1
|
Dhariwal S, Maan K, Baghel R, Sharma A, Kumari M, Aleem M, Manda K, Trivedi R, Rana P. Comparative lipid profiling reveals the differential response of distinct lipid subclasses in blast and blunt-induced mild traumatic brain injury. Exp Neurol 2025; 385:115141. [PMID: 39788308 DOI: 10.1016/j.expneurol.2025.115141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Head trauma from blast exposure is a growing health concern, particularly among active military personnel, and is considered the signature injury of the Gulf War. However, it remains elusive whether fundamental differences exist between blast-related Traumatic Brain Injuries (TBI) and TBI due to other mechanisms. Considering the importance of lipid metabolism associated with neuronal membrane integrity and its compromise during TBI, we sought to find changes in lipidomic profiling during blast or blunt (Stereotaxically Controlled Contusison-SCC)-mediated TBI. In the current study, we have developed the mild TBI (mTBI) model of blast (130 ± 10 kPa) and SCC (1.5 mm dorsal-ventral) on C57BL/6 mice, followed by the serum collection on days 1 and 7. Lipidomics was performed via ultra-high performance liquid chromatography (UHPLC) quadrupole time-of-flight mass spectrometry (qTOF-MS). Additionally, neurobehavioral outcomes were estimated using a revised neurobehavioral severity score for mice (mNSS-R) and an open field test (OFT). The study found that blast-exposed group exhibited more lipid dysregulation, as evidenced by a higher number of significant lipids and associated pathways at both time points. However, the comparative investigation further reveals eight significantly common lipids that can characterize the mTBI regardless of the manner of induction (blast or blunt). Besides, modulated neurobehavioral, locomotor and anxiety functions were also observed post-mTBI. The study illustrates the distinct systemic lipid metabolism intended to preserve the brain's lipid homeostasis post-mTBI. This approach may provide novel insights into lipid metabolism and identification of individual lipid species that aids in understanding the pathophysiology of mTBI.
Collapse
Affiliation(s)
- Seema Dhariwal
- Traumatic Brain Injury & Metabolomics Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India
| | - Kiran Maan
- Traumatic Brain Injury & Metabolomics Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India
| | - Ruchi Baghel
- Traumatic Brain Injury & Metabolomics Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India
| | - Apoorva Sharma
- Traumatic Brain Injury & Metabolomics Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India.
| | - Megha Kumari
- Neurobehavioural Research Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India
| | - Mohd Aleem
- Neurobehavioural Research Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India
| | - Kailash Manda
- Neurobehavioural Research Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India.
| | - Richa Trivedi
- Neurobehavioural Research Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India.
| | - Poonam Rana
- Traumatic Brain Injury & Metabolomics Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India.
| |
Collapse
|
2
|
Norris C, Murphy SF, Talty CE, VandeVord PJ. Spatial Intracranial Pressure Fields Driven by Blast Overpressure in Rats. Ann Biomed Eng 2024; 52:2641-2654. [PMID: 38851659 PMCID: PMC11402848 DOI: 10.1007/s10439-024-03544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/08/2024] [Indexed: 06/10/2024]
Abstract
Free-field blast exposure imparts a complex, dynamic response within brain tissue that can trigger a cascade of lasting neurological deficits. Full body mechanical and physiological factors are known to influence the body's adaptation to this seemingly instantaneous insult, making it difficult to accurately pinpoint the brain injury mechanisms. This study examined the intracranial pressure (ICP) profile characteristics in a rat model as a function of blast overpressure magnitude and brain location. Metrics such as peak rate of change of pressure, peak pressure, rise time, and ICP frequency response were found to vary spatially throughout the brain, independent of blast magnitude, emphasizing unique spatial pressure fields as a primary biomechanical component to blast injury. This work discusses the ICP characteristics and considerations for finite element models, in vitro models, and translational in vivo models to improve understanding of biomechanics during primary blast exposure.
Collapse
Affiliation(s)
- Carly Norris
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Susan F Murphy
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
- Veterans Affairs Medical Center, Salem, VA, USA
| | - Caiti-Erin Talty
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, USA
| | - Pamela J VandeVord
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA.
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA.
- Veterans Affairs Medical Center, Salem, VA, USA.
| |
Collapse
|
3
|
Boiczyk GM, Pearson N, Kote VB, Sundaramurthy A, Subramaniam DR, Rubio JE, Unnikrishnan G, Reifman J, Monson KL. Region specific anisotropy and rate dependence of Göttingen minipig brain tissue. Biomech Model Mechanobiol 2024; 23:1511-1529. [PMID: 38717719 DOI: 10.1007/s10237-024-01852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/17/2024] [Indexed: 09/28/2024]
Abstract
Traumatic brain injury is a major cause of morbidity in civilian as well as military populations. Computational simulations of injurious events are an important tool to understanding the biomechanics of brain injury and evaluating injury criteria and safety measures. However, these computational models are highly dependent on the material parameters used to represent the brain tissue. Reported material properties of tissue from the cerebrum and cerebellum remain poorly defined at high rates and with respect to anisotropy. In this work, brain tissue from the cerebrum and cerebellum of male Göttingen minipigs was tested in one of three directions relative to axon fibers in oscillatory simple shear over a large range of strain rates from 0.025 to 250 s-1. Brain tissue showed significant direction dependence in both regions, each with a single preferred loading direction. The tissue also showed strong rate dependence over the full range of rates considered. Transversely isotropic hyper-viscoelastic constitutive models were fit to experimental data using dynamic inverse finite element models to account for wave propagation observed at high strain rates. The fit constitutive models predicted the response in all directions well at rates below 100 s-1, after which they adequately predicted the initial two loading cycles, with the exception of the 250 s-1 rate, where models performed poorly. These constitutive models can be readily implemented in finite element packages and are suitable for simulation of both conventional and blast injury in porcine, especially Göttingen minipig, models.
Collapse
Affiliation(s)
- Gregory M Boiczyk
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| | - Noah Pearson
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Vivek Bhaskar Kote
- Telemedicine and Advanced Technology Research Center, Department of Defense Biotechnology High Performance Computing Software Applications Institute, United States Army Medical Research and Development Command, Fort Detrick, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Aravind Sundaramurthy
- Telemedicine and Advanced Technology Research Center, Department of Defense Biotechnology High Performance Computing Software Applications Institute, United States Army Medical Research and Development Command, Fort Detrick, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Dhananjay Radhakrishnan Subramaniam
- Telemedicine and Advanced Technology Research Center, Department of Defense Biotechnology High Performance Computing Software Applications Institute, United States Army Medical Research and Development Command, Fort Detrick, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Jose E Rubio
- Telemedicine and Advanced Technology Research Center, Department of Defense Biotechnology High Performance Computing Software Applications Institute, United States Army Medical Research and Development Command, Fort Detrick, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Ginu Unnikrishnan
- Telemedicine and Advanced Technology Research Center, Department of Defense Biotechnology High Performance Computing Software Applications Institute, United States Army Medical Research and Development Command, Fort Detrick, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Jaques Reifman
- Telemedicine and Advanced Technology Research Center, Department of Defense Biotechnology High Performance Computing Software Applications Institute, United States Army Medical Research and Development Command, Fort Detrick, MD, USA
| | - Kenneth L Monson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
4
|
Sutar S, Ganpule SG. In Silico Investigation of Biomechanical Response of a Human Brain Subjected to Primary Blast. J Biomech Eng 2024; 146:081007. [PMID: 38421339 DOI: 10.1115/1.4064968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
The brain response to the explosion-induced primary blast waves is actively sought. Over the past decade, reasonable progress has been made in the fundamental understanding of blast traumatic brain injury (bTBI) using head surrogates and animal models. Yet, the current understanding of how blast waves interact with human is in nascent stages, primarily due to the lack of data in human. The biomechanical response in human is critically required to faithfully establish the connection to the aforementioned bTBI models. In this work, the biomechanical cascade of the brain under a primary blast has been elucidated using a detailed, full-body human model. The full-body model allowed us to holistically probe short- (<5 ms) and long-term (200 ms) brain responses. The full-body model has been extensively validated against impact loading in the past. We have further validated the head model against blast loading. We have also incorporated the structural anisotropy of the brain white matter. The blast wave transmission, and linear and rotational motion of the head were dominant pathways for the loading of the brain, and these loading paradigms generated distinct biomechanical fields within the brain. Blast transmission and linear motion of the head governed the volumetric response, whereas the rotational motion of the head governed the deviatoric response. Blast induced head rotation alone produced diffuse injury pattern in white matter fiber tracts. The biomechanical response under blast was comparable to the impact event. These insights will augment laboratory and clinical investigations of bTBI and help devise better blast mitigation strategies.
Collapse
Affiliation(s)
- Sunil Sutar
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - S G Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
5
|
Sachdeva T, Ganpule SG. Twenty Years of Blast-Induced Neurotrauma: Current State of Knowledge. Neurotrauma Rep 2024; 5:243-253. [PMID: 38515548 PMCID: PMC10956535 DOI: 10.1089/neur.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Blast-induced neurotrauma (BINT) is an important injury paradigm of neurotrauma research. This short communication summarizes the current knowledge of BINT. We divide the BINT research into several broad categories-blast wave generation in laboratory, biomechanics, pathology, behavioral outcomes, repetitive blast in animal models, and clinical and neuroimaging investigations in humans. Publications from 2000 to 2023 in each subdomain were considered. The analysis of the literature has brought out salient aspects. Primary blast waves can be simulated reasonably in a laboratory using carefully designed shock tubes. Various biomechanics-based theories of BINT have been proposed; each of these theories may contribute to BINT by generating a unique biomechanical signature. The injury thresholds for BINT are in the nascent stages. Thresholds for rodents are reasonably established, but such thresholds (guided by primary blast data) are unavailable in humans. Single blast exposure animal studies suggest dose-dependent neuronal pathologies predominantly initiated by blood-brain barrier permeability and oxidative stress. The pathologies were typically reversible, with dose-dependent recovery times. Behavioral changes in animals include anxiety, auditory and recognition memory deficits, and fear conditioning. The repetitive blast exposure manifests similar pathologies in animals, however, at lower blast overpressures. White matter irregularities and cortical volume and thickness alterations have been observed in neuroimaging investigations of military personnel exposed to blast. Behavioral changes in human cohorts include sleep disorders, poor motor skills, cognitive dysfunction, depression, and anxiety. Overall, this article provides a concise synopsis of current understanding, consensus, controversies, and potential future directions.
