1
|
Kumar Nelson V, Jha NK, Nuli MV, Gupta S, Kanna S, Gahtani RM, Hani U, Singh AK, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Al Othaim A, Begum SS, Ahmad F, Mishra PC, Jha SK, Ojha S. Unveiling the impact of aging on BBB and Alzheimer's disease: Factors and therapeutic implications. Ageing Res Rev 2024; 98:102224. [PMID: 38346505 DOI: 10.1016/j.arr.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble β-amyloid peptide (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kanna
- Department of pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Guntur 522034, India
| | - Reem M Gahtani
- Departement of Clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Arun Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - S Sabarunisha Begum
- Department of Biotechnology, P.S.R. Engineering College, Sivakasi 626140, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Hasan GM, Anwar S, Shamsi A, Sohal SS, Hassan MI. The neuroprotective potential of phytochemicals in traumatic brain injury: mechanistic insights and pharmacological implications. Front Pharmacol 2024; 14:1330098. [PMID: 38239205 PMCID: PMC10794744 DOI: 10.3389/fphar.2023.1330098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024] Open
Abstract
Traumatic brain injury (TBI) leads to brain damage, comprising both immediate primary damage and a subsequent cascade of secondary injury mechanisms. The primary injury results in localized brain damage, while the secondary damage initiates inflammatory responses, followed by the disruption of the blood-brain barrier, infiltration of peripheral blood cells, brain edema, and the release of various immune mediators, including chemotactic factors and interleukins. TBI disrupts molecular signaling, cell structures, and functions. In addition to physical tissue damage, such as axonal injuries, contusions, and haemorrhages, TBI interferes with brain functioning, impacting cognition, decision-making, memory, attention, and speech capabilities. Despite a deep understanding of the pathophysiology of TBI, an intensive effort to evaluate the underlying mechanisms with effective therapeutic interventions is imperative to manage the repercussions of TBI. Studies have commenced to explore the potential of employing natural compounds as therapeutic interventions for TBI. These compounds are characterized by their low toxicity and limited interactions with conventional drugs. Moreover, many natural compounds demonstrate the capacity to target various aspects of the secondary injury process. While our understanding of the pathophysiology of TBI, there is an urgent need for effective therapeutic interventions to mitigate its consequences. Here, we aimed to summarize the mechanism of action and the role of phytochemicals against TBI progression. This review discusses the therapeutic implications of various phytonutrients and addresses primary and secondary consequences of TBI. In addition, we highlighted the roles of emerging phytochemicals as promising candidates for therapeutic intervention of TBI. The review highlights the neuroprotective roles of phytochemicals against TBI and the mechanistic approach. Furthermore, our efforts focused on the underlying mechanisms, providing a better understanding of the therapeutic potential of phytochemicals in TBI therapeutics.
Collapse
Affiliation(s)
- Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
3
|
Carecho R, Carregosa D, Ratilal BO, Figueira I, Ávila-Gálvez MA, Dos Santos CN, Loncarevic-Vasiljkovic N. Dietary (Poly)phenols in Traumatic Brain Injury. Int J Mol Sci 2023; 24:ijms24108908. [PMID: 37240254 DOI: 10.3390/ijms24108908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death and disability in young adults worldwide. Despite growing evidence and advances in our knowledge regarding the multifaceted pathophysiology of TBI, the underlying mechanisms, though, are still to be fully elucidated. Whereas initial brain insult involves acute and irreversible primary damage to the brain, the processes of subsequent secondary brain injury progress gradually over months to years, providing a window of opportunity for therapeutic interventions. To date, extensive research has been focused on the identification of druggable targets involved in these processes. Despite several decades of successful pre-clinical studies and very promising results, when transferred to clinics, these drugs showed, at best, modest beneficial effects, but more often, an absence of effects or even very harsh side effects in TBI patients. This reality has highlighted the need for novel approaches that will be able to respond to the complexity of the TBI and tackle TBI pathological processes on multiple levels. Recent evidence strongly indicates that nutritional interventions may provide a unique opportunity to enhance the repair processes after TBI. Dietary (poly)phenols, a big class of compounds abundantly found in fruits and vegetables, have emerged in the past few years as promising agents to be used in TBI settings due to their proven pleiotropic effects. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by a state-of-the-art summary of the studies that have evaluated the efficacy of (poly)phenols administration to decrease TBI-associated damage in various animal TBI models and in a limited number of clinical trials. The current limitations on our knowledge concerning (poly)phenol effects in TBI in the pre-clinical studies are also discussed.
Collapse
Affiliation(s)
- Rafael Carecho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Diogo Carregosa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Bernardo Oliveira Ratilal
- Hospital CUF Descobertas, CUF Academic Center, 1998-018 Lisboa, Portugal
- Clínica Universitária de Neurocirurgia, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Inês Figueira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Angeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Murcia, Spain
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
| | - Natasa Loncarevic-Vasiljkovic
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
4
|
Pagnotta S, Tramutola A, Barone E, Di Domenico F, Pittalà V, Salerno L, Folgiero V, Caforio M, Locatelli F, Petrini S, Butterfield DA, Perluigi M. CAPE and its synthetic derivative VP961 restore BACH1/NRF2 axis in Down Syndrome. Free Radic Biol Med 2022; 183:1-13. [PMID: 35283228 DOI: 10.1016/j.freeradbiomed.2022.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022]
Abstract
The cells possess several mechanisms to counteract the over-production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including enzymes such as superoxide dismutase, catalase and glutathione peroxidase. Moreover, an important sensor involved in the anti-oxidant response is KEAP1-NRF2-ARE signaling complex. Under oxidative stress (OS), the transcription factor NRF2 can dissociate from the KEAP1-complex in the cytosol and translocate into the nucleus to promote the transcriptional activation of anti-oxidant genes, such as heme oxygenase 1 and NADPH quinone oxidoreductase. Within this context, the activation of NRF2 response is further regulated by BACH1, a transcription repressor, that compete with the KEAP1-NRF2-ARE complex. In this work, we focused on the role of BACH1/NRF2 ratio in the regulation of the anti-oxidant response, proposing their antithetical relation as a valuable target for a therapeutic strategy to test drugs able to exert neuroprotective effects, notably in aging and neurodegenerative diseases. Among these, Down syndrome (DS) is a complex genetic disorder characterized by BACH1 gene triplication that likely results in the impairment of NRF2 causing increased OS. Our results revealed that BACH1 overexpression alters the BACH1/NRF2 ratio in the nucleus and disturbs the induction of antioxidant response genes ultimately resulting in the accumulation of oxidative damage both in Ts2Cje mice (a mouse model of DS) and human DS lymphoblastoid cell lines (LCLs). Based on this evidence, we tested Caffeic Acid Phenethyl Ester (CAPE) and the synthetic analogue VP961, which have been proven to modulate NRF2 activity. We showed that CAPE and VP961 administration to DS LCLs was able to promote NRF2 nuclear translocation, which resulted in the amelioration of antioxidant response. Overall, our study supports the hypothesis that BACH1 triplication in DS subjects is implicated in the alteration of redox homeostasis and therapeutic strategies to overcome this effect are under investigation in our laboratory.
Collapse
Affiliation(s)
- Sara Pagnotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Laboratory affiliiated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Laboratory affiliiated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Laboratory affiliiated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Laboratory affiliiated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Valentina Folgiero
- Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Matteo Caforio
- Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy; Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Laboratory affiliiated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.
| |
Collapse
|
5
|
Redell JB, Maynard ME, Hood KN, Moore AN, Zhao J, Dash PK. Insulin-Like Growth Factor-2 (IGF-2) Does Not Improve Memory in the Chronic Stage of Traumatic Brain Injury in Rodents. Neurotrauma Rep 2021; 2:453-460. [PMID: 34901941 PMCID: PMC8655797 DOI: 10.1089/neur.2021.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Persistent cognitive impairment(s) can be a significant consequence of traumatic brain injury (TBI) and can markedly compromise quality of life. Unfortunately, identifying effective treatments to alleviate memory impairments in the chronic stage of TBI has proven elusive. Several studies have demonstrated that insulin-like growth factor-2 (IGF-2) can enhance memory in both normal animals and in experimental models of disease. In this study, we questioned whether IGF-2, when administered before learning, could enhance memory performance in the chronic stage of TBI. Male C57BL/6 mice (n = 7 per group) were injured using an electronic cortical impact injury device. Four months later, mice were tested for their cognitive performance in the fear memory extinction, novel object recognition (NOR), and Morris water maze tasks. Twenty minutes before each day of training, mice received a subcutaneous injection of either 30 μg/kg of IGF-2 or an equal volume of vehicle. Memory testing was carried out 24 h after training in the absence of the drug. Uninjured sham animals treated with IGF-2 (or vehicle) were trained and tested in the fear memory extinction task as a positive control. Our data show that although IGF-2 (30 μg/kg) improved memory extinction in uninjured mice, it was ineffective at improving fear memory extinction in the chronic stage of TBI. Similarly, IGF-2 administration to chronically injured animals did not improve TBI-related deficits in either NOR or spatial memory. Our results indicate that IGF-2, administered in the chronic stage of injury, is ineffective at enhancing memory performance and therefore may not be a beneficial treatment option for lingering cognitive impairments after a TBI.
