1
|
Weaver C, Xiao L, Wen Q, Wu YC, Harezlak J. Biclustering Multivariate Longitudinal Data with Application to Recovery Trajectories of White Matter After Sport-Related Concussion. DATA SCIENCE IN SCIENCE 2024; 3:2376535. [PMID: 39398101 PMCID: PMC11466369 DOI: 10.1080/26941899.2024.2376535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/22/2024] [Accepted: 07/01/2024] [Indexed: 10/15/2024]
Abstract
Biclustering is the task of simultaneously clustering the samples and features of a data set. In doing so, subsets of samples that exhibit similar behaviors across subsets of features can be identified. Motivated by a longitudinal diffusion tensor imaging study of sport-related concussion (SRC), we present the problem of biclustering multivariate longitudinal data in which subjects and features are grouped simultaneously based on longitudinal patterns rather than magnitude. We propose a penalized regression based method for solving this problem by exploiting the heterogeneity in the longitudinal patterns within subjects and features. We evaluate the performance of the proposed methods via a simulation study and apply them to the motivating dataset, revealing distinctive patterns of white-matter abnormalities within subgroups of SRC cases.
Collapse
Affiliation(s)
- Caleb Weaver
- Department of Statistics, North Carolina State University
| | - Luo Xiao
- Department of Statistics, North Carolina State University
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University Bloomington
- Department of Mathematics, University of Wrocław, Poland
| |
Collapse
|
2
|
Di Ieva A. Computational Fractal-Based Analysis of MR Susceptibility-Weighted Imaging (SWI) in Neuro-Oncology and Neurotraumatology. ADVANCES IN NEUROBIOLOGY 2024; 36:445-468. [PMID: 38468047 DOI: 10.1007/978-3-031-47606-8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique able to depict the magnetic susceptibility produced by different substances, such as deoxyhemoglobin, calcium, and iron. The main application of SWI in clinical neuroimaging is detecting microbleedings and venous vasculature. Quantitative analyses of SWI have been developed over the last few years, aimed to offer new parameters, which could be used as neuroimaging biomarkers. Each technique has shown pros and cons, but no gold standard exists yet. The fractal dimension (FD) has been investigated as a novel potential objective parameter for monitoring intratumoral space-filling properties of SWI patterns. We showed that SWI patterns found in different tumors or different glioma grades can be represented by a gradient in the fractal dimension, thereby enabling each tumor to be assigned a specific SWI fingerprint. Such results were especially relevant in the differentiation of low-grade versus high-grade gliomas, as well as from high-grade gliomas versus lymphomas.Therefore, FD has been suggested as a potential image biomarker to analyze intrinsic neoplastic architecture in order to improve the differential diagnosis within clinical neuroimaging, determine appropriate therapy, and improve outcome in patients.These promising preliminary findings could be extended into the field of neurotraumatology, by means of the application of computational fractal-based analysis for the qualitative and quantitative imaging of microbleedings in traumatic brain injury patients. In consideration of some evidences showing that SWI signals are correlated with trauma clinical severity, FD might offer some objective prognostic biomarkers.In conclusion, fractal-based morphometrics of SWI could be further investigated to be used in a complementary way with other techniques, in order to form a holistic understanding of the temporal evolution of brain tumors and follow-up response to treatment, with several further applications in other fields, such as neurotraumatology and cerebrovascular neurosurgery as well.