Collapse
Affiliation(s)
- Tarun Sachdeva
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shailesh G. Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Design, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
6
|
Deshetty UM, Periyasamy P. Potential Biomarkers in Experimental Animal Models for Traumatic Brain Injury. J Clin Med 2023; 12:3923. [PMID: 37373618 DOI: 10.3390/jcm12123923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a complex and multifaceted disorder that has become a significant public health concern worldwide due to its contribution to mortality and morbidity. This condition encompasses a spectrum of injuries, including axonal damage, contusions, edema, and hemorrhage. Unfortunately, specific effective therapeutic interventions to improve patient outcomes following TBI are currently lacking. Various experimental animal models have been developed to mimic TBI and evaluate potential therapeutic agents to address this issue. These models are designed to recapitulate different biomarkers and mechanisms involved in TBI. However, due to the heterogeneous nature of clinical TBI, no single experimental animal model can effectively mimic all aspects of human TBI. Accurate emulation of clinical TBI mechanisms is also tricky due to ethical considerations. Therefore, the continued study of TBI mechanisms and biomarkers, of the duration and severity of brain injury, treatment strategies, and animal model optimization is necessary. This review focuses on the pathophysiology of TBI, available experimental TBI animal models, and the range of biomarkers and detection methods for TBI. Overall, this review highlights the need for further research to improve patient outcomes and reduce the global burden of TBI.
Collapse
Affiliation(s)
- Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
7
|
Boiczyk GM, Pearson N, Kote VB, Sundaramurthy A, Subramaniam DR, Rubio JE, Unnikrishnan G, Reifman J, Monson KL. Rate- and Region-Dependent Mechanical Properties of Göttingen Minipig Brain Tissue in Simple Shear and Unconfined Compression. J Biomech Eng 2023; 145:1154461. [PMID: 36524865 DOI: 10.1115/1.4056480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Traumatic brain injury (TBI), particularly from explosive blasts, is a major cause of casualties in modern military conflicts. Computational models are an important tool in understanding the underlying biomechanics of TBI but are highly dependent on the mechanical properties of soft tissue to produce accurate results. Reported material properties of brain tissue can vary by several orders of magnitude between studies, and no published set of material parameters exists for porcine brain tissue at strain rates relevant to blast. In this work, brain tissue from the brainstem, cerebellum, and cerebrum of freshly euthanized adolescent male Göttingen minipigs was tested in simple shear and unconfined compression at strain rates ranging from quasi-static (QS) to 300 s-1. Brain tissue showed significant strain rate stiffening in both shear and compression. Minimal differences were seen between different regions of the brain. Both hyperelastic and hyper-viscoelastic constitutive models were fit to experimental stress, considering data from either a single loading mode (unidirectional) or two loading modes together (bidirectional). The unidirectional hyper-viscoelastic models with an Ogden hyperelastic representation and a one-term Prony series best captured the response of brain tissue in all regions and rates. The bidirectional models were generally able to capture the response of the tissue in high-rate shear and all compression modes, but not the QS shear. Our constitutive models describe the first set of material parameters for porcine brain tissue relevant to loading modes and rates seen in blast injury.
Collapse
Affiliation(s)
- Gregory M Boiczyk
- Department of Biomedical Engineering, The University of Utah, 36 S. Wasatch Drive, Salt Lake City, UT 84112
| | - Noah Pearson
- Department of Mechanical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT 84112
| | - Vivek Bhaskar Kote
- Department of Defense Biotechnology, High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, 2405 Whittier Drive, Suite 200, Frederick, MD 21702; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Aravind Sundaramurthy
- Department of Defense Biotechnology, High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, 2405 Whittier Drive, Suite 200, Frederick, MD 21702; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Dhananjay Radhakrishnan Subramaniam
- Department of Defense Biotechnology, High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, 2405 Whittier Drive, Suite 200, Frederick, MD 21702; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Jose E Rubio
- Department of Defense Biotechnology, High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, 2405 Whittier Drive, Suite 200, Frederick, MD 21702; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Ginu Unnikrishnan
- Department of Defense Biotechnology, High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, 2405 Whittier Drive, Suite 200, Frederick, MD 21702; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Jaques Reifman
- Department of Defense Biotechnology, High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, 2405 Whittier Drive, Suite 200, Frederick, MD 21702
| | - Kenneth L Monson
- Department of Mechanical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT 84112; Department of Biomedical Engineering, The University of Utah, 36 S. Wasatch Drive, Salt Lake City, UT 84112
| |
Collapse
|
8
|
Soft-armor Vest Effectiveness and Intrathoracic Biomechanics in Rodents Exposed to Primary Blast. Ann Biomed Eng 2023:10.1007/s10439-023-03174-5. [PMID: 36913085 DOI: 10.1007/s10439-023-03174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
The biomechanics and efficacy of personal protective equipment in mitigating injuries from blast overpressure remain unclear. The objectives of this study were to define intrathoracic pressures in response to blast wave (BW) exposure and biomechanically evaluate a soft-armor vest (SA) at diminishing these perturbations. Male Sprague-Dawley rats were instrumented with pressure sensors in the thorax and were exposed laterally to multiple exposures ranging from 33 to 108 kPa BW with SA and without SA. There were significant increases in rise time, peak negative pressure, and negative impulse in the thoracic cavity compared to the BW. Esophageal measurements were increased to a greater extent when compared to the carotid and the BW for all parameters (except positive impulse, which decreased). SA minimally altered the pressure parameters and energy content. This study establishes the relationship of external blast flow conditions and intra-body biomechanical responses in the thoracic cavity of rodents with and without SA.
Collapse
|
9
|
Singh G, Chanda A. Development and Mechanical Characterization of Artificial Surrogates for Brain Tissues. BIOMEDICAL ENGINEERING ADVANCES 2023. [DOI: 10.1016/j.bea.2023.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
10
|
Perumal V, Ravula AR, Shao N, Chandra N. Effect of minocycline and its nano-formulation on central auditory system in blast-induced hearing loss rat model. J Otol 2023; 18:38-48. [PMID: 36820161 PMCID: PMC9937842 DOI: 10.1016/j.joto.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 01/25/2023] Open
Abstract
Blast injuries are common among the military service members and veterans. One of the devastating effects of blast wave induced TBI is either temporary or permanent hearing loss. Treating hearing loss using minocycline is restricted by optimal drug concentration, route of administration, and its half-life. Therefore, therapeutic approach using novel therapeutic delivery method is in great need. Among the different delivery methods, nanotechnology-based drug delivery is desirable, which can achieve longer systemic circulation, pass through some biological barriers and specifically targets desired sites. The current study aimed to examine therapeutic effect of minocycline and its nanoparticle formulation in moderate blast induced hearing loss rat model through central auditory system. The I.v. administered nanoparticle at reduced dose and frequency than regularly administered toxic dose. After moderate blast exposure, rats had hearing impairment as determined by ABR at 7- and 30-days post exposure. In chronic condition, free minocycline also showed the significant reduction in ABR threshold. In central auditory system, it is found in this study that minocycline nanoparticles ameliorate excitation in inferior colliculus; and astrocytes and microglia activation after the blast exposure is reduced by minocycline nanoparticles administration. The study demonstrated that in moderate blast induced hearing loss, minocycline and its nanoparticle formulation exhibited the optimal therapeutic effect on the recovery of the ABR impairment and a protective effect through central auditory system. In conclusion, targeted and non-targeted nanoparticle formulation have therapeutic effect on blast induced hearing loss.
Collapse
Key Words
- 5-HsT, 5-hydroxytryptamine
- ABR, auditory brainstem response
- AC, auditory cortex
- Blast injury and targeted drug delivery
- CAS, central auditory system
- DAI, (diffuse axonal injury)
- GABA, gamma-aminobutyric acid
- HL, (Hearing loss)
- Hearing loss
- Minocycline
- NMDAR1, N-methyl-D-aspartate receptor 1
- Nanoparticle
- PAS, peripheral auditory system
- bTBI, blast traumatic brain injury
Collapse
|
11
|
Rubio JE, Subramaniam DR, Unnikrishnan G, Sajja VSSS, Van Albert S, Rossetti F, Frock A, Nguyen G, Sundaramurthy A, Long JB, Reifman J. A biomechanical-based approach to scale blast-induced molecular changes in the brain. Sci Rep 2022; 12:14605. [PMID: 36028539 PMCID: PMC9418170 DOI: 10.1038/s41598-022-17967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
Animal studies provide valuable insights on how the interaction of blast waves with the head may injure the brain. However, there is no acceptable methodology to scale the findings from animals to humans. Here, we propose an experimental/computational approach to project observed blast-induced molecular changes in the rat brain to the human brain. Using a shock tube, we exposed rats to a range of blast overpressures (BOPs) and used a high-fidelity computational model of a rat head to correlate predicted biomechanical responses with measured changes in glial fibrillary acidic protein (GFAP) in rat brain tissues. Our analyses revealed correlates between model-predicted strain rate and measured GFAP changes in three brain regions. Using these correlates and a high-fidelity computational model of a human head, we determined the equivalent BOPs in rats and in humans that induced similar strain rates across the two species. We used the equivalent BOPs to project the measured GFAP changes in the rat brain to the human. Our results suggest that, relative to the rat, the human requires an exposure to a blast wave of a higher magnitude to elicit similar brain-tissue responses. Our proposed methodology could assist in the development of safety guidelines for blast exposure.
Collapse
Affiliation(s)
- Jose E Rubio
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720-A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Dhananjay Radhakrishnan Subramaniam
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720-A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Ginu Unnikrishnan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720-A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Venkata Siva Sai Sujith Sajja
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Stephen Van Albert
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Franco Rossetti
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Andrew Frock
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720-A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Giang Nguyen
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720-A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Aravind Sundaramurthy
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720-A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Joseph B Long
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.
| |
Collapse
|
12
|
|
13
|
Silvosa MJ, Romo Mercado N, Merlock N, Vidhate S, Mejia-Alvarez R, Yuan T, Willis AM, Lybrand ZR. Understanding primary blast injury: High frequency pressure acutely disrupts neuronal network dynamics in cerebral organoids. J Neurotrauma 2022; 39:1575-1590. [PMID: 35765922 DOI: 10.1089/neu.2022.0044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Blast exposure represents a common occupational risk capable of generating mild to severe traumatic brain injuries (TBI). During blast exposure, a pressure shockwave passes through the skull and exposes brain tissue to complex pressure waveforms. The primary neurophysiological response to blast-induced pressure waveforms remains poorly understood. Here, we use a computer-controlled table-top pressure chamber to expose human stem cell-derived cerebral organoids to varied frequency of pressure waves and characterize the neurophysiological response. Pressure waves that reach a maximum amplitude of 250kPa were used to model a less severe TBI and 350kPa for a more severe blast TBI event. With each amplitude, a frequency range of 500Hz, 3000Hz, and 5000Hz was tested. Following the 250 kPa overpressure a multielectrode array recorded organoid neural activity. We observed an acute suppression neuronal activity in single unit events, population events, and network oscillations that recovered within 24 hours. Additionally, we observed a network desynchronization after exposure higher frequency waveforms. Conversely, organoids exposed to higher amplitude pressure (350kPa) displayed drastic neurophysiological differences that failed to recover within 24 hours. Furthermore, lower amplitude 'blast' (250kPa) did not induce cellular damage whereas the higher amplitude 'blast' (350kPa) generated greater apoptosis throughout each organoid. Our data indicate that specific features of pressure waves found intracranially during blast TBI have varied effects on neurophysiological activity that can occur even without cellular damage.
Collapse
Affiliation(s)
| | | | - Nikolas Merlock
- UTSA, 12346, Department of Neuroscience, Developmental and Regenerative Biology, San Antonio, Texas, United States;
| | - Suhas Vidhate
- National Institutes of Health, 2511, Department of Radiology and Imaging Sciences, Clinical Center, Bethesda, Maryland, United States;
| | - Ricardo Mejia-Alvarez
- Michigan State University, 3078, Department of Mechanical Engineering, East Lansing, Michigan, United States;
| | - Tony Yuan
- 59th Medical Wing, 495529, Diagnostic and Therapeutic, 1632 Nellis Street, Bldg. 5406, Rm: B-207, Joint Base San Antonio-Lackland, Texas, United States, 78236-5415;
| | - Adam M Willis
- Michigan State University, 3078, Department of Mechanical Engineering, East Lansing, Michigan, United States.,59th Medical Wing, 495529, Diagnostic and Therapeutic, Joint Base San Antonio-Lackland, Texas, United States;
| | - Zane R Lybrand
- Texas Woman's University, 2910, Biology, P.O. Box 425799, Denton, Denton, Texas, United States, 76204;
| |
Collapse
|
14
|
Padmakumar S, Kulkarni P, Ferris CF, Bleier BS, Amiji MM. Traumatic brain injury and the development of parkinsonism: Understanding pathophysiology, animal models, and therapeutic targets. Biomed Pharmacother 2022; 149:112812. [PMID: 35290887 PMCID: PMC9050934 DOI: 10.1016/j.biopha.2022.112812] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
The clinical translation of therapeutic approaches to combat debilitating neurodegenerative conditions, such as Parkinson's disease (PD), remains as an urgent unmet challenge. The strong molecular association between the pathogenesis of traumatic brain injury (TBI) and the development of parkinsonism in humans has been well established. Therefore, a lot of ongoing research aims to investigate this pathology overlap in-depth, to exploit the common targets of TBI and PD for development of more effective and long-term treatment strategies. This review article intends to provide a detailed background on TBI pathophysiology and its established overlap with PD with an additional emphasis on the recent findings about their effect on perivascular clearance. Although, the traditional animal models of TBI and PD are still being considered, there is a huge focus on the development of combinatory hybrid animal models coupling concussion with the pre-established PD models for a better recapitulation of the human context of PD pathogenesis. Lastly, the therapeutic targets for TBI and PD, and the contemporary research involving exosomes, DNA vaccines, miRNA, gene therapy and gene editing for the development of potential candidates are discussed, along with the recent development of lesser invasive and promising central nervous system (CNS) drug delivery strategies.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, United States of America
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States of America
| | - Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States of America
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, United States of America.
| |
Collapse
|
15
|
Ocular biomechanics during improvised explosive device blast: A computational study using eye-specific models. Injury 2022; 53:1401-1415. [PMID: 35144807 PMCID: PMC8940691 DOI: 10.1016/j.injury.2022.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Eye injuries comprise 10-13% of civilian improvised explosive device (IED) injuries. The bomb blast wave induces a normal and shear forces on the tissues, causing a large acute IOP elevation. This study calculated the biomechanical stresses and strains in the eye due to IED explosion via eye-specific fluid-structure interaction (FSI) models. METHODS Blast occurred at 2, 3, and 4 m from the front and side of the victim and the weights of the IED were 1 and 2 kg. The ground was covered with the deformable soil to mimic the realistic IED explosion condition and reflect the blast wave. RESULTS The IOP elevation of ∼6,000-48,000 mmHg was observed in the eyes while the highest IOP was occurred with the IED weight and distance of 2 kg and 2 m (front) and the lowest was occurred with the IED weight and distance of 1 kg and 4 m (side). Our findings suggest the importance of the victim location and orientation concerning the blast wave when it comes to ocular injury assessment. IOP elevation of ∼2900 and ∼2700 mmHg were observed in ∼1.6 ms after the blast for the IEDS weight of 2 kg and a victim distance of 2 m in front and side blasts, respectively, in consistence with the literature. Nonetheless, IOPs were considerably higher after ∼1.6 ms due to the merging of the bomb blast wave and its reflection off the ground. CONCLUSIONS The stresses and strains were highest for the frontal blast. Both side and frontal blasts caused higher stresses and strains at the rectus muscle insertions where the sclera is thinnest and prone to rupture. Blast angle has no considerable role in the resultant IOP. Front blast with a heavier IED resulted a higher stresses and deformations in the eye connective tissues compared to the side blast.
Collapse
|
16
|
Kim C, Choi WJ, Kang W. Cavitation nucleation and its ductile-to-brittle shape transition in soft gels under translational mechanical impact. Acta Biomater 2022; 142:160-173. [PMID: 35189381 DOI: 10.1016/j.actbio.2022.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023]
Abstract
Cavitation bubbles in the human body, when subjected to impact, are being increasingly considered as a possible brain injury mechanism. However, the onset of cavitation and its complex dynamics in biological materials remain unclear. Our experimental results using soft gels as a tissue simulant show that the critical acceleration (acr) at cavitation nucleation monotonically increases with increasing stiffness of gelatin A/B, while acr for agarose and agar initially increases but is followed by a plateau or even decrease after stiffness reach to ∼100 kPa. Our image analyses of cavitation bubbles and theoretical work reveal that the observed trends in acr are directly linked to how bubbles grow in each gel. Gelatin A/B, regardless of their stiffness, form a localized damaged zone (tens of nanometers) at the gel-bubble interface during bubble growth. In contrary, the damaged zone in agar/agarose becomes significantly larger (> 100 times) with increasing shear modulus, which triggers the transition from formation of a small, damaged zone to activation of crack propagation. STATEMENT OF SIGNIFICANCE: We have studied cavitation nucleation and bubble growth in four different types of soft gels (i.e., tissue simulants) under translational impact. The critical linear acceleration for cavitation nucleation has been measured in the simulants by utilizing a recently developed method that mimics acceleration profiles of typical head blunt events. Each gel type exhibits significantly different trends in the critical acceleration and bubble shape (e.g., A gel-specific sphere-to-saucer transition) with increasing gel stiffness. Our theoretical framework, based on the concepts of a damaged zone and crack propagation in each gel, explains underlying mechanisms of the experimental observations. Our in-depth studies shed light on potential links between traumatic brain injuries and cavitation bubbles induced by translational acceleration, the overlooked mechanism in the literature.
Collapse
Affiliation(s)
- Chunghwan Kim
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, United States
| | - Won June Choi
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, United States
| | - Wonmo Kang
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, United States.
| |
Collapse
|
17
|
Liu Y, Lu Y, Shao Y, Wu Y, He J, Wu C. Mechanism of the traumatic brain injury induced by blast wave using the energy assessment method. Med Eng Phys 2022; 101:103767. [DOI: 10.1016/j.medengphy.2022.103767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/20/2022] [Accepted: 02/06/2022] [Indexed: 11/26/2022]
|
18
|
Sutar S, Ganpule S. Evaluation of Blast Simulation Methods for Modeling Blast Wave Interaction with Human Head. J Biomech Eng 2021; 144:1128656. [PMID: 34791052 DOI: 10.1115/1.4053059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 11/08/2022]
Abstract
Blast induced traumatic brain injury (bTBI) research is crucial in asymmetric warfare. The finite element analysis is an attractive option to simulate the blast wave interaction with the head. The popular blast simulation methods are ConWep based pure Lagrangian, Arbitrary-Lagrangian-Eulerian, and Coupling method. This study examines the accuracy and efficiency of ConWep and Coupling methods in predicting the biomechanical response of the head. The simplified cylindrical, spherical surrogates and biofidelic human head models are subjected to field-relevant blast loads using these methods. The reflected overpressures at the surface and pressures inside the brain from the head models are qualitatively and quantitatively evaluated against the available experiments. Both methods capture the overall trends of experiments. Our results suggest that the accuracy of the ConWep method is mainly governed by the radius of curvature of the surrogate head. For the relatively smaller radius of curvature, such as cylindrical or spherical head surrogate, ConWep does not accurately capture decay of reflected blast overpressures and brain pressures. For the larger radius of curvature, such as the biofidelic human head, the predictions from ConWep match reasonably well with the experiment. For all the head surrogates considered, the reflected overpressure-time histories predicted by the Coupling method match reasonably well with the experiment. Coupling method uniquely captures the shadowing and union of shock waves governed by the geometry driven flow dynamics around the head. Overall, these findings will assist the bTBI modeling community to judiciously select an objective-driven modeling methodology.
Collapse
Affiliation(s)
- Sunil Sutar
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India -247667
| | - Shailesh Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India -247667
| |
Collapse
|
19
|
Karimi A, Razaghi R, Girkin CA, Downs JC. Ocular biomechanics due to ground blast reinforcement. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 211:106425. [PMID: 34598082 PMCID: PMC8577623 DOI: 10.1016/j.cmpb.2021.106425] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/14/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND OBJECTIVE Bomb blast injuries exerts a shearing force on the air-tissue interfaces, causing devastating ocular injury from the blast wave. Improvised explosive devices (IEDs) are usually placed at different heights from the ground to induce more severe injury through ground blast reinforcement (GBR). However, there is still a lack of knowledge of the role of GBR and IED height from the ground on ocular biomechanics, and how they can affect the intraocular pressure (IOP) in the eye. This study aimed to estimate the IOP due to frontal IED explosion at different heights from the ground using a fluid-structure interaction model with and without GBR effects. METHODS A 2 kg IED was placed within 5 m of the victim at 5 different heights from the ground, including 0, 0.42, 0.85, 1.27, and 1.70 m. Two different blast formulations were used to simulate the IED explosion: (a) spherical airburst, with no amplification of the initial shock wave due to interaction with the ground-surface, and (b) hemispherical surface-burst, where the initial blast wave is immediately reflected and reinforced by the ground (GBR). RESULTS Results revealed that the blast wave due to GBR reaches to the skull prior to the IED blast itself. The GBR also reached to the skull ∼ 0.6 ms earlier when the IED was on the ground compared to the height of 1.70 m. The highest and lowest IOPs of ∼ 17,000 and ∼ 15,000 mmHg were observed at the IED heights of 1.70 and 0 m from the ground considering GBR. However, when the role of the GBR is ignored, IOP of ∼ 9,000 mmHg was observed regardless of the IED height from the ground. The deformation in the apex of the cornea was higher when considering the GBR (∼ 0.75 cm) versus no GBR (∼ 0.65 cm). Considering GBR led to higher stresses and strains in the sclera. CONCLUSIONS When the role of GBR was ignored, the results showed similar patterns and magnitudes of stresses and deformations in the skull and eye regardless of the height of the IED from the ground, which was not the case when GBR was considered. The findings of this study suggest the critical role of GBR in ocular blast simulations.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University Boulevard, VH 390A, Birmingham, AL 35294, United States.
| | - Reza Razaghi
- Research Department, Heel of Scene Ltd., 2 Chome-12-3 Honmachi, Shibuya City, Tokyo, Japan.
| | - Christopher A Girkin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University Boulevard, VH 390A, Birmingham, AL 35294, United States.
| | - J Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University Boulevard, VH 390A, Birmingham, AL 35294, United States.
