1
|
Chin J, Settell ML, Brucker-Hahn MK, Lust D, Zhang J, Upadhye AR, Knudsen B, Deshmukh A, Ludwig KA, Lavrov IA, Crofton AR, Lempka SF, Zhang M, Shoffstall AJ. Quantification of porcine lower thoracic spinal cord morphology with intact dura mater using high-resolution μCT. J Neuroimaging 2024; 34:646-663. [PMID: 39390716 DOI: 10.1111/jon.13239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Spinal cord stimulation (SCS) is approved by the Food and Drug Administration for treating chronic intractable pain in the back, trunk, or limbs through stimulation of the dorsal column. Numerous studies have used swine as an analog of the human spinal cord to better understand SCS and further improve its efficacy. We performed high-resolution imaging of the porcine spinal cord with intact dura mater using micro-computed tomography (μCT) to construct detailed 3-dimensional (3D) visualizations of the spinal cord and characterize the morphology of the dorsal and ventral rootlets. METHODS We obtained spinal cords from Yorkshire/Landrace crossbred swine (N = 7), stained samples with osmium tetroxide, and performed μCT imaging of the T12-T15 levels at isotropic voxel resolutions ranging from 3.3 to 50 μm. We measured the anatomical morphology using the 3D volumes and compared our results to measurements previously collected from swine and human spinal cords via microdissection techniques in prior literature. RESULTS While the porcine thoracic-lumbar spinal cord is a popular model for SCS, we highlight multiple notable differences compared to previously published T8-T12 human measurements including rootlet counts (porcine dorsal/ventral: 12.2 ± 2.6, 26.6 ± 3.4; human dorsal/ventral: 5.3 ± 1.3, 4.4 ± 2.4), rootlet angles (porcine ventral-rostral: 161 ± 1°, ventral-caudal: 155 ± 6°, dorsal-rostral: 148 ± 9°, dorsal-caudal: 142 ± 6°; human ventral-rostral: 170 ± 3°, ventral-caudal: 22 ± 10°, dorsal-rostral: 171 ± 3°, dorsal-caudal: 15 ± 7°), and the presence and count of dorsal rootlet bundles. CONCLUSIONS Detailed measurements and highlighted differences between human and porcine spinal cords can inform variations in modeling and electrophysiological experiments between the two species. In contrast to other approaches for measuring the spinal cord and rootlet morphology, our method keeps the dura intact, reducing potential artifacts from dissection.
Collapse
Affiliation(s)
- Justin Chin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Rehabilitation Research and Development, Cleveland, Ohio, USA
| | - Megan L Settell
- Wisconsin Institute for Translational Neuroengineering, Madison, Wisconsin, USA
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Meagan K Brucker-Hahn
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel Lust
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Rehabilitation Research and Development, Cleveland, Ohio, USA
| | - Jichu Zhang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Aniruddha R Upadhye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Rehabilitation Research and Development, Cleveland, Ohio, USA
| | - Bruce Knudsen
- Wisconsin Institute for Translational Neuroengineering, Madison, Wisconsin, USA
| | - Ashlesha Deshmukh
- Wisconsin Institute for Translational Neuroengineering, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kip A Ludwig
- Wisconsin Institute for Translational Neuroengineering, Madison, Wisconsin, USA
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Igor A Lavrov
- Department Neurology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew R Crofton
- Department of Anatomy, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology and Cell Biology, University of South Florida, Tampa, Florida, USA
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Rehabilitation Research and Development, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Nourbakhsh A, Takawira C, Barras E, Hampton C, Carossino M, Nguyen K, Gaschen L, Lopez MJ. A novel reconstruction model for thoracic spinal cord injury in swine. PLoS One 2024; 19:e0308637. [PMID: 39325721 PMCID: PMC11426471 DOI: 10.1371/journal.pone.0308637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/25/2024] [Indexed: 09/28/2024] Open
Abstract
Spinal cord (SC) reconstruction (process to reestablish the severed neural continuity at the injury site) may provide better recovery from blunt SC injury (SCI). A miniature swine model of blunt SC compression was used to test the hypothesis that reconstruction of the SC with sural nerve in combination with surgical decompression and stabilization improves functional, macro- and microstructural recovery compared to decompression and stabilization alone. Following blunt T9-T11 SC compression injury, five adult Yucatan gilts randomly received laminectomy and polyethylene glycol (as fusogen) with (n = 3) or without (n = 2) sural nerve graft SC reconstruction. Fusogens are a heterogeneous collection of chemicals that fuse the axon membrane and are currently used to augment epineural coaptation during peripheral nerve graft reconstruction. Outcome measures of recovery included weekly sensory and motor assessments, various measurements obtained from computed tomography (CT) myelograms up to 12 weeks after injury Measurements from postmortem magnetic resonance imaging (MRI) and results from spinal cord histology performed 12 weeks after injury were also reported. Vertebral canal (VC), SC and dural sac (DS) dimensions and areas were quantified on 2-D CT images adjacent to the injury. Effort to stand and response to physical manipulation improved 7 and 9 weeks and 9 and 10 weeks, respectively, after injury in the reconstruction group. Myelogram measures indicated greater T13-T14 VC, smaller SC, and smaller DS dimensions in the reconstruction cohort, and increased DS area increased DS/VC area ratio, and higher contrast migration over time. Spinal cord continuity was evident in 2 gilts in the reconstruction cohort with CT and MRI imaging. At the SCI, microstructural alterations included axonal loss and glial scarring. Better functional outcomes were observed in subjects treated with sural nerve SC reconstruction. Study results support the use of this adult swine model of blunt SCI. Long-term studies with different nerve grafts or fusogens are required to expand upon these findings.
Collapse
Affiliation(s)
- Ali Nourbakhsh
- OrthoAtlanta, Stockbridge, Georgia, United States of America
| | - Catherine Takawira
- Department of Veterinary Clinical Science, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| | - Elise Barras
- University of Florida, Gainesville, Florida, United States of America
| | - Chiara Hampton
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| | - Mariano Carossino
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Khoivu Nguyen
- Department of Veterinary Clinical Science, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| | - Lorrie Gaschen
- Department of Veterinary Clinical Science, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| | - Mandi J Lopez
- Department of Veterinary Clinical Science, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
3
|
Hassan OI, Takamiya S, Asgarihafshejani A, Fehlings MG. Bridging the gap: a translational perspective in spinal cord injury. Exp Biol Med (Maywood) 2024; 249:10266. [PMID: 39391076 PMCID: PMC11464315 DOI: 10.3389/ebm.2024.10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating and complex condition to treat with no curative options. In the past few decades, rapid advancements in our understanding of SCI pathophysiology as well as the mergence of new treatments has created more optimism. Focusing on clinical translation, this paper provides a comprehensive overview of SCI through its epidemiology, pathophysiology, currently employed management strategies, and emerging therapeutic approaches. Additionally, it emphasizes the importance of addressing the heavy quality of life (QoL) challenges faced by SCI patients and their desires, providing a basis to tailor patient-centric forms of care. Furthermore, this paper discusses the frequently encountered barriers in translation from preclinical models to clinical settings. It also seeks to summarize significant completed and ongoing SCI clinical trials focused on neuroprotective and neuroregenerative strategies. While developing a cohesive regenerative treatment strategy remains challenging, even modest improvements in sensory and motor function can offer meaningful benefits and motivation for patients coping with this highly debilitating condition.
Collapse
Affiliation(s)
- Omar Imad Hassan
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Soichiro Takamiya
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Azam Asgarihafshejani
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Smith AC, Ahmed RU, Weber KA, Negahdar M, Gibson D, Boakye M, Rejc E. Spinal cord lesion MRI and behavioral outcomes in a miniature pig model of spinal cord injury: exploring preclinical potential through an ad hoc comparison with human SCI. Spinal Cord Ser Cases 2024; 10:44. [PMID: 38977671 PMCID: PMC11231227 DOI: 10.1038/s41394-024-00658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
STUDY DESIGN prospective case series of Yucatan miniature pig spinal cord contusion injury model with comparison to human cases of spinal cord injury (SCI). OBJECTIVES to describe magnetic resonance imaging (MRI) measures of spinal cord lesion severity along with estimates of lateral corticospinal tracts spared neural tissue in both a less severe and more severe contusion SCI model, as well as to describe their corresponding behavioral outcome changes. SETTING University laboratory setting. METHODS Following a more severe and less severe SCI, each pig underwent spinal cord MRI to measure lesion characteristics, along with locomotor and urodynamics outcomes testing. RESULTS In the pig with more severe SCI, locomotor and urodynamic outcomes were poor, and both the spinal cord lesion volume and damage estimates to the lateral corticospinal tracts were large. Conversely, in the pig with less severe SCI, locomotor and urodynamic outcomes were favorable, with the spinal cord lesion volume and damage estimates to the lateral corticospinal tracts being less pronounced. For two human cases matched on estimates of damage to the lateral corticospinal tract regions, the clinical presentations were similar to the pig outcomes, with more limited mobility and more limited bladder functional independence in the more severe case. CONCLUSIONS Our initial findings contribute valuable insights to the emergent field of MRI-based evaluation of spinal cord lesions in pig models, offering a promising avenue for understanding and potentially improving outcomes in spinal cord injuries.
Collapse
Affiliation(s)
- Andrew C Smith
- University of Colorado School of Medicine, Department of Physical Medicine and Rehabilitation, Aurora, CO, USA.
| | - Rakib Uddin Ahmed
- University of Louisville School of Medicine, Department of Neurosurgery, Louisville, KY, USA
| | - Kenneth A Weber
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Palo Alto, CA, USA
| | - MohammadJavad Negahdar
- University of Louisville School of Medicine, Department of Radiology, Louisville, KY, USA
| | - Destiny Gibson
- University of Louisville School of Medicine, Department of Neurosurgery, Louisville, KY, USA
| | - Maxwell Boakye
- University of Louisville School of Medicine, Department of Neurosurgery, Louisville, KY, USA
| | - Enrico Rejc
- University of Udine, Department of Medicine, Udine, Italy
- Kessler Foundation, West Orange, NJ, USA
| |
Collapse
|
5
|
Zheng Z, Couture D, Adams F, Roberson R, Ma R, Argenta L, Morykwas M. Attenuated Tissue Damage With Mechanical Tissue Resuscitation in a Pig Model of Spinal Cord Injury. J Neurotrauma 2024; 41:1020-1029. [PMID: 37830176 DOI: 10.1089/neu.2023.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Our previous studies on the treatment of spinal cord injuries with Mechanical Tissue Resuscitation (MTR) in rats have demonstrated that it can significantly improve the locomotor recovery and Basso Beattie Bresnahan scores. MTR treatment also reduced fluid accumulations by T2-imaging and improved the mean neural fiber number and fiber length in injured sites by fiber tractography. Myelin volume was also significantly preserved by MTR treatment. For further clinical application, a large animal model is necessary to assess this treatment. This study examined the effects of application of MTR on traumatic spinal cord injury in a swine model. Traumatic spinal cord contusion injuries in swine were created by controlled pneumatic impact device. Negative pressure at -75 mm Hg was continuously applied to the injured site through open cell silicone manifold for 7 days. In vivo magnetic resonance imaging for T2 and gradient echo (GRE) analysis employed a 3T machine, while a 7T machine was employed for diffusion tensor imaging (DTI) and fiber tractography. Histological hematoxylin and eosin (H&E) and Luxol fast blue staining were examined. MTR significantly reduced the mean injured volumes over 46% by T2-imaging in the injured sites from 477.34 ± 146.31 mm3 in non-treated group to 255.99 ± 70.28 mm3 in MTR treated group (p < 0.01). It also reduced fluid accumulations by relative T2 signal density in the epicenter of the spinal cord injury from 1.62 ± 0.27 in non-treated group to 1.22 ± 0.10 in the MTR treated group (p < 0.05). The mean injured tissue volume measured by H&E staining was 303.71 ± 78.21 mm3 in the non-treated group and decreased significantly to 162.16 ± 33.0 mm3 in the MTR treated group (p < 0.01). The myelin fiber bundles stained by Luxol blue were preserved much more in the MTR treated group (90 ± 29.71 mm3) than in the non-treated group (33.68 ± 24.99 mm3, p < 0.01). The fractional anisotropy (FA) values processed by DTI analysis are increased from 0.203 ± 0.027 in the untreated group to 0.238 ± 0.029 in MTR treatment group (p < 0.05). Fiber tractography showings the mean fiber numbers across the impacted area were increased over 112% from 327.0 ± 99.74 in the non-treated group to 694.83 ± 297.86 in the MTR treated group (p < 0.05). These results indicate local application of MTR for 7 days to spinal cord injury in a swine model decreased tissue injury, reduced tissue edema, and preserved more myelin fibers as well as nerve fibers in the injured spinal cord.
Collapse
Affiliation(s)
- Zhenlin Zheng
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Science, Winston-Salem, North Carolina, USA
| | - Daniel Couture
- Department of Neurosurgery, Wake Forest University Health Science, Winston-Salem, North Carolina, USA
| | - Farren Adams
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Science, Winston-Salem, North Carolina, USA
| | - Rebecca Roberson
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Science, Winston-Salem, North Carolina, USA
| | - Rong Ma
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Science, Winston-Salem, North Carolina, USA
| | - Louis Argenta
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Science, Winston-Salem, North Carolina, USA
| | - Michael Morykwas
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Science, Winston-Salem, North Carolina, USA
| |
Collapse
|
6
|
Thygesen MM, Entezari S, Houlind N, Nielsen TH, Olsen NØ, Nielsen TD, Skov M, Borgstedt-Bendixen J, Tankisi A, Rasmussen M, Einarsson HB, Agger P, Orlowski D, Dyrskog SE, Thorup L, Pedersen M, Rasmussen MM. A 72-h sedated porcine model of traumatic spinal cord injury. BRAIN & SPINE 2024; 4:102813. [PMID: 38681174 PMCID: PMC11052900 DOI: 10.1016/j.bas.2024.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 05/01/2024]
Abstract
Introduction There is an increasing focus on the prevention of secondary injuries following traumatic spinal cord injury (TSCI), especially through improvement of spinal cord perfusion and immunological modulation. Such therapeutic strategies require translational and controlled animal models of disease progression of the acute phases of human TSCI. Research question Is it possible to establish a 72-h sedated porcine model of incomplete thoracic TSCI, enabling controlled use of continuous, invasive, and non-invasive modalities during the entire sub-acute phase of TSCI? Material and methods A sham-controlled trial was conducted to establish the model, and 10 animals were assigned to either sham or TSCI. All animals underwent a laminectomy, and animals in the TSCI group were subjected to a weight-drop injury. Animals were then kept sedated for 72 h. The amount of injury was assessed by ex-vivo measures MRI-based fiber tractography, histology and immunohistochemistry. Results In all animals, we were successful in maintaining sedation for 72 h without comprising vital physiological parameters. The MRI-based fiber tractography showed that all TSCI animals revealed a break in the integrity of spinal neurons, whereas histology demonstrated no transversal sections of the spine with complete injury. Notably, some animals displayed signs of secondary ischemic tissue in the cranial and caudal sections. Discussion and conclusions This study succeeded in producing a porcine model of incomplete TSCI, which was physiologically stable up to 72 h. We believe that this TSCI model will constitute a potential translational model to study the pathophysiology secondary to TSCI in humans.