Collapse
Affiliation(s)
- Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab & Macquarie Neurosurgery, Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Asturias A, Knoblauch T, Rodriguez A, Vanier C, Le Tohic C, Barrett B, Eisenberg M, Gibbert R, Zimmerman L, Parikh S, Nguyen A, Azad S, Germin L, Fazzini E, Snyder T. Diffusion in the corpus callosum predicts persistence of clinical symptoms after mild traumatic brain injury, a multi-scanner study. FRONTIERS IN NEUROIMAGING 2023; 2:1153115. [PMID: 38025312 PMCID: PMC10654678 DOI: 10.3389/fnimg.2023.1153115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/23/2023] [Indexed: 12/01/2023]
Abstract
Background Mild traumatic brain injuries (mTBIs) comprise 80% of all TBI, but conventional MRI techniques are often insensitive to the subtle changes and injuries produced in a concussion. Diffusion tensor imaging (DTI) is one of the most sensitive MRI techniques for mTBI studies with outcome and symptom associations described. The corpus callosum (CC) is one of the most studied fiber tracts in TBI and mTBI, but the comprehensive post-mTBI symptom relationship has not fully been explored. Methods This is a retrospective observational study of how quantitative DTI data of the CC and its sub-regions may relate to clinical presentation of symptoms and timing of resolution of symptoms in patients diagnosed with uncomplicated mTBI. DTI and clinical data were obtained retrospectively from 446 (mean age 42 years, range 13-82) civilian patients. From patient medical charts, presentation of the following common post-concussive symptoms was noted: headache, balance issues, cognitive deficits, fatigue, anxiety, depression, and emotional lability. Also recorded was the time between injury and a visit to the physician when improvement or resolution of a particular symptom was reported. FA values from the total CC and 3 subregions of the CC (genu or anterior, mid body, and splenium or posterior) were obtained from hand tracing on the Olea Sphere v3.0 SP12 free-standing workstation. DTI data was obtained from 8 different 3T MRI scanners and harmonized via ComBat harmonization. The statistical models used to explore the association between regional Fractional Anisotropy (FA) values and symptom presentation and time to symptom resolution were logistic regression and interval-censored semi-parametric Cox proportional hazard models, respectively. Subgroups related to age and timing of first scan were also analyzed. Results Patients with the highest FA in the total CC (p = 0.01), anterior CC (p < 0.01), and mid-body CC (p = 0.03), but not the posterior CC (p = 0.91) recovered faster from post-concussive cognitive deficits. Patients with the highest FA in the posterior CC recovered faster from depression (p = 0.04) and emotional lability (p = 0.01). There was no evidence that FA in the CC or any of its sub-regions was associated with symptom presentation or with time to resolution of headache, balance issues, fatigue, or anxiety. Patients with mTBI under 40 had higher FA in the CC and the anterior and mid-body subregions (but not the posterior subregion: p = 1.00) compared to patients 40 or over (p ≤ 0.01). There was no evidence for differences in symptom presentation based on loss of consciousness (LOC) or sex (p ≥ 0.18). Conclusion This study suggests that FA of the CC has diagnostic and prognostic value for clinical assessment of mTBI in a large diverse civilian population, particularly in patients with cognitive symptoms.
Collapse
Affiliation(s)
- Alexander Asturias
- Imgen Research Group, Las Vegas, NV, United States
- Touro University Nevada, Henderson, NV, United States
| | - Thomas Knoblauch
- Imgen Research Group, Las Vegas, NV, United States
- Touro University Nevada, Henderson, NV, United States
- School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Alan Rodriguez
- Imgen Research Group, Las Vegas, NV, United States
- Touro University Nevada, Henderson, NV, United States
| | - Cheryl Vanier
- Imgen Research Group, Las Vegas, NV, United States
- Touro University Nevada, Henderson, NV, United States
| | - Caroline Le Tohic
- Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV, United States
| | - Brandon Barrett
- Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV, United States
| | - Matthew Eisenberg
- Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV, United States
| | | | - Lennon Zimmerman
- Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV, United States
| | | | - Anh Nguyen
- Touro University Nevada, Henderson, NV, United States
| | - Sherwin Azad
- MountainView Hospital, HCA Healthcare, Las Vegas, NV, United States
| | - Leo Germin
- Clinical Neurology Specialists, Las Vegas, NV, United States
| | | | - Travis Snyder
- Imgen Research Group, Las Vegas, NV, United States
- Touro University Nevada, Henderson, NV, United States
- MountainView Hospital, HCA Healthcare, Las Vegas, NV, United States
- SimonMed Imaging, Scottsdale, AZ, United States
| |
Collapse
|
4
|