Collapse
Affiliation(s)
- John B Redell
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Mark E Maynard
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Kimberly N Hood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Anthony N Moore
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
6
|
Lv L, Cui H, Ma Z, Liu X, Yang L. Recent progresses in the pharmacological activities of caffeic acid phenethyl ester. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1327-1339. [PMID: 33492405 DOI: 10.1007/s00210-021-02054-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
The past decades have seen a growing interest in natural products. Caffeic acid phenethyl ester (CAPE), a flavonoid isolated from honeybee propolis, has shown multiple pharmacological potentials, including anti-cancer, anti-inflammatory, antioxidant, antibacterial, antifungal, and protective effects on nervous systems and multiple organs, since it was found as a potent nuclear factor κB (NF-κB) inhibitor. This review summarizes the advances in these beneficial effects of CAPE, as well as the underlying mechanisms, and proposes that CAPE offers an opportunity for developing therapeutics in multiple diseases. However, clinical trials on CAPE are necessary and encouraged to obtain certain clinically relevant conclusions.
Collapse
Affiliation(s)
- Lili Lv
- Jilin University, Changchun, 130021, China
| | | | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
7
|
Balaha M, De Filippis B, Cataldi A, di Giacomo V. CAPE and Neuroprotection: A Review. Biomolecules 2021; 11:biom11020176. [PMID: 33525407 PMCID: PMC7911454 DOI: 10.3390/biom11020176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Propolis, a product of the honey bee, has been used in traditional medicine for many years. A hydrophobic bioactive polyphenolic ester, caffeic acid phenethyl ester (CAPE), is one of the most extensively investigated active components of propolis. Several studies have indicated that CAPE has a broad spectrum of pharmacological activities as anti-oxidant, anti-inflammatory, anti-viral, anti-fungal, anti-proliferative, and anti-neoplastic properties. This review largely describes CAPE neuroprotective effects in many different conditions and summarizes its molecular mechanisms of action. CAPE was found to have a neuroprotective effect on different neurodegenerative disorders. At the basis of these effects, CAPE has the ability to protect neurons from several underlying causes of various human neurologic diseases, such as oxidative stress, apoptosis dysregulation, and brain inflammation. CAPE can also protect the nervous system from some diseases which negatively affect it, such as diabetes, septic shock, and hepatic encephalopathy, while numerous studies have demonstrated the neuroprotective effects of CAPE against adverse reactions induced by different neurotoxic substances. The potential role of CAPE in protecting the central nervous system (CNS) from secondary injury following various CNS ischemic conditions and CAPE anti-cancer activity in CNS is also reviewed. The structure–activity relationship of CAPE synthetic derivatives is discussed as well.
Collapse
Affiliation(s)
- Marwa Balaha
- Department of Pharmacy, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (M.B.); (B.D.F.); (V.d.G.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, 33516 Kafr El Sheikh, Egypt
| | - Barbara De Filippis
- Department of Pharmacy, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (M.B.); (B.D.F.); (V.d.G.)
| | - Amelia Cataldi
- Department of Pharmacy, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (M.B.); (B.D.F.); (V.d.G.)
- Correspondence: ; Tel.: +39-0871-355-4467
| | - Viviana di Giacomo
- Department of Pharmacy, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (M.B.); (B.D.F.); (V.d.G.)
| |
Collapse
|
8
|
Kulkarni NP, Vaidya B, Narula AS, Sharma SS. Neuroprotective Potential of Caffeic Acid Phenethyl Ester (CAPE) in CNS Disorders: Mechanistic and Therapeutic Insights. Curr Neuropharmacol 2021; 19:1401-1415. [PMID: 34102977 PMCID: PMC8762179 DOI: 10.2174/1570159x19666210608165509] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
Neurological disorders like Alzheimer's disease (AD), Parkinson's disease (PD), stroke, amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), epilepsy, traumatic brain injury (TBI), depression, and anxiety are responsible for thousands of deaths worldwide every year. With the increase in life expectancy, there has been a rise in the prevalence of these disorders. Age is one of the major risk factors for these neurological disorders, and with the aged population set to rise to 1.25 billion by 2050, there is a growing concern to look for new therapeutic molecules to treat age-related diseases. Caffeic acid phenethyl ester (CAPE) is a molecule obtained from a number of botanical sources, such as the bark of conifer trees as well as propolis which is extracted from beehives. Though CAPE remains relatively unexplored in human trials, it possesses antioxidant, anti-inflammatory, antimitogenic, and anti-cancer activities, as shown by preclinical studies. Apart from this, it also exhibits tremendous potential for the treatment of neurological disorders through the modulation of multiple molecular pathways and attenuation of behavioural deficits. In the present article, we have reviewed the therapeutic potential of CAPE and its mechanisms in the treatment of neurological disorders.
Collapse
Affiliation(s)
| | | | | | - Shyam Sunder Sharma
- Address correspondence to this author at the Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, India; E-mail:
| |
Collapse
|
9
|
Caffeic acid phenethyl ester counteracts doxorubicin-induced chemobrain in Sprague-Dawley rats: Emphasis on the modulation of oxidative stress and neuroinflammation. Neuropharmacology 2020; 181:108334. [PMID: 33011199 DOI: 10.1016/j.neuropharm.2020.108334] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Chemotherapy-induced cognitive dysfunction (chemobrain) is one of the major complaints for cancer patients treated with chemotherapy such as Doxorubicin (DOX). The induction of oxidative stress and neuroinflammation were identified as major contributors to such adverse effect. Caffeic acid phenethyl ester (CAPE) is a natural polyphenolic compound, that exhibits unique context-dependent antioxidant activity. It exhibits pro-oxidant effects in cancer cells, while it is a potent antioxidant and cytoprotective in normal cells. The present study was designed to investigate the potential neuroprotective effects of CAPE against DOX-induced cognitive impairment. Chemobrain was induced in Sprague Dawley rats via systemic DOX administration once per week for 4 weeks (2 mg/kg/week, i.p.). CAPE was administered at 10 or 20 μmol/kg/day, i.p., 5 days per week for 4 weeks. Morris water maze (MWM) and passive avoidance tests were used to assess learning and memory functions. Oxidative stress was evaluated via the colorimetric determination of GSH and MDA levels in both hippocampal and prefrontal cortex brain regions. However, inflammatory markers, acetylcholine levels, and neuronal cell apoptosis were assessed in the same brain areas using immunoassays including either ELISA, western blotting or immunohistochemistry. DOX produced significant impairment in learning and memory as indicated by the data generated from MWM and step-through passive avoidance tests. Additionally DOX-triggered oxidative stress as evidenced from the reduction in GSH levels and increased lipid peroxidation. Treatment with DOX resulted in neuroinflammation as indicated by the increase in NF-kB (p65) nuclear translocation in addition to boosting the levels of pro-inflammatory mediators (COX-II/TNF-α) along with the increased levels of glial fibrillary acid protein (GFAP) in the tested tissues. Moreover, DOX reduced acetylcholine levels and augmented neuronal cell apoptosis as supported by the increased active caspase-3 levels. Co-treatment with CAPE significantly counteracted DOX-induced behavioral and molecular abnormalities in rat brain tissues. Our results provide the first preclinical evidence for CAPE promising neuroprotective activity against DOX-induced neurodegeneration and memory deficits.
Collapse
|
10
|
Quercetin mitigates monosodium glutamate-induced excitotoxicity of the spinal cord motoneurons in aged rats via p38 MAPK inhibition. Acta Histochem 2020; 122:151554. [PMID: 32622428 DOI: 10.1016/j.acthis.2020.151554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Various studies reported the possibility of deterioration of blood-brain barrier (BBB) integrity owing to the aging process. The current work was performed to investigate the ability of Monosodium glutamate (MSG) to cross BBB in aged rats, the damage affecting the anterior horn cells of the spinal cord due to excitotoxicity, and the mechanisms by which quercetin (Que) administration might suppress such damage. Forty male rats aged 18 months were assigned equally to 4 groups: control group, Que group (received Que, 20 mg/kg/d intraperitonealy for 10 days), MSG group (received MSG, 4.0 g/kg/d subcutaneously for 10 days), MSG + Que group (received both Que and MSG as done in the Que and MSG groups respectively). Cervical spinal cord specimens were obtained and prepared for routine histological study, immunohistochemical staining by caspase-3 and glial fibrillary acidic protein (GFAP), assessment of oxidative stress, measurement of cytokines, assessment of caspase-3 activity and GFAP levels as well as for western blotting of phosphorylated activating transcription factor 2 (ATF2pp) as an indicator for the activity of p38 mitogen-activated protein kinase (MAPK). The MSG group revealed variable degenerative and apoptotic changes in the motoneurons and neuroglia, a marked rise in the cytoplasmic caspase-3 expression in motoneurons and a significant reduction (p < 0.001) in the astrocyte surface area percentage. In addition, the spinal cord tissue exhibited a significant elevation (p < 0.001) in the levels of malondialdehyde (MDA), IL-1, IL-6, TNFα, INFɣ, caspase-3 activity and ATF2 pp expression as well as a significant reduction (p < 0.001) in SOD, IL-10 and GFAP levels compared with the control group. On combining Que with MSG, most of the degenerative changes were reversed and all the impaired parameters were nearly normalized except for IL-6 and GFAP levels which were still significantly (p < 0.05) different from those of the control group. Our study suggests that MSG can break through the BBB of the aged rats and induce excitotoxicity dependent changes in spinal cord motoneurons. Most of these changes were reversed by Que probably via targeting the p38 MAPK-ATF2 pathway, antagonizing oxidative stress, anti-inflammatory effect, and promoting GFAP expression.
Collapse
|
11
|
Abrahamson EE, Ikonomovic MD. Brain injury-induced dysfunction of the blood brain barrier as a risk for dementia. Exp Neurol 2020; 328:113257. [PMID: 32092298 DOI: 10.1016/j.expneurol.2020.113257] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) is a complex and dynamic physiological interface between brain parenchyma and cerebral vasculature. It is composed of closely interacting cells and signaling molecules that regulate movement of solutes, ions, nutrients, macromolecules, and immune cells into the brain and removal of products of normal and abnormal brain cell metabolism. Dysfunction of multiple components of the BBB occurs in aging, inflammatory diseases, traumatic brain injury (TBI, severe or mild repetitive), and in chronic degenerative dementing disorders for which aging, inflammation, and TBI are considered risk factors. BBB permeability changes after TBI result in leakage of serum proteins, influx of immune cells, perivascular inflammation, as well as impairment of efflux transporter systems and accumulation of aggregation-prone molecules involved in hallmark pathologies of neurodegenerative diseases with dementia. In addition, cerebral vascular dysfunction with persistent alterations in cerebral blood flow and neurovascular coupling contribute to brain ischemia, neuronal degeneration, and synaptic dysfunction. While the idea of TBI as a risk factor for dementia is supported by many shared pathological features, it remains a hypothesis that needs further testing in experimental models and in human studies. The current review focusses on pathological mechanisms shared between TBI and neurodegenerative disorders characterized by accumulation of pathological protein aggregates, such as Alzheimer's disease and chronic traumatic encephalopathy. We discuss critical knowledge gaps in the field that need to be explored to clarify the relationship between TBI and risk for dementia and emphasize the need for longitudinal in vivo studies using imaging and biomarkers of BBB dysfunction in people with single or multiple TBI.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
12
|
Cheng H, Zhang Y, Lu W, Gao X, Xu C, Bao H. Caffeic acid phenethyl ester attenuates neuropathic pain by suppressing the p38/NF-κB signal pathway in microglia. J Pain Res 2018; 11:2709-2719. [PMID: 30464588 PMCID: PMC6219427 DOI: 10.2147/jpr.s166274] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Management of neuropathic pain is still a clinical challenge. Evidence has accumulated indicating that propolis is effective in attenuating neuropathic pain; however, the mechanism is not fully understood. Our present study investigated the effects and the possible mechanism of caffeic acid phenethyl ester (CAPE), the main ingredient of propolis, in improving neuropathic pain via its inhibition on p38/NF-κB signal pathway in microglia. Materials and methods Chronic constriction injury (CCI) mice model and the microglial cell line BV-2 were used to investigate the effects and the mechanism of CAPE. Cell signaling was measured by real-time PCR, Western blotting and immunofluorescence assay. Results CAPE relieved neuropathic pain behaviors induced by CCI in mice. CAPE also inhibited CCI-induced activation of microglia. Furthermore, CAPE suppressed the phosphorylation of p38 mitogen-activated protein kinase, inhibited the translocation of NF-κB and decreased the expression of proinflammatory cytokines tumor necrosis factor-α, IL-1β and IL-6. Conclusion CAPE was found to be an effective and safe drug candidate for alleviating neuropathic pain by its powerful inhibition on the P38/NF-κB signal pathway.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China,
| | - Yong Zhang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China,
| | - Weiping Lu
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China,
| | - Xianzhong Gao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China,
| | - Chenjie Xu
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China,
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China,
| |
Collapse
|
13
|
Morroni F, Sita G, Graziosi A, Turrini E, Fimognari C, Tarozzi A, Hrelia P. Neuroprotective Effect of Caffeic Acid Phenethyl Ester in A Mouse Model of Alzheimer's Disease Involves Nrf2/HO-1 Pathway. Aging Dis 2018; 9:605-622. [PMID: 30090650 PMCID: PMC6065293 DOI: 10.14336/ad.2017.0903] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/03/2017] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive pathology, where dementia symptoms gradually worsen over a number of years. The hallmarks of AD, such as amyloid β-peptide (Aβ) in senile plaque and neurofibrillary tangles, are strongly intertwined with oxidative stress, which is considered one of the common effectors of the cascade of degenerative events. The endogenous nuclear factor erythroid 2-related factor 2 (Nrf2) is the "master regulator" of the antioxidant response and it is known as an indicator and regulator of oxidative stress. The present study aimed to determine the potential neuroprotective activity of caffeic acid phenethyl ester (CAPE), a polyphenolic compound abundant in honeybee, against the neurotoxicity of Aβ1-42 oligomers (AβO) in mice. An intracerebroventricular (i.c.v.) injection of AβO into the mouse brain triggered increased reactive oxygen species levels, neurodegeneration, neuroinflammation, and memory impairment. In contrast, the intraperitoneal administration of CAPE (10 mg/kg) after i.c.v. AβO-injection counteracted oxidative stress accompanied by an induction of Nrf2 and heme oxygenase-1 via the modulation of glycogen synthase kinase 3β in the hippocampus of mice. Additionally, CAPE treatment decreased AβO-induced neuronal apoptosis and neuroinflammation, and improved learning and memory, protecting mice against the decline in spatial cognition. Our findings demonstrate that CAPE could potentially be considered as a promising neuroprotective agent against progressive neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Fabiana Morroni
- 1Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Giulia Sita
- 1Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Agnese Graziosi
- 1Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Eleonora Turrini
- 2Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47900 Rimini, Italy
| | - Carmela Fimognari
- 2Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47900 Rimini, Italy
| | - Andrea Tarozzi
- 2Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47900 Rimini, Italy
| | - Patrizia Hrelia
- 1Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Khan M, Shunmugavel A, Dhammu TS, Khan H, Singh I, Singh AK. Combined treatment with GSNO and CAPE accelerates functional recovery via additive antioxidant activities in a mouse model of TBI. J Neurosci Res 2018; 96:1900-1913. [PMID: 30027580 DOI: 10.1002/jnr.24279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/01/2018] [Accepted: 06/15/2018] [Indexed: 01/01/2023]
Abstract
Traumatic brain injury (TBI) is the major cause of physical disability and emotional vulnerability. Treatment of TBI is lacking due to its multimechanistic etiology, including derailed mitochondrial and cellular energy metabolism. Previous studies from our laboratory show that an endogenous nitric oxide (NO) metabolite S-nitrosoglutathione (GSNO) provides neuroprotection and improves neurobehavioral function via anti-inflammatory and anti-neurodegenerative mechanisms. To accelerate the rate and enhance the degree of recovery, we investigated combining GSNO with caffeic acid phenethyl ester (CAPE), a potent antioxidant compound, using a male mouse model of TBI, controlled cortical impact in mice. The combination therapy accelerated improvement of cognitive and depressive-like behavior compared with GSNO or CAPE monotherapy. Separately, both GSNO and CAPE improved mitochondrial integrity/function and decreased oxidative damage; however, the combination therapy had greater effects on Drp1 and MnSOD. Additionally, while CAPE alone activated AMPK, this activation was heightened in combination with GSNO. CAPE treatment of normal animals also significantly increased the expression levels of pAMPK, pACC (activation of AMPK substrate ACC), and pLKB1 (activation of upstream to AMPK kinase LKB1), indicating that CAPE activates AMPK via LKB1. These results show that while GSNO and CAPE provide neuroprotection and improve functional recovery separately, the combination treatment invokes greater recovery by significantly improving mitochondrial functions and activating the AMPK enzyme. Both GSNO and CAPE are in human consumption without any known adverse effects; therefore, a combination therapy-based multimechanistic approach is worthy of investigation in human TBI.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | | | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Hamza Khan
- College of Medicine, University of South Carolina, Columbia, South Carolina
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina.,Ralph H. Johnson VA Medical Center, Charleston, South Carolina
| | - Avtar K Singh
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
15
|
Zhang L, Wang H, Zhou Y, Zhu Y, Fei M. Fisetin alleviates oxidative stress after traumatic brain injury via the Nrf2-ARE pathway. Neurochem Int 2018; 118:304-313. [PMID: 29792955 DOI: 10.1016/j.neuint.2018.05.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 11/30/2022]
Abstract
Fisetin, a natural flavonoid, has neuroprotection properties in many brain injury models. However, its role in traumatic brain injury (TBI) has not been fully explained. In the present study, we aimed to explore the neuroprotective effects of fisetin in a mouse model of TBI. We found that fisetin improved neurological function, reduced cerebral edema, attenuated brain lesion and ameliorated blood-brain barrier (BBB) disruption after TBI. Moreover, the up-regulation of malondialdehyde (MDA) and the activity of glutathione peroxidase (GPx) were reversed by fisetin treatment. Furthermore, administration of fisetin suppressed neuron cell death and apoptosis, increased the expression of B-cell lymphoma 2 (Bcl-2), while decreased the expression of Bcl-2-associated X protein (Bax) and caspase-3 after TBI. In addition, fisetin activated the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway following TBI. However, fisetin only failed to suppress oxidative stress in Nrf2-/- mice. In conclusion, our data provided the first evidence that fisetin played a critical role in neuroprotection after TBI partly through the activation of the Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Yali Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yihao Zhu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Maoxin Fei
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
16
|
Singh M, Yadav S, Kumar M, Saxena S, Saraswat D, Bansal A, Singh SB. The MAPK-activator protein-1 signaling regulates changes in lung tissue of rat exposed to hypobaric hypoxia. J Cell Physiol 2018; 233:6851-6865. [PMID: 29665093 DOI: 10.1002/jcp.26556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 02/20/2018] [Indexed: 01/06/2023]
Abstract
This study reports the role of MAPKs (JNK, ERK, and p38), and activator protein-1 (AP-1) transcription factor in the hypobaric hypoxia induced change in lung tissue. Healthy male Sprague-Dawley rats were exposed to hypobaric hypoxia for 6, 12, 24, 48, 72, and 120 hr. Hypoxia resulted in significant increase in reactive oxygen species (ROS), vascular endothelial growth factor (VEGF) and decreased nitric oxide (NO), these act as signaling molecules for activation of MAPK and also contribute in development of vascular leakage (an indicator of pulmonary edema) as confirmed by histological studies. Our results confirmed JNK activation as an immediate early response (peaked at 6-48 hr), activation of ERKs (peaked at 24-72 hr) and p38 (peaked at 72-120 hr) as a secondary response to hypoxia. The MAPK pathway up regulated its downstream targets phospho c-Jun (peaked at 6-120 hr), JunB (peaked at 24-120 hr) however, decreased c-Fos, and JunD levels. DNA binding activity also confirmed activation of AP-1 transcription factor in lung tissue under hypobaric hypoxia. Further, we analyzed the proliferative and inflammatory genes regulated by different subunits of AP-1 to explore its role in vascular leakage. Increased expression of cyclin D1 (peaked at 12-72 hr) and p16 level (peaked at 48-120 hr) were correlated to the activation of c-jun, c-Fos and JunB. Administration of NFκB inhibitor caffeic acid phenethyl ester (CAPE) and SP600125 (JNK inhibitor) had no effect on increased levels of Interferon-γ (IFN-γ), Interleukin-1 (IL-1), and Tumor Necrosis Factor-α (TNF-α) thereby confirming the involvement of AP-1 as well as NFκB in inflammation. Expression of c-jun, c-Fos were correlated with activation of proliferative genes and JunB, Fra-1 with pro-inflammatory cytokines. In conclusion immediate response to hypobaric hypoxia induced c-Jun:c-Fos subunits of AP-1; responsible for proliferation that might cause inhomogeneous vasoconstriction leading to vascular leakage and inflammation at increased duration of hypobaric hypoxia exposure.
Collapse
Affiliation(s)
- Mrinalini Singh
- Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi
| | - Seema Yadav
- Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi
| | - Meetul Kumar
- Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi
| | - Shweta Saxena
- Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi
| | - Deepika Saraswat
- Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi
| | - Anju Bansal
- Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi
| | - Shashi B Singh
- Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi
| |
Collapse
|
17
|
Michinaga S, Kimura A, Hatanaka S, Minami S, Asano A, Ikushima Y, Matsui S, Toriyama Y, Fujii M, Koyama Y. Delayed Administration of BQ788, an ET B Antagonist, after Experimental Traumatic Brain Injury Promotes Recovery of Blood-Brain Barrier Function and a Reduction of Cerebral Edema in Mice. J Neurotrauma 2018; 35:1481-1494. [PMID: 29316834 DOI: 10.1089/neu.2017.5421] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is induced by immediate physical disruption of brain tissue, and causes death and disability. Studies on experimental TBI animal models show that disruption of the blood-brain barrier (BBB) underlies brain edema and neuroinflammation during the delayed phase of TBI. In neurological disorders, endothelin-1 (ET-1) is involved in BBB dysfunction and brain edema. In this study, the effect of ET antagonists on BBB dysfunction and brain edema were examined in a mouse focal TBI model using lateral fluid percussion injury (FPI). ET-1 and ETB receptors were increased at 2-7 days after FPI, which was accompanied by extravasation of Evans blue (EB) and brain edema. Repeated intracerebroventricular administration of BQ788 (15 nmol/day), an ETB antagonist, from 2 days after FPI promoted recovery of EB extravasation and brain edema, while FR 139317, an ETA antagonist, had no effect. Delayed intravenous administration of BQ788 also promoted recovery from FPI-induced EB extravasation and brain edema. While FPI caused decreases in claudin-5, occludin, and zonula occludens-1 proteins, BQ788 reversed FPI-induced reductions of them. Immunohistochemical observation of the cerebrum after FPI showed that ETB receptors are predominantly expressed in glial fibrillary acidic protein (GFAP)-positive astrocytes. BQ788 reduced FPI-induced increases in GFAP-positive astrocytes. GFAP-positive astrocytes produced vascular endothelial growth factor-A (VEGF-A) and matrix metalloproteinase-9 (MMP9). FPI-induced increases in VEGF-A and MMP-9 production were reversed by BQ788. These results suggest that ETB receptor antagonism during the delayed phase of focal TBI promotes recovery of BBB function and reduction of brain edema.
Collapse
Affiliation(s)
- Shotaro Michinaga
- 1 Laboratory of Pharmacology, Osaka Ohtani University , Osaka, Japan
| | - Akimasa Kimura
- 1 Laboratory of Pharmacology, Osaka Ohtani University , Osaka, Japan
| | - Shunichi Hatanaka
- 1 Laboratory of Pharmacology, Osaka Ohtani University , Osaka, Japan
| | - Shizuho Minami
- 1 Laboratory of Pharmacology, Osaka Ohtani University , Osaka, Japan
| | - Arisa Asano
- 1 Laboratory of Pharmacology, Osaka Ohtani University , Osaka, Japan
| | - Yuki Ikushima
- 1 Laboratory of Pharmacology, Osaka Ohtani University , Osaka, Japan
| | - Shingo Matsui
- 1 Laboratory of Pharmacology, Osaka Ohtani University , Osaka, Japan
| | - Yoshiya Toriyama
- 1 Laboratory of Pharmacology, Osaka Ohtani University , Osaka, Japan
| | - Manami Fujii
- 1 Laboratory of Pharmacology, Osaka Ohtani University , Osaka, Japan
| | - Yutaka Koyama
- 2 Department of Pharmacology, Kobe Pharmaceutical University , Kobe, Japan
| |
Collapse
|
18
|
Kumar M, Bansal N. Caffeic acid phenethyl ester rescued streptozotocin-induced memory loss through PI3-kinase dependent pathway. Biomed Pharmacother 2018; 101:162-173. [PMID: 29486334 DOI: 10.1016/j.biopha.2018.02.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/05/2018] [Accepted: 02/20/2018] [Indexed: 01/17/2023] Open
Abstract
The present study was undertaken to elucidate the role of PI3-kinase signaling in memory enhancing potential of caffeic acid phenethyl ester (CAPE) against cognitive defects in rats after centrally administered streptozotocin as a model of Alzheimer's disease. The Morris water maze and elevated plus maze paradigms showed profound loss of memory in adult Wistar rats (180-200 g) injected with streptozotocin (3 mg/kg) bilaterally (STZ-ICV) on day 1 and 3. Intraperitoneal administration of CAPE (6 mg/kg, i.p., 28 days) attenuated STZ-ICV triggered memory loss in rats. Treatment with PI3-kinase inhibitor (wortmannin, 5 μg/rat, ICV) or NOS blocker (L-NAME, 20 mg/kg, i.p., 28 days) interfered with memory restorative function of CAPE in STZ treated rats. In biochemical analysis markers of oxidative stress (TBARS, GSH, SOD, CAT), nitrite, AChE, TNF-α, eNOS and NFκB were measured in brain of rats on day 28. Interestingly, L-Arginine (100 mg/kg, i.p., 28 days) group exhibited moderate (p > 0.05) decline in memory functions. The brain oxidative stress, TNF-α, AChE activity and NFκB levels were elevated, and eNOS level was lowered by STZ-ICV treatment. Administration of CAPE lowered oxidative stress, AChE, nitrite and TNF-α levels in brain of rats. The eNOS level was enhanced and NFκB level was decreased by CAPE in STZ treated rats. Wortmannin injection elevated the brain oxidative stress, AChE activity and TNF-α levels, and decreased the nitrite, eNOS and NFκB level. Rise of brain oxidative stress parameters, AChE activity, TNF-α, eNOS and NFκB levels, and decline in brain nitrite content was observed in L-NAME treated group. L-Arginine administration showed modest effects (p > 0.05) on oxidative stress parameters. Brain nitrite content was enhanced although eNOS, NFκB levels, and AChE activity was decimated by L-Arginine treatment. It can be concluded that PI3-kinase mediated nitric oxide facilitation is an essential feature of CAPE action in STZ-ICV treated rats.
Collapse
Affiliation(s)
- Manish Kumar
- PhD Research Scholar, IKG Punjab Technical University, Kapurthala, Punjab, 144603, India; Department of Pharmacology, ASBASJSM College of Pharmacy, Bela, Ropar, 140111, India.
| | - Nitin Bansal
- Department of Pharmacology, ASBASJSM College of Pharmacy, Bela, Ropar, 140111, India.
| |
Collapse
|
19
|
Cheng SX, Xu ZW, Yi TL, Sun HT, Yang C, Yu ZQ, Yang XS, Jin XH, Tu Y, Zhang S. iTRAQ-Based Quantitative Proteomics Reveals the New Evidence Base for Traumatic Brain Injury Treated with Targeted Temperature Management. Neurotherapeutics 2018; 15:216-232. [PMID: 29247448 PMCID: PMC5794703 DOI: 10.1007/s13311-017-0591-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the effects of targeted temperature management (TTM) modulation on traumatic brain injury (TBI) and the involved mechanisms using quantitative proteomics technology. SH-SY5Y and HT-22 cells were subjected to moderate stretch injury using the cell injury controller (CIC), followed by incubation at TTM (mild hypothermia, 32°C), or normothermia (37°C). The real-time morphological changes, cell cycle phase distribution, death, and cell viability were evaluated. Moderate TBI was produced by the controlled cortical impactor (CCI), and the effects of TTM on the neurological damage, neurodegeneration, cerebrovascular histopathology, and behavioral outcome were determined in vivo. Results showed that TTM treatment prevented TBI-induced neuronal necrosis in the brain, achieved a substantial reduction in neuronal death both in vitro and in vivo, reduced cortical lesion volume and neuronal loss, attenuated cerebrovascular histopathological damage, brain edema, and improved behavioral outcome. Using an iTRAQ proteomics approach, proteins that were significantly associated with TTM in experimental TBI were identified. Importantly, changes in four candidate molecules (plasminogen [PLG], antithrombin III [AT III], fibrinogen gamma chain [FGG], transthyretin [TTR]) were verified using TBI rat brain tissues and TBI human cerebrospinal fluid (CSF) samples. This study is one of the first to investigate the neuroprotective effects of TTM on the proteome of human and experimental models of TBI, providing an overall landscape of the TBI brain proteome and a scientific foundation for further assessment of candidate molecules associated with TTM for the promotion of reparative strategies post-TBI.
Collapse
Affiliation(s)
- Shi-Xiang Cheng
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China.
| | - Zhong-Wei Xu
- Central Laboratory of Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Tai-Long Yi
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Hong-Tao Sun
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Cheng Yang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Ze-Qi Yu
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Xiao-Sa Yang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Xiao-Han Jin
- Central Laboratory of Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Yue Tu
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China.
| | - Sai Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China.
| |
Collapse
|
20
|
Szwajgier D, Borowiec K, Pustelniak K. The Neuroprotective Effects of Phenolic Acids: Molecular Mechanism of Action. Nutrients 2017; 9:nu9050477. [PMID: 28489058 PMCID: PMC5452207 DOI: 10.3390/nu9050477] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022] Open
Abstract
The neuroprotective role of phenolic acids from food has previously been reported by many authors. In this review, the role of phenolic acids in ameliorating depression, ischemia/reperfusion injury, neuroinflammation, apoptosis, glutamate-induced toxicity, epilepsy, imbalance after traumatic brain injury, hyperinsulinemia-induced memory impairment, hearing and vision disturbances, Parkinson’s disease, Huntington’s disease, anti-amyotrophic lateral sclerosis, Chagas disease and other less distributed diseases is discussed. This review covers the in vitro, ex vivo and in vivo studies concerning the prevention and treatment of neurological disorders (on the biochemical and gene expression levels) by phenolic acids.
Collapse
Affiliation(s)
- Dominik Szwajgier
- Department of Biotechnology, Human Nutrition and the Science of Food Commodities, University of Life Sciences in Lublin, Lublin 20704, Poland.
| | - Kamila Borowiec
- Department of Biotechnology, Human Nutrition and the Science of Food Commodities, University of Life Sciences in Lublin, Lublin 20704, Poland.
| | - Katarzyna Pustelniak
- Department of Biotechnology, Human Nutrition and the Science of Food Commodities, University of Life Sciences in Lublin, Lublin 20704, Poland.
| |
Collapse
|
21
|
Mahmoud AM, Abd El-Twab SM. Caffeic acid phenethyl ester protects the brain against hexavalent chromium toxicity by enhancing endogenous antioxidants and modulating the JAK/STAT signaling pathway. Biomed Pharmacother 2017; 91:303-311. [PMID: 28463793 DOI: 10.1016/j.biopha.2017.04.073] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 12/26/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] is commonly used in industry, and is a proven toxin and carcinogen. However, the information regarding its neurotoxic mechanism is not completely understood. The present study was designed to scrutinize the possible protective effects of caffeic acid phenethyl ester (CAPE), a bioactive phenolic of propolis extract, on Cr(VI)-induced brain injury in rats, with an emphasis on the JAK/STAT signaling pathway. Rats received 2mg/kgK2CrO4 and concurrently treated with 20mg/kg CAPE for 30 days. Cr(VI)-induced rats showed a significant increase in cerebral lipid peroxidation, nitric oxide and pro-inflammatory cytokines, with concomitantly declined antioxidants and acetylcholinesterase. CAPE attenuated oxidative stress and inflammation and enhanced antioxidant defenses in the cerebrum of rats. Cr(VI) significantly up-regulated JAK2, STAT3 and SOCS3, an effect that was reversed by CAPE. In conclusion, CAPE protects the brain against Cr(VI) toxicity through abrogation of oxidative stress, inflammation and down-regulation of JAK2/STAT3 signaling in a SOCS3-independent mechanism.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt.
| | - Sanaa M Abd El-Twab
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| |
Collapse
|
22
|
Wu F, Chen Z, Tang C, Zhang J, Cheng L, Zuo H, Zhang H, Chen D, Xiang L, Xiao J, Li X, Xu X, Wei X. Acid fibroblast growth factor preserves blood-brain barrier integrity by activating the PI3K-Akt-Rac1 pathway and inhibiting RhoA following traumatic brain injury. Am J Transl Res 2017; 9:910-925. [PMID: 28386321 PMCID: PMC5375986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/14/2016] [Indexed: 06/07/2023]
Abstract
The blood-brain barrier (BBB) plays important roles in the recovery of traumatic brain injury (TBI) which is a major factor contributing to cerebral edema. Acid fibroblast growth factor (aFGF) contributes to maintain vascular integrity and restores nerve function. However, whether aFGF protects BBB following TBI remains unknown. The purpose of this study was to determine whether exogenous aFGF preserves BBB integrity by activating the PI3K-Akt-Rac1 pathway and inhibiting RhoA after TBI. BBB permeability was assessed using evans blue dye and fluorescein isothiocyanate dextran fluorescence. Neurofunctional tests, such as the garcia test, were conducted in a blinded fashion, and protein expression was evaluated via western blotting and immunofluorescence staining. Our results showed that aFGF improved neurofunctional deficits, preserved BBB integrity, and up-regulated tight junction proteins and adherens junction proteins 24 h after experimental TBI. However, the PI3K/Akt inhibitor LY294002 reversed the protective effects of aFGF on neurofunctional deficits and junction protein expression and significantly suppressed p-Akt and GTP-Rac1 activity. Furthermore, aFGF administration significantly decreased GTP-RhoA expression in the treated group compared with the vehicle group, while PI3K/Akt inhibition increased GTP-RhoA expression. Similar results were observed in vitro, as aFGF exerted protective effects on endothelial cell integrity by up-regulating junction proteins and PI3K-Akt-Rac1 pathway and down-regulating RhoA expression under oxygen-glucose deprivation/reoxygenation (OGD) conditions. These data suggest that exogenous aFGF reduces RhoA activity in part by activating the PI3K-Akt-Rac1 signaling pathway, thus improving neurofunctional deficits and preserving BBB integrity after TBI.
Collapse
Affiliation(s)
- Fenzan Wu
- Department of Neurosurgery, Cixi People’s Hospital, Wenzhou Medical UniversityNingbo 315300, Zhejiang, China
| | - Zaifeng Chen
- Department of Neurosurgery, Cixi People’s Hospital, Wenzhou Medical UniversityNingbo 315300, Zhejiang, China
| | - Chonghui Tang
- Department of Neurosurgery, Cixi People’s Hospital, Wenzhou Medical UniversityNingbo 315300, Zhejiang, China
| | - Jinjing Zhang
- Department of Neurosurgery, Cixi People’s Hospital, Wenzhou Medical UniversityNingbo 315300, Zhejiang, China
| | - Li Cheng
- Department of Neurosurgery, Cixi People’s Hospital, Wenzhou Medical UniversityNingbo 315300, Zhejiang, China
| | - Hongxia Zuo
- Department of Neurosurgery, Cixi People’s Hospital, Wenzhou Medical UniversityNingbo 315300, Zhejiang, China
| | - Hongyu Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Daqing Chen
- Department of Emergency, The Second Affiliated Hospital, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Liping Xiang
- Department of Nursing, Cangnan People’s HospitalWenzhou 325800, Zhejiang, China
| | - Jian Xiao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Xiaokun Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Xinlong Xu
- Department of Neurosurgery, Cixi People’s Hospital, Wenzhou Medical UniversityNingbo 315300, Zhejiang, China
| | - Xiaojie Wei
- Department of Neurosurgery, Cixi People’s Hospital, Wenzhou Medical UniversityNingbo 315300, Zhejiang, China
| |
Collapse
|
23
|
Jackson ML, Srivastava AK, Cox CS. Preclinical progenitor cell therapy in traumatic brain injury: a meta-analysis. J Surg Res 2017. [PMID: 28624058 DOI: 10.1016/j.jss.2017.02.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND No treatment is available to reverse injury associated with traumatic brain injury (TBI). Progenitor cell therapies show promise in both preclinical and clinical studies. We conducted a meta-analysis of preclinical studies using progenitor cells to treat TBI. METHODS EMBASE, MEDLINE, Cochrane Review, Biosis, and Google Scholar were searched for articles using prespecified search strategies. Studies meeting inclusion criteria underwent data extraction. Analysis was performed using Review Manager 5.3 according to a fixed-effects model, and all studies underwent quality scoring. RESULTS Of 430 abstracts identified, 38 met inclusion criteria and underwent analysis. Average quality score was 4.32 of 8 possible points. No study achieved a perfect score. Lesion volume (LV) and neurologic severity score (NSS) outcomes favored cell treatment with standard mean difference (SMD) of 0.86 (95% CI: 0.64-1.09) and 1.36 (95% CI: 1.11-1.60), respectively. Rotarod and Morris water maze outcomes also favored treatment with improvements in SMD of 0.34 (95% CI: 0.02-0.65) and 0.46 (95% CI: 0.17-74), respectively. Although LV and NSS were robust to publication bias assessments, rotarod and Morris water maze tests were not. Heterogeneity (I2) ranged from 74%-85% among the analyses, indicating a high amount of heterogeneity among studies. Precision as a function of quality score showed a statistically significant increase in the size of the confidence interval as quality improved. CONCLUSIONS Our meta-analysis study reveals an overall positive effect of progenitor cell therapies on LV and NSS with a trend toward improved motor function and spatial learning in different TBI animal models.
Collapse
Affiliation(s)
- Margaret L Jackson
- Department of Pediatric Surgery, University of Texas Health Sciences Center at Houston, Houston, Texas.
| | - Amit K Srivastava
- Department of Pediatric Surgery, University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Charles S Cox
- Department of Pediatric Surgery, University of Texas Health Sciences Center at Houston, Houston, Texas
| |
Collapse
|
24
|
Scheff SW, Ansari MA. Natural Compounds as a Therapeutic Intervention following Traumatic Brain Injury: The Role of Phytochemicals. J Neurotrauma 2016; 34:1491-1510. [PMID: 27846772 DOI: 10.1089/neu.2016.4718] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
There has been a tremendous focus on the discovery and development of neuroprotective agents that might have clinical relevance following traumatic brain injury (TBI). This type of brain injury is very complex and is divided into two major components. The first component, a primary injury, occurs at the time of impact and is the result of the mechanical insult itself. This primary injury is thought to be irreversible and resistant to most treatments. A second component or secondary brain injury, is defined as cellular damage that is not immediately obvious after trauma, but that develops after a delay of minutes, hours, or even days. This injury appears to be amenable to treatment. Because of the complexity of the secondary injury, any type of therapeutic intervention needs to be multi-faceted and have the ability to simultaneously modulate different cellular changes. Because of diverse pharmaceutical interactions, combinations of different drugs do not work well in concert and result in adverse physiological conditions. Research has begun to investigate the possibility of using natural compounds as a therapeutic intervention following TBI. These compounds normally have very low toxicity and have reduced interactions with other pharmaceuticals. In addition, many natural compounds have the potential to target numerous different components of the secondary injury. Here, we review 33 different plant-derived natural compounds, phytochemicals, which have been investigated in experimental animal models of TBI. Some of these phytochemicals appear to have potential as possible therapeutic interventions to offset key components of the secondary injury cascade. However, not all studies have used the same scientific rigor, and one should be cautious in the interpretation of studies using naturally occurring phytochemical in TBI research.
Collapse
Affiliation(s)
- Stephen W Scheff
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky
| | - Mubeen A Ansari
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
25
|
Scheff SW, Roberts KN. Cognitive assessment of pycnogenol therapy following traumatic brain injury. Neurosci Lett 2016; 634:126-131. [PMID: 27737807 DOI: 10.1016/j.neulet.2016.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/22/2016] [Accepted: 10/08/2016] [Indexed: 12/16/2022]
Abstract
We have previously shown that pycnogenol (PYC) increases antioxidants, decreases oxidative stress, suppresses neuroinflammation and enhances synaptic plasticity following traumatic brain injury (TBI). Here, we investigate the effects of PYC on cognitive function following a controlled cortical impact (CCI). Adult Sprague-Dawley rats received a CCI injury followed by an intraperitoneal injection of PYC (50 or 100mg/kg). Seven days post trauma, subjects were evaluated in a Morris water maze (MWM) and evaluated for changes in lesion volume. Some animals were evaluated at 48h for hippocampal Fluoro-jade B (FJB) staining. The highest dose of PYC therapy significantly reduced lesion volume, with no improvement in MWM compared to vehicle controls. PYC failed to reduce the total number of FJB positive neurons in the hippocampus. These results suggest that the reduction of oxidative stress and neuroinflammation are not the key components of the secondary injury that contribute to cognitive deficits following TBI.
Collapse
Affiliation(s)
- Stephen W Scheff
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, United States.
| | - Kelly N Roberts
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, United States
| |
Collapse
|
26
|
Almutairi MMA, Gong C, Xu YG, Chang Y, Shi H. Factors controlling permeability of the blood-brain barrier. Cell Mol Life Sci 2016; 73:57-77. [PMID: 26403789 PMCID: PMC11108286 DOI: 10.1007/s00018-015-2050-8] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/27/2022]
Abstract
As the primary protective barrier for neurons in the brain, the blood-brain barrier (BBB) exists between the blood microcirculation system and the brain parenchyma. The normal BBB integrity is essential in protecting the brain from systemic toxins and maintaining the necessary level of nutrients and ions for neuronal function. This integrity is mediated by structural BBB components, such as tight junction proteins, integrins, annexins, and agrin, of a multicellular system including endothelial cells, astrocytes, pericytes, etc. BBB dysfunction is a significant contributor to the pathogeneses of a variety of brain disorders. Many signaling factors have been identified to be able to control BBB permeability through regulating the structural components. Among those signaling factors are inflammatory mediators, free radicals, vascular endothelial growth factor, matrix metalloproteinases, microRNAs, etc. In this review, we provide a summary of recent progress regarding these structural components and signaling factors, relating to their roles in various brain disorders. Attention is also devoted to recent research regarding impact of pharmacological agents such as isoflurane on BBB permeability and how iron ion passes across BBB. Hopefully, a better understanding of the factors controlling BBB permeability helps develop novel pharmacological interventions of BBB hyperpermeability under pathological conditions.
Collapse
Affiliation(s)
- Mohammed M A Almutairi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 5044, Lawrence, KS, 66045, USA
| | - Chen Gong
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 5044, Lawrence, KS, 66045, USA
| | - Yuexian G Xu
- Department of Anesthesiology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, 050016, China
| | - Honglian Shi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 5044, Lawrence, KS, 66045, USA.
| |
Collapse
|
27
|
de Senna PN, Xavier LL, Bagatini PB, Saur L, Galland F, Zanotto C, Bernardi C, Nardin P, Gonçalves CA, Achaval M. Physical training improves non-spatial memory, locomotor skills and the blood brain barrier in diabetic rats. Brain Res 2015; 1618:75-82. [PMID: 26032744 DOI: 10.1016/j.brainres.2015.05.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
Abstract
Type 1 diabetes mellitus (T1DM) progressively affects cognitive domains, increases blood-brain barrier (BBB) permeability and promotes neurovascular impairment in specific brain areas. Physical exercise, on the other hand, has beneficial effects on brain functions, improving learning and memory. This study investigated the effects of treadmill training on cognitive and motor behavior, and on the expression of proteins related to BBB integrity, such as claudin-5 and aquaporin-4 (AQP4) in the hippocampus and striatum in diabetic rats. For this study, 60 Wistar rats were divided into four groups (n=15 per group): non-trained control (NTC), trained control (TC), non-trained diabetic (NTD), trained diabetic (TD). After diabetic induction of 30 days by streptozotocin injection, the exercise groups were submitted to 5 weeks of running training. After that, all groups were assessed in a novel object-recognition task (NOR) and the rotarod test. Additionally, claudin-5 and AQP4 levels were measured using biochemical assays. The results showed that exercise enhanced NOR task performance and rotarod ability in the TC and TD animals. Diabetes produced a decrease in claudin-5 expression in the hippocampus and striatum and reduced AQP4 in the hippocampus. Exercise preserved the claudin-5 content in the striatum of TD rats, but not in the hippocampus. The reduction of AQP4 levels produced by diabetes was not reversed by exercise. We conclude that exercise improves short-term memory retention, enhances motor performance in diabetic rats and affects important structural components of the striatal BBB. The results obtained could enhance the knowledge regarding the neurochemical benefits of exercise in diabetes.
Collapse
Affiliation(s)
- Priscylla Nunes de Senna
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Celular e Tecidual, Departamento de Ciências Morfofisiológicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Léder Leal Xavier
- Laboratório de Biologia Celular e Tecidual, Departamento de Ciências Morfofisiológicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pamela Brambilla Bagatini
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lisiani Saur
- Laboratório de Biologia Celular e Tecidual, Departamento de Ciências Morfofisiológicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabiana Galland
- Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline Zanotto
- Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caren Bernardi
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Patrícia Nardin
- Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Alberto Gonçalves
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Matilde Achaval
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
28
|
Tsai CF, Kuo YH, Yeh WL, Wu CYJ, Lin HY, Lai SW, Liu YS, Wu LH, Lu JK, Lu DY. Regulatory effects of caffeic acid phenethyl ester on neuroinflammation in microglial cells. Int J Mol Sci 2015; 16:5572-89. [PMID: 25768341 PMCID: PMC4394493 DOI: 10.3390/ijms16035572] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/12/2015] [Accepted: 02/28/2015] [Indexed: 12/20/2022] Open
Abstract
Microglial activation has been widely demonstrated to mediate inflammatory processes that are crucial in several neurodegenerative disorders. Pharmaceuticals that can deliver direct inhibitory effects on microglia are therefore considered as a potential strategy to counter balance neurodegenerative progression. Caffeic acid phenethyl ester (CAPE), a natural phenol in honeybee propolis, is known to possess antioxidant, anti-inflammatory and anti-microbial properties. Accordingly, the current study intended to probe the effects of CAPE on microglia activation by using in vitro and in vivo models. Western blot and Griess reaction assay revealed CAPE significantly inhibited the expressions of inducible nitric oxide synthase (NOS), cyclooxygenase (COX)-2 and the production of nitric oxide (NO). Administration of CAPE resulted in increased expressions of hemeoxygenase (HO)-1and erythropoietin (EPO) in microglia. The phosphorylated adenosine monophosphate-activated protein kinase (AMPK)-α was further found to regulate the anti-inflammatory effects of caffeic acid. In vivo results from immunohistochemistry along with rotarod test also revealed the anti-neuroinflammatory effects of CAPE in microglia activation. The current study has evidenced several possible molecular determinants, AMPKα, EPO, and HO-1, in mediating anti-neuroinflammatory responses in microglial cells.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| | - Yueh-Hsiung Kuo
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan.
| | - Wei-Lan Yeh
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua 500, Taiwan.
| | - Caren Yu-Ju Wu
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Hsiao-Yun Lin
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung 404, Taiwan.
| | - Sheng-Wei Lai
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Yu-Shu Liu
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Ling-Hsuan Wu
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Jheng-Kun Lu
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| | - Dah-Yuu Lu
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung 404, Taiwan.
- Department of Photonics and Communication Engineering, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
29
|
Campos-Bedolla P, Walter FR, Veszelka S, Deli MA. Role of the Blood–Brain Barrier in the Nutrition of the Central Nervous System. Arch Med Res 2014; 45:610-38. [DOI: 10.1016/j.arcmed.2014.11.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
|
30
|
Ligularia fischeri Extract Protects Against Oxidative-Stress-Induced Neurotoxicity in Mice and PC12 Cells. J Med Food 2014; 17:1222-31. [DOI: 10.1089/jmf.2013.3014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
31
|
Cunningham TL, Cartagena CM, Lu XCM, Konopko M, Dave JR, Tortella FC, Shear DA. Correlations between blood-brain barrier disruption and neuroinflammation in an experimental model of penetrating ballistic-like brain injury. J Neurotrauma 2014; 31:505-14. [PMID: 24138024 DOI: 10.1089/neu.2013.2965] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract Blood-brain barrier (BBB) disruption is a pathological hallmark of severe traumatic brain injury (TBI) and is associated with neuroinflammatory events contributing to brain edema and cell death. The goal of this study was to elucidate the profile of BBB disruption after penetrating ballistic-like brain injury (PBBI) in conjunction with changes in neuroinflammatory markers. Brain uptake of biotin-dextran amine (BDA; 3 kDa) and horseradish peroxidase (HRP; 44 kDa) was evaluated in rats at 4 h, 24 h, 48 h, 72 h, and 7 days post-PBBI and compared with the histopathologic and molecular profiles for inflammatory markers. BDA and HRP both displayed a uniphasic profile of extravasation, greatest at 24 h post-injury and which remained evident out to 48 h for HRP and 7 days for BDA. This profile was most closely associated with markers for adhesion (mRNA for intercellular adhesion molecule-1) and infiltration of peripheral granulocytes (mRNA for matrix metalloproteinase-9 [MMP-9] and myeloperoxidase staining). Improvement of BBB dysfunction coincided with increased expression of markers implicated in tissue remodeling and repair. The results of this study reveal a uniphasic and gradient opening of the BBB after PBBI and suggest MMP-9 and resident inflammatory cell activation as candidates for future neurotherapeutic intervention after PBBI.
Collapse
Affiliation(s)
- Tracy L Cunningham
- Walter Reed Army Institute of Research, Center for Military Psychiatry and Neuroscience , Branch of Brain Trauma Neuroprotection and Neurorestoration, Silver Spring, Maryland
| | | | | | | | | | | | | |
Collapse
|
32
|
Shi H, Xie D, Yang R, Cheng Y. Synthesis of caffeic acid phenethyl ester derivatives, and their cytoprotective and neuritogenic activities in PC12 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5046-5053. [PMID: 24840770 DOI: 10.1021/jf500464k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Twenty-one caffeic acid phenethyl ester (CAPE) derivatives were synthesized, and characterized by IR, HR-MS, (1)H and (13)C NMR analyses. All compounds were evaluated for their cytoprotective effects against H2O2-induced cytotoxicity and neuritogenic activities in the neurite outgrowth in PC12 cells. Compounds 1 and 20 exhibited stronger cytoprotective activities than their parent compound CAPE at 4 nM. Compounds 1, 4, 12 and 13 showed potential neuritogenic activities at 0.5 nM, while compounds 19 and 20 induced neurite outgrowth at 10 nM. The results from this study suggested that CAPE and its derivatives may be potential functional food ingredients for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Haiming Shi
- Institute of Food and Nutraceutical Science, SJTU-Rich Research Institute of Nutrition and Skin Science, School of Agriculture and Biology, Shanghai Jiao Tong University , Shanghai 200240, China
| | | | | | | |
Collapse
|
33
|
Hylin MJ, Orsi SA, Rozas NS, Hill JL, Zhao J, Redell JB, Moore AN, Dash PK. Repeated mild closed head injury impairs short-term visuospatial memory and complex learning. J Neurotrauma 2013; 30:716-26. [PMID: 23489238 DOI: 10.1089/neu.2012.2717] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Concussive force can cause neurocognitive and neurobehavioral dysfunction by inducing functional, electrophysiological, and/or ultrastructural changes within the brain. Although concussion-triggered symptoms typically subside within days to weeks in most people, in 15%-20% of the cases, symptomology can continue beyond this time point. Problems with memory, attention, processing speed, and cognitive flexibility (e.g., problem solving, conflict resolution) are some of the prominent post-concussive cognitive symptoms. Repeated concussions (with loss or altered consciousness), which are common to many contact sports, can exacerbate these symptoms. The pathophysiology of repeated concussions is not well understood, nor is an effective treatment available. In order to facilitate drug discovery to treat post-concussive symptoms (PCSs), there is a need to determine if animal models of repeated mild closed head injury (mCHI) can mimic the neurocognitive and histopathological consequences of repeated concussions. To this end, we employed a controlled cortical impact (CCI) device to deliver a mCHI directly to the skull of mice daily for 4 days, and examined the ensuing neurological and neurocognitive functions using beam balance, foot-fault, an abbreviated Morris water maze test, context discrimination, and active place avoidance tasks. Repeated mCHI exacerbated vestibulomotor, motor, short-term memory and conflict learning impairments as compared to a single mCHI. Learning and memory impairments were still observed in repeated mCHI mice when tested 3 months post-injury. Repeated mCHI also reduced cerebral perfusion, prolonged the inflammatory response, and in some animals, caused hippocampal neuronal loss. Our results show that repeated mCHI can reproduce some of the deficits seen after repeated concussions in humans and may be suitable for drug discovery studies and translational research.
Collapse
Affiliation(s)
- Michael J Hylin
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, Texas 77225, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Huang XT, Zhang YQ, Li SJ, Li SH, Tang Q, Wang ZT, Dong JF, Zhang JN. Intracerebroventricular transplantation of ex vivo expanded endothelial colony-forming cells restores blood-brain barrier integrity and promotes angiogenesis of mice with traumatic brain injury. J Neurotrauma 2013; 30:2080-8. [PMID: 23957220 DOI: 10.1089/neu.2013.2996] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Endothelial progenitor cells (EPCs) play a key role in tissue repair and regeneration. Previous studies have shown a positive correlation between the number of circulating EPCs and clinical outcomes of patients with traumatic brain injury (TBI). A recent study has further shown that intravenous infusion of human umbilical cord blood-derived endothelial colony-forming cells (ECFCs) improves outcomes of mice subjected to experimental TBI. This follow-up study was designed to determine whether intracerebroventricular (i.c.v.) infusion of ECFCs, which may reduce systemic effects of these cells, could repair the blood-brain barrier (BBB) and promote angiogenesis of mice with TBI. Adult nude mice were exposed to fluid percussion injury and transplanted i.c.v. with ECFCs on day 1 post-TBI. These ECFCs were detected at the TBI zone 3 days after transplantation by SP-DiIC18(3) and fluorescence in situ hybridization. Mice with ECFCs transplant had reduced Evans blue extravasation and brain water content, increased expression of ZO-1 and claudin-5, and showed a higher expression of angiopoietin 1. Consistent with the previous report, mice with ECFCs transplant had also increased microvascular density. Modified neurological severity score and Morris water maze test indicated significant improvements in motor ability, spatial acquisition and reference memory in mice receiving ECFCs, compared to those receiving saline. These data demonstrate the beneficial effects of ECFC transplant on BBB integrity and angiogenesis in mice with TBI.
Collapse
Affiliation(s)
- Xin-Tao Huang
- 1 Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital , Tianjin, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Menge T, Zhao Y, Zhao J, Wataha K, Gerber M, Zhang J, Letourneau P, Redell J, Shen L, Wang J, Peng Z, Xue H, Kozar R, Cox CS, Khakoo AY, Holcomb JB, Dash PK, Pati S. Mesenchymal stem cells regulate blood-brain barrier integrity through TIMP3 release after traumatic brain injury. Sci Transl Med 2013; 4:161ra150. [PMID: 23175708 DOI: 10.1126/scitranslmed.3004660] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) may be useful for treating a variety of disease states associated with vascular instability including traumatic brain injury (TBI). A soluble factor, tissue inhibitor of matrix metalloproteinase-3 (TIMP3), produced by MSCs is shown to recapitulate the beneficial effects of MSCs on endothelial function and to ameliorate the effects of a compromised blood-brain barrier (BBB) due to TBI. Intravenous administration of recombinant TIMP3 inhibited BBB permeability caused by TBI, whereas attenuation of TIMP3 expression in intravenously administered MSCs blocked the beneficial effects of the MSCs on BBB permeability and stability. MSCs increased circulating concentrations of soluble TIMP3, which blocked vascular endothelial growth factor-A-induced breakdown of endothelial cell adherens junctions in vitro and in vivo. These findings elucidate a potential molecular mechanism for the beneficial effects of MSCs on the BBB after TBI and demonstrate a role for TIMP3 in the regulation of BBB integrity.
Collapse
Affiliation(s)
- Tyler Menge
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dynamic Change of Hydrogen Sulfide After Traumatic Brain Injury and its Effect in Mice. Neurochem Res 2013; 38:714-25. [DOI: 10.1007/s11064-013-0969-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/14/2012] [Accepted: 01/08/2013] [Indexed: 01/20/2023]
|
37
|
Anwar J, Spanevello RM, Thomé G, Stefanello N, Schmatz R, Gutierres J, Vieira J, Baldissarelli J, Carvalho FB, da Rosa MM, Rubin MA, Fiorenza A, Morsch VM, Schetinger MRC. Effects of caffeic acid on behavioral parameters and on the activity of acetylcholinesterase in different tissues from adult rats. Pharmacol Biochem Behav 2012; 103:386-94. [DOI: 10.1016/j.pbb.2012.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 08/10/2012] [Accepted: 09/08/2012] [Indexed: 01/04/2023]
|
38
|
Shang A, Feng X, Wang H, Wang J, Hang X, Yang Y, Wang Z, Zhou D. Neuroglobin upregulation offers neuroprotection in traumatic brain injury. Neurol Res 2012; 34:588-94. [PMID: 22664218 DOI: 10.1179/1743132812y.0000000052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The aim of this study was to investigate rat neuroglobin (rNGB) expression level after traumatic brain injury (TBI) and further study its neuroprotective effects in TBI when it was overexpressed in adenoviral vector. METHODS The Wistar rats (280-320 g) were divided into control, 12 and 36 hours after TBI groups (n = 3) and their TBI model was established. Subsequently, NGB expression level was examined by Western blot and immunohistochemical. Beyond that, adenoviral vectors pAdEasy-rNGB-GFP and pAdEasy-GFP were constructed and transfected into the rat brain respectively (pAdEasy-GFP was control), and the neuroprotective effects were examined by immunohistochemical. RESULTS Immunohistochemical and Western blot results demonstrated that NGB expression level was increased at 12 and 36 hours after TBI injury compare with control. Meanwhile, the pAdEasy-rNGB-GFP transfected rats suffered less necrosis and apoptosis compare to control. CONCLUSIONS NGB was upregulated in TBI and overexpressed rNGB had a significant neuroprotection in TBI. However, the mechanism remained unknown. This study suggested that rNGB overexpression may be a new strategy for treating of TBI.
Collapse
Affiliation(s)
- Aijia Shang
- Department of Neurosurgery, General Hospital of Chinese PLA, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Vimentin and PSF act in concert to regulate IbeA+ E. coli K1 induced activation and nuclear translocation of NF-κB in human brain endothelial cells. PLoS One 2012; 7:e35862. [PMID: 22536447 PMCID: PMC3334993 DOI: 10.1371/journal.pone.0035862] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/27/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PSF is required for meningitic E. coli K1 penetration and leukocyte transmigration across the blood-brain barrier (BBB), which are the hallmarks of bacterial meningitis. However, it is unknown how vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB, which are required for bacteria-mediated pathogenicities. METHODOLOGY/PRINCIPAL FINDINGS IbeA-induced E. coli K1 invasion, polymorphonuclear leukocyte (PMN) transmigration and IKK/NF-κB activation are blocked by Caffeic acid phenethyl ester (CAPE), an inhibitor of NF-κB. IKKα/β phosphorylation is blocked by ERK inhibitors. Co-immunoprecipitation analysis shows that vimentin forms a complex with IκB, NF-κB and tubulins in the resting cells. A dissociation of this complex and a simultaneous association of PSF with NF-κB could be induced by IbeA in a time-dependent manner. The head domain of vimentin is required for the complex formation. Two cytoskeletal components, vimentin filaments and microtubules, contribute to the regulation of NF-κB. SiRNA-mediated knockdown studies demonstrate that IKKα/β phosphorylation is completely abolished in HBMECs lacking vimentin and PSF. Phosphorylation of ERK and nuclear translocation of NF-κB are entirely dependent on PSF. These findings suggest that vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB activation. PSF is essential for translocation of NF-κB and ERK to the nucleus. CONCLUSION/SIGNIFICANCE These findings reveal previously unappreciated facets of the IbeA-binding proteins. Cooperative contributions of vimentin and PSF to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB may represent a new paradigm in pathogen-induced signal transduction and lead to the development of novel strategies for the prevention and treatment of bacterial meningitis.
Collapse
|