Collapse
Affiliation(s)
- Mathias Møller Thygesen
- Department of Neurosurgery, Aarhus University Hospital, Denmark
- Department of Clinical Medicine CENSE, Aarhus University, Denmark
- Department of Clinical Medicine Comparative Medicine Lab, Aarhus University, Denmark
| | - Seyar Entezari
- Department of Neurosurgery, Aarhus University Hospital, Denmark
- Department of Clinical Medicine CENSE, Aarhus University, Denmark
- Department of Clinical Medicine Comparative Medicine Lab, Aarhus University, Denmark
| | - Nanna Houlind
- Department of Neurosurgery, Aarhus University Hospital, Denmark
- Department of Clinical Medicine CENSE, Aarhus University, Denmark
- Department of Clinical Medicine Comparative Medicine Lab, Aarhus University, Denmark
| | - Teresa Haugaard Nielsen
- Department of Neurosurgery, Aarhus University Hospital, Denmark
- Department of Clinical Medicine CENSE, Aarhus University, Denmark
- Department of Clinical Medicine Comparative Medicine Lab, Aarhus University, Denmark
| | - Nicholas Østergaard Olsen
- Department of Neurosurgery, Aarhus University Hospital, Denmark
- Department of Clinical Medicine CENSE, Aarhus University, Denmark
- Department of Clinical Medicine Comparative Medicine Lab, Aarhus University, Denmark
| | - Tim Damgaard Nielsen
- Department of Neurosurgery, Aarhus University Hospital, Denmark
- Department of Clinical Medicine CENSE, Aarhus University, Denmark
- Department of Clinical Medicine Comparative Medicine Lab, Aarhus University, Denmark
| | - Mathias Skov
- Department of Clinical Medicine Comparative Medicine Lab, Aarhus University, Denmark
| | | | - Alp Tankisi
- Department of Anesthesiology, Aarhus University Hospital, Denmark
| | - Mads Rasmussen
- Department of Anesthesiology, Aarhus University Hospital, Denmark
| | | | - Peter Agger
- Department of Clinical Medicine Comparative Medicine Lab, Aarhus University, Denmark
| | | | | | - Line Thorup
- Department of Intensive Care, Aarhus University Hospital, Denmark
| | - Michael Pedersen
- Department of Clinical Medicine Comparative Medicine Lab, Aarhus University, Denmark
| | - Mikkel Mylius Rasmussen
- Department of Neurosurgery, Aarhus University Hospital, Denmark
- Department of Clinical Medicine CENSE, Aarhus University, Denmark
| |
Collapse
|
7
|
Liu X, Gutierrez AG, Vega A, Willms JO, Driskill J, Panthagani P, Sanchez J, Aguilera M, Backus B, Bailoo JD, Bergeson SE. The horizontal ladder test (HLT) protocol: a novel, optimized, and reliable means of assessing motor coordination in Sus scrofa domesticus. Front Behav Neurosci 2024; 18:1357363. [PMID: 38510830 PMCID: PMC10951394 DOI: 10.3389/fnbeh.2024.1357363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/31/2024] [Indexed: 03/22/2024] Open
Abstract
Pigs can be an important model for preclinical biological research, including neurological diseases such as Alcohol Use Disorder. Such research often involves longitudinal assessment of changes in motor coordination as the disease or disorder progresses. Current motor coordination tests in pigs are derived from behavioral assessments in rodents and lack critical aspects of face and construct validity. While such tests may permit for the comparison of experimental results to rodents, a lack of validation studies of such tests in the pig itself may preclude the drawing of meaningful conclusions. To address this knowledge gap, an apparatus modeled after a horizontally placed ladder and where the height of the rungs could be adjusted was developed. The protocol that was employed within the apparatus mimicked the walk and turn test of the human standardized field sobriety test. Here, five Sinclair miniature pigs were trained to cross the horizontally placed ladder, starting at a rung height of six inches and decreasing to three inches in one-inch increments. It was demonstrated that pigs can reliably learn to cross the ladder, with few errors, under baseline/unimpaired conditions. These animals were then involved in a voluntary consumption of ethanol study where animals were longitudinally evaluated for motor coordination changes at baseline, 2.5, 5, 7.5, and 10% ethanol concentrations subsequently to consuming ethanol. Consistent with our predictions, relative to baseline performance, motor incoordination increased as voluntary consumption of escalating concentrations of ethanol increased. Together these data highlight that the horizontal ladder test (HLT) test protocol is a novel, optimized and reliable test for evaluating motor coordination as well as changes in motor coordination in pigs.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Ana G. Gutierrez
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Arlette Vega
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Joshua O. Willms
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jackson Driskill
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Praneetha Panthagani
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jordan Sanchez
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Monica Aguilera
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brittany Backus
- Department of Animal and Food Science, Texas Tech University, Lubbock, TX, United States
| | - Jeremy D. Bailoo
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Susan E. Bergeson
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
8
|
Tawakol O, Herman MD, Foxley S, Mushahwar VK, Towle VL, Troyk PR. In-vivo testing of a novel wireless intraspinal microstimulation interface for restoration of motor function following spinal cord injury. Artif Organs 2024; 48:263-273. [PMID: 37170929 DOI: 10.1111/aor.14562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Spinal cord injury causes a drastic loss in motor and sensory function. Intraspinal microstimulation (ISMS) is an electrical stimulation method developed for restoring motor function by activating the spinal networks below the level of injury. Current ISMS technology uses fine penetrating microwires to stimulate the ventral horn of the lumbar enlargement. The penetrating wires traverse the dura mater through a transdural conduit that connects to an implantable pulse generator. OBJECTIVE A wireless, fully intradural ISMS implant was developed to mitigate the potential complications associated with the transdural conduit, including tethering and leakage of cerebrospinal fluid. METHODS Two wireless floating microelectrode array (WFMA) devices were implanted in the lumbar enlargement of an adult domestic pig. Voltage transients were used to assess the electrochemical stability of the interface. Manual flexion and extension movements of the spine were performed to evaluate the mechanical stability of the interface. Post-mortem 9T MRI imaging was used to confirm the location of the electrodes. RESULTS The WFMA-based ISMS interface successfully evoked extension and flexion movements of the hip joint. Stimulation thresholds remained stable following manual extension and flexion of the spine. CONCLUSION The preliminary results demonstrate the surgical feasibility as well as the functionality of the proposed wireless ISMS system.
Collapse
Affiliation(s)
- Omar Tawakol
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Martin D Herman
- Department of Neurosurgery, University of Chicago, Chicago, Illinois, USA
| | - Sean Foxley
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Vivian K Mushahwar
- Department of Medicine and Neuroscience, Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - Vernon L Towle
- Department of Neurology, University of Chicago, Chicago, Illinois, USA
| | - Philip R Troyk
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Liu X, Gutierrez AG, Vega A, Willms JO, Driskill J, Panthagani P, Sanchez J, Aguilera M, Backus B, Bailoo JD, Bergeson SE. The Horizontal Ladder Test (HLT) protocol: A novel, optimized, and reliable means of assessing motor coordination in Sus scrofa domesticus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571517. [PMID: 38168162 PMCID: PMC10760169 DOI: 10.1101/2023.12.13.571517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Pigs can be an important model for preclinical biological research, including neurological diseases such as Alcohol Use Disorder. Such research often involves longitudinal assessment of changes in motor coordination as the disease or disorder progresses. Current motor coordination tests in pigs are derived from behavioral assessments in rodents and lack critical aspects of face and construct validity. While such tests may permit for the comparison of experimental results to rodents, a lack of validation studies of such tests in the pig itself may preclude the drawing of meaningful conclusions. Here, we present a novel, optimized, and reliable horizontal ladder test (HLT) test protocol for evaluating motor coordination in pigs and an initial validation of its construct validity using voluntary alcohol consumption as an experimental manipulation.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Ana G Gutierrez
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Arlette Vega
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Joshua O Willms
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Jackson Driskill
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Praneetha Panthagani
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Jordan Sanchez
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Monica Aguilera
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Brittany Backus
- Department of Animal and Food Science, Texas Tech University, Lubbock, TX, 79430, USA
| | - Jeremy D Bailoo
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Susan E Bergeson
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| |
Collapse
|
10
|
Lebenstein-Gumovski M, Zharchenko A, Rasueva T, Bashahanov R, Kovalev DA, Zhirov A, Shatokhin A, Grin A. PEG-chitosan (Neuro-PEG) induced restoration of motor function after complete transection of the dorsal spinal cord in swine. A pilot study. Surg Neurol Int 2023; 14:424. [PMID: 38213450 PMCID: PMC10783697 DOI: 10.25259/sni_928_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024] Open
Abstract
Background Spinal cord injury (SCI) remains an unmet medical need. Recently, fusogens, such as polyethylene glycol (PEG), have been proven effective in restoring sensorimotor function after complete transection of the spinal cord at different levels and in different species. Here, we report on the use of a PEG-chitosan combo in a different animal model (swine). Methods Five Hungarian Mangalica pigs were subjected to complete transection of the thoracic cord (T7-9). Three animals were treated with locally injected PEG-chitosan (Neuro-PEG) gel; two acted as controls. PEG-600 was also injected intra- and post-operatively intravenously. Animals were submitted to rehabilitation, including electrical myostimulation. Results were assessed after 60 days using the Individual Limb Motor Score, the Porcine Thoracic Spinal Cord Injured Behavioral Scale, and the modified motor Basso, Beattie, and Bresnahan scale; sensory and sphincter functions were also assessed. Animals underwent in vivo spinal cord tracing with DiI. Immunofluorescence histology included NF-200, DAPI, and a fluorochrome-conjugated secondary antibody. Results Starting on postoperative day (POD) 2, neuro-PEG-treated animals evinced the first signs of recovery, and on POD 60, they could all support their weight and were mobile. Controls never recovered any useful function. Fluorescence microscopy in the experimental group revealed axons passing through the site of injury, while degenerative post-traumatic changes were noted in controls. Conclusion Neuro-PEG affords sensorimotor recovery after complete spinal cord transection. This opens the door to human experimentation, including trials of spinal cord transplantation.
Collapse
Affiliation(s)
| | - Alexander Zharchenko
- Department of General Medicine, Stavropol State Medical University, Stavropol, Russian Federation
| | - Tanzila Rasueva
- Clinic of Neurosurgery, N.V. Sklifosovsky Research Institute for Emergency Medicine, Moscow Healthcare Department, Moscow, Russian Federation
| | - Robert Bashahanov
- Department of General Medicine, Stavropol State Medical University, Stavropol, Russian Federation
| | - Dmitry A. Kovalev
- Biochemistry Lab, Stavropol Research Institute for Plague Control, Stavropol, Russian Federation
| | - Andrey Zhirov
- Biochemistry Lab, Stavropol Research Institute for Plague Control, Stavropol, Russian Federation
| | - Anton Shatokhin
- Department of Neurology and Neurosurgery, Stavropol State Medical University, Stavropol, Russian Federation
| | - Andrey Grin
- Clinic of Neurosurgery, N.V. Sklifosovsky Research Institute for Emergency Medicine, Moscow Healthcare Department, Moscow, Russian Federation
| |
Collapse
|
11
|
Soltan N, Siegmund GP, Cripton PA, Jones CF. Geometric and Inertial Properties of the Pig Head and Brain in an Anatomical Coordinate System. Ann Biomed Eng 2023; 51:2544-2553. [PMID: 37358713 PMCID: PMC10598157 DOI: 10.1007/s10439-023-03294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Porcine models in injury biomechanics research often involve measuring head or brain kinematics. Translation of data from porcine models to other biomechanical models requires geometric and inertial properties of the pig head and brain, and a translationally relevant anatomical coordinate system (ACS). In this study, the head and brain mass, center of mass (CoM), and mass moments of inertia (MoI) were characterized, and an ACS was proposed for the pre-adolescent domestic pig. Density-calibrated computed tomography scans were obtained for the heads of eleven Large White × Landrace pigs (18-48 kg) and were segmented. An ACS with a porcine-equivalent Frankfort plane was defined using externally palpable landmarks (right/left frontal process of the zygomatic bone and zygomatic process of the frontal bone). The head and brain constituted 7.80 ± 0.79% and 0.33 ± 0.08% of the body mass, respectively. The head and brain CoMs were primarily ventral and caudal to the ACS origin, respectively. The mean head and brain principal MoI (in the ACS with origin at respective CoM) ranged from 61.7 to 109.7 kg cm2, and 0.2 to 0.6 kg cm2, respectively. These data may aid the comparison of head and brain kinematics/kinetics data and the translation between porcine and human injury models.
Collapse
Affiliation(s)
- Nikoo Soltan
- Department of Mechanical Engineering, The University of British Columbia, Vancouver, BC Canada
- Orthopaedic and Injury Biomechanics Group, ICORD, Vancouver, BC Canada
| | - Gunter P. Siegmund
- MEA Forensic Engineers & Scientists, Laguna Hills, CA USA
- School of Kinesiology, The University of British Columbia, Vancouver, BC Canada
| | - Peter A. Cripton
- Department of Mechanical Engineering, The University of British Columbia, Vancouver, BC Canada
- Orthopaedic and Injury Biomechanics Group, ICORD, Vancouver, BC Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC Canada
| | - Claire F. Jones
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, SA Australia
- Adelaide Spinal Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA Australia
- Department of Orthopaedics & Trauma, Royal Adelaide Hospital, Adelaide, SA Australia
| |
Collapse
|
12
|
Ahmed RU, Medina‐Aguinaga D, Adams S, Knibbe CA, Morgan M, Gibson D, Kim J, Sharma M, Chopra M, Davison S, Sherwood LC, Negahdar M, Bert R, Ugiliweneza B, Hubscher C, Budde MD, Xu J, Boakye M. Predictive values of spinal cord diffusion magnetic resonance imaging to characterize outcomes after contusion injury. Ann Clin Transl Neurol 2023; 10:1647-1661. [PMID: 37501362 PMCID: PMC10502634 DOI: 10.1002/acn3.51855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/21/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVES To explore filtered diffusion-weighted imaging (fDWI), in comparison with conventional magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI), as a predictor for long-term locomotor and urodynamic (UD) outcomes in Yucatan minipig model of spinal cord injury (SCI). Additionally, electrical conductivity of neural tissue using D-waves above and below the injury was measured to assess correlations between fDWI and D-waves data. METHODS Eleven minipigs with contusion SCI at T8-T10 level underwent MRI at 3T 4 h. post-SCI. Parameters extracted from region of interest analysis included Daxial from fDWI at injury site, fractional anisotropy and radial diffusivity from DTI above the injury site along with measures of edema length and cord width at injury site from T2 -weighted images. Locomotor recovery was assessed pre- and weekly post-SCI through porcine thoracic injury behavior scale (PTIBS) and UD were performed pre- and at 12 weeks of SCI. D-waves latency and amplitude differences were recorded before and immediately after SCI. RESULTS Two groups of pigs were found based on the PTIBS at week 12 (p < 0.0001) post-SCI and were labeled "poor" and "good" recovery. D-waves amplitude decreased below injury and increased above injury. UD outcomes pre/post SCI changed significantly. Conventional MRI metrics from T2 -weighted images were significantly correlated with diffusion MRI metrics. Daxial at injury epicenter was diminished by over 50% shortly after SCI, and it differentiated between good and poor locomotor recovery and UD outcomes. INTERPRETATION Similar to small animal studies, fDWI from acute imaging after SCI is a promising predictor for functional outcomes in large animals.
Collapse
Affiliation(s)
- Rakib Uddin Ahmed
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Daniel Medina‐Aguinaga
- Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Shawns Adams
- Department of NeurosurgeryDuke UniversityRaleighNorth CarolinaUSA
| | - Chase A. Knibbe
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Monique Morgan
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Destiny Gibson
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Joo‐won Kim
- Department of RadiologyBaylor College of MedicineHoustonTexasUSA
- Department of PsychiatryBaylor College of MedicineHoustonTexasUSA
| | - Mayur Sharma
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Manpreet Chopra
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Steven Davison
- Comparative Medicine Research UnitUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Leslie C. Sherwood
- Comparative Medicine Research UnitUniversity of LouisvilleLouisvilleKentuckyUSA
| | - M.J. Negahdar
- Department of RadiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Robert Bert
- Department of RadiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Beatrice Ugiliweneza
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Charles Hubscher
- Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Matthew D. Budde
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
- Clement J. Zablocki Veterans Affairs Medical CenterMilwaukeeWisconsinUSA
| | - Junqian Xu
- Department of RadiologyBaylor College of MedicineHoustonTexasUSA
- Department of PsychiatryBaylor College of MedicineHoustonTexasUSA
| | - Maxwell Boakye
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| |
Collapse
|
13
|
Wathen CA, Ghenbot YG, Ozturk AK, Cullen DK, O’Donnell JC, Petrov D. Porcine Models of Spinal Cord Injury. Biomedicines 2023; 11:2202. [PMID: 37626699 PMCID: PMC10452184 DOI: 10.3390/biomedicines11082202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Large animal models of spinal cord injury may be useful tools in facilitating the development of translational therapies for spinal cord injury (SCI). Porcine models of SCI are of particular interest due to significant anatomic and physiologic similarities to humans. The similar size and functional organization of the porcine spinal cord, for instance, may facilitate more accurate evaluation of axonal regeneration across long distances that more closely resemble the realities of clinical SCI. Furthermore, the porcine cardiovascular system closely resembles that of humans, including at the level of the spinal cord vascular supply. These anatomic and physiologic similarities to humans not only enable more representative SCI models with the ability to accurately evaluate the translational potential of novel therapies, especially biologics, they also facilitate the collection of physiologic data to assess response to therapy in a setting similar to those used in the clinical management of SCI. This review summarizes the current landscape of porcine spinal cord injury research, including the available models, outcome measures, and the strengths, limitations, and alternatives to porcine models. As the number of investigational SCI therapies grow, porcine SCI models provide an attractive platform for the evaluation of promising treatments prior to clinical translation.
Collapse
Affiliation(s)
- Connor A. Wathen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.A.W.); (Y.G.G.); (A.K.O.); (D.K.C.); (J.C.O.)
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Yohannes G. Ghenbot
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.A.W.); (Y.G.G.); (A.K.O.); (D.K.C.); (J.C.O.)
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Ali K. Ozturk
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.A.W.); (Y.G.G.); (A.K.O.); (D.K.C.); (J.C.O.)
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.A.W.); (Y.G.G.); (A.K.O.); (D.K.C.); (J.C.O.)
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John C. O’Donnell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.A.W.); (Y.G.G.); (A.K.O.); (D.K.C.); (J.C.O.)
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Dmitriy Petrov
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.A.W.); (Y.G.G.); (A.K.O.); (D.K.C.); (J.C.O.)
| |
Collapse
|
14
|
Alves-Sampaio A, Del-Cerro P, Collazos-Castro JE. Composite Fibrin/Carbon Microfiber Implants for Bridging Spinal Cord Injury: A Translational Approach in Pigs. Int J Mol Sci 2023; 24:11102. [PMID: 37446280 DOI: 10.3390/ijms241311102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Biomaterials may enhance neural repair after spinal cord injury (SCI) and testing their functionality in large animals is essential to achieve successful clinical translation. This work developed a porcine contusion/compression SCI model to investigate the consequences of myelotomy and implantation of fibrin gel containing biofunctionalized carbon microfibers (MFs). Fourteen pigs were distributed in SCI, SCI/myelotomy, and SCI/myelotomy/implant groups. An automated device was used for SCI. A dorsal myelotomy was performed on the lesion site at 1 day post-injury for removing cloths and devitalized tissue. Bundles of MFs coated with a conducting polymer and cell adhesion molecules were embedded in fibrin gel and used to bridge the spinal cord cavity. Reproducible lesions of about 1 cm in length were obtained. Myelotomy and lesion debridement caused no further neural damage compared to SCI alone but had little positive effect on neural regrowth. The MFs/fibrin gel implant facilitated axonal sprouting, elongation, and alignment within the lesion. However, the implant also increased lesion volume and was ineffective in preventing fibrosis, thus precluding functional neural regeneration. Our results indicate that myelotomy and lesion debridement can be advantageously used for implanting MF-based scaffolds. However, the implants need refinement and pharmaceuticals will be necessary to limit scarring.
Collapse
Affiliation(s)
- Alexandra Alves-Sampaio
- Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda S-N, 45071 Toledo, Spain
| | - Patricia Del-Cerro
- Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda S-N, 45071 Toledo, Spain
| | - Jorge E Collazos-Castro
- Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda S-N, 45071 Toledo, Spain
| |
Collapse
|
15
|
Diotalevi L, Mac-Thiong JM, Wagnac E, Petit Y. Contribution of impactor misalignment to the neurofunctional variability in porcine spinal cord contusion models. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082881 DOI: 10.1109/embc40787.2023.10340195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Traumatic spinal cord lesions studies are often carried out with animal models or numerical simulations. Unfortunately, animal models usually present a high variability in severity and type of neurofunctional impairments following impact surgery. We postulate that the variability of outcomes is strongly dependent on the positioning and alignment of the impactor during the contusion. A finite elements model of the spinal cord, predicting the action potential (AP) conduction alteration, was proposed and used to perform nine numerical simulations of a 50 g weight dropped from 200 mm on the exposed spinal cord in its spinal canal. Simulations followed a 32 factorial design with impactor eccentricity and spinal cord tilt angle as factors on two outcomes: injured spinal cord area (AP < 10 % of its baseline, 1h post-injury), and asymmetry of injury (ratio of right/left injured area of both half spinal cord). Eccentricity contributed highly and significantly on both outcomes, but not tilt angle. Damaged axons were found in conscious motor, sensory, and unconscious proprioception tracts. Variability in impactor alignment beyond ±6.2 % of the spinal canal width affects neurofunctional outcomes, and careful assessment of the impactor course is therefore key when producing spinal cord injury by contusion.Clinical Relevance- A precision value is proposed to mitigate the contribution of impactor misalignment to neurofunctional variability in animal models, allowing the reduction of animal used in research. The proposed method of action potential conduction assessment could easily be implanted in human numerical models for the cross-study of patient's cases.
Collapse
|
16
|
Shevchenko RV, Fadeev FO, Izmailov AA, Markosyan VA, Sokolov ME, Valiullin VV, Lavrov IA, Islamov RR. Transtraumatic Epidural Electrostimulation of the Spinal Cord in a Pig Model. Bull Exp Biol Med 2023:10.1007/s10517-023-05799-x. [PMID: 37338767 DOI: 10.1007/s10517-023-05799-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 06/21/2023]
Abstract
The effect of transtraumatic epidural electrostimulation (TEES) above (T5) and below (L2) spinal cord injury in the lower thoracic region (T8-T9) in combination with treadmill exercise in pigs was evaluated using electrophysiological examination methods and behavioral tests. Two weeks after spinal cord injury, motor evoked potentials of m. soleus were recorded during electrostimulation at the level of T5 and L2 segments, which indicated activation of spinal cord structures above and below the focus of injury. After 6 weeks of TEES in combination with physical training, restoration of the characteristics of M-response and H-reflex of the soleus muscle in response to stimulation of the sciatic nerve, improvement of joint mobility, and appearance of voluntary motor activity in the hindlimbs were observed. Neuromodulation with TEES had been proven to be an effective way to stimulate posttraumatic spinal cord regeneration and can be used in the development of a neurorehabilitation protocol for patients with spinal cord injury.
Collapse
Affiliation(s)
- R V Shevchenko
- Kazan State Medical University, Ministry of the Health of the Russian Federation, Kazan, Republic of Tatarstan, Russia
| | - F O Fadeev
- Kazan State Medical University, Ministry of the Health of the Russian Federation, Kazan, Republic of Tatarstan, Russia
| | - A A Izmailov
- Kazan State Medical University, Ministry of the Health of the Russian Federation, Kazan, Republic of Tatarstan, Russia.
| | - V A Markosyan
- Kazan State Medical University, Ministry of the Health of the Russian Federation, Kazan, Republic of Tatarstan, Russia
| | - M E Sokolov
- Kazan State Medical University, Ministry of the Health of the Russian Federation, Kazan, Republic of Tatarstan, Russia
| | - V V Valiullin
- Kazan State Medical University, Ministry of the Health of the Russian Federation, Kazan, Republic of Tatarstan, Russia
| | - I A Lavrov
- Mayo Clinic, Rochester, Minnesota, USA
- Kazan (Volga region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - R R Islamov
- Kazan State Medical University, Ministry of the Health of the Russian Federation, Kazan, Republic of Tatarstan, Russia
| |
Collapse
|
17
|
Knibbe CA, Ahmed RU, Wilkins F, Sharma M, Ethridge J, Morgan M, Gibson D, Cooper KB, Howland DR, Vadhanam MV, Barve SS, Davison S, Sherwood LC, Semler J, Abell T, Boakye M. SmartPill™ Administration to Assess Gastrointestinal Function after Spinal Cord Injury in a Porcine Model-A Preliminary Study. Biomedicines 2023; 11:1660. [PMID: 37371755 DOI: 10.3390/biomedicines11061660] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Gastrointestinal (GI) complications, including motility disorders, metabolic deficiencies, and changes in gut microbiota following spinal cord injury (SCI), are associated with poor outcomes. After SCI, the autonomic nervous system becomes unbalanced below the level of injury and can lead to severe GI dysfunction. The SmartPill™ is a non-invasive capsule that, when ingested, transmits pH, temperature, and pressure readings that can be used to assess effects in GI function post-injury. Our minipig model allows us to assess these post-injury changes to optimize interventions and ultimately improve GI function. The aim of this study was to compare pre-injury to post-injury transit times, pH, and pressures in sections of GI tract by utilizing the SmartPill™ in three pigs after SCI at 2 and 6 weeks. Tributyrin was administered to two pigs to assess the influences on their gut microenvironment. We observed prolonged GET (Gastric Emptying Time) and CTT (Colon Transit Time), decreases in contraction frequencies (Con freq) in the antrum of the stomach, colon, and decreases in duodenal pressures post-injury. We noted increases in Sum amp generated at 2 weeks post-injury in the colon, with corresponding decreases in Con freq. We found transient changes in pH in the colon and small intestine at 2 weeks post-injury, with minimal effect on stomach pH post-injury. Prolonged GETs and CTTs can influence the absorptive profile in the gut and contribute to pathology development. This is the first pilot study to administer the SmartPill™ in minipigs in the context of SCI. Further investigations will elucidate these trends and characterize post-SCI GI function.
Collapse
Affiliation(s)
- Chase A Knibbe
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Rakib Uddin Ahmed
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Felicia Wilkins
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Mayur Sharma
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Jay Ethridge
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Monique Morgan
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Destiny Gibson
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Kimberly B Cooper
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Dena R Howland
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
- Research Service, Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
| | - Manicka V Vadhanam
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Shirish S Barve
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Steven Davison
- Comparative Medicine Research Unit, University of Louisville, Louisville, KY 40202, USA
| | - Leslie C Sherwood
- Comparative Medicine Research Unit, University of Louisville, Louisville, KY 40202, USA
| | | | - Thomas Abell
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Maxwell Boakye
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
18
|
Shulman I, Ageeva T, Kostennikov A, Ogurcov S, Tazetdinova L, Kabdesh I, Rogozhin A, Ganiev I, Rizvanov A, Mukhamedshina Y. Intrathecal Injection of Autologous Mesenchymal Stem-Cell-Derived Extracellular Vesicles in Spinal Cord Injury: A Feasibility Study in Pigs. Int J Mol Sci 2023; 24:ijms24098240. [PMID: 37175946 PMCID: PMC10179045 DOI: 10.3390/ijms24098240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Spinal cord injury (SCI) remains one of the current medical and social problems, as it causes deep disability in patients. The use of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) is one strategy for stimulating the post-traumatic recovery of the structure and function of the spinal cord. Here, we chose an optimal method for obtaining cytochalasin B-induced EVs, including steps with active vortex mixing for 60 s and subsequent filtration to remove nuclei and disorganized inclusions. The therapeutic potential of repeated intrathecal injection of autologous MSC-derived EVs in the subacute period of pig contused SCI was also evaluated for the first time. In this study, we observed the partial restoration of locomotor activity by stimulating the remyelination of axons and timely reperfusion of nervous tissue.
Collapse
Affiliation(s)
- Ilya Shulman
- Neurosurgical Department No. 2, Republic Clinical Hospital, 420138 Kazan, Russia
| | - Tatyana Ageeva
- Center for Clinical Research for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alexander Kostennikov
- Center for Clinical Research for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Sergei Ogurcov
- Neurosurgical Department No. 2, Republic Clinical Hospital, 420138 Kazan, Russia
| | - Leysan Tazetdinova
- Department of Morphology and General Pathology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ilyas Kabdesh
- Center for Clinical Research for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alexander Rogozhin
- Department of Neurology, Kazan State Medical Academy-Branch Campus of the Federal State Budgetary Educational Institution of Father Professional Education, Russian Medical Academy of Continuous Professional Education, 420012 Kazan, Russia
| | - Ilnur Ganiev
- Scientific and Educational Center of Pharmacy, Kazan Federal University, 420008 Kazan, Russia
| | - Albert Rizvanov
- Center for Clinical Research for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yana Mukhamedshina
- Center for Clinical Research for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|
19
|
Garifulin R, Davleeva M, Izmailov A, Fadeev F, Markosyan V, Shevchenko R, Minyazeva I, Minekayev T, Lavrov I, Islamov R. Evaluation of the Autologous Genetically Enriched Leucoconcentrate on the Lumbar Spinal Cord Morpho-Functional Recovery in a Mini Pig with Thoracic Spine Contusion Injury. Biomedicines 2023; 11:biomedicines11051331. [PMID: 37239001 DOI: 10.3390/biomedicines11051331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Pathological changes associated with spinal cord injury (SCI) can be observed distant, rostral, or caudal to the epicenter of injury. These remote areas represent important therapeutic targets for post-traumatic spinal cord repair. The present study aimed to investigate the following in relation to SCI: distant changes in the spinal cord, peripheral nerve, and muscles. METHODS The changes in the spinal cord, the tibial nerve, and the hind limb muscles were evaluated in control SCI animals and after intravenous infusion of autologous leucoconcentrate enriched with genes encoding neuroprotective factors (VEGF, GDNF, and NCAM), which previously demonstrated a positive effect on post-traumatic restoration. RESULTS Two months after thoracic contusion in the treated mini pigs, a positive remodeling of the macro- and microglial cells, expression of PSD95 and Chat in the lumbar spinal cord, and preservation of the number and morphological characteristics of the myelinated fibers in the tibial nerve were observed and were aligned with hind limb motor recovery and reduced soleus muscle atrophy. CONCLUSION Here, we show the positive effect of autologous genetically enriched leucoconcentrate-producing recombinant neuroprotective factors on targets distant to the primary lesion site in mini pigs with SCI. These findings open new perspectives for the therapy of SCI.
Collapse
Affiliation(s)
- Ravil Garifulin
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Maria Davleeva
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Andrei Izmailov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Filip Fadeev
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Vage Markosyan
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Roman Shevchenko
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Irina Minyazeva
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Tagir Minekayev
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Igor Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rustem Islamov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|
20
|
Bessen MA, Gayen CD, Quarrington RD, Walls AC, Leonard AV, Kurtcuoglu V, Jones CF. Characterising spinal cerebrospinal fluid flow in the pig with phase-contrast magnetic resonance imaging. Fluids Barriers CNS 2023; 20:5. [PMID: 36653870 PMCID: PMC9850564 DOI: 10.1186/s12987-022-00401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Detecting changes in pulsatile cerebrospinal fluid (CSF) flow may assist clinical management decisions, but spinal CSF flow is relatively understudied. Traumatic spinal cord injuries (SCI) often cause spinal cord swelling and subarachnoid space (SAS) obstruction, potentially causing pulsatile CSF flow changes. Pigs are emerging as a favoured large animal SCI model; therefore, the aim of this study was to characterise CSF flow along the healthy pig spine. METHODS Phase-contrast magnetic resonance images (PC-MRI), retrospectively cardiac gated, were acquired for fourteen laterally recumbent, anaesthetised and ventilated, female domestic pigs (22-29 kg). Axial images were obtained at C2/C3, T8/T9, T11/T12 and L1/L2. Dorsal and ventral SAS regions of interest (ROI) were manually segmented. CSF flow and velocity were determined throughout a cardiac cycle. Linear mixed-effects models, with post-hoc comparisons, were used to identify differences in peak systolic/diastolic flow, and maximum velocity (cranial/caudal), across spinal levels and dorsal/ventral SAS. Velocity wave speed from C2/C3 to L1/L2 was calculated. RESULTS PC-MRI data were obtained for 11/14 animals. Pulsatile CSF flow was observed at all spinal levels. Peak systolic flow was greater at C2/C3 (dorsal: - 0.32 ± 0.14 mL/s, ventral: - 0.15 ± 0.13 mL/s) than T8/T9 dorsally (- 0.04 ± 0.03 mL/s; p < 0.001), but not different ventrally (- 0.08 ± 0.08 mL/s; p = 0.275), and no difference between thoracolumbar levels (p > 0.05). Peak diastolic flow was greater at C2/C3 (0.29 ± 0.08 mL/s) compared to T8/T9 (0.03 ± 0.03 mL/s, p < 0.001) dorsally, but not different ventrally (p = 1.000). Cranial and caudal maximum velocity at C2/C3 were greater than thoracolumbar levels dorsally (p < 0.001), and T8/T9 and L1/L2 ventrally (p = 0.022). Diastolic velocity wave speed was 1.41 ± 0.39 m/s dorsally and 1.22 ± 0.21 m/s ventrally, and systolic velocity wave speed was 1.02 ± 0.25 m/s dorsally and 0.91 ± 0.22 m/s ventrally. CONCLUSIONS In anaesthetised and ventilated domestic pigs, spinal CSF has lower pulsatile flow and slower velocity wave propagation, compared to humans. This study provides baseline CSF flow at spinal levels relevant for future SCI research in this animal model.
Collapse
Affiliation(s)
- Madeleine Amy Bessen
- grid.1010.00000 0004 1936 7304Adelaide Spinal Research Group and Centre for Orthopaedics and Trauma Research, Adelaide Medical School, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA 5005 Australia
| | - Christine Diana Gayen
- grid.1010.00000 0004 1936 7304Adelaide Spinal Research Group and Centre for Orthopaedics and Trauma Research, Adelaide Medical School, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA 5005 Australia ,grid.1010.00000 0004 1936 7304Translational Neuropathology Laboratory, School of Biomedicine, The University of Adelaide, Level 2, Helen Mayo North Building, The University of Adelaide, Frome Road, Adelaide, SA 5005 Australia
| | - Ryan David Quarrington
- grid.1010.00000 0004 1936 7304Adelaide Spinal Research Group and Centre for Orthopaedics and Trauma Research, Adelaide Medical School, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA 5005 Australia ,grid.1010.00000 0004 1936 7304School of Electrical and Mechanical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005 Australia
| | - Angela Catherine Walls
- grid.430453.50000 0004 0565 2606Clinical and Research Imaging Centre, South Australian Health and Medical Research Institute, National Imaging Facility, Northern Pod, SAHMRI, North Terrace, Adelaide, SA 5000 Australia
| | - Anna Victoria Leonard
- grid.1010.00000 0004 1936 7304Translational Neuropathology Laboratory, School of Biomedicine, The University of Adelaide, Level 2, Helen Mayo North Building, The University of Adelaide, Frome Road, Adelaide, SA 5005 Australia
| | - Vartan Kurtcuoglu
- grid.7400.30000 0004 1937 0650Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Claire Frances Jones
- grid.1010.00000 0004 1936 7304Adelaide Spinal Research Group and Centre for Orthopaedics and Trauma Research, Adelaide Medical School, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA 5005 Australia ,grid.1010.00000 0004 1936 7304School of Electrical and Mechanical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005 Australia ,grid.416075.10000 0004 0367 1221Department of Orthopaedics, Royal Adelaide Hospital, Adelaide, SA 5000 Australia
| |
Collapse
|
21
|
Ahmed RU, Knibbe CA, Wilkins F, Sherwood LC, Howland DR, Boakye M. Porcine spinal cord injury model for translational research across multiple functional systems. Exp Neurol 2023; 359:114267. [PMID: 36356636 DOI: 10.1016/j.expneurol.2022.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Animal models are necessary to identify pathological changes and help assess therapeutic outcomes following spinal cord injury (SCI). Small animal models offer value in research in terms of their easily managed size, minimal maintenance requirements, lower cost, well-characterized genomes, and ability to power research studies. However, despite these benefits, small animal models have neurologic and anatomical differences that may influence translation of results to humans and thus limiting the success of their use in preclinical studies as a direct pipeline to clinical studies. Large animal models, offer an attractive intermediary translation model that may be more successful in translating to the clinic for SCI research. This is largely due to their greater neurologic and anatomical similarities to humans. The physical characteristics of pig spinal cord, gut microbiome, metabolism, proportions of white to grey matter, bowel anatomy and function, and urinary system are strikingly similar and provide great insight into human SCI conditions. In this review, we address the variety of existing porcine injury models and their translational relevance, benefits, and drawbacks in modeling human systems and functions for neurophysiology, cardiovascular, gastrointestinal and urodynamic functions.
Collapse
Affiliation(s)
- Rakib Uddin Ahmed
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.
| | - Chase A Knibbe
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Felicia Wilkins
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Leslie C Sherwood
- Comparative Medicine Research Unit, University of Louisville, Louisville, KY, USA
| | - Dena R Howland
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Robley Rex VA Medical Center, Louisville, KY 40202, USA
| | - Maxwell Boakye
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
22
|
Hu CK, Chen MH, Wang YH, Sun JS, Wu CY. Integration of multiple prognostic predictors in a porcine spinal cord injury model: A further step closer to reality. Front Neurol 2023; 14:1136267. [PMID: 36970513 PMCID: PMC10030512 DOI: 10.3389/fneur.2023.1136267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction Spinal cord injury (SCI) is a devastating neurological disorder with an enormous impact on individual's life and society. A reliable and reproducible animal model of SCI is crucial to have a deeper understanding of SCI. We have developed a large-animal model of spinal cord compression injury (SCI) with integration of multiple prognostic factors that would have applications in humans. Methods Fourteen human-like sized pigs underwent compression at T8 by implantation of an inflatable balloon catheter. In addition to basic neurophysiological recording of somatosensory and motor evoked potentials, we introduced spine-to-spine evoked spinal cord potentials (SP-EPs) by direct stimulation and measured them just above and below the affected segment. A novel intraspinal pressure monitoring technique was utilized to measure the actual pressure on the cord. The gait and spinal MRI findings were assessed in each animal postoperatively to quantify the severity of injury. Results We found a strong negative correlation between the intensity of pressure applied to the spinal cord and the functional outcome (P < 0.0001). SP-EPs showed high sensitivity for real time monitoring of intraoperative cord damage. On MRI, the ratio of the high-intensity area to the cross-sectional of the cord was a good predictor of recovery (P < 0.0001). Conclusion Our balloon compression SCI model is reliable, predictable, and easy to implement. By integrating SP-EPs, cord pressure, and findings on MRI, we can build a real-time warning and prediction system for early detection of impending or iatrogenic SCI and improve outcomes.
Collapse
Affiliation(s)
- Chao-Kai Hu
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ming-Hong Chen
- Graduate Institute of Nanomedical and Medical Engineering, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Horng Wang
- Department of Pet Healthcare, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Jui-Sheng Sun
- Trauma and Emergency Center, China Medical University Hospital, Taichung City, Taiwan
- College of Medicine, China Medical University, Yingcai Campus, Taichung City, Taiwan
- College of Biomedical Engineering, China Medical University, Yingcai Campus, Taichung City, Taiwan
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Yu Wu
- Department of Electronics Engineering and Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- *Correspondence: Chung-Yu Wu
| |
Collapse
|
23
|
Malomo T, Allard Brown A, Bale K, Yung A, Kozlowski P, Heran M, Streijger F, Kwon BK. Quantifying Intraparenchymal Hemorrhage after Traumatic Spinal Cord Injury: A Review of Methodology. J Neurotrauma 2022; 39:1603-1635. [PMID: 35538847 DOI: 10.1089/neu.2021.0317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Intraparenchymal hemorrhage (IPH) after a traumatic injury has been associated with poor neurological outcomes. Although IPH may result from the initial mechanical trauma, the blood and its breakdown products have potentially deleterious effects. Further, the degree of IPH has been correlated with injury severity and the extent of subsequent recovery. Therefore, accurate evaluation and quantification of IPH following traumatic spinal cord injury (SCI) is important to define treatments' effects on IPH progression and secondary neuronal injury. Imaging modalities, such as magnetic resonance imaging (MRI) and ultrasound (US), have been explored by researchers for the detection and quantification of IPH following SCI. Both quantitative and semiquantitative MRI and US measurements have been applied to objectively assess IPH following SCI, but the optimal methods for doing so are not well established. Studies in animal SCI models (rodent and porcine) have explored US and histological techniques in evaluating SCI and have demonstrated the potential to detect and quantify IPH. Newer techniques using machine learning algorithms (such as convolutional neural networks [CNN]) have also been studied to calculate IPH volume and have yielded promising results. Despite long-standing recognition of the potential pathological significance of IPH within the spinal cord, quantifying IPH with MRI or US is a relatively new area of research. Further studies are warranted to investigate their potential use. Here, we review the different and emerging quantitative MRI, US, and histological approaches used to detect and quantify IPH following SCI.
Collapse
Affiliation(s)
- Toluyemi Malomo
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aysha Allard Brown
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kirsten Bale
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Yung
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manraj Heran
- Department of Radiology, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Spine Surgery Institute, Department of Orthopaedics, and Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Zdora I, Jubran L, Allnoch L, Hansmann F, Baumgärtner W, Leitzen E. Morphological and phenotypical characteristics of porcine satellite glial cells of the dorsal root ganglia. Front Neuroanat 2022; 16:1015281. [PMID: 36337140 PMCID: PMC9626980 DOI: 10.3389/fnana.2022.1015281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/04/2022] [Indexed: 10/23/2023] Open
Abstract
Satellite glial cells (SGCs) of the dorsal root ganglia (DRG) ensure homeostasis and proportional excitability of sensory neurons and gained interest in the field of development and maintenance of neuropathic pain. Pigs represent a suitable species for translational medicine with a more similar anatomy and physiology to humans compared to rodents, and are used in research regarding treatment of neuropathic pain. Knowledge of anatomical and physiological features of porcine SGCs is prerequisite for interpreting potential alterations. However, state of knowledge is still limited. In the present study, light microscopy, ultrastructural analysis and immunofluorescence staining was performed. SGCs tightly surround DRG neurons with little vascularized connective tissue between SGC-neuron units, containing, among others, axons and Schwann cells. DRG were mainly composed of large sized neurons (∼59%), accompanied by fewer medium sized (∼36%) and small sized sensory neurons (∼6%). An increase of neuronal body size was concomitant with an increased number of surrounding SGCs. The majority of porcine SGCs expressed glutamine synthetase and inwardly rectifying potassium channel Kir 4.1, known as SGC-specific markers in other species. Similar to canine SGCs, marked numbers of porcine SGCs were immunopositive for glial fibrillary acidic protein, 2',3'-cyclic-nucleotide 3'-phosphodiesterase and the transcription factor Sox2. Low to moderate numbers of SGCs showed aquaporin 4-immunoreactivity (AQP4) as described for murine SGCs. AQP4-immunoreactivity was primarily found in SGCs ensheathing small and medium sized neuronal somata. Low numbers of SGCs were immunopositive for ionized calcium-binding adapter molecule 1, indicating a potential immune cell character. No immunoreactivity for common leukocyte antigen CD45 nor neural/glial antigen 2 was detected. The present study provides essential insights into the characteristic features of non-activated porcine SGCs, contributing to a better understanding of this cell population and its functional aspects. This will help to interpret possible changes that might occur under activating conditions such as pain.
Collapse
Affiliation(s)
- Isabel Zdora
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
- Center of Systems Neuroscience, Hanover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hanover, Germany
| | - Lorna Jubran
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
- Center of Systems Neuroscience, Hanover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hanover, Germany
| | - Lisa Allnoch
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
- Center of Systems Neuroscience, Hanover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hanover, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
| |
Collapse
|
25
|
Weber-Levine C, Hersh AM, Jiang K, Routkevitch D, Tsehay Y, Perdomo-Pantoja A, Judy BF, Kerensky M, Liu A, Adams M, Izzi J, Doloff JC, Manbachi A, Theodore N. Porcine Model of Spinal Cord Injury: A Systematic Review. Neurotrauma Rep 2022; 3:352-368. [PMID: 36204385 PMCID: PMC9531891 DOI: 10.1089/neur.2022.0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating disease with limited effective treatment options. Animal paradigms are vital for understanding the pathogenesis of SCI and testing potential therapeutics. The porcine model of SCI is increasingly favored because of its greater similarity to humans. However, its adoption is limited by the complexities of care and range of testing parameters. Researchers need to consider swine selection, injury method, post-operative care, rehabilitation, behavioral outcomes, and histology metrics. Therefore, we systematically reviewed full-text English-language articles to evaluate study characteristics used in developing a porcine model and summarize the interventions that have been tested using this paradigm. A total of 63 studies were included, with 33 examining SCI pathogenesis and 30 testing interventions. Studies had an average sample size of 15 pigs with an average weight of 26 kg, and most used female swine with injury to the thoracic cord. Injury was most commonly induced by weight drop with compression. The porcine model is amenable to testing various interventions, including mean arterial pressure augmentation (n = 7), electrical stimulation (n = 6), stem cell therapy (n = 5), hypothermia (n = 2), biomaterials (n = 2), gene therapy (n = 2), steroids (n = 1), and nanoparticles (n = 1). It is also notable for its clinical translatability and is emerging as a valuable pre-clinical study tool. This systematic review can serve as a guideline for researchers implementing and testing the porcine SCI model.
Collapse
Affiliation(s)
- Carly Weber-Levine
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly Jiang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Denis Routkevitch
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yohannes Tsehay
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Brendan F. Judy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Max Kerensky
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ann Liu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melanie Adams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica Izzi
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joshua C. Doloff
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amir Manbachi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Mirkiani S, Roszko DA, O'Sullivan C, Faridi P, Hu DS, Fang D, Everaert DG, Toossi A, Konrad PE, Robinson K, Mushahwar VK. Overground gait kinematics and muscle activation patterns in the Yucatan mini pig. J Neural Eng 2022; 19. [PMID: 35172283 DOI: 10.1088/1741-2552/ac55ac] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/16/2022] [Indexed: 11/12/2022]
Abstract
Objective The objectives of this study were to assess gait biomechanics and the effect of overground walking speed on gait parameters, kinematics, and electromyographic (EMG) activity in the hindlimb muscles of Yucatan Minipigs (YMPs). Approach Nine neurologically-intact, adult YMPs were trained to walk overground in a straight line. Whole-body kinematics and EMG activity of hindlimb muscles were recorded and analyzed at 6 different speed ranges (0.4-0.59, 0.6-0.79, 0.8-0.99, 1.0-1.19, 1.2-1.39, and 1.4-1.6 m/s). A MATLAB program was developed to detect strides and gait events automatically from motion-captured data. The kinematics and EMG activity were analyzed for each stride based on the detected events. Main results Significant decreases in stride duration, stance and swing times and an increase in stride length were observed with increasing speed. A transition in gait pattern occurred at the 1.0m/s walking speed. Significant increases in the range of motion of the knee and ankle joints were observed at higher speeds. Also, the points of minimum and maximum joint angles occurred earlier in the gait cycle as the walking speed increased. The onset of EMG activity in the biceps femoris muscle occurred significantly earlier in the gait cycle with increasing speed. Significance YMPs are becoming frequently used as large animal models for preclinical testing and translation of novel interventions to humans. A comprehensive characterization of overground walking in neurologically-intact YMPs is provided in this study. These normative measures set the basis against which the effects of future interventions on locomotor capacity in YMPs can be compared.
Collapse
Affiliation(s)
- Soroush Mirkiani
- Neuroscience & Mental Health Institute and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, University of Alberta, Edmonton, Alberta, T6G 2R3, CANADA
| | - David A Roszko
- Neuroscience & Mental Health Institute and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Carly O'Sullivan
- Neuroscience & Mental Health Institute and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz, Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Pouria Faridi
- Neuroscience & Mental Health Institute and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - David S Hu
- Department of Medicine and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Daniel Fang
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Dirk G Everaert
- Department of Medicine and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Amirali Toossi
- Neuroscience & Mental Health Institute and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Peter E Konrad
- Department of Neurosurgery, West Virginia University, PO Box 9183, Morgantown, West Virginia, 26506, UNITED STATES
| | - Kevin Robinson
- School of Physical Therapy, Belmont University, 341 McWhorter Hall, Nashville, Tennessee, 37212, UNITED STATES
| | - Vivian K Mushahwar
- Department of Medicine and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, University of Alberta, Edmonton, Alberta, T6G 2R3, CANADA
| |
Collapse
|
27
|
New Therapy for Spinal Cord Injury: Autologous Genetically-Enriched Leucoconcentrate Integrated with Epidural Electrical Stimulation. Cells 2022; 11:cells11010144. [PMID: 35011706 PMCID: PMC8750549 DOI: 10.3390/cells11010144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
The contemporary strategy for spinal cord injury (SCI) therapy aims to combine multiple approaches to control pathogenic mechanisms of neurodegeneration and stimulate neuroregeneration. In this study, a novel regenerative approach using an autologous leucoconcentrate enriched with transgenes encoding vascular endothelial growth factor (VEGF), glial cell line-derived neurotrophic factor (GDNF), and neural cell adhesion molecule (NCAM) combined with supra- and sub-lesional epidural electrical stimulation (EES) was tested on mini-pigs similar in morpho-physiological scale to humans. The complex analysis of the spinal cord recovery after a moderate contusion injury in treated mini-pigs compared to control animals revealed: better performance in behavioural and joint kinematics, restoration of electromyography characteristics, and improvement in selected immunohistology features related to cell survivability, synaptic protein expression, and glial reorganization above and below the injury. These results for the first time demonstrate the positive effect of intravenous infusion of autologous genetically-enriched leucoconcentrate producing recombinant molecules stimulating neuroregeneration combined with neuromodulation by translesional multisite EES on the restoration of the post-traumatic spinal cord in mini-pigs and suggest the high translational potential of this novel regenerative therapy for SCI patients.
Collapse
|
28
|
Hanna AS, Hellenbrand DJ, Schomberg DT, Salamat SM, Loh M, Wheeler L, Hanna B, Ozaydin B, Meudt J, Shanmuganayagam D. Brachial plexus anatomy in the miniature swine as compared to human. J Anat 2022; 240:172-181. [PMID: 34355792 PMCID: PMC8655215 DOI: 10.1111/joa.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022] Open
Abstract
Brachial plexus injury (BPI) occurs when the brachial plexus is compressed, stretched, or avulsed. Although rodents are commonly used to study BPI, these models poorly mimic human BPI due to the discrepancy in size. The objective of this study was to compare the brachial plexus between human and Wisconsin Miniature SwineTM (WMSTM ), which are approximately the weight of an average human (68-91 kg), to determine if swine would be a suitable model for studying BPI mechanisms and treatments. To analyze the gross anatomy, WMS brachial plexuses were dissected both anteriorly and posteriorly. For histological analysis, sections from various nerves of human and WMS brachial plexuses were fixed in 2.5% glutaraldehyde, and postfixed with 2% osmium tetroxide. Subsequently paraffin sections were counter-stained with Masson's Trichrome. Gross anatomy revealed that the separation into three trunks and three cords is significantly less developed in the swine than in human. In swine, it takes the form of upper, middle, and lower systems with ventral and dorsal components. Histological evaluation of selected nerves revealed differences in nerve trunk diameters and the number of myelinated axons in the two species. The WMS had significantly fewer myelinated axons than humans in median (p = 0.0049), ulnar (p = 0.0002), and musculocutaneous nerves (p = 0.0454). The higher number of myelinated axons in these nerves for humans is expected because there is a high demand of fine motor and sensory functions in the human hand. Due to the stronger shoulder girdle muscles in WMS, the WMS suprascapular and axillary nerves were larger than in human. Overall, the WMS brachial plexus is similar in size and origin to human making them a very good model to study BPI. Future studies analyzing the effects of BPI in WMS should be conducted.
Collapse
Affiliation(s)
- Amgad S. Hanna
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
| | - Daniel J. Hellenbrand
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
| | - Dominic T. Schomberg
- Department of Animal and Dairy SciencesUniversity of Wisconsin – MadisonMadisonWisconsinUSA
| | - Shahriar M. Salamat
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
- Department of Pathology and Laboratory MedicineUniversity of Wisconsin School of Medicine and Public Health (UWSMPH)MadisonWisconsinUSA
| | - Megan Loh
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
| | - Lea Wheeler
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
| | - Barbara Hanna
- University of Wisconsin – MadisonMadisonWisconsinUSA
| | - Burak Ozaydin
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
| | - Jennifer Meudt
- Biomedical & Genomic Research GroupUniversity of Wisconsin – MadisonMadisonWisconsinUSA
| | - Dhanansayan Shanmuganayagam
- Department of Animal and Dairy SciencesUniversity of Wisconsin – MadisonMadisonWisconsinUSA
- Department of SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
| |
Collapse
|
29
|
Noga BR, Guest JD. Combined neuromodulatory approaches in the central nervous system for treatment of spinal cord injury. Curr Opin Neurol 2021; 34:804-811. [PMID: 34593718 PMCID: PMC8595808 DOI: 10.1097/wco.0000000000000999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To report progress in neuromodulation following spinal cord injury (SCI) using combined brain and spinal neuromodulation.Neuromodulation refers to alterations in neuronal activity for therapeutic purposes. Beneficial effects are established in disease states such as Parkinson's Disease (PD), chronic pain, epilepsy, and SCI. The repertoire of neuromodulation and bioelectric medicine is rapidly expanding. After SCI, cohort studies have reported the benefits of epidural stimulation (ES) combined with training. Recently, we have explored combining ES with deep brain stimulation (DBS) to increase activation of descending motor systems to address limitations of ES in severe SCI. In this review, we describe the types of applied neuromodulation that could be combined in SCI to amplify efficacy to enable movement. These include ES, mesencephalic locomotor region (MLR) - DBS, noninvasive transcutaneous stimulation, transcranial magnetic stimulation, paired-pulse paradigms, and neuromodulatory drugs. We examine immediate and longer-term effects and what is known about: (1) induced neuroplastic changes, (2) potential safety concerns; (3) relevant outcome measures; (4) optimization of stimulation; (5) therapeutic limitations and prospects to overcome these. RECENT FINDINGS DBS of the mesencephalic locomotor region is emerging as a potential clinical target to amplify supraspinal command circuits for locomotion. SUMMARY Combinations of neuromodulatory methods may have additive value for restoration of function after spinal cord injury.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | |
Collapse
|
30
|
Barras ED, Hampton CE, Takawira C, Taguchi T, Nourbakhsh A, Lopez MJ. Hemodynamic Changes in Response to Hyperacute Spinal Trauma in a Swine Model. Comp Med 2021; 72:30-37. [PMID: 34814974 DOI: 10.30802/aalas-cm-21-000067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Acute spinal cord injury (ASCI) is a devastating event that can have severe hemodynamic consequences, depending on location and severity of the lesion. Knowledge of hyperacute hemodynamic changes is important for researchers using porcine models of thoracic ASCI. The goal of this study was to determine the hyperacute hemodynamic changes observed after ASCI when using pigs as their own controls. Five Yucatan gilts were anesthetized, and a dorsal laminectomy performed at T10-T12. Standardized blunt trauma was applied for 5 consecutive min, and hemodynamic variables were collected 5 min before ASCI, and at 2, 4, 6, 8, 10, 20, 30, 60, 80 and 120 min after ASCI. Arterial blood gas samples were collected at 60 min and 10 min before, and at 30 min and between 120 and 240 min after ASCI. Parametric data were analyzed using a mixed effects model with time point as the fixed factor and subject as the random factor. We found no effect on heart rate, pulse pressure, SpO2, EtCO2, and respiratory rate between baseline and timepoints after ASCI. Diastolic arterial pressure, mean arterial pressure, and systolic arterial pressure fell significantly by 18%, 16%, and 15%, respectively, at 2 min after ASCI. However, none of the decrements in arterial pressures resulted in hypotension at any time point. Heart rate did not change significantly after ASCI. Blood glucose progressively increased to 50% above baseline between 120 and 240 minutes after ASCI. Low-thoracic ASCI caused a consistent and statistically significant but clinically minor hyperacute decrease in arterial pressures (-15%) that did not produce hypotension or metabolic changes suggestive of tissue hypoperfusion. Our findings using this model suggest that mean arterial pressures should be maintained above 85 mm Hg prior to spinal trauma in order to avoid hypotensive states after ASCI.
Collapse
|
31
|
Assunção Silva RC, Pinto L, Salgado AJ. Cell transplantation and secretome based approaches in spinal cord injury regenerative medicine. Med Res Rev 2021; 42:850-896. [PMID: 34783046 DOI: 10.1002/med.21865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/12/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
The axonal growth-restrictive character of traumatic spinal cord injury (SCI) makes finding a therapeutic strategy a very demanding task, due to the postinjury events impeditive to spontaneous axonal outgrowth and regeneration. Considering SCI pathophysiology complexity, it has been suggested that an effective therapy should tackle all the SCI-related aspects and provide sensory and motor improvement to SCI patients. Thus, the current aim of any therapeutic approach for SCI relies in providing neuroprotection and support neuroregeneration. Acknowledging the current SCI treatment paradigm, cell transplantation is one of the most explored approaches for SCI with mesenchymal stem cells (MSCs) being in the forefront of many of these. Studies showing the beneficial effects of MSC transplantation after SCI have been proposing a paracrine action of these cells on the injured tissues, through the secretion of protective and trophic factors, rather than attributing it to the action of cells itself. This manuscript provides detailed information on the most recent data regarding the neuroregenerative effect of the secretome of MSCs as a cell-free based therapy for SCI. The main challenge of any strategy proposed for SCI treatment relies in obtaining robust preclinical evidence from in vitro and in vivo models, before moving to the clinics, so we have specifically focused on the available vertebrate and mammal models of SCI currently used in research and how can SCI field benefit from them.
Collapse
Affiliation(s)
- Rita C Assunção Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal.,BnML, Behavioral and Molecular Lab, Braga, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal.,BnML, Behavioral and Molecular Lab, Braga, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
32
|
Doelman A, Tigchelaar S, McConeghy B, Sinha S, Keung MS, Manouchehri N, Webster M, Fisk S, Morrison C, Streijger F, Nislow C, Kwon BK. Characterization of the gut microbiome in a porcine model of thoracic spinal cord injury. BMC Genomics 2021; 22:775. [PMID: 34717545 PMCID: PMC8557039 DOI: 10.1186/s12864-021-07979-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The gut microbiome is a diverse network of bacteria which inhabit our digestive tract and is crucial for efficient cellular metabolism, nutrient absorption, and immune system development. Spinal cord injury (SCI) disrupts autonomic function below the level of injury and can alter the composition of the gut microbiome. Studies in rodent models have shown that SCI-induced bacterial imbalances in the gut can exacerbate the spinal cord damage and impair recovery. In this study we, for the first time, characterized the composition of the gut microbiome in a Yucatan minipig SCI model. We compared the relative abundance of the most dominant bacterial phyla in control samples to those collected from animals who underwent a contusion-compression SCI at the 2nd or 10th Thoracic level. RESULTS We identify specific bacterial fluctuations that are unique to SCI animals, which were not found in uninjured animals given the same dietary regimen or antibiotic administration. Further, we identified a specific time-frame, "SCI-acute stage", during which many of these bacterial fluctuations occur before returning to "baseline" levels. CONCLUSION This work presents a dynamic view of the microbiome changes that accompany SCI, establishes a resource for future studies and to understand the changes that occur to gut microbiota after spinal cord injury and may point to a potential therapeutic target for future treatment.
Collapse
Affiliation(s)
- Adam Doelman
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Seth Tigchelaar
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Brian McConeghy
- Sequencing and Bioinformatics Consortium, University of British Columbia, Vancouver, BC Canada
| | - Sunita Sinha
- Sequencing and Bioinformatics Consortium, University of British Columbia, Vancouver, BC Canada
| | - Martin S. Keung
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Megan Webster
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Shera Fisk
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Charlotte Morrison
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Corey Nislow
- Sequencing and Bioinformatics Consortium, University of British Columbia, Vancouver, BC Canada
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
- Department of Orthopedics, Vancouver Spine Surgery Institute, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
33
|
Gao J, Khang M, Liao Z, Detloff M, Lee JS. Therapeutic targets and nanomaterial-based therapies for mitigation of secondary injury after spinal cord injury. Nanomedicine (Lond) 2021; 16:2013-2028. [PMID: 34402308 PMCID: PMC8411395 DOI: 10.2217/nnm-2021-0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022] Open
Abstract
Spinal cord injury (SCI) and the resulting neurological trauma commonly result in complete or incomplete neurological dysfunction and there are few effective treatments for primary SCI. However, the following secondary SCI, including the changes of microvasculature, inflammatory response and oxidative stress around the injury site, may provide promising therapeutic targets. The advances of nanomaterials hold promise for delivering therapeutics to alleviate secondary SCI and promote functional recovery. In this review, we highlight recent achievements of nanomaterial-based therapy, specifically targeting blood-spinal cord barrier disruption, mitigation of the inflammatory response and lightening of oxidative stress after spinal cord injury.
Collapse
Affiliation(s)
- Jun Gao
- Department of Bioengineering, Drug Design, Development & Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Minkyung Khang
- Department of Bioengineering, Drug Design, Development & Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA
| | - Zhen Liao
- Department of Bioengineering, Drug Design, Development & Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA
| | - Megan Detloff
- Department of Neurobiology & Anatomy, Drexel University, Philadelphia, PA 19129, USA
| | - Jeoung Soo Lee
- Department of Bioengineering, Drug Design, Development & Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
34
|
Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes. Mol Neurobiol 2021; 58:5494-5516. [PMID: 34341881 DOI: 10.1007/s12035-021-02484-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition that affects approximately 294,000 people in the USA and several millions worldwide. The corticospinal motor circuitry plays a major role in controlling skilled movements and in planning and coordinating movements in mammals and can be damaged by SCI. While axonal regeneration of injured fibers over long distances is scarce in the adult CNS, substantial spontaneous neural reorganization and plasticity in the spared corticospinal motor circuitry has been shown in experimental SCI models, associated with functional recovery. Beneficially harnessing this neuroplasticity of the corticospinal motor circuitry represents a highly promising therapeutic approach for improving locomotor outcomes after SCI. Several different strategies have been used to date for this purpose including neuromodulation (spinal cord/brain stimulation strategies and brain-machine interfaces), rehabilitative training (targeting activity-dependent plasticity), stem cells and biological scaffolds, neuroregenerative/neuroprotective pharmacotherapies, and light-based therapies like photodynamic therapy (PDT) and photobiomodulation (PMBT). This review provides an overview of the spontaneous reorganization and neuroplasticity in the corticospinal motor circuitry after SCI and summarizes the various therapeutic approaches used to beneficially harness this neuroplasticity for functional recovery after SCI in preclinical animal model and clinical human patients' studies.
Collapse
|
35
|
Züchner M, Escalona MJ, Teige LH, Balafas E, Zhang L, Kostomitsopoulos N, Boulland JL. How to generate graded spinal cord injuries in swine - tools and procedures. Dis Model Mech 2021; 14:dmm049053. [PMID: 34464444 PMCID: PMC8419714 DOI: 10.1242/dmm.049053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a medically, psychologically and socially disabling condition. A large body of our knowledge on the basic mechanisms of SCI has been gathered in rodents. For preclinical validation of promising therapies, the use of animal models that are closer to humans has several advantages. This has promoted the more-intensive development of large-animal models for SCI during the past decade. We recently developed a multimodal SCI apparatus for large animals that generated biomechanically reproducible impacts in vivo. It is composed of a spring-load impactor and support systems for the spinal cord and the vertebral column. We now present the functional outcome of farm pigs and minipigs injured with different lesion strengths. There was a correlation between the biomechanical characteristics of the impact, the functional outcome and the tissue damage observed several weeks after injury. We also provide a detailed description of the procedure to generate such a SCI in both farm pigs and minipigs, in the hope to ease the adoption of the swine model by other research groups.
Collapse
Affiliation(s)
- Mark Züchner
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Manuel J. Escalona
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Lena Hammerlund Teige
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Evangelos Balafas
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of Academy of Athens, 11527 Athens, Greece
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Nikolaos Kostomitsopoulos
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of Academy of Athens, 11527 Athens, Greece
| | - Jean-Luc Boulland
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| |
Collapse
|
36
|
Price MJ, Baëta C, Dalton TE, Nguyen A, Lavau C, Pennington Z, Sciubba DM, Goodwin CR. Animal Models of Metastatic Lesions to the Spine: a Focus on Epidural Spinal Cord Compression. World Neurosurg 2021; 155:122-134. [PMID: 34343682 DOI: 10.1016/j.wneu.2021.07.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022]
Abstract
Epidural spinal cord compression (ESCC) secondary to spine metastases is one of the most devastating sequelae of primary cancer as it may lead to muscle weakness, paresthesia, pain, and paralysis. Spine metastases occur through a multi-step process that can result in eventual ESCC; however, the lack of a preclinical model to effectively recapitulate each step of this metastatic cascade and the symptom burden of ESCC has limited our understanding of this disease process. In this review, we discuss animal models that best recapitulate ESCC; we start with a broad discussion of commonly used models of bone metastasis and end with a focused discussion of models used to specifically study ESCC. Orthotopic models offer the most authentic recapitulation of metastasis development; however, they rarely result in symptomatic ESCC and are challenging to replicate. Conversely, models that involve injection of tumor cells directly into the bloodstream or bone better mimic the symptoms of ESCC; however, they provide limited insight into the epithelial to mesenchymal transition (EMT) and natural hematogenous spread of tumor cell. Therefore, until an ideal model is created, it is critical to select an animal model that is specifically designed to answer the scientific question of interest.
Collapse
Affiliation(s)
- Meghan J Price
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - César Baëta
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Tara E Dalton
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Annee Nguyen
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Catherine Lavau
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Zach Pennington
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, Zucker School of Medicine at Hofstra, Long Island Jewish Medical Center and North Shore University Hospital, Northwell Health, Manhasset, New York, USA
| | - C Rory Goodwin
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
37
|
Cerro PD, Barriga-Martín A, Vara H, Romero-Muñoz LM, Rodríguez-De-Lope Á, Collazos-Castro JE. Neuropathological and Motor Impairments after Incomplete Cervical Spinal Cord Injury in Pigs. J Neurotrauma 2021; 38:2956-2977. [PMID: 34121450 DOI: 10.1089/neu.2020.7587] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Humans, primates, and rodents with cervical spinal cord injury (SCI) show permanent sensorimotor dysfunction of the upper/forelimb as consequence of axonal damage and local neuronal death. This work aimed at characterizing a model of cervical SCI in domestic pigs in which hemisection with excision of 1 cm of spinal cord was performed to reproduce the loss of neural tissue observed in human neuropathology. Posture and motor control were assessed over 3 months by scales and kinematics of treadmill locomotion. Histological measurements included lesion length, atrophy of the adjacent spinal cord segments, and neuronal death. In some animals, the retrograde neural tracer aminostilbamidine was injected in segments caudal to the lesion to visualize propriospinal projection neurons. Neuronal loss extended for 4-6 mm from the lesion borders and was more severe in the ipsilateral, caudal spinal cord stump. Axonal Wallerian degeneration was observed caudally and rostrally, associated with marked atrophy of the white matter in the spinal cord segments adjacent to the lesion. The pigs showed chronic monoplegia or severe monoparesis of the foreleg ipsilateral to the lesion, whereas the trunk and the other legs had postural and motor impairments that substantially improved during the first month post-lesion. Adaptations of the walking cycle such as those reported for rats and humans ameliorated the negative impact of focal neurological deficits on locomotor performance. These results provide a baseline of behavior and histology in a porcine model of cervical spinal cord hemisection that can be used for translational research in SCI therapeutics.
Collapse
Affiliation(s)
- Patricia Del Cerro
- Neural Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain.,Program in Neuroscience, Autonoma de Madrid University, Madrid, Spain
| | - Andrés Barriga-Martín
- Orthopedic Surgery and Traumatology, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Hugo Vara
- Neural Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Luis M Romero-Muñoz
- Orthopedic Surgery and Traumatology, Hospital Nacional de Parapléjicos, Toledo, Spain
| | | | | |
Collapse
|
38
|
Streijger F, Kim KT, So K, Manouchehri N, Shortt K, Okon EB, Morrison C, Fong A, Gupta R, Brown AA, Tigchelaar S, Sun J, Liu E, Keung M, Daly CD, Cripton PA, Sekhon MS, Griesdale DE, Kwon BK. Duraplasty in Traumatic Thoracic Spinal Cord Injury: Impact on Spinal Cord Hemodynamics, Tissue Metabolism, Histology, and Behavioral Recovery Using a Porcine Model. J Neurotrauma 2021; 38:2937-2955. [PMID: 34011164 DOI: 10.1089/neu.2021.0084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
After acute traumatic spinal cord injury (SCI), the spinal cord can swell to fill the subarachnoid space and become compressed by the surrounding dura. In a porcine model of SCI, we performed a duraplasty to expand the subarachnoid space around the injured spinal cord and evaluated how this influenced acute intraparenchymal hemodynamic and metabolic responses, in addition to histological and behavioral recovery. Female Yucatan pigs underwent a T10 SCI, with or without duraplasty. Using microsensors implanted into the spinal cord parenchyma, changes in blood flow (ΔSCBF), oxygenation (ΔPO2), and spinal cord pressure (ΔSCP) during and after SCI were monitored, alongside metabolic responses. Behavioral recovery was tested weekly using the Porcine Injury Behavior Scale (PTIBS). Thereafter, spinal cords were harvested for tissue sparing analyses. In both duraplasty and non-animals, the ΔSCP increased ∼5 mm Hg in the first 6 h post-injury. After this, the SCP appeared to be slightly reduced in the duraplasty animals, although the group differences were not statistically significant after controlling for injury severity in terms of impact force. During the first seven days post-SCI, the ΔSCBF or ΔPO2 values were not different between the duraplasty and control animals. Over 12 weeks, there was no improvement in hindlimb locomotion as assessed by PTIBS scores and no reduction in tissue damage at the injury site in the duraplasty animals. In our porcine model of SCI, duraplasty did not provide any clear evidence of long-term behavioral or tissue sparing benefit after SCI.
Collapse
Affiliation(s)
- Femke Streijger
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Kyoung-Tae Kim
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Department of Neurosurgery, Kyungpook National University Hospital, Daegu, Korea.,Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Kitty So
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Katelyn Shortt
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Elena B Okon
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Charlotte Morrison
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Allan Fong
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Rishab Gupta
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Aysha Allard Brown
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Seth Tigchelaar
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Jenny Sun
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Ella Liu
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Martin Keung
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Chris D Daly
- Vancouver Spine Surgery Institute, Department of Orthopaedics, and University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Peter A Cripton
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,School of Biomedical Engineering and Orthopedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine and Pharmacology and Therapeutics, Faculty of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Donald E Griesdale
- Division of Critical Care Medicine, Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Vancouver Spine Surgery Institute, Department of Orthopaedics, and University of British Columbia (UBC), Vancouver, British Columbia, Canada
| |
Collapse
|
39
|
Proteomic Portraits Reveal Evolutionarily Conserved and Divergent Responses to Spinal Cord Injury. Mol Cell Proteomics 2021; 20:100096. [PMID: 34129941 PMCID: PMC8260874 DOI: 10.1016/j.mcpro.2021.100096] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/14/2021] [Accepted: 05/11/2021] [Indexed: 01/16/2023] Open
Abstract
Despite the emergence of promising therapeutic approaches in preclinical studies, the failure of large-scale clinical trials leaves clinicians without effective treatments for acute spinal cord injury (SCI). These trials are hindered by their reliance on detailed neurological examinations to establish outcomes, which inflate the time and resources required for completion. Moreover, therapeutic development takes place in animal models whose relevance to human injury remains unclear. Here, we address these challenges through targeted proteomic analyses of cerebrospinal fluid and serum samples from 111 patients with acute SCI and, in parallel, a large animal (porcine) model of SCI. We develop protein biomarkers of injury severity and recovery, including a prognostic model of neurological improvement at 6 months with an area under the receiver operating characteristic curve of 0.91, and validate these in an independent cohort. Through cross-species proteomic analyses, we dissect evolutionarily conserved and divergent aspects of the SCI response and establish the cerebrospinal fluid abundance of glial fibrillary acidic protein as a biochemical outcome measure in both humans and pigs. Our work opens up new avenues to catalyze translation by facilitating the evaluation of novel SCI therapies, while also providing a resource from which to direct future preclinical efforts. • Targeted proteomic analysis of CSF and serum samples from 111 acute SCI patients. • Single- and multiprotein biomarkers of injury severity and recovery. • Parallel proteomic analysis in a large animal model identifies conserved biomarkers. • Evolutionary conservation and divergence of the proteomic response to SCI.
Collapse
|
40
|
Menacho ST, Floyd C. Current practices and goals for mean arterial pressure and spinal cord perfusion pressure in acute traumatic spinal cord injury: Defining the gaps in knowledge. J Spinal Cord Med 2021; 44:350-356. [PMID: 31525138 PMCID: PMC8081322 DOI: 10.1080/10790268.2019.1660840] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Context: The mainstay of treatment for acute traumatic spinal cord injury (SCI) is to artificially elevate the patient's mean arterial pressure (MAP) to >85 mmHg to increase blood flow to the injured spinal cord for 7 days. However, the literature supporting these recommendations are only Class III evidence. In fact, the critical time window in which to elevate MAP after SCI and the optimal vasopressor to use are largely unknown, as is whether cerebrospinal fluid diversion has a role, and this leads to variability among practitioners. Also undefined is whether manipulating these parameters improves neurological outcome.Objective: Our goal is to better delineate current clinical practice and identify gaps in knowledge surrounding the care of patients with traumatic SCI.Methods: We undertook a systematic review of the current literature identified from PubMed on MAP elevation and spinal cord parenchymal pressure in acute SCI.Results: The 8 articles (6 human; 2 porcine) that met our inclusion criteria were all published within the last 6 years. Four were prospective, 1 was retrospective, and 3 were review articles. Only one study was randomized. All of these studies involved small sample sizes and varying lengths of MAP elevation. Choice of vasopressor was variable as well.Conclusions: From our literature review, we posit that norepinephrine may be the vasopressor of choice, that spinal parenchymal pressure monitors can be safely placed at the injury site, and that the combination of MAP elevation and cerebrospinal fluid drainage may improve neurologic outcome more than either intervention alone.
Collapse
Affiliation(s)
- Sarah T. Menacho
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA
| | - Candace Floyd
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
41
|
Keung MS, Streijger F, Herrity A, Ethridge J, Dougherty SM, Aslan S, Webster M, Fisk S, Deegan EG, Tessier-Cloutier B, Chen KYN, Morrison C, Okon EB, Tigchelaar S, Manouchehri N, Kim KT, Shortt K, So K, Damaser MS, Sherwood LC, Howland DR, Boakye M, Hubscher C, Stothers L, Kavanagh A, Kwon BK. Characterization of Lower Urinary Tract Dysfunction after Thoracic Spinal Cord Injury in Yucatan Minipigs. J Neurotrauma 2021; 38:1306-1326. [PMID: 33499736 DOI: 10.1089/neu.2020.7404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
There is an increasing need to develop approaches that will not only improve the clinical management of neurogenic lower urinary tract dysfunction (NLUTD) after spinal cord injury (SCI), but also advance therapeutic interventions aimed at recovering bladder function. Although pre-clinical research frequently employs rodent SCI models, large animals such as the pig may play an important translational role in facilitating the development of devices or treatments. Therefore, the objective of this study was to develop a urodynamics protocol to characterize NLUTD in a porcine model of SCI. An iterative process to develop the protocol to perform urodynamics in female Yucatan minipigs began with a group of spinally intact, anesthetized pigs. Subsequently, urodynamic studies were performed in a group of awake, lightly restrained pigs, before and after a contusion-compression SCI at the T2 or T9-T11 spinal cord level. Bladder tissue was obtained for histological analysis at the end of the study. All anesthetized pigs had bladders that were acontractile, which resulted in overflow incontinence once capacity was reached. Uninjured, conscious pigs demonstrated appropriate relaxation and contraction of the external urethral sphincter during the voiding phase. SCI pigs demonstrated neurogenic detrusor overactivity and a significantly elevated post-void residual volume. Relative to the control, SCI bladders were heavier and thicker. The developed urodynamics protocol allows for repetitive evaluation of lower urinary tract function in pigs at different time points post-SCI. This technique manifests the potential for using the pig as an intermediary, large animal model for translational studies in NLUTD.
Collapse
Affiliation(s)
- Martin S Keung
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Neuroscience, Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - April Herrity
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Jay Ethridge
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Susan M Dougherty
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Sevda Aslan
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Megan Webster
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shera Fisk
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emily G Deegan
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Basile Tessier-Cloutier
- Pathology and Laboratory Medicine, and Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kuan-Yin N Chen
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charlotte Morrison
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elena B Okon
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Seth Tigchelaar
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyoung-Tae Kim
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Neurosurgery, School of Medicine, Kyungpook National University, National University Hospital, Daegu, South Korea
| | - Katelyn Shortt
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kitty So
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Margot S Damaser
- Biomedical Engineering Department, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Advanced Platform Technology Center, Louis Stokes Cleveland U.S. Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Leslie C Sherwood
- Comparative Medicine Research Unit, and University of Louisville, Louisville, Kentucky, USA
| | - Dena R Howland
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA.,Research Service, Robley Rex U.S. Department of Veterans Affairs Medical Center, Louisville, Kentucky, USA
| | - Max Boakye
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Charles Hubscher
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| | - Lynn Stothers
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Urologic Sciences, and Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alex Kavanagh
- Urologic Sciences, and Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Spine Surgery Institute, Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
42
|
Chang SJ, Santamaria AJ, Sanchez FJ, Villamil LM, Saraiva PP, Benavides F, Nunez-Gomez Y, Solano JP, Opris I, Guest JD, Noga BR. Deep brain stimulation of midbrain locomotor circuits in the freely moving pig. Brain Stimul 2021; 14:467-476. [PMID: 33652130 PMCID: PMC9097921 DOI: 10.1016/j.brs.2021.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Deep brain stimulation (DBS) of the mesencephalic locomotor region (MLR) has been studied as a therapeutic target in rodent models of stroke, parkinsonism, and spinal cord injury. Clinical DBS trials have targeted the closely related pedunculopontine nucleus in patients with Parkinson’s disease as a therapy for gait dysfunction, with mixed reported outcomes. Recent studies suggest that optimizing the MLR target could improve its effectiveness. Objective: We sought to determine if stereotaxic targeting and DBS in the midbrain of the pig, in a region anatomically similar to that previously identified as the MLR in other species, could initiate and modulate ongoing locomotion, as a step towards generating a large animal neuromodulation model of gait. Methods: We implanted Medtronic 3389 electrodes into putative MLR structures in Yucatan micropigs to characterize the locomotor effects of acute DBS in this region, using EMG recordings, joint kinematics, and speed measurements on a manual treadmill. Results: MLR DBS initiated and augmented locomotion in freely moving micropigs. Effective locomotor sites centered around the cuneiform nucleus and stimulation frequency controlled locomotor speed and stepping frequency. Off-target stimulation evoked defensive and aversive behaviors that precluded locomotion in the animals. Conclusion: Pigs appear to have an MLR and can be used to model neuromodulation of this gait-promoting center. These results indicate that the pig is a useful model to guide future clinical studies for optimizing MLR DBS in cases of gait deficiencies associated with such conditions as Parkinson’s disease, spinal cord injury, or stroke.
Collapse
Affiliation(s)
- Stephano J Chang
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Division of Neurosurgery, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Andrea J Santamaria
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Francisco J Sanchez
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Luz M Villamil
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pedro Pinheiro Saraiva
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Francisco Benavides
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yohjans Nunez-Gomez
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan P Solano
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ioan Opris
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - James D Guest
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Brian R Noga
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
43
|
Mukhamedshina Y, Zhuravleva M, Sergeev M, Zakirova E, Gracheva O, Mukhutdinova D, Rizvanov A. Improving Culture Conditions, Proliferation, and Migration of Porcine Mesenchymal Stem Cells on Spinal Cord Contusion Injury Model in vitro. Cells Tissues Organs 2021; 209:236-247. [PMID: 33508824 DOI: 10.1159/000511865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/22/2020] [Indexed: 11/19/2022] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (AD-MSCs) are promising for cell therapy in spinal cord injury (SCI). The pig is one of the most approximate models of many human diseases, including SCI. In our study, we selected the optimal conditions for the culture of porcine AD-MSCs and developed an in vitro SCI model based on the culture of cells in injured spinal cord extracts (SCE) 3 days and 6 weeks after SCI. We show that Dulbecco's Modified Eagle Medium (DMEM) with 20% serum content, supplemented with a combination of 5 mM L-ascorbate-2-phosphate and nonessential amino acids, stimulated a typical fibroblast-like morphology and high proliferation of porcine AD-MSCs. SCE caused a higher proliferation of porcine AD-MSCs compared with extracts from an intact spinal cord. The optimal proliferating effect was achieved using rostral 3 days SCE, and proliferation was lower in caudal and central SCE. Porcine AD-MSCs migration to the 3 days and 6 weeks SCE was higher than to an intact one and preferred the rostral SCE, avoiding central and caudal SCE. We also studied 13 cytokines contained in SCE but did not observe any definite relationship between some analyte concentrations and a change in the behavior of AD-MSCs.
Collapse
Affiliation(s)
- Yana Mukhamedshina
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation, .,Department of Histology, Cytology, and Embryology, Kazan State Medical University, Kazan, Russian Federation,
| | - Margarita Zhuravleva
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Mikhail Sergeev
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.,Department of Veterinary Surgery, Obstetrics and Small Animal Pathology, Kazan State Academy of Veterinary, Kazan, Russian Federation
| | - Elena Zakirova
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Olga Gracheva
- Department of Therapy and Clinical Diagnostics with Radiology, Kazan State Academy of Veterinary, Kazan, Russian Federation
| | - Dina Mukhutdinova
- Department of Therapy and Clinical Diagnostics with Radiology, Kazan State Academy of Veterinary, Kazan, Russian Federation
| | - Albert Rizvanov
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
44
|
Shulman I, Ogurcov S, Kostennikov A, Rogozin A, Garanina E, Masgutova G, Sergeev M, Rizvanov A, Mukhamedshina Y. Application of Autologous Peripheral Blood Mononuclear Cells into the Area of Spinal Cord Injury in a Subacute Period: A Feasibility Study in Pigs. BIOLOGY 2021; 10:biology10020087. [PMID: 33498942 PMCID: PMC7911660 DOI: 10.3390/biology10020087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary Spinal cord injury is a medical and social issue causing severe disability. The potential to overcome the consequences of spinal cord injury is related to cell therapy. Peripheral blood is a prospective and available source of cells for further clinical use. In our study, we have evaluated the therapeutic potential of peripheral blood mononuclear cells (PBMCs) on the model of spinal cord injury in pigs. In the subacute period (6 weeks after injury), PBMCs enclosed in fibrin glue were applied into the dorsal area of the injured spinal cord. In this study, we observed that the tissue integrity increased in the area adjacent to the epicenter of injury, and conduction along spinal axons was partially restored after cell therapy in pigs. Abstract Peripheral blood presents an available source of cells for both fundamental research and clinical use. In our study, we have evaluated the therapeutic potential of peripheral blood mononuclear cells (PBMCs) excluding the preliminary sorting or mobilization of peripheral blood stem cells. We have evaluated the regenerative potential of PBMCs embedded into a fibrin matrix (FM) in a model of pig spinal cord injury. The distribution of transplanted PBMCs in the injured spinal cord was evaluated; PBMCs were shown to penetrate into the deep layers of the spinal cord and concentrate mainly in the grey matter. The results of the current study revealed an increase in the tissue integrity in the area adjacent to the epicenter of injury and the partially restored conduction along posterior columns of the spinal cord in animals after FM+PBMC application. The multiplex analysis of blood serum and cerebrospinal fluid showed the cytokine imbalance to occur without significantly shifting toward pro-inflammatory or anti-inflammatory cytokine cascades.