Moro F, Lisi I, Tolomeo D, Vegliante G, Pascente R, Mazzone E, Hussain R, Micotti E, Dallmeier J, Pischiutta F, Bianchi E, Chiesa R, Wang KK, Zanier ER. Acute Blood Levels of Neurofilament Light Indicate One-Year White Matter Pathology and Functional Impairment in Repetitive Mild Traumatic Brain Injured Mice. J Neurotrauma 2023. [PMID: 36576018 DOI: 10.1089/neu.2022.0252] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mild traumatic brain injury (mTBI) mostly causes transient symptoms, but repeated (r)mTBI can lead to neurodegenerative processes. Diagnostic tools to evaluate the presence of ongoing occult neuropathology are lacking. In a mouse model of rmTBI, we investigated MRI and plasma biomarkers of brain damage before chronic functional impairment arose. Anesthetized adult male and female C57BL/6J mice were subjected to rmTBI or a sham procedure. Sensorimotor deficits were evaluated up to 12 months post-injury in SNAP and Neuroscore tests. Cognitive function was assessed in the novel object recognition test at six and 12 months. Diffusion tensor imaging (DTI) and structural magnetic resonance imaging (MRI) were performed at six and 12 months to examine white matter and structural damage. Plasma levels of neurofilament light (NfL) were assessed longitudinally up to 12 months. Brain histopathology was performed at 12 months. Independent groups of mice were used to examine the effects of 2-, 7- and 14-days inter-injury intervals on acute plasma NfL levels and on hyperactivity. Twelve months after an acute transient impairment, sensorimotor functions declined again in rmTBI mice (p < 0.001 vs sham), but not earlier. Similarly, rmTBI mice showed memory impairment at 12 (p < 0.01 vs sham) but not at 6 months. White matter damage examined by DTI was evident in rmTBI mice at both six and 12 months (p < 0.001 vs sham). This was associated with callosal atrophy (p < 0.001 vs sham) evaluated by structural MRI. Plasma NfL at one week was elevated in rmTBI (p < 0.001 vs sham), and its level correlated with callosal atrophy at 12 months (Pearson r = 0.72, p < 0.01). Histopathology showed thinning of the corpus callosum and marked astrogliosis in rmTBI mice. The NfL levels were higher in mice subjected to short (2 days) compared with longer (7 and 14 days) inter-injury intervals (p < 0.05), and this correlated with hyperactivity in mice (Pearson r = 0.50; p < 0.05). These findings show that rmTBI causes white matter pathology detectable by MRI before chronic functional impairment. Early quantification of plasma NfL correlates with the degree of white matter atrophy one year after rmTBI and can serve to monitor the brain's susceptibility to a second mTBI, supporting its potential clinical application to guide the return to practice in sport-related TBI.
Collapse
Affiliation(s)
- Federico Moro
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Lisi
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Daniele Tolomeo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gloria Vegliante
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Rosaria Pascente
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Edoardo Mazzone
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Riaz Hussain
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Edoardo Micotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Julian Dallmeier
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Francesca Pischiutta
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa Bianchi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Roberto Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Kevin K Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, USA.,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Elisa R Zanier
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
5
|
Diffusion-Weighted Imaging in Mild Traumatic Brain Injury: A Systematic Review of the Literature. Neuropsychol Rev 2023; 33:42-121. [PMID: 33721207 DOI: 10.1007/s11065-021-09485-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
There is evidence that diffusion-weighted imaging (DWI) is able to detect tissue alterations following mild traumatic brain injury (mTBI) that may not be observed on conventional neuroimaging; however, findings are often inconsistent between studies. This systematic review assesses patterns of differences in DWI metrics between those with and without a history of mTBI. A PubMed literature search was performed using relevant indexing terms for articles published prior to May 14, 2020. Findings were limited to human studies using DWI in mTBI. Articles were excluded if they were not full-length, did not contain original data, if they were case studies, pertained to military populations, had inadequate injury severity classification, or did not report post-injury interval. Findings were reported independently for four subgroups: acute/subacute pediatric mTBI, acute/subacute adult mTBI, chronic adult mTBI, and sport-related concussion, and all DWI acquisition and analysis methods used were included. Patterns of findings between studies were reported, along with strengths and weaknesses of the current state of the literature. Although heterogeneity of sample characteristics and study methods limited the consistency of findings, alterations in DWI metrics were most commonly reported in the corpus callosum, corona radiata, internal capsule, and long association pathways. Many acute/subacute pediatric studies reported higher FA and lower ADC or MD in various regions. In contrast, acute/subacute adult studies most commonly indicate lower FA within the context of higher MD and RD. In the chronic phase of recovery, FA may remain low, possibly indicating overall demyelination or Wallerian degeneration over time. Longitudinal studies, though limited, generally indicate at least a partial normalization of DWI metrics over time, which is often associated with functional improvement. We conclude that DWI is able to detect structural mTBI-related abnormalities that may persist over time, although future DWI research will benefit from larger samples, improved data analysis methods, standardized reporting, and increasing transparency.
Collapse
|
6
|
Stenberg J, Skandsen T, Gøran Moen K, Vik A, Eikenes L, Håberg AK. Diffusion Tensor and Kurtosis Imaging Findings the First Year following Mild Traumatic Brain Injury. J Neurotrauma 2023; 40:457-471. [PMID: 36305387 PMCID: PMC9986024 DOI: 10.1089/neu.2022.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite enormous research interest in diffusion tensor imaging and diffusion kurtosis imaging (DTI; DKI) following mild traumatic brain injury (MTBI), it remains unknown how diffusion in white matter evolves post-injury and relates to acute MTBI characteristics. This prospective cohort study aimed to characterize diffusion changes in white matter the first year after MTBI. Patients with MTBI (n = 193) and matched controls (n = 83) underwent 3T magnetic resonance imaging (MRI) within 72 h and 3- and 12-months post-injury. Diffusion data were analyzed in three steps: 1) voxel-wise comparisons between the MTBI and control group were performed with tract-based spatial statistics at each time-point; 2) clusters of significant voxels identified in step 1 above were evaluated longitudinally with mixed-effect models; 3) the MTBI group was divided into: (A) complicated (with macrostructural findings on MRI) and uncomplicated MTBI; (B) long (1-24 h) and short (< 1 h) post-traumatic amnesia (PTA); and (C) other and no other concurrent injuries to investigate if findings in step 1 were driven mainly by aberrant diffusion in patients with a more severe injury. At 72 h, voxel-wise comparisons revealed significantly lower fractional anisotropy (FA) in one tract and significantly lower mean kurtosis (Kmean) in 11 tracts in the MTBI compared with control group. At 3 months, the MTBI group had significantly higher mean diffusivity in eight tracts compared with controls. At 12 months, FA was significantly lower in four tracts and Kmean in 10 tracts in patients with MTBI compared with controls. There was considerable overlap in affected tracts across time, including the corpus callosum, corona radiata, internal and external capsule, and cerebellar peduncles. Longitudinal analyses revealed that the diffusion metrics remained relatively stable throughout the first year after MTBI. The significant group*time interactions identified were driven by changes in the control rather than the MTBI group. Further, differences identified in step 1 did not result from greater diffusion abnormalities in patients with complicated MTBI, long PTA, or other concurrent injuries, as standardized mean differences in diffusion metrics between the groups were small (0.07 ± 0.11) and non-significant. However, follow-up voxel-wise analyses revealed that other concurrent injuries had effects on diffusion metrics, but predominantly in other metrics and at other time-points than the effects observed in the MTBI versus control group analysis. In conclusion, patients with MTBI differed from controls in white matter integrity already 72 h after injury. Diffusion metrics remained relatively stable throughout the first year after MTBI and were not driven by deviating diffusion in patients with a more severe MTBI.
Collapse
Affiliation(s)
- Jonas Stenberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Toril Skandsen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kent Gøran Moen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Radiology, Vestre Viken Hospital Trust, Drammen Hospital, Drammen, Norway.,Department of Radiology, Nord-Trøndelag Hospital Trust, Levanger Hospital, Levanger, Norway
| | - Anne Vik
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
7
|
Irimia A, Ngo V, Chaudhari NN, Zhang F, Joshi SH, Penkova AN, O'Donnell LJ, Sheikh-Bahaei N, Zheng X, Chui HC. White matter degradation near cerebral microbleeds is associated with cognitive change after mild traumatic brain injury. Neurobiol Aging 2022; 120:68-80. [PMID: 36116396 PMCID: PMC9759713 DOI: 10.1016/j.neurobiolaging.2022.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/28/2022]
Abstract
To explore how cerebral microbleeds (CMBs) accompanying mild traumatic brain injury (mTBI) reflect white matter (WM) degradation and cognitive decline, magnetic resonance images were acquired from 62 mTBI adults (imaged ∼7 days and ∼6 months post-injury) and 203 matched healthy controls. On average, mTBI participants had a count of 2.7 ± 2.6 traumatic CMBs in WM, located 6.1 ± 4.4 mm from cortex. At ∼6-month follow-up, 97% of CMBs were associated with significant reductions (34% ± 11%, q < 0.05) in the fractional anisotropy of WM streamlines within ∼1 cm of CMB locations. Male sex and older age were significant risk factors for larger reductions (q < 0.05). For CMBs in the corpus callosum, cingulum bundle, inferior and middle longitudinal fasciculi, fractional anisotropy changes were significantly and positively associated with changes in cognitive functions mediated by these structures (q < 0.05). Our findings distinguish traumatic from non-traumatic CMBs by virtue of surrounding WM alterations and challenge the assumption that traumatic CMBs are neurocognitively silent. Thus, mTBI with CMB findings can be described as a clinical endophenotype warranting longitudinal cognitive assessment.
Collapse
Affiliation(s)
- Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Van Ngo
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Nikhil N Chaudhari
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Fan Zhang
- Laboratory of Mathematics in Imaging, Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shantanu H Joshi
- Ahmanson Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Anita N Penkova
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Lauren J O'Donnell
- Laboratory of Mathematics in Imaging, Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nasim Sheikh-Bahaei
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaoyu Zheng
- Department of Materials Science & Engineering, University of California, Berkeley, CA, USA
| | - Helena C Chui
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Lopez DA, Christensen ZP, Foxe JJ, Ziemer LR, Nicklas PR, Freedman EG. Association between mild traumatic brain injury, brain structure, and mental health outcomes in the Adolescent Brain Cognitive Development Study. Neuroimage 2022; 263:119626. [PMID: 36103956 DOI: 10.1016/j.neuroimage.2022.119626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Children that experience a mild traumatic brain injury (mTBI) are at an increased risk of neural alterations that can deteriorate mental health. We test the hypothesis that mTBI is associated with psychopathology and that structural brain metrics (e.g., volume, area) meaningfully mediate the relation in an adolescent population. METHODS We analyzed behavioral and brain MRI data from 11,876 children who participated in the Adolescent Brain Cognitive Development (ABCD) Study. Mixed-effects models were used to examine the longitudinal association between mTBI and mental health outcomes. Bayesian methods were used to investigate brain regions that are intermediate between mTBI and symptoms of poor mental health. RESULTS There were 199 children with mTBI and 527 with possible mTBI across the three ABCD Study visits. There was a 7% (IRR = 1.07, 95% CI: 1.01, 1.13) and 15% (IRR = 1.16, 95% CI: 1.05, 1.26) increased risk of emotional or behavioral problems in children that experienced possible mTBI or mTBI, respectively. Possible mTBI was associated with a 17% (IRR: 1.17, 95% CI: 0.99, 1.40) increased risk of experiencing distress following a psychotic-like experience. We did not find any brain regions that meaningfully mediated the relationship between mTBI and mental health outcomes. Analysis of volumetric measures found that approximately 2% to 5% of the total effect of mTBI on mental health outcomes operated through total cortical volume. Image intensity measure analyses determined that approximately 2% to 5% of the total effect was mediated through the left-hemisphere of the dorsolateral prefrontal cortex. CONCLUSION Results indicate an increased risk of emotional and behavioral problems in children that experienced possible mTBI or mTBI. Mediation analyses did not elucidate the mechanisms underlying the association between mTBI and mental health outcomes.
Collapse
Affiliation(s)
- Daniel A Lopez
- Department of Neuroscience, The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Public Health Sciences, Division of Epidemiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Zachary P Christensen
- Department of Neuroscience, The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - John J Foxe
- Department of Neuroscience, The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Laura R Ziemer
- Department of Neuroscience, The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Paige R Nicklas
- Department of Neuroscience, The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Edward G Freedman
- Department of Neuroscience, The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
9
|
Liu Y, Lu L, Li F, Chen YC. Neuropathological Mechanisms of Mild Traumatic Brain Injury: A Perspective From Multimodal Magnetic Resonance Imaging. Front Neurosci 2022; 16:923662. [PMID: 35784844 PMCID: PMC9247389 DOI: 10.3389/fnins.2022.923662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/30/2022] [Indexed: 01/20/2023] Open
Abstract
Mild traumatic brain injury (mTBI) accounts for more than 80% of the total number of TBI cases. The mechanism of injury for patients with mTBI has a variety of neuropathological processes. However, the underlying neurophysiological mechanism of the mTBI is unclear, which affects the early diagnosis, treatment decision-making, and prognosis evaluation. More and more multimodal magnetic resonance imaging (MRI) techniques have been applied for the diagnosis of mTBI, such as functional magnetic resonance imaging (fMRI), arterial spin labeling (ASL) perfusion imaging, susceptibility-weighted imaging (SWI), and diffusion MRI (dMRI). Various imaging techniques require to be used in combination with neuroimaging examinations for patients with mTBI. The understanding of the neuropathological mechanism of mTBI has been improved based on different angles. In this review, we have summarized the application of these aforementioned multimodal MRI techniques in mTBI and evaluated its benefits and drawbacks.
Collapse
|
10
|
Juan SMA, Daglas M, Adlard P. Tau pathology, metal dyshomeostasis and repetitive mild traumatic brain injury: an unexplored link paving the way for neurodegeneration. J Neurotrauma 2022; 39:902-922. [PMID: 35293225 DOI: 10.1089/neu.2021.0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI), commonly experienced by athletes and military personnel, causes changes in multiple intracellular pathways, one of which involves the tau protein. Tau phosphorylation plays a role in several neurodegenerative conditions including chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disorder linked to repeated head trauma. There is now mounting evidence suggesting that tau phosphorylation may be regulated by metal ions (such as iron, zinc and copper), which themselves are implicated in ageing and neurodegenerative disorders such as Alzheimer's disease (AD). Recent work has also shown that a single TBI can result in age-dependent and region-specific modulation of metal ions. As such, this review explores the link between TBI, CTE, ageing and neurodegeneration with a specific focus on the involvement of (and interaction between) tau pathology and metal dyshomeostasis. The authors highlight that metal dyshomeostasis has yet to be investigated in the context of repeat head trauma or CTE. Given the evidence that metal dyshomeostasis contributes to the onset and/or progression of neurodegeneration, and that CTE itself is a neurodegenerative condition, this brings to light an uncharted link that should be explored. The development of adequate models of r-mTBI and/or CTE will be crucial in deepening our understanding of the pathological mechanisms that drive the clinical manifestations in these conditions and also in the development of effective therapeutics targeted towards slowing progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Sydney M A Juan
- The Florey Institute of Neuroscience and Mental Health, 56369, 30 Royal Parade, Parkville, Melbourne, Victoria, Australia, 3052;
| | - Maria Daglas
- The Florey Institute of Neuroscience and Mental Health, 56369, Parkville, Victoria, Australia;
| | - Paul Adlard
- Florey Institute of Neuroscience and Mental Health, 56369, Parkville, Victoria, Australia;
| |
Collapse
|
11
|
Li MJ, Huang SH, Huang CX, Liu J. Morphometric changes in the cortex following acute mild traumatic brain injury. Neural Regen Res 2022; 17:587-593. [PMID: 34380898 PMCID: PMC8504398 DOI: 10.4103/1673-5374.320995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Morphometric changes in cortical thickness (CT), cortical surface area (CSA), and cortical volume (CV) can reflect pathological changes after acute mild traumatic brain injury (mTBI). Most previous studies focused on changes in CT, CSA, and CV in subacute or chronic mTBI, and few studies have examined changes in CT, CSA, and CV in acute mTBI. Furthermore, acute mTBI patients typically show transient cognitive impairment, and few studies have reported on the relationship between cerebral morphological changes and cognitive function in patients with mTBI. This prospective cohort study included 30 patients with acute mTBI (15 males, 15 females, mean age 33.7 years) and 27 matched healthy controls (12 males, 15 females, mean age 37.7 years) who were recruited from the Second Xiangya Hospital of Central South University between September and December 2019. High-resolution T1-weighted images were acquired within 7 days after the onset of mTBI. The results of analyses using FreeSurfer software revealed significantly increased CSA and CV in the right lateral occipital gyrus of acute-stage mTBI patients compared with healthy controls, but no significant changes in CT. The acute-stage mTBI patients also showed reduced executive function and processing speed indicated by a lower score in the Digital Symbol Substitution Test, and reduced cognitive ability indicated by a longer time to complete the Trail Making Test-B. Both increased CSA and CV in the right lateral occipital gyrus were negatively correlated with performance in the Trail Making Test part A. These findings suggest that cognitive deficits and cortical alterations in CSA and CV can be detected in the acute stage of mTBI, and that increased CSA and CV in the right lateral occipital gyrus may be a compensatory mechanism for cognitive dysfunction in acute-stage mTBI patients. This study was approved by the Ethics Committee of the Second Xiangya Hospital of Central South University, China (approval No. 086) on February 9, 2019.
Collapse
Affiliation(s)
- Meng-Jun Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Si-Hong Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Chu-Xin Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
12
|
Kim E, Yoo RE, Seong MY, Oh BM. A systematic review and data synthesis of longitudinal changes in white matter integrity after mild traumatic brain injury assessed by diffusion tensor imaging in adults. Eur J Radiol 2021; 147:110117. [PMID: 34973540 DOI: 10.1016/j.ejrad.2021.110117] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 01/16/2023]
Abstract
PURPOSE This study aimed to review diffusion tensor imaging studies of mild traumatic brain injury (mTBI) in adults with longitudinal acquisition of data and investigate the variability of findings in association with related factors, such as the time post-injury. METHODS Eligible studies from PubMed and EMBASE were searched to identify relevant studies for review. Of the 540 studies, 23 observational studies without intervention and with the following characteristics were included: original research in which adults with mTBI were examined, diffusion tensor imaging was acquired at least twice, white matter integrity was investigated by estimating diffusion metrics, and mode of injury was not restricted to sport- or blast-related mTBI. RESULTS Baseline scans were acquired within 3 weeks post-injury, followed by longitudinal scans within 3 months and at 12 months post-injury. During the acute/subacute period, mixed results (increase, decrease, or no significant change) of fractional anisotropy (FA) were observed compared to those in controls. Some studies reported increased FA during the acute/subacute period compared to controls, followed by normalization of FA. Decreased FA was also reported during the acute/subacute period, which lasted long into the chronic phase. In the acute phase, the mean diffusivity (MD) was greater than that in the controls. Compared to the early phase of injury, MD was reduced in the follow-up phase in most studies in the mTBI group. Insignificant differences in FA and MD have been reported in several studies. Such variability limits the clinical usefulness of diffusion tensor metrics. CONCLUSIONS There was a high variability in reported changes in white matter integrity. Decreased FA not only in acute/subacute but also in long-term period after injury may indicate long-term neurodegenerative processes after mTBI. Nevertheless, longitudinal changes in MD towards normalization suggest possible recovery. Long-term cohort studies with research initiatives should be considered to elucidate brain changes after mTBI.
Collapse
Affiliation(s)
- Eunkyung Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Roh-Eul Yoo
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min Yong Seong
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; National Traffic Injury Rehabilitation Hospital, Yangpyeong, Republic of Korea.
| |
Collapse
|
13
|
Yeh FC, Irimia A, Bastos DCDA, Golby AJ. Tractography methods and findings in brain tumors and traumatic brain injury. Neuroimage 2021; 245:118651. [PMID: 34673247 PMCID: PMC8859988 DOI: 10.1016/j.neuroimage.2021.118651] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
White matter fiber tracking using diffusion magnetic resonance imaging (dMRI) provides a noninvasive approach to map brain connections, but improving anatomical accuracy has been a significant challenge since the birth of tractography methods. Utilizing tractography in brain studies therefore requires understanding of its technical limitations to avoid shortcomings and pitfalls. This review explores tractography limitations and how different white matter pathways pose different challenges to fiber tracking methodologies. We summarize the pros and cons of commonly-used methods, aiming to inform how tractography and its related analysis may lead to questionable results. Extending these experiences, we review the clinical utilization of tractography in patients with brain tumors and traumatic brain injury, starting from tensor-based tractography to more advanced methods. We discuss current limitations and highlight novel approaches in the context of these two conditions to inform future tractography developments.
Collapse
Affiliation(s)
- Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA; Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | | | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Ogino Y, Bernas T, Greer JE, Povlishock JT. Axonal injury following mild traumatic brain injury is exacerbated by repetitive insult and is linