelination within the brain. The present study focuses on the role of TNF-α in modulating neurotrophin expression and secretion in rat cortical astrocytes. We demonstrate that TNF-α induces the upregulation of neurotrophins, particularly NGF and BDNF, in cultured astrocytes. This effect is accompanied by an increase in the expression of their respective receptors (TrkA & TrkB), further suggesting a functional modulation of neurotrophic signaling pathways. Notably, we show that the modulation of neurotrophin expression by TNF-α is mediated via the NF-κB signaling pathway. Additionally, we observed that TNF-α also regulates the secretion levels of NGF and BDNF into the culture media of astrocytes in a dose-dependent manner, indicating that TNF-α can modulate both the production and release of these growth factors. Taken together, our findings highlight a previously underexplored neuroprotective role of TNF-α in astrocytes. Specifically, we propose that TNF-α, through the upregulation of neurotrophins, may contribute to maintaining neuronal health and supporting neuroprotection under disease conditions.
Collapse
Affiliation(s)
- Langhnoja Jaldeep
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat India
| | - Buch Lipi
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat India
| | - Pillai Prakash
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat India
| |
Collapse
|
2
|
Synergistic effect of CNTF and GDNF on directed neurite growth in chick embryo dorsal root ganglia. PLoS One 2020; 15:e0240235. [PMID: 33017447 PMCID: PMC7535060 DOI: 10.1371/journal.pone.0240235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/22/2020] [Indexed: 12/01/2022] Open
Abstract
It is often critical to improve the limited regenerative capacity of the peripheral nerves and direct neural growth towards specific targets, such as surgically implanted bioengineered constructs. One approach to accomplish this goal is to use extrinsic neurotrophic factors. The candidate factors first need to be identified and characterized in in vitro tests for their ability to direct the neurite growth. Here, we present a simple guidance assay that allows to assess the chemotactic effect of signaling molecules on the growth of neuronal processes from dorsal root ganglia (DRG) using only standard tissue culture materials. We used this technique to quantitatively determine the combined and individual effects of the ciliary neurotrophic factor (CNTF) and glial cell line-derived neurotrophic factor (GDNF) on neurite outgrowth. We demonstrated that these two neurotrophic factors, when applied in a 1:1 combination, but not individually, induced directed growth of neuronal processes towards the source of the gradient. This chemotactic effect persists without significant changes over a wide (10-fold) concentration range. Moreover, we demonstrated that other, more general growth parameters that do not evaluate growth in a specific direction (such as, neurite length and trajectory) were differentially affected by the concentration of the CNTF/GNDF mixture. Furthermore, GDNF, when applied individually, did not have any chemotactic effect, but caused significant neurite elongation and an increase in the number of neurites per ganglion.
Collapse
|
3
|
Huang L, Xia B, Shi X, Gao J, Yang Y, Xu F, Qi F, Liang C, Huang J, Luo Z. Time-restricted release of multiple neurotrophic factors promotes axonal regeneration and functional recovery after peripheral nerve injury. FASEB J 2019; 33:8600-8613. [PMID: 30995417 DOI: 10.1096/fj.201802065rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Delivery of multiple neurotrophic factors (NTFs), especially with time-restricted release kinetics, holds great potential for nerve repair. In this study, we utilized the tetracycline-regulatable Tet-On 3G system to control the expression of c-Jun, which is a common regulator of multiple NTFs in Schwann cells (SCs). In vitro, Tet-On/c-Jun-modified SCs showed a tightly controllable secretion of multiple NTFs, including glial cell line-derived NTF, nerve growth factor, brain-derived NTF, and artemin, by the addition or removal of doxycycline (Dox). When Tet-On/c-Jun-transduced SCs were grafted in vivo, the expression of NTFs could also be regulated by oral administration or removal of Dox. Fluoro-Gold retrograde tracing results indicated that a biphasic NTF expression scheme (Dox+3/-9, NTFs were up-regulated for 3 wk and declined to physiologic levels for another 9 wk) achieved more axonal regeneration than continuous up-regulation of NTFs (Dox+12) or no NTF induction (Dox-12). More importantly, the Dox+3/-9-group animals showed much better functional recovery than the animals in the Dox+12 and Dox-12 groups. Our findings, for the first time, demonstrated drug-controllable expression of multiple NTFs in nerve repair cells both in vitro and in vivo. These findings provide new hope for developing an optimal therapeutic alternative for nerve repair through the time-restricted release of multiple NTFs using Tet-On/c-Jun-modified SCs.-Huang, L., Xia, B., Shi, X., Gao, J., Yang, Y., Xu, F., Qi, F., Liang, C., Huang, J., Luo, Z. Time-restricted release of multiple neurotrophic factors promotes axonal regeneration and functional recovery after peripheral nerve injury.
Collapse
Affiliation(s)
- Liangliang Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Orthopaedics, General Hospital of Central Theater Command of People's Liberation Army, Wuhan, China
| | - Bing Xia
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaowei Shi
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianbo Gao
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yujie Yang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Feng Xu
- Department of Orthopaedics, General Hospital of Central Theater Command of People's Liberation Army, Wuhan, China
| | - Fengyu Qi
- Department of Orthopaedics, General Hospital of Central Theater Command of People's Liberation Army, Wuhan, China
| | - Chao Liang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhuojing Luo
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Guilherme A, Henriques F, Bedard AH, Czech MP. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat Rev Endocrinol 2019; 15:207-225. [PMID: 30733616 PMCID: PMC7073451 DOI: 10.1038/s41574-019-0165-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adipose tissue comprises adipocytes and many other cell types that engage in dynamic crosstalk in a highly innervated and vascularized tissue matrix. Although adipose tissue has been studied for decades, it has been appreciated only in the past 5 years that extensive arborization of nerve fibres has a dominant role in regulating the function of adipose tissue. This Review summarizes the latest literature, which suggests that adipocytes signal to local sensory nerve fibres in response to perturbations in lipolysis and lipogenesis. Such adipocyte signalling to the central nervous system causes sympathetic output to distant adipose depots and potentially other metabolic tissues to regulate systemic glucose homeostasis. Paracrine factors identified in the past few years that mediate such adipocyte-neuron crosstalk are also reviewed. Similarly, immune cells and endothelial cells within adipose tissue communicate with local nerve fibres to modulate neurotransmitter tone, blood flow, adipocyte differentiation and energy expenditure, including adipose browning to produce heat. This understudied field of neurometabolism related to adipose tissue biology has great potential to reveal new mechanistic insights and potential therapeutic strategies for obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Bicknell BA, Pujic Z, Feldner J, Vetter I, Goodhill GJ. Chemotactic responses of growing neurites to precisely controlled gradients of nerve growth factor. Sci Data 2018; 5:180183. [PMID: 30179228 PMCID: PMC6122170 DOI: 10.1038/sdata.2018.183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022] Open
Abstract
Chemotaxis plays a key role in many biological systems. In particular in the context of the developing nervous system, growing neurites can respond in vitro to shallow gradients of chemotropic molecules such as nerve growth factor (NGF). However, in such studies the gradient parameters are often not well controlled. Here we present a dataset of ~3500 images of early postnatal rat dorsal root ganglion (DRG) explants growing in 40 different precisely controlled combinations of absolute concentration and gradient steepness of NGF. Each image has been segmented into neurite and explant-body regions. We provide computer code for exploration and quantification of the data, including a Fourier analysis of the outer contour of neurite growth, which allows quantities such as outgrowth and guidance as a function of concentration and gradient steepness to be easily extracted. This is the most comprehensive quantitative dataset of chemotactic responses yet available for any biological system, which we hope will be useful for exploring the biological mechanisms governing chemotaxis.