| |
Collapse
|
20
|
Sundar S, Ponnalagu A. Biomechanical Analysis of Head Subjected to Blast Waves and the Role of Combat Protective Headgear Under Blast Loading: A Review. J Biomech Eng 2021; 143:100801. [PMID: 33954580 DOI: 10.1115/1.4051047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 01/10/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) is a rising health concern of soldiers deployed in modern-day military conflicts. For bTBI, blast wave loading is a cause, and damage incurred to brain tissue is the effect. There are several proposed mechanisms for the bTBI, such as direct cranial entry, skull flexure, thoracic compression, blast-induced acceleration, and cavitation that are not mutually exclusive. So the cause-effect relationship is not straightforward. The efficiency of protective headgears against blast waves is relatively unknown as compared with other threats. Proper knowledge about standard problem space, underlying mechanisms, blast reconstruction techniques, and biomechanical models are essential for protective headgear design and evaluation. Various researchers from cross disciplines analyze bTBI from different perspectives. From the biomedical perspective, the physiological response, neuropathology, injury scales, and even the molecular level and cellular level changes incurred during injury are essential. From a combat protective gear designer perspective, the spatial and temporal variation of mechanical correlates of brain injury such as surface overpressure, acceleration, tissue-level stresses, and strains are essential. This paper outlines the key inferences from bTBI studies that are essential in the protective headgear design context.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Alagappan Ponnalagu
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
21
|
Taddei L, Bracq A, Delille R, Bourel B, Marechal C, Lauro F, Roth S. Effect of blast loading on the risk of rib fractures: a preliminary 3D numerical investigation. Forensic Sci Int 2021; 326:110930. [PMID: 34332264 DOI: 10.1016/j.forsciint.2021.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/23/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Blast is a complex phenomenon which needs to be understood, especially in a military framework, where this kind of loading can have severe consequences on the human body. Indeed, the literature lists a number of studies which try to investigate the dangerousness of such a phenomenon, both at experimental and numerical level, and the injuries that could occur when the fighters or police officers are stroke by blast wave. When focusing on primary blast effect, this paper analyses the effect of this loading on the occurrence of rib fracture, using previously developed injury risk curves.
Collapse
Affiliation(s)
- Lorenzo Taddei
- Laboratoire Interdisciplinaire Carnot de Bourgogne, site UTBM, UMR CNRS 6303/Univ. Bourgogne Franche-Comte (UBFC), Belfort, France
| | - Anthony Bracq
- Laboratory LAMIH UMR 8201 CNRS, Univ. Polytechnique Hauts-de-France, 59313 Valenciennes, France
| | - Remi Delille
- Laboratory LAMIH UMR 8201 CNRS, Univ. Polytechnique Hauts-de-France, 59313 Valenciennes, France
| | - Benjamin Bourel
- Laboratory LAMIH UMR 8201 CNRS, Univ. Polytechnique Hauts-de-France, 59313 Valenciennes, France
| | - Christophe Marechal
- Laboratory LAMIH UMR 8201 CNRS, Univ. Polytechnique Hauts-de-France, 59313 Valenciennes, France
| | - Franck Lauro
- Laboratory LAMIH UMR 8201 CNRS, Univ. Polytechnique Hauts-de-France, 59313 Valenciennes, France
| | - Sebastien Roth
- Laboratoire Interdisciplinaire Carnot de Bourgogne, site UTBM, UMR CNRS 6303/Univ. Bourgogne Franche-Comte (UBFC), Belfort, France.
| |
Collapse
|
22
|
Franceschetti L, Galante N, Del Sordo S, Casali MB, Genovese U. Forensic considerations on the two major civilian terrorist events occurred in Milan: A retrospective autopsy-based study. Forensic Sci Int 2021; 326:110929. [PMID: 34329954 DOI: 10.1016/j.forsciint.2021.110929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 02/01/2023]
Abstract
Explosion-related deaths are a disregarded topic of forensic sciences, despite the pivotal role of the forensic pathologist in such investigations. In fact, very few scientific articles have been published up to now, even if there is a considerable increase of terrorist attacks worldwide due to the use of improvised explosive devices (IEDs). In this paper, the authors show a retrospective autopsy-based study on the two major civilian terrorist events which occurred in Milan (Italy). The first one took place in a closed system, where a gelignite bomb was set inside the National Agriculture Bank in December 1969. 17 people were killed, and all of them underwent forensic autopsies, which were performed at the Milan Institute of Legal Medicine. The second event took place in an open system, where a car bomb exploded in Palestro Street in July 1993. 5 people were killed, forensic autopsies were performed as well. A total of 22 explosion-related deaths were assessed in this study. For each victim, the analysis of clothes, external and internal examinations were reported; furthermore, a statistical analysis using Fisher's exact test was carried out in order to show differences among blast injuries that occurred in a closed system versus an open system. The analysis of the autopsy reports, which included the descriptions of clothes, and the injury patterns allowed a possible reconstruction of the bodily exposure side of the victims in relation to the origin site of the explosive devices.
Collapse
Affiliation(s)
- Lorenzo Franceschetti
- Sezione di Medicina Legale e delle Assicurazioni-Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy
| | - Nicola Galante
- Sezione di Medicina Legale e delle Assicurazioni-Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy.
| | - Sara Del Sordo
- Sezione di Medicina Legale e delle Assicurazioni-Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy
| | | | - Umberto Genovese
- Dipartimento di Oncologia ed OncoEmatologia, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
23
|
Shao N, Jiang S, Younger D, Chen T, Brown M, Rao KVR, Skotak M, Gan RZ, Chandra N. Central and peripheral auditory abnormalities in chinchilla animal model of blast-injury. Hear Res 2021; 407:108273. [PMID: 34139381 DOI: 10.1016/j.heares.2021.108273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/25/2022]
Abstract
Exposure to blast overpressure or high-intensity sound can cause injuries to the auditory system, which leads to hearing loss or tinnitus. In this study, we examined the involvement of peripheral auditory system (PAS), and central auditory system (CAS) changes after exposure to blast overpressure (15-25 psi) on Day 1 and additionally during 7 days of post blast time period in chinchillas. Auditory brainstem response (ABR), distortion product otoacoustic emission (DPOAE), and cochlear hair cell changes were measured or identified in post-blast period within 7 days to detect injuries in the PAS. In the CAS, changes in NMDAR1 (excitatory receptor) and GABAA (inhibitory receptor) as well as changes in serotonin (5-HT2A) and acetylcholine (AChR) receptors were examined in different brain regions: auditory cortex (AC), geniculate body (GB), inferior colliculus (IC) and amygdala by immunofluorescence staining. We observed the PAS abnormalities of increased ABR threshold and decreased DPOAE response in animals after blast exposure with hearing protection devices (e.g., earplug). Blast exposure also caused a reduction in both NMDAR1 and GABAA receptor levels in acute condition (post-blast or Day 1) in AC and IC, while serotonin and acetylcholine receptor levels displayed a biphasic response at Day 1 and Day 7 post-exposure. Results demonstrate that the earplug can protect the tympanic membrane and middle ear against structural damage, but the hearing level, cochlear outer hair cell, and the central auditory system (levels of excitatory and inhibitory neurotransmitter receptors) were only partially protected at the tested blast overpressure level. The findings in this study indicate that blast exposure can cause both peripheral and central auditory dysfunctions, and the central auditory response is independent of peripheral auditory damage. The CAS dysfunction is likely mediated by direct transmission of shockwaves in all the regions of central nervous system (CNS), including nerves and surrounding tissues along the auditory pathways. Hence, targeting central auditory neurotransmitter abnormalities may have a therapeutic benefit to attenuate blast-induced hearing loss and tinnitus.
Collapse
Affiliation(s)
- Ningning Shao
- Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States.
| | - Shangyuan Jiang
- School of Aerospace & Mechanical Engineering, University of Oklahoma, Norman, OK, United States.
| | - Daniel Younger
- Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States.
| | - Tao Chen
- School of Aerospace & Mechanical Engineering, University of Oklahoma, Norman, OK, United States.
| | - Marcus Brown
- School of Aerospace & Mechanical Engineering, University of Oklahoma, Norman, OK, United States.
| | - Kakulavarapu V Rama Rao
- Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States.
| | - Maciej Skotak
- Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States.
| | - Rong Z Gan
- School of Aerospace & Mechanical Engineering, University of Oklahoma, Norman, OK, United States.
| | - Namas Chandra
- Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States; Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States.
| |
Collapse
|
24
|
Unnikrishnan G, Mao H, Sajja VSSS, van Albert S, Sundaramurthy A, Rubio JE, Subramaniam DR, Long J, Reifman J. Animal Orientation Affects Brain Biomechanical Responses to Blast-Wave Exposure. J Biomech Eng 2021; 143:051007. [PMID: 33493319 DOI: 10.1115/1.4049889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Indexed: 11/08/2022]
Abstract
In this study, we investigated how animal orientation within a shock tube influences the biomechanical responses of the brain and cerebral vasculature of a rat when exposed to a blast wave. Using three-dimensional finite element (FE) models, we computed the biomechanical responses when the rat was exposed to the same blast-wave overpressure (100 kPa) in a prone (P), vertical (V), or head-only (HO) orientation. We validated our model by comparing the model-predicted and the experimentally measured brain pressures at the lateral ventricle. For all three orientations, the maximum difference between the predicted and measured pressures was 11%. Animal orientation markedly influenced the predicted peak pressure at the anterior position along the midsagittal plane of the brain (P = 187 kPa; V = 119 kPa; and HO = 142 kPa). However, the relative differences in the predicted peak pressure between the orientations decreased at the medial (21%) and posterior (7%) positions. In contrast to the pressure, the peak strain in the prone orientation relative to the other orientations at the anterior, medial, and posterior positions was 40-88% lower. Similarly, at these positions, the cerebral vasculature strain in the prone orientation was lower than the strain in the other orientations. These results show that animal orientation in a shock tube influences the biomechanical responses of the brain and the cerebral vasculature of the rat, strongly suggesting that a direct comparison of changes in brain tissue observed from animals exposed at different orientations can lead to incorrect conclusions.
Collapse
Affiliation(s)
- Ginu Unnikrishnan
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD 21702; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Haojie Mao
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD 21702; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Venkata Siva Sai Sujith Sajja
- Blast Induced Neurotrauma Division, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Drive, Silver Spring, MD 20910
| | - Stephen van Albert
- Blast Induced Neurotrauma Division, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Drive, Silver Spring, MD 20910
| | - Aravind Sundaramurthy
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD 21702; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Jose E Rubio
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD 21702; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Dhananjay Radhakrishnan Subramaniam
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD 21702; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Joseph Long
- Blast Induced Neurotrauma Division, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Drive, Silver Spring, MD 20910
| | - Jaques Reifman
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD 21702
| |
Collapse
|
25
|
Sutar S, Ganpule SG. Assessment of Compression Driven Shock Tube Designs in Replicating Free-Field Blast Conditions for Traumatic Brain Injury Studies. J Neurotrauma 2021; 38:1717-1729. [PMID: 33108952 DOI: 10.1089/neu.2020.7394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Compression driven shock tubes are indispensable in studies of blast-induced traumatic brain injury (bTBI). The ability of shock tubes in faithfully recreating free-field blast conditions is of enormous interest and has a direct impact on injury outcomes. Toward this end, the evolution of blast wave inside and outside of the compression driven shock tube has been studied using validated, finite element based shock tube models. Several shock tube configurations (uniform cross-section, transition, conical, suddenly expanded, and end plate) have been considered. The finite element modeling approach has been used to simulate the transient, dynamic response of blast wave propagation. The response is studied for longer durations (40-100 msec) compared with the existing literature. We demonstrate that locations inside and outside of the shock tube can generate free-field blast profile in some form, but with numerous caveats. Our results indicate that the locations inside the shock tube are affected by higher underpressure and corresponding kinetic energy yield compared with free-field blast. These effects can be minimized using optimized end plate configuration at the exit of the shock tube, yet this is accompanied by secondary loading that is not representative of the free-field blast. Blast wave profile can be tailored using transition, conical, and suddenly expanded sections. We observe oscillations in the blast wave profile for suddenly expanded configuration. Locations outside the shock tube are affected by jet-wind effects because of the sudden expansion, barring a narrow region at the exit. For the desired overpressure yield inferred in bTBI, obtaining positive phase durations of <1 msec inside the shock tube, which are sought for studies in rodents, is challenging. Overall, these results underscore that replicating free-field blast conditions using a shock tube involves tradeoffs that need to be weighed carefully and their effect on injury outcomes should be evaluated during laboratory bTBI investigations.
Collapse
Affiliation(s)
- Sunil Sutar
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - S G Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
26
|
Alay E, Skotak M, Chandrasekeran S, Ziner J, Chandra N. Variations in Constitutive Properties of the Fluid Elicit Divergent Vibrational and Pressure Response Under Shock Wave Loading. J Biomech Eng 2021; 143:011003. [PMID: 32685978 DOI: 10.1115/1.4047841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 07/25/2024]
Abstract
We performed a characterization of the shock wave loading on the response of the specimen representing a simplified head model. A polycarbonate cylinder (2-in. outer diameter, wall thickness: 0.06 or 0.12 in.) was filled with two fluids: pure de-ionized water and 40% glycerol in water, which differ only slightly in their constitutive material properties. These two fluids were selected to represent the cerebrospinal fluid and cerebral blood, using their high strain rate viscosity as a primary selection criterion. The model specimen was exposed to a single shock wave with two nominal intensities: 70 and 130 kPa overpressure. The response of the model was measured using three strain gauges and three pressure sensors, one mounted on the front face of the cylinder and two embedded in the cylinder to measure the pressure inside of the fluid. We noted several discriminant characteristics in the collected data, which indicate that the type of fluid is strongly influencing the response. The vibrations of the cylinder walls are strongly correlated with the fluid kind. The similarity analysis via the Pearson coefficient indicated that the pressure waveforms in the fluid are only moderately correlated, and these results were further corroborated by Euclidean distance analysis. Continuous wavelet transform of pressure waveforms revealed that the frequency response is strongly correlated with the properties of the fluid. The observed differences in strain and pressure modalities stem from relatively small differences in the properties of the fluids used in this study.
Collapse
Affiliation(s)
- Eren Alay
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982
| | - Maciej Skotak
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982
| | | | - Jonathan Ziner
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982
| | - Namas Chandra
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982
| |
Collapse
|
27
|
Rubio JE, Skotak M, Alay E, Sundaramurthy A, Subramaniam DR, Kote VB, Yeoh S, Monson K, Chandra N, Unnikrishnan G, Reifman J. Does Blast Exposure to the Torso Cause a Blood Surge to the Brain? Front Bioeng Biotechnol 2020; 8:573647. [PMID: 33392161 PMCID: PMC7773947 DOI: 10.3389/fbioe.2020.573647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/16/2020] [Indexed: 02/04/2023] Open
Abstract
The interaction of explosion-induced blast waves with the torso is suspected to contribute to brain injury. In this indirect mechanism, the wave-torso interaction is assumed to generate a blood surge, which ultimately reaches and damages the brain. However, this hypothesis has not been comprehensively and systematically investigated, and the potential role, if any, of the indirect mechanism in causing brain injury remains unclear. In this interdisciplinary study, we performed experiments and developed mathematical models to address this knowledge gap. First, we conducted blast-wave exposures of Sprague-Dawley rats in a shock tube at incident overpressures of 70 and 130 kPa, where we measured carotid-artery and brain pressures while limiting exposure to the torso. Then, we developed three-dimensional (3-D) fluid-structure interaction (FSI) models of the neck and cerebral vasculature and, using the measured carotid-artery pressures, performed simulations to predict mass flow rates and wall shear stresses in the cerebral vasculature. Finally, we developed a 3-D finite element (FE) model of the brain and used the FSI-computed vasculature pressures to drive the FE model to quantify the blast-exposure effects in the brain tissue. The measurements from the torso-only exposure experiments revealed marginal increases in the peak carotid-artery overpressures (from 13.1 to 28.9 kPa). Yet, relative to the blast-free, normotensive condition, the FSI simulations for the blast exposures predicted increases in the peak mass flow rate of up to 255% at the base of the brain and increases in the wall shear stress of up to 289% on the cerebral vasculature. In contrast, our simulations suggest that the effect of the indirect mechanism on the brain-tissue-strain response is negligible (<1%). In summary, our analyses show that the indirect mechanism causes a sudden and abundant stream of blood to rapidly propagate from the torso through the neck to the cerebral vasculature. This blood surge causes a considerable increase in the wall shear stresses in the brain vasculature network, which may lead to functional and structural effects on the cerebral veins and arteries, ultimately leading to vascular pathology. In contrast, our findings do not support the notion of strain-induced brain-tissue damage due to the indirect mechanism.
Collapse
Affiliation(s)
- Jose E Rubio
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Maciej Skotak
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States.,Blast Induced Neurotrauma Division, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Eren Alay
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Aravind Sundaramurthy
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Dhananjay Radhakrishnan Subramaniam
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Vivek Bhaskar Kote
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Stewart Yeoh
- Department of Biomedical Engineering, College of Engineering, The University of Utah, Salt Lake City, UT, United States
| | - Kenneth Monson
- Department of Biomedical Engineering, College of Engineering, The University of Utah, Salt Lake City, UT, United States.,Department of Mechanical Engineering, College of Engineering, The University of Utah, Salt Lake City, UT, United States
| | - Namas Chandra
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Ginu Unnikrishnan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States
| |
Collapse
|
28
|
Aravind A, Ravula AR, Chandra N, Pfister BJ. Behavioral Deficits in Animal Models of Blast Traumatic Brain Injury. Front Neurol 2020; 11:990. [PMID: 33013653 PMCID: PMC7500138 DOI: 10.3389/fneur.2020.00990] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/29/2020] [Indexed: 01/30/2023] Open
Abstract
Blast exposure has been identified to be the most common cause for traumatic brain injury (TBI) in soldiers. Over the years, rodent models to mimic blast exposures and the behavioral outcomes observed in veterans have been developed extensively. However, blast tube design and varying experimental parameters lead to inconsistencies in the behavioral outcomes reported across research laboratories. This review aims to curate the behavioral outcomes reported in rodent models of blast TBI using shockwave tubes or open field detonations between the years 2008–2019 and highlight the important experimental parameters that affect behavioral outcome. Further, we discuss the role of various design parameters of the blast tube that can affect the nature of blast exposure experienced by the rodents. Finally, we assess the most common behavioral tests done to measure cognitive, motor, anxiety, auditory, and fear conditioning deficits in blast TBI (bTBI) and discuss the advantages and disadvantages of these tests.
Collapse
Affiliation(s)
- Aswati Aravind
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Arun Reddy Ravula
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Namas Chandra
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Bryan J Pfister
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
29
|
Abdul-Wahab R, Long MT, Ordaz R, Lyeth BG, Pfister BJ. Outcome measures from experimental traumatic brain injury in male rats vary with the complete temporal biomechanical profile of the injury event. J Neurosci Res 2020; 98:2027-2044. [PMID: 32741029 DOI: 10.1002/jnr.24670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 11/05/2022]
Abstract
Millions suffer a traumatic brain injury (TBI) each year wherein the outcomes associated with injury can vary greatly between individuals. This study postulates that variations in each biomechanical parameter of a head trauma lead to differences in histological and behavioral outcome measures that should be considered collectively in assessing injury. While trauma severity typically scales with the magnitude of injury, much less is known about the effects of rate and duration of the mechanical insult. In this study, a newly developed voice-coil fluid percussion injury system was used to investigate the effects of injury rate and fluid percussion impulse on a collection of post-injury outcomes in male rats. Collectively the data suggest a potential shift in the specificity and progression of neuronal injury and function rather than a general scaling of injury severity. While a faster, shorter fluid percussion first presents as a mild TBI, neuronal loss and some behavioral tasks were similar among the slower and faster fluid percussion injuries. This study concludes that the sequelae of neuronal degeneration and behavioral outcomes are related to the complete temporal profile of the fluid percussion and do not scale only with peak pressure.
Collapse
Affiliation(s)
- Radia Abdul-Wahab
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA.,Department of Neurological Surgery, University of California, Davis, CA, USA
| | - Mathew T Long
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Rafael Ordaz
- Department of Neurological Surgery, University of California, Davis, CA, USA
| | - Bruce G Lyeth
- Department of Neurological Surgery, University of California, Davis, CA, USA
| | - Bryan J Pfister
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
30
|
Aravind A, Kosty J, Chandra N, Pfister BJ. Blast exposure predisposes the brain to increased neurological deficits in a model of blast plus blunt traumatic brain injury. Exp Neurol 2020; 332:113378. [PMID: 32553593 DOI: 10.1016/j.expneurol.2020.113378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/20/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
Soldiers are often exposed to more than one traumatic brain injury (TBI) over the course of their service. In recent years, more attention has been drawn to the increased risk of neurological deficits caused by the 'blast plus' polytrauma, which typically is a blast trauma combined with other forms of TBI. In this study, we investigated the behavioral and neuronal deficits resulting from a blast plus injury involving a mild-moderate blast followed by a mild blunt trauma using the fluid percussion injury model. We identified that the blast injury predisposed the brain to increased cognitive deficits, chronic ventricular enlargement, increased neurodegeneration at acute time points and chronic neuronal loss. Interestingly, a single blast and single blunt injury differed in their onset and manifestation of cognitive and regional neuronal loss. We also identified the presence of cleaved RIP1 from caspase 8 mediated apoptosis in the blunt injury while the blast injury did not activate immediate apoptosis but led to decreased hilar neuronal survival over time.
Collapse
Affiliation(s)
- Aswati Aravind
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr M.L.K. Jr. Blvd, Newark, NJ 07102, USA
| | - Julianna Kosty
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr M.L.K. Jr. Blvd, Newark, NJ 07102, USA
| | - Namas Chandra
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr M.L.K. Jr. Blvd, Newark, NJ 07102, USA
| | - Bryan J Pfister
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr M.L.K. Jr. Blvd, Newark, NJ 07102, USA.
| |
Collapse
|
31
|
Logsdon AF, Schindler AG, Meabon JS, Yagi M, Herbert MJ, Banks WA, Raskind MA, Marshall DA, Keene CD, Perl DP, Peskind ER, Cook DG. Nitric oxide synthase mediates cerebellar dysfunction in mice exposed to repetitive blast-induced mild traumatic brain injury. Sci Rep 2020; 10:9420. [PMID: 32523011 PMCID: PMC7287110 DOI: 10.1038/s41598-020-66113-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/16/2020] [Indexed: 02/02/2023] Open
Abstract
We investigated the role of nitric oxide synthase (NOS) in mediating blood-brain barrier (BBB) disruption and peripheral immune cell infiltration in the cerebellum following blast exposure. Repetitive, but not single blast exposure, induced delayed-onset BBB disruption (72 hours post-blast) in cerebellum. The NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) administered after blast blocked BBB disruption and prevented CD4+ T-cell infiltration into cerebellum. L-NAME also blocked blast-induced increases in intercellular adhesion molecule-1 (ICAM-1), a molecule that plays a critical role in regulating blood-to-brain immune cell trafficking. Blocking NOS-mediated BBB dysfunction during this acute/subacute post-blast interval (24-71 hours after the last blast) also prevented sensorimotor impairment on a rotarod task 30 days later, long after L-NAME cleared the body. In postmortem brains from Veterans/military Servicemembers with blast-related TBI, we found marked Purkinje cell dendritic arbor structural abnormalities, which were comparable to neuropathologic findings in the blast-exposed mice. Taken collectively, these results indicate that blast provokes delayed-onset of NOS-dependent pathogenic cascades that can later emerge as behavioral dysfunction. These results also further implicate the cerebellum as a brain region vulnerable to blast-induced mTBI.
Collapse
Affiliation(s)
- Aric F. Logsdon
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Abigail G. Schindler
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - James S. Meabon
- 0000 0004 0420 6540grid.413919.7VA Northwest Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Mayumi Yagi
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA
| | - Melanie J. Herbert
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA
| | - William A. Banks
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Murray A. Raskind
- 0000 0004 0420 6540grid.413919.7VA Northwest Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Desiree A. Marshall
- 0000000122986657grid.34477.33Department of Pathology, University of Washington, Seattle, WA 98195 USA
| | - C. Dirk Keene
- 0000000122986657grid.34477.33Department of Pathology, University of Washington, Seattle, WA 98195 USA
| | - Daniel P. Perl
- 0000 0001 0421 5525grid.265436.0Department of Pathology, Center for Neuroscience and Regenerative Medicine, School of Medicine, Uniformed Services University, Bethesda, MD 20814 USA
| | - Elaine R. Peskind
- 0000 0004 0420 6540grid.413919.7VA Northwest Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - David G. Cook
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| |
Collapse
|
32
|
The evolution of secondary flow phenomena and their effect on primary shock conditions in shock tubes: Experimentation and numerical model. PLoS One 2020; 15:e0227125. [PMID: 31945083 PMCID: PMC6964877 DOI: 10.1371/journal.pone.0227125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/12/2019] [Indexed: 01/28/2023] Open
Abstract
Compressed gas-driven shock tubes are widely used for laboratory simulation of primary blasts by accurately replicating pressure profiles measured in live-fire explosions. These investigations require sound characterization of the primary blast wave, including the temporal and spatial evolution of the static and dynamic components of the blast wave. The goal of this work is to characterize the propagation of shock waves in and around the exit of a shock tube via analysis of the primary shock flow, including shock wave propagation and decay of the shock front, and secondary flow phenomena. To this end, a nine-inch shock tube and a cylindrical sensing apparatus were used to determine incident and total pressures outside of the shock tube, highlighting the presence of additional flow phenomena. Blast overpressure, impulse, shock wave arrival times, positive phase duration, and shock wave planarity were examined using a finite element model of the system. The shock wave remained planar inside of the shock tube and lost its planarity upon exiting. The peak overpressure and pressure impulse decayed rapidly upon exit from the shock tube, reducing by 92–95%. The primary flow phenomenon, or the planar shock front, is observed within the shock tube, while two distinct flow phenomena are a result of the shock wave exiting the confines of the shock tube. A vortex ring is formed as the shock wave exited the shock tube into the still, ambient air, which induces a large increase in the total pressure impulse. Additionally, a rarefaction wave was formed following shock front expansion, which traveled upstream into the shock tube, reducing the total and incident pressure impulses for approximately half of the simulated region.
Collapse
|
33
|
Sutar S, Ganpule S. Investigation of wave propagation through head layers with focus on understanding blast wave transmission. Biomech Model Mechanobiol 2019; 19:875-892. [PMID: 31745681 DOI: 10.1007/s10237-019-01256-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/06/2019] [Indexed: 11/25/2022]
Abstract
Blast-induced traumatic brain injury (bTBI) is a critical health concern. This issue is being addressed in terms of identifying a cause-effect relationship between the mechanical insult in the form of a blast and resulting injury to the brain. Understanding wave propagation through the head is an important aspect in this regard. The objective of this work was to study the blast wave propagation through the layered architecture of the head with an emphasis on understanding the wave transmission mechanism. Toward this end, one-dimensional (1D) finite element head model is built for a simplified surrogate, human, and rat. Motivated from experimental investigations, four different head layer configurations have been considered. These configurations are: (A) Skull-Brain, (B) Skin-Skull-Brain, (C) Skin-Skull-Dura-Arachnoid-CSF-Pia-Brain, (D) Skin-Skull-Dura-Arachnoid-AT-Pia-Brain. The validated head model is subjected to flattop and Friedlander loading implied in the blast, and the resulting response is evaluated in terms of brain pressures. Our results suggest that wave propagation through head parenchyma plays an important role in blast wave transmission. The thickness, material properties of head layers, and rise time of an input pulse govern the temporal evolution of pressure in the brain. The key findings of this work are: (a) Skin and meninges amplify the applied input pressure, whereas air sinus has an attenuation effect. (b) Model is able to describe experimentally recorded peak pressures and rise times in the brain, including variations within the aforementioned experimental head models of TBI. This reinforces that the wave transmission is an important loading pathway to the brain. (c) Equivalent layer theory for modeling meningeal layers as a single layer has been proposed, and it gives reasonable agreement with each meningeal layer modeled explicitly. This modeling approach has a great utility in 3D head models. The potential applications of 1D head model in evaluation of new helmet materials, brain sensor calibration, and brain pressure estimation for a given explosive strength have also been demonstrated. Overall, these results provide important insights into the understanding of mechanics of blast wave transmission in the head.
Collapse
Affiliation(s)
- Sunil Sutar
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - S Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
34
|
Heyburn L, Abutarboush R, Goodrich S, Urioste R, Batuure A, Statz J, Wilder D, Ahlers ST, Long JB, Sajja VSSS. Repeated Low-Level Blast Overpressure Leads to Endovascular Disruption and Alterations in TDP-43 and Piezo2 in a Rat Model of Blast TBI. Front Neurol 2019; 10:766. [PMID: 31417481 PMCID: PMC6682625 DOI: 10.3389/fneur.2019.00766] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/01/2019] [Indexed: 11/29/2022] Open
Abstract
Recent evidence linking repeated low-level blast overpressure exposure in operational and training environments with neurocognitive decline, neuroinflammation, and neurodegenerative processes has prompted concern over the cumulative deleterious effects of repeated blast exposure on the brains of service members. Repetitive exposure to low-level primary blast may cause symptoms (subclinical) similar to those seen in mild traumatic brain injury (TBI), with progressive vascular and cellular changes, which could contribute to neurodegeneration. At the cellular level, the mechanical force associated with blast exposure can cause cellular perturbations in the brain, leading to secondary injury. To examine the cumulative effects of repetitive blast on the brain, an advanced blast simulator (ABS) was used to closely mimic “free-field” blast. Rats were exposed to 1–4 daily blasts (one blast per day, separated by 24 h) at 13, 16, or 19 psi peak incident pressures with a positive duration of 4–5 ms, either in a transverse or longitudinal orientation. Blood-brain barrier (BBB) markers (vascular endothelial growth factor (VEGF), occludin, and claudin-5), transactive response DNA binding protein (TDP-43), and the mechanosensitive channel Piezo2 were measured following blast exposure. Changes in expression of VEGF, occludin, and claudin-5 after repeated blast exposure indicate alterations in the BBB, which has been shown to be disrupted following TBI. TDP-43 is very tightly regulated in the brain and altered expression of TDP-43 is found in clinically-diagnosed TBI patients. TDP-43 levels were differentially affected by the number and magnitude of blast exposures, decreasing after 2 exposures, but increasing following a greater number of exposures at various intensities. Lastly, Piezo2 has been shown to be dysregulated following blast exposure and was here observed to increase after multiple blasts of moderate magnitude, indicating that blast may cause a change in sensitivity to mechanical stimuli in the brain and may contribute to cellular injury. These findings reveal that cumulative effects of repeated exposures to blast can lead to pathophysiological changes in the brain, demonstrating a possible link between blast injury and neurodegenerative disease, which is an important first step in understanding how to prevent these diseases in soldiers exposed to blast.
Collapse
Affiliation(s)
- Lanier Heyburn
- Walter Reed Army Institute of Research, Blast Induced Neurotrauma Branch, Silver Spring, MD, United States
| | - Rania Abutarboush
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Samantha Goodrich
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Rodrigo Urioste
- Walter Reed Army Institute of Research, Blast Induced Neurotrauma Branch, Silver Spring, MD, United States
| | - Andrew Batuure
- Walter Reed Army Institute of Research, Blast Induced Neurotrauma Branch, Silver Spring, MD, United States
| | - Jonathan Statz
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Donna Wilder
- Walter Reed Army Institute of Research, Blast Induced Neurotrauma Branch, Silver Spring, MD, United States
| | - Stephen T Ahlers
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, MD, United States
| | - Joseph B Long
- Walter Reed Army Institute of Research, Blast Induced Neurotrauma Branch, Silver Spring, MD, United States
| | | |
Collapse
|
35
|
Tong J, Kedar S, Ghate D, Gu L. Indirect Traumatic Optic Neuropathy Induced by Primary Blast: A Fluid–Structure Interaction Study. J Biomech Eng 2019; 141:2733245. [DOI: 10.1115/1.4043668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Indexed: 11/08/2022]
Abstract
Current knowledge of traumatic ocular injury is still limited as most studies have focused on the ocular injuries that happened at the anterior part of the eye, whereas the damage to the optic nerve known as traumatic optic neuropathy (TON) is poorly understood. The goal of this study is to understand the mechanism of the TON following the primary blast through a fluid–structure interaction model. An axisymmetric three-dimensional (3D) eye model with detailed orbital components was developed to capture the dynamics of the eye under the blast wave. Our numerical results demonstrated a transient pressure elevation in both vitreous and cerebrospinal fluid (CSF). A high strain rate over 100 s−1 was observed throughout the optic nerve during the blast with the most vulnerable part located at the intracanalicular region. The optic nerve deforming at such a high strain rate may account for the axonal damage and vision loss in patients subjected to the primary blast. The results from this work would enhance the understanding of indirect TON and provide guidance in the design of protective eyewear against such injury.
Collapse
Affiliation(s)
- Junfei Tong
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 e-mail:
| | - Sachin Kedar
- Stanley Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68105-1119; Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198-8440
| | - Deepta Ghate
- Stanley Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68105-1119
| | - Linxia Gu
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0656
| |
Collapse
|
36
|
Dual-laser measurement and finite element modeling of human tympanic membrane motion under blast exposure. Hear Res 2019; 378:43-52. [DOI: 10.1016/j.heares.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 11/23/2022]
|
37
|
Swietek B, Skotak M, Chandra N, Pfister BJ. Characterization of a controlled shock wave delivered by a pneumatic table-top gas driven shock tube. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:075116. [PMID: 31370428 DOI: 10.1063/1.5099633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
Blast simulators facilitate the creation of shock waves and measurement of pressure morphology in a controlled laboratory setting and are currently a vital model for replicating blast-induced neurotrauma. Due to the maintenance and operation cost of conventional blast simulators, we developed a pneumatic, table-top, gas-driven shock tube to test an alternative method of shock wave generation using a membrane-less driver section. Its unique operational mechanism based on air gun technology does not rely on a plastic membrane rupture for the generation of pressure pulses, allowing the simulator to be quickly reset and thus decreasing the experimental turnaround time. The focus of this study is to demonstrate that this proof-of-concept device can generate shock waves with diverse characteristics based on the selection of driver gas, driver pressurization, and driven section material. Pressure waves were generated using compressed nitrogen or helium at 15 psig and 80 psig and were analyzed based on their velocity and profile shape characteristics. At 15 psig, independent of the type of driver gas, driver pressurization, and driven section material, pressure pulses travelled at sonic velocities. At 80 psig, generation of shock waves was observed in all conditions. The choice of the driver gas affected the velocities of the resulting pressure waves and the shape of pressure waveforms, particularly the peak overpressure and rise time values. Our results demonstrate that depending on the selection of driver gas and magnitude of driver pressurization, the shock wave signatures can be controlled and altered using a piston-based driver section.
Collapse
Affiliation(s)
- Bogumila Swietek
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Fenster Hall, Newark, New Jersey 07103, USA
| | - Maciej Skotak
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Fenster Hall, Newark, New Jersey 07103, USA
| | - Namas Chandra
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Fenster Hall, Newark, New Jersey 07103, USA
| | - Bryan J Pfister
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Fenster Hall, Newark, New Jersey 07103, USA
| |
Collapse
|
38
|
Unnikrishnan G, Mao H, Sundaramurthy A, Bell ED, Yeoh S, Monson K, Reifman J. A 3-D Rat Brain Model for Blast-Wave Exposure: Effects of Brain Vasculature and Material Properties. Ann Biomed Eng 2019; 47:2033-2044. [PMID: 31054004 PMCID: PMC6757019 DOI: 10.1007/s10439-019-02277-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/23/2019] [Indexed: 11/30/2022]
Abstract
Exposure to blast waves is suspected to cause primary traumatic brain injury. However, existing finite-element (FE) models of the rat head lack the necessary fidelity to characterize the biomechanical responses in the brain due to blast exposure. They neglect to represent the cerebral vasculature, which increases brain stiffness, and lack the appropriate brain material properties characteristic of high strain rates observed in blast exposures. To address these limitations, we developed a high-fidelity three-dimensional FE model of a rat head. We explicitly represented the rat’s cerebral vasculature and used high-strain-rate material properties of the rat brain. For a range of blast overpressures (100 to 230 kPa) the brain-pressure predictions matched experimental results and largely overlapped with and tracked the incident pressure–time profile. Incorporating the vasculature decreased the average peak strain in the cerebrum, cerebellum, and brainstem by 17, 33, and 18%, respectively. When compared with our model based on rat-brain properties, the use of human-brain properties in the FE model led to a three-fold reduction in the strain predictions. For simulations of blast exposure in rats, our findings suggest that representing cerebral vasculature and species-specific brain properties has a considerable influence in the resulting brain strain but not the pressure predictions.
Collapse
Affiliation(s)
- Ginu Unnikrishnan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, MCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Haojie Mao
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, MCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Aravind Sundaramurthy
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, MCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - E David Bell
- Department of Bioengineering, The University of Utah, 36 S. Wasatch Drive, Salt Lake City, UT, 84112, USA
| | - Stewart Yeoh
- Department of Bioengineering, The University of Utah, 36 S. Wasatch Drive, Salt Lake City, UT, 84112, USA
| | - Kenneth Monson
- Department of Bioengineering, The University of Utah, 36 S. Wasatch Drive, Salt Lake City, UT, 84112, USA
- Department of Mechanical Engineering, The University of Utah, 1495 E 100 S (1550 MEK), Salt Lake City, UT, 84112, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, MCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702, USA.
| |
Collapse
|
39
|
Finan JD. Biomechanical simulation of traumatic brain injury in the rat. Clin Biomech (Bristol, Avon) 2019; 64:114-121. [PMID: 29449041 PMCID: PMC6068009 DOI: 10.1016/j.clinbiomech.2018.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/08/2017] [Accepted: 01/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traumatic brain injury poses an enormous clinical challenge. Rats are the animals most widely used in pre-clinical experiments. Biomechanical simulations of these experiments predict the distribution of mechanical stress and strain across key tissues. It is in theory possible to dramatically increase our understanding of traumatic brain injury pathophysiology by correlating stress and strain with histological and functional injury outcomes. This review summarizes the state of the art in biomechanical simulation of traumatic brain injury in the rat. It also places this body of knowledge in the context of the wider effort to understand traumatic brain injury in rats and in humans. METHODS Peer-reviewed research articles on biomechanical simulation of traumatic brain injury in the rat were reviewed and summarized. FINDINGS When mathematical models of traumatic brain injury in the rat first emerged, they relied on scant data regarding biomechanical properties. The data on relevant biomechanical properties has increased recently. However, experimental models of traumatic brain injury in the rat have also become less homogeneous. New and modified models have emerged that are biomechanically distinct from traditional models. INTERPRETATION Important progress in mathematical modeling and measurement of biomechanical properties has led to credible, predictive simulations of traditional, experimental models of traumatic brain injury in the rat, such as controlled cortical impact. However, recent trends such as the increasing popularity of closed head models and blast models create new biomechanical challenges. Investigators studying rat brain biomechanics must continue to innovate to keep pace with these developments.
Collapse
|
40
|
Ma X, Aravind A, Pfister BJ, Chandra N, Haorah J. Animal Models of Traumatic Brain Injury and Assessment of Injury Severity. Mol Neurobiol 2019; 56:5332-5345. [DOI: 10.1007/s12035-018-1454-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
|
41
|
Townsend MT, Alay E, Skotak M, Chandra N. Effect of Tissue Material Properties in Blast Loading: Coupled Experimentation and Finite Element Simulation. Ann Biomed Eng 2018; 47:2019-2032. [PMID: 30523466 DOI: 10.1007/s10439-018-02178-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/28/2018] [Indexed: 01/26/2023]
Abstract
Computational models of blast-induced traumatic brain injury (bTBI) require a robust definition of the material models of the brain. The mechanical constitutive models of these tissues are difficult to characterize, leading to a wide range of values reported in literature. Therefore, the sensitivity of the intracranial pressure (ICP) and maximum principal strain to variations in the material model of the brain was investigated through a combined computational and experimental approach. A finite element model of a rat was created to simulate a shock wave exposure, guided by the experimental measurements of rats subjected to shock loading conditions corresponding to that of mild traumatic brain injury in a field-validated shock tube. In the numerical model, the properties of the brain were parametrically varied. A comparison of the ICP measured at two locations revealed that experimental and simulated ICP were higher in the cerebellum (p < 0.0001), highlighting the significance of pressure sensor locations within the cranium. The ICP and strain were correlated with the long-term bulk (p < 0.0001) and shear moduli (p < 0.0001), with an 80 MPa effective bulk modulus value matching best with experimental measurements. In bTBI, the solution is sensitive to the brain material model, necessitating robust validation methods.
Collapse
Affiliation(s)
- Molly T Townsend
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, USA
| | - Eren Alay
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, USA
| | - Maciej Skotak
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, USA
| | - Namas Chandra
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, USA.
| |
Collapse
|
42
|
Transient disruption of mouse home cage activities and assessment of orexin immunoreactivity following concussive- or blast-induced brain injury. Brain Res 2018; 1700:138-151. [DOI: 10.1016/j.brainres.2018.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 11/21/2022]
|
43
|
Sandlin DS, Yu Y, Huang J, Zhang C, Arteaga AA, Lippincott JK, Peeden EO, Guyton RR, Chen L, Beneke LL, Allison JC, Zhu H, Zhou W. Autonomic responses to blast overpressure can be elicited by exclusively exposing the ear in rats. J Otol 2018; 13:44-53. [PMID: 30559764 PMCID: PMC6291641 DOI: 10.1016/j.joto.2018.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 11/29/2022] Open
Abstract
Blast overpressure has become an increasing cause of brain injuries in both military and civilian populations. Though blast's direct effects on the cochlea and vestibular organs are active areas of study, little attention has been given to the ear's contribution to the overall spectrum of blast injury. Acute autonomic responses to blast exposure, including bradycardia and hypotension, can cause hypoxia and contribute to blast-induced neurotrauma. Existing literature suggests that these autonomic responses are elicited through blast impacting the thorax and lungs. We hypothesize that the unprotected ear also provides a vulnerable locus for blast to cause autonomic responses. We designed a blast generator that delivers controlled overpressure waves into the ear canal without impacting surrounding tissues in order to study the ear's specific contribution to blast injury. Anesthetized adult rats' left ears were exposed to a single blast wave ranging from 0 to 110 PSI (0-758 kPa). Blast exposed rats exhibited decreased heart rates and blood pressures with increased blast intensity, similar to results gathered using shock tubes and whole-body exposure in the literature. While rats exposed to blasts below 50 PSI (345 kPa) exhibited increased respiratory rate with increased blast intensity, some rats exposed to blasts higher than 50 PSI (345 kPa) stopped breathing immediately and ultimately died. These autonomic responses were significantly reduced in vagally denervated rats, again similar to whole-body exposure literature. These results support the hypothesis that the unprotected ear contributes to the autonomic responses to blast.
Collapse
Affiliation(s)
- David S. Sandlin
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yue Yu
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jun Huang
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Chunming Zhang
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Otolaryngology, First Affiliated Hospital, Shanxi Medical University, 85 Jiefang S Rd, Yingze Qu, Taiyuan Shi, Shanxi Sheng, China
| | - Alberto A. Arteaga
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - John K. Lippincott
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Erin O.H. Peeden
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ryan R. Guyton
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lan Chen
- Summer Undergraduate Research Experience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Laura L.S. Beneke
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jerome C. Allison
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hong Zhu
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Wu Zhou
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
44
|
Song H, Cui J, Simonyi A, Johnson CE, Hubler GK, DePalma RG, Gu Z. Linking blast physics to biological outcomes in mild traumatic brain injury: Narrative review and preliminary report of an open-field blast model. Behav Brain Res 2018; 340:147-158. [DOI: 10.1016/j.bbr.2016.08.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/13/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022]
|
45
|
Skotak M, Alay E, Chandra N. On the Accurate Determination of Shock Wave Time-Pressure Profile in the Experimental Models of Blast-Induced Neurotrauma. Front Neurol 2018; 9:52. [PMID: 29467718 PMCID: PMC5808170 DOI: 10.3389/fneur.2018.00052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 01/19/2018] [Indexed: 01/04/2023] Open
Abstract
Measurement issues leading to the acquisition of artifact-free shock wave pressure-time profiles are discussed. We address the importance of in-house sensor calibration and data acquisition sampling rate. Sensor calibration takes into account possible differences between calibration methodology in a manufacturing facility, and those used in the specific laboratory. We found in-house calibration factors of brand new sensors differ by less than 10% from their manufacturer supplied data. Larger differences were noticeable for sensors that have been used for hundreds of experiments and were as high as 30% for sensors close to the end of their useful lifetime. These observations were despite the fact that typical overpressures in our experiments do not exceed 50 psi for sensors that are rated at 1,000 psi maximum pressure. We demonstrate that sampling rate of 1,000 kHz is necessary to capture the correct rise time values, but there were no statistically significant differences between peak overpressure and impulse values for low-intensity shock waves (Mach number <2) at lower rates. We discuss two sources of experimental errors originating from mechanical vibration and electromagnetic interference on the quality of a waveform recorded using state-of-the-art high-frequency pressure sensors. The implementation of preventive measures, pressure acquisition artifacts, and data interpretation with examples, are provided in this paper that will help the community at large to avoid these mistakes. In order to facilitate inter-laboratory data comparison, common reporting standards should be developed by the blast TBI research community. We noticed the majority of published literature on the subject limits reporting to peak overpressure; with much less attention directed toward other important parameters, i.e., duration, impulse, and dynamic pressure. These parameters should be included as a mandatory requirement in publications so the results can be properly compared with others.
Collapse
Affiliation(s)
- Maciej Skotak
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Eren Alay
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Namas Chandra
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
46
|
Chandel S, Gupta SK, Medhi B. Epileptogenesis following experimentally induced traumatic brain injury - a systematic review. Rev Neurosci 2018; 27:329-46. [PMID: 26581067 DOI: 10.1515/revneuro-2015-0050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is a complex neurotrauma in civilian life and the battlefield with a broad spectrum of symptoms, long-term neuropsychological disability, as well as mortality worldwide. Posttraumatic epilepsy (PTE) is a common outcome of TBI with unknown mechanisms, followed by posttraumatic epileptogenesis. There are numerous rodent models of TBI available with varying pathomechanisms of head injury similar to human TBI, but there is no evidence for an adequate TBI model that can properly mimic all aspects of clinical TBI and the first successive spontaneous focal seizures follow a single episode of neurotrauma with respect to epileptogenesis. This review aims to provide current information regarding the various experimental animal models of TBI relevant to clinical TBI. Mossy fiber sprouting, loss of dentate hilar neurons along with recurrent seizures, and epileptic discharge similar to human PTE have been studied in fluid percussion injury, weight-drop injury, and cortical impact models, but further refinement of animal models and functional test is warranted to better understand the underlying pathophysiology of posttraumatic epileptogenesis. A multifaceted research approach in TBI model may lead to exploration of the potential treatment measures, which are a major challenge to the research community and drug developers. With respect to clinical setting, proper patient data collection, improved clinical trials with advancement in drug delivery strategies, blood-brain barrier permeability, and proper monitoring of level and effects of target drug are also important.
Collapse
|
47
|
Neuberger EJ, Gupta A, Subramanian D, Korgaonkar AA, Santhakumar V. Converging early responses to brain injury pave the road to epileptogenesis. J Neurosci Res 2017; 97:1335-1344. [PMID: 29193309 DOI: 10.1002/jnr.24202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022]
Abstract
Epilepsy, characterized by recurrent seizures and abnormal electrical activity in the brain, is one of the most prevalent brain disorders. Over two million people in the United States have been diagnosed with epilepsy and 3% of the general population will be diagnosed with it at some point in their lives. While most developmental epilepsies occur due to genetic predisposition, a class of "acquired" epilepsies results from a variety of brain insults. A leading etiological factor for epilepsy that is currently on the rise is traumatic brain injury (TBI), which accounts for up to 20% of all symptomatic epilepsies. Remarkably, the presence of an identified early insult that constitutes a risk for development of epilepsy provides a therapeutic window in which the pathological processes associated with brain injury can be manipulated to limit the subsequent development of recurrent seizure activity and epilepsy. Recent studies have revealed diverse pathologies, including enhanced excitability, activated immune signaling, cell death, and enhanced neurogenesis within a week after injury, suggesting a period of heightened adaptive and maladaptive plasticity. An integrated understanding of these processes and their cellular and molecular underpinnings could lead to novel targets to arrest epileptogenesis after trauma. This review attempts to highlight and relate the diverse early changes after trauma and their role in development of epilepsy and suggests potential strategies to limit neurological complications in the injured brain.
Collapse
Affiliation(s)
- Eric J Neuberger
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Akshay Gupta
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Deepak Subramanian
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Akshata A Korgaonkar
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
48
|
Ng LJ, Volman V, Gibbons MM, Phohomsiri P, Cui J, Swenson DJ, Stuhmiller JH. A Mechanistic End-to-End Concussion Model That Translates Head Kinematics to Neurologic Injury. Front Neurol 2017; 8:269. [PMID: 28663736 PMCID: PMC5471336 DOI: 10.3389/fneur.2017.00269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 05/26/2017] [Indexed: 11/13/2022] Open
Abstract
Past concussion studies have focused on understanding the injury processes occurring on discrete length scales (e.g., tissue-level stresses and strains, cell-level stresses and strains, or injury-induced cellular pathology). A comprehensive approach that connects all length scales and relates measurable macroscopic parameters to neurological outcomes is the first step toward rationally unraveling the complexity of this multi-scale system, for better guidance of future research. This paper describes the development of the first quantitative end-to-end (E2E) multi-scale model that links gross head motion to neurological injury by integrating fundamental elements of tissue and cellular mechanical response with axonal dysfunction. The model quantifies axonal stretch (i.e., tension) injury in the corpus callosum, with axonal functionality parameterized in terms of axonal signaling. An internal injury correlate is obtained by calculating a neurological injury measure (the average reduction in the axonal signal amplitude) over the corpus callosum. By using a neurologically based quantity rather than externally measured head kinematics, the E2E model is able to unify concussion data across a range of exposure conditions and species with greater sensitivity and specificity than correlates based on external measures. In addition, this model quantitatively links injury of the corpus callosum to observed specific neurobehavioral outcomes that reflect clinical measures of mild traumatic brain injury. This comprehensive modeling framework provides a basis for the systematic improvement and expansion of this mechanistic-based understanding, including widening the range of neurological injury estimation, improving concussion risk correlates, guiding the design of protective equipment, and setting safety standards.
Collapse
Affiliation(s)
- Laurel J Ng
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| | - Vladislav Volman
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| | - Melissa M Gibbons
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| | - Pi Phohomsiri
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| | - Jianxia Cui
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| | - Darrell J Swenson
- Cardiac Rhythm and Heart Failure Numerical Modeling, Medtronic, Mounds View, MN, United States
| | - James H Stuhmiller
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| |
Collapse
|
49
|
Hua Y, Wang Y, Gu L. Primary blast waves induced brain dynamics influenced by head orientations. Biomed Eng Lett 2017; 7:253-259. [PMID: 30603173 DOI: 10.1007/s13534-017-0027-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/12/2017] [Accepted: 04/01/2017] [Indexed: 10/19/2022] Open
Abstract
There is controversy regarding the directional dependence of head responses subjected to blast loading. The goal of this work is to characterize the role of head orientation in the mechanics of blast wave-head interactions as well as the load transmitting to the brain. A three-dimensional human head model with anatomical details was reconstructed from computed tomography images. Three different head orientations with respect to the oncoming blast wave, i.e., front-on with head facing blast, back-on with head facing away from blast, and side-on with right side exposed to blast, were considered. The reflected pressure at the blast wave-head interface positively correlated with the skull curvature. It is evidenced by the maximum reflected pressure occurring at the eye socket with the largest curvature on the skull. The reflected pressure pattern along with the local skull areas could further influence the intracranial pressure distributions within the brain. We did find out that the maximum coup pressure of 1.031 MPa in the side-on case as well as the maximum contrecoup pressure of -0.124 MPa in the back-on case. Moreover, the maximum principal strain (MPS) was also monitored due to its indication to diffuse brain injury. It was observed that the peak MPS located in the frontal cortex region regardless of the head orientation. However, the local peak MPS within each individual function region of the brain depended on the head orientation. The detailed interactions between blast wave and head orientations provided insights for evaluating the brain dynamics, as well as biomechanical factors leading to traumatic brain injury.
Collapse
Affiliation(s)
- Yi Hua
- 1Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 USA
| | - Yugang Wang
- 2China JiLiang University, Hangzhou, 310018 Zhejiang China
| | - Linxia Gu
- 1Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 USA.,Nebraska Center for Materials and Nanoscience, Lincoln, NE 68588-0656 USA
| |
Collapse
|
50
|
Kawoos U, Gu M, Lankasky J, McCarron RM, Chavko M. Effects of Exposure to Blast Overpressure on Intracranial Pressure and Blood-Brain Barrier Permeability in a Rat Model. PLoS One 2016; 11:e0167510. [PMID: 27907158 PMCID: PMC5132256 DOI: 10.1371/journal.pone.0167510] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022] Open
Abstract
Exposure to blast overpressure (BOP) activates a cascade of pathological processes including changes in intracranial pressure (ICP) and blood-brain barrier (BBB) permeability resulting in traumatic brain injury (TBI). In this study the effect of single and multiple exposures at two intensities of BOP on changes in ICP and BBB permeability in Sprague-Dawley rats was evaluated. Animals were exposed to a single or three repetitive (separated by 0.5 h) BOPs at 72 kPa or 110 kPa. ICP was monitored continuously via telemetry for 6 days after exposure to BOP. The alteration in the permeability of BBB was determined by extravasation of Evans Blue (EB) into brain parenchyma. A significant increase in ICP was observed in all groups except the single 72 kPa BOP group. At the same time a marked increase in BBB permeability was also seen in various parts of the brain. The extent of ICP increase as well as BBB permeability change was dependent on intensity and frequency of blast.
Collapse
Affiliation(s)
- Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Ming Gu
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Jason Lankasky
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Richard M McCarron
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, MD, United States of America
- Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, United States of America
| | - Mikulas Chavko
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, MD, United States of America
| |
Collapse
|