Collapse
Affiliation(s)
- Iliya Shulman
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (S.O.); (A.K.); (A.R.); (E.G.); (G.M.); (M.S.); (A.R.)
- Republic Clinical Hospital, 420138 Kazan, Russia
| | - Sergei Ogurcov
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (S.O.); (A.K.); (A.R.); (E.G.); (G.M.); (M.S.); (A.R.)
- Republic Clinical Hospital, 420138 Kazan, Russia
| | - Alexander Kostennikov
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (S.O.); (A.K.); (A.R.); (E.G.); (G.M.); (M.S.); (A.R.)
| | - Alexander Rogozin
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (S.O.); (A.K.); (A.R.); (E.G.); (G.M.); (M.S.); (A.R.)
- Department of Neurology, Kazan State Medical Academy–Branch Campus of the Federal State Budgetary Edicational Institution of Father Professional Education «Russian Medical Academy of Continuous Professional Education», 420012 Kazan, Russia
| | - Ekaterina Garanina
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (S.O.); (A.K.); (A.R.); (E.G.); (G.M.); (M.S.); (A.R.)
| | - Galina Masgutova
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (S.O.); (A.K.); (A.R.); (E.G.); (G.M.); (M.S.); (A.R.)
| | - Mikhail Sergeev
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (S.O.); (A.K.); (A.R.); (E.G.); (G.M.); (M.S.); (A.R.)
- Department of Veterinary Surgery, Obstetrics and Small Animal Pathology, Kazan State Academy of Veterinary Medicine, 420029 Kazan, Russia
| | - Albert Rizvanov
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (S.O.); (A.K.); (A.R.); (E.G.); (G.M.); (M.S.); (A.R.)
| | - Yana Mukhamedshina
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (S.O.); (A.K.); (A.R.); (E.G.); (G.M.); (M.S.); (A.R.)
- Department of Histology, Cytology, and Embryology, Kazan State Medical University, 420012 Kazan, Russia
- Correspondence: ; Tel.: +7-(927)-430-7511; Fax: +7-(843)-292-4448
| |
Collapse
|
45
|
Epidural Stimulation Combined with Triple Gene Therapy for Spinal Cord Injury Treatment. Int J Mol Sci 2020; 21:ijms21238896. [PMID: 33255323 PMCID: PMC7734573 DOI: 10.3390/ijms21238896] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
The translation of new therapies for spinal cord injury to clinical trials can be facilitated with large animal models close in morpho-physiological scale to humans. Here, we report functional restoration and morphological reorganization after spinal contusion in pigs, following a combined treatment of locomotor training facilitated with epidural electrical stimulation (EES) and cell-mediated triple gene therapy with umbilical cord blood mononuclear cells overexpressing recombinant vascular endothelial growth factor, glial-derived neurotrophic factor, and neural cell adhesion molecule. Preliminary results obtained on a small sample of pigs 2 months after spinal contusion revealed the difference in post-traumatic spinal cord outcomes in control and treated animals. In treated pigs, motor performance was enabled by EES and the corresponding morpho-functional changes in hind limb skeletal muscles were accompanied by the reorganization of the glial cell, the reaction of stress cell, and synaptic proteins. Our data demonstrate effects of combined EES-facilitated motor training and cell-mediated triple gene therapy after spinal contusion in large animals, informing a background for further animal studies and clinical translation.
Collapse
|
46
|
Chang SJ, Santamaria AJ, Sanchez FJ, Villamil LM, Pinheiro Saraiva P, Rodriguez J, Nunez-Gomez Y, Opris I, Solano JP, Guest JD, Noga BR. In vivo Population Averaged Stereotaxic T2w MRI Brain Template for the Adult Yucatan Micropig. Front Neuroanat 2020; 14:599701. [PMID: 33281567 PMCID: PMC7691581 DOI: 10.3389/fnana.2020.599701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 12/28/2022] Open
Abstract
Population averaged brain templates are an essential tool for imaging-based neuroscience research, providing investigators with information about the expected size and morphology of brain structures and the spatial relationships between them, within a demographic cross-section. This allows for a standardized comparison of neuroimaging data between subjects and provides neuroimaging software with a probabilistic framework upon which further processing and analysis can be based. Many different templates have been created to represent specific study populations and made publicly available for human and animal research. An increasingly studied animal model in the neurosciences that still lacks appropriate brain templates is the adult Yucatan micropig. In particular, T2-weighted templates are absent in this species as a whole. To address this need and provide a tool for neuroscientists wishing to pursue neuroimaging research in the adult micropig, we present the construction of population averaged (n = 16) T2-weighted MRI brain template for the adult Yucatan micropig. Additionally, we present initial analysis of T1-weighted (n = 3), and diffusion-weighted (n = 3) images through multimodal registration of these contrasts to our T2 template. The strategies used here may also be generalized to create similar templates for other study populations or species in need of template construction.
Collapse
Affiliation(s)
- Stephano J. Chang
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Neurosurgery, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Andrea J. Santamaria
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Francisco J. Sanchez
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Luz M. Villamil
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Pedro Pinheiro Saraiva
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jose Rodriguez
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yohjans Nunez-Gomez
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ioan Opris
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juan P. Solano
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, FL, United States
| | - James D. Guest
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Brian R. Noga
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
47
|
Boakye M, Morehouse J, Ethridge J, Burke DA, Khattar NK, Kumar C, Manouchehri N, Streijger F, Reed R, Magnuson DS, Sherwood L, Kwon BK, Howland DR. Treadmill-Based Gait Kinematics in the Yucatan Mini Pig. J Neurotrauma 2020; 37:2277-2291. [PMID: 32605423 PMCID: PMC9836690 DOI: 10.1089/neu.2020.7050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Yucatan miniature pigs (YMPs) are similar to humans in spinal cord size as well as physiological and neuroanatomical features, making them a useful model for human spinal cord injury. However, little is known regarding pig gait kinematics, especially on a treadmill. In this study, 12 healthy YMPs were assessed during bipedal and/or quadrupedal stepping on a treadmill at six speeds (1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 km/h). Kinematic parameters, including limb coordination and proximal and distal limb angles, were measured. Findings indicate that YMPs use a lateral sequence footfall pattern across all speeds. Stride and stance durations decreased with increasing speed whereas swing duration showed no significant change. Across all speeds assessed, no significant differences were noted between hindlimb stepping parameters for bipedal or quadrupedal gait with the exception of distal limb angular kinematics. Specifically, significant differences were observed between locomotor tasks during maximum flexion (quadrupedal > bipedal), total excursion (bipedal > quadrupedal), and the phase relationship between the timing of maximum extension between the right and left hindlimbs (bipedal > quadrupedal). Speed also impacted maximum flexion and right-left phase relationships given that significant differences were found between the fastest speed (3.5 km/h) relative to each of the other speeds. This study establishes a methodology for bipedal and quadrupedal treadmill-based kinematic testing in healthy YMPs. The treadmill approach used was effective in recruiting primarily the spinal circuitry responsible for the basic stepping patterns as has been shown in cats. We recommend 2.5 km/h (0.7 m/sec) as a target walking gait for pre-clinical studies using YMPs, which is similar to that used in cats.
Collapse
Affiliation(s)
- Maxwell Boakye
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Johnny Morehouse
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Jay Ethridge
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Darlene A. Burke
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Nicolas K. Khattar
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Chitra Kumar
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries, Department of Orthopedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, Department of Orthopedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Robert Reed
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - David S.K. Magnuson
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Leslie Sherwood
- Research Resources Facilities, University of Louisville, Louisville, Kentucky, USA
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries, Department of Orthopedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Vancouver Spine Surgery Institute, Department of Orthopedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Dena R. Howland
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Research Service, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| |
Collapse
|
48
|
Fadeev F, Eremeev A, Bashirov F, Shevchenko R, Izmailov A, Markosyan V, Sokolov M, Kalistratova J, Khalitova A, Garifulin R, Islamov R, Lavrov I. Combined Supra- and Sub-Lesional Epidural Electrical Stimulation for Restoration of the Motor Functions after Spinal Cord Injury in Mini Pigs. Brain Sci 2020; 10:brainsci10100744. [PMID: 33081405 PMCID: PMC7650717 DOI: 10.3390/brainsci10100744] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
This study evaluates the effect of combined epidural electrical stimulation (EES) applied above (C5) and below (L2) the spinal cord injury (SCI) at T8–9 combined with motor training on the restoration of sensorimotor function in mini pigs. The motor evoked potentials (MEP) induced by EES applied at C5 and L2 levels were recorded in soleus muscles before and two weeks after SCI. EES treatment started two weeks after SCI and continued for 6 weeks led to improvement in multiple metrics, including behavioral, electrophysiological, and joint kinematics outcomes. In control animals after SCI a multiphasic M-response was observed during M/H-response testing, while animals received EES-enable training demonstrated the restoration of the M-response and H-reflex, although at a lower amplitude. The joint kinematic and assessment with Porcine Thoracic Injury Behavior scale (PTIBS) motor recovery scale demonstrated improvement in animals that received EES-enable training compared to animals with no treatment. The positive effect of two-level (cervical and lumbar) epidural electrical stimulation on functional restoration in mini pigs following spinal cord contusion injury in mini pigs could be related with facilitation of spinal circuitry at both levels and activation of multisegmental coordination. This approach can be taken as a basis for the future development of neuromodulation and neurorehabilitation therapy for patients with spinal cord injury.
Collapse
Affiliation(s)
- Filip Fadeev
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Anton Eremeev
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
| | - Farid Bashirov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Roman Shevchenko
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Andrei Izmailov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Vage Markosyan
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Mikhail Sokolov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Julia Kalistratova
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Anastasiia Khalitova
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Ravil Garifulin
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Rustem Islamov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
- Correspondence: (R.I.); (I.L.)
| | - Igor Lavrov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (R.I.); (I.L.)
| |
Collapse
|
49
|
Williams AM, Manouchehri N, Erskine E, Tauh K, So K, Shortt K, Webster M, Fisk S, Billingsley A, Munro A, Tigchelaar S, Streijger F, Kim KT, Kwon BK, West CR. Cardio-centric hemodynamic management improves spinal cord oxygenation and mitigates hemorrhage in acute spinal cord injury. Nat Commun 2020; 11:5209. [PMID: 33060602 PMCID: PMC7562705 DOI: 10.1038/s41467-020-18905-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022] Open
Abstract
Chronic high-thoracic and cervical spinal cord injury (SCI) results in a complex phenotype of cardiovascular consequences, including impaired left ventricular (LV) contractility. Here, we aim to determine whether such dysfunction manifests immediately post-injury, and if so, whether correcting impaired contractility can improve spinal cord oxygenation (SCO2), blood flow (SCBF) and metabolism. Using a porcine model of T2 SCI, we assess LV end-systolic elastance (contractility) via invasive pressure-volume catheterization, monitor intraparenchymal SCO2 and SCBF with fiberoptic oxygen sensors and laser-Doppler flowmetry, respectively, and quantify spinal cord metabolites with microdialysis. We demonstrate that high-thoracic SCI acutely impairs cardiac contractility and substantially reduces SCO2 and SCBF within the first hours post-injury. Utilizing the same model, we next show that augmenting LV contractility with the β-agonist dobutamine increases SCO2 and SCBF more effectively than vasopressor therapy, whilst also mitigating increased anaerobic metabolism and hemorrhage in the injured cord. Finally, in pigs with T2 SCI survived for 12 weeks post-injury, we confirm that acute hemodynamic management with dobutamine appears to preserve cardiac function and improve hemodynamic outcomes in the chronic setting. Our data support that cardio-centric hemodynamic management represents an advantageous alternative to the current clinical standard of vasopressor therapy for acute traumatic SCI.
Collapse
Affiliation(s)
- Alexandra M Williams
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Neda Manouchehri
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Erin Erskine
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Keerit Tauh
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Kitty So
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Katelyn Shortt
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Megan Webster
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Shera Fisk
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Avril Billingsley
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Alex Munro
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Seth Tigchelaar
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Femke Streijger
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Kyoung-Tae Kim
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Department of Neurosurgery, School of Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Brian K Kwon
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Vancouver Spine Surgery Institute, Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| | - Christopher R West
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada. .,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
50
|
Benasson I, Wagnac E, Diotalevi L, Moore D, Mac-Thiong JM, Petit Y. Gait analysis of a post induced traumatic spinal cord injury porcine model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3803-3806. [PMID: 33018829 DOI: 10.1109/embc44109.2020.9175280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Porcine model constitutes a potential translational model to study traumatic spinal cord injuries (TSCI) considering its recent use in numerous studies. Recovery of the animal is currently monitored through a qualitative evaluation of the gait. Adding a quantitative evaluation might help to better assess the functional recovery of the animal. In this study, a new controlled method involving the use of an electro-magnetic actuator was used on a pig to induce a TSCI. Chronic monitoring was done using a quantitative analysis of the gait. Results show both, the injury of the pig and its functional recovery. This large animal model will help to provide a better understanding of injury and recovery mechanisms and thus could constitute a strong preclinical model for future therapeutic studies.Clinical Relevance- Methodology and results from this study would provide a better insight on the functional recovery after traumatic spinal cord injuries.
Collapse
|