Collapse
Affiliation(s)
- Brendan A. Bicknell
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zac Pujic
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Julia Feldner
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Irina Vetter
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Geoffrey J. Goodhill
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
6
|
Nerve regeneration by human corneal stromal keratocytes and stromal fibroblasts. Sci Rep 2017; 7:45396. [PMID: 28349952 PMCID: PMC5369053 DOI: 10.1038/srep45396] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/23/2017] [Indexed: 01/12/2023] Open
Abstract
Laser refractive surgeries reshape corneal stroma to correct refractive errors, but unavoidably affect corneal nerves. Slow nerve regeneration and atypical neurite morphology cause desensitization and neuro-epitheliopathy. Following injury, surviving corneal stromal keratocytes (CSKs) are activated to stromal fibroblasts (SFs). How these two different cell types influence nerve regeneration is elusive. Our study evaluated the neuro-regulatory effects of human SFs versus CSKs derived from the same corneal stroma using an in vitro chick dorsal root ganglion model. The neurite growth was assessed by a validated concentric circle intersection count method. Serum-free conditioned media (CM) from SFs promoted neurite growth dose-dependently, compared to that from CSKs. We detected neurotrophic and pro-inflammatory factors (interleukin-8, interleukin-15, monocyte chemoattractant protein-1, eotaxin, RANTES) in SFCM by Bio-Plex Human Cytokine assay. More than 130 proteins in SFCM and 49 in CSKCM were identified by nanoLC-MS/MS. Proteins uniquely present in SFCM had reported neuro-regulatory activities and were predicted to regulate neurogenesis, focal adhesion and wound healing. Conclusively, this was the first study showing a physiological relationship between nerve growth and the metabolically active SFs versus quiescent CSKs from the same cornea source. The dose-dependent effect on neurite growth indicated that nerve regeneration could be influenced by SF density.
Collapse
|
7
|
Ordikhani F, Sheth S, Zustiak SP. Polymeric particle-mediated molecular therapies to treat spinal cord injury. Int J Pharm 2017; 516:71-81. [DOI: 10.1016/j.ijpharm.2016.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/03/2016] [Accepted: 11/08/2016] [Indexed: 11/26/2022]
|
8
|
Aikeremujiang Muheremu, Ao Q, Wang Y, Cao P, Peng J. Femoral nerve regeneration and its accuracy under different injury mechanisms. Neural Regen Res 2015. [PMID: 26692867 DOI: 10.4103/1673-5374.167768.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Surgical accuracy has greatly improved with the advent of microsurgical techniques. However, complete functional recovery after peripheral nerve injury has not been achieved to date. The mechanisms hindering accurate regeneration of damaged axons after peripheral nerve injury are in urgent need of exploration. The present study was designed to explore the mechanisms of peripheral nerve regeneration after different types of injury. Femoral nerves of rats were injured by crushing or freezing. At 2, 3, 6, and 12 weeks after injury, axons were retrogradely labeled using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil) and True Blue, and motor and sensory axons that had regenerated at the site of injury were counted. The number and percentage of Dil-labeled neurons in the anterior horn of the spinal cord increased over time. No significant differences were found in the number of labeled neurons between the freeze and crush injury groups at any time point. Our results confirmed that the accuracy of peripheral nerve regeneration increased with time, after both crush and freeze injury, and indicated that axonal regeneration accuracy was still satisfactory after freezing, despite the prolonged damage.
Collapse
Affiliation(s)
- Aikeremujiang Muheremu
- Medical Center, Tsinghua University, Beijing, China ; Institute of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, Liaoning, China
| | - Yu Wang
- Institute of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| | - Peng Cao
- Department of Orthopedics, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jiang Peng
- Institute of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| |
Collapse
|
9
|
Aikeremujiang Muheremu, Ao Q, Wang Y, Cao P, Peng J. Femoral nerve regeneration and its accuracy under different injury mechanisms. Neural Regen Res 2015; 10:1669-73. [PMID: 26692867 PMCID: PMC4660763 DOI: 10.4103/1673-5374.167768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Surgical accuracy has greatly improved with the advent of microsurgical techniques. However, complete functional recovery after peripheral nerve injury has not been achieved to date. The mechanisms hindering accurate regeneration of damaged axons after peripheral nerve injury are in urgent need of exploration. The present study was designed to explore the mechanisms of peripheral nerve regeneration after different types of injury. Femoral nerves of rats were injured by crushing or freezing. At 2, 3, 6, and 12 weeks after injury, axons were retrogradely labeled using 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (Dil) and True Blue, and motor and sensory axons that had regenerated at the site of injury were counted. The number and percentage of Dil-labeled neurons in the anterior horn of the spinal cord increased over time. No significant differences were found in the number of labeled neurons between the freeze and crush injury groups at any time point. Our results confirmed that the accuracy of peripheral nerve regeneration increased with time, after both crush and freeze injury, and indicated that axonal regeneration accuracy was still satisfactory after freezing, despite the prolonged damage.
Collapse
Affiliation(s)
- Aikeremujiang Muheremu
- Medical Center, Tsinghua University, Beijing, China ; Institute of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, Liaoning, China
| | - Yu Wang
- Institute of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| | - Peng Cao
- Department of Orthopedics, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jiang Peng
- Institute of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| |
Collapse
|
10
|
Kannan B, Nokura K, Alvarez JC, Higgins DA, Collinson MM. Fabrication of surface charge gradients in open-tubular capillaries and their characterization by spatially resolved pulsed streaming potential measurements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15260-15265. [PMID: 24274139 DOI: 10.1021/la402934m] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Surface charge gradients have been formed on the inside surface of 75 μm i.d. silica capillaries via controlled rate infusion using 3-aminopropyltriethoxysilane as the reactive precursor. These 400 mm length gradients have been characterized using spatially resolved streaming potential measurements, from which the zeta potential as a function of distance was determined. The gradient capillaries exhibited a gradual variation in zeta potential from top to bottom, whereas uniformly modified and as-received capillaries were relatively homogeneous along their length. For a gradient prepared with a relatively high concentration of aminosilane, the zeta potential changed over 60 mV from one end of the capillary to the other, yielding a variation in the magnitude of the apparent surface charge of ~7 fold. By changing the concentration of the aminoalkoxysilane and/or the rate of infusion, both the value of the zeta potential (and hence surface charge) and its spatial profile (i.e., rate of change with distance) could be manipulated.
Collapse
Affiliation(s)
- Balamurali Kannan
- Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284-2006, United States
| | | | | | | | | |
Collapse
|
11
|
Roy J, Kennedy TE, Costantino S. Engineered cell culture substrates for axon guidance studies: moving beyond proof of concept. LAB ON A CHIP 2013; 13:498-508. [PMID: 23288417 DOI: 10.1039/c2lc41002h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Promoting axon regeneration following injury is one of the ultimate challenges of neuroscience, and understanding the mechanisms that regulate axon growth and guidance is essential to achieve this goal. During development axons are directed over relatively long distances by a precise extracellular distribution of chemical signals in the embryonic nervous system. Multiple guidance proteins, including netrins, slits, semaphorins, ephrins and neurotrophins have been identified as key players in this process. During the last decade, engineered cell culture substrates have been developed to investigate the cellular and molecular mechanisms underlying axon guidance. This review is focused on the biological insights that have been achieved using new techniques that attempt to mimic in vitro the spatial patterns of proteins that growth cones encounter in vivo.
Collapse
Affiliation(s)
- Joannie Roy
- Maisonneuve-Rosemont Hospital, University of Montreal, Montreal, Canada
| | | | | |
Collapse
|
12
|
Yuan J, Chan S, Mortimer D, Nguyen H, Goodhill GJ. Optimality and saturation in axonal chemotaxis. Neural Comput 2013; 25:833-53. [PMID: 23339614 DOI: 10.1162/neco_a_00426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chemotaxis (detecting and following chemical gradients) plays a crucial role in the function of many biological systems. In particular, gradient following by neuronal growth cones is important for the correct wiring of the nervous system. There is increasing interest in the constraints that determine how small chemotacting devices respond to gradients, but little quantitative information is available in this regard for neuronal growth cones. Mortimer et al. ( 2009 ) and Mortimer, Dayan, Burrage, and Goodhill ( 2011 ) proposed a Bayesian ideal observer model that predicts chemotactic performance for shallow gradients. Here we investigated two important aspects of this model. First, we found by numerical simulation that although the analytical predictions of the model assume shallow gradients, these predictions remain remarkably robust to large deviations in gradient steepness. Second, we found experimentally that the chemotactic response increased linearly with gradient steepness for very shallow gradients as predicted by the model; however, the response saturated for steeper gradients. This saturation could be reproduced in simulations of a growth rate modulation response mechanism. Together these results illuminate the domain of validity of the Bayesian model and give further insight into the biological mechanisms of axonal chemotaxis.
Collapse
Affiliation(s)
- Jiajia Yuan
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD 4072, Australia.
| | | | | | | | | |
Collapse
|
13
|
Guo X, Elliott CG, Li Z, Xu Y, Hamilton DW, Guan J. Creating 3D angiogenic growth factor gradients in fibrous constructs to guide fast angiogenesis. Biomacromolecules 2012; 13:3262-71. [PMID: 22924876 DOI: 10.1021/bm301029a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fast angiogenesis in 3D fibrous constructs that mimic the morphology of the extracellular matrix remains challenging due to limited porosity in the densely packed constructs. We investigated whether mimicking the in vivo chemotaxis microenvironment for native blood vessel formation would stimulate angiogenesis in the fibrous constructs. The chemotaxis microenvironment was created by introducing 3D angiogenic growth factor gradients into the constructs. We have developed a technique that can quickly fabricate (∼40 min) such 3D gradients by simultaneously electrospinning polycaprolactone (PCL) fibers, encapsulating gradient amount of bFGF (stabilized by heparin) into poly(lactide-co-glycolide) (PLGA) microspheres, and electrospraying the microspheres into PCL fibers. Gradient formation was confirmed by fluorescence microscopy. Gradients with different steepnesses were obtained by modulating the initial concentration of the bFGF solution. All of the constructs were able to sustainedly release bioactive bFGF over a 28 day period. The release kinetics was dependent on the bFGF loading and steepness of the gradient. In vitro cell migration study demonstrated that bFGF gradients significantly increased the depth of cell migration. To assess the efficacy of bFGF gradients in inducing angiogenesis, we implanted constructs subcutaneously using mouse model. bFGF gradients significantly promoted cell penetration into the constructs. After 10 days of implantation, a high density of mature blood vessels (positive to both CD31 and α-SMA) were formed in the constructs. Vessel density was increased with the increase in steepness of the bFGF gradient. These gradient constructs may have potential to engineer vascularized tissues for various applications.
Collapse
Affiliation(s)
- Xiaolei Guo
- Department of Materials Science & Engineering, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
14
|
Krick K, Tammia M, Martin R, Höke A, Mao HQ. Signaling cue presentation and cell delivery to promote nerve regeneration. Curr Opin Biotechnol 2011; 22:741-6. [PMID: 21531127 DOI: 10.1016/j.copbio.2011.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/01/2011] [Indexed: 01/09/2023]
Abstract
Limitations in current nerve regeneration techniques have stimulated the development of various approaches to mimic the extrinsic cues available in the natural nerve regeneration environment. Biomaterials approaches modulate the microenvironment of a regenerating nerve through tailored presentation of signaling molecules, creating physical and biochemical guidance cues to direct axonal regrowth across nerve lesion sites. Cell-based approaches center on increasing the neurotrophic support, adhesion guidance and myelination capacity of Schwann cells and other alternative cell types to enhance nerve regrowth and functional recovery. Recent advances in presenting directional guidance cues in nerve guidance conduits and improving the regenerative outcomes of cell delivery provide inspirations to engineering the next generation of nerve repair solutions.
Collapse
Affiliation(s)
- Kellin Krick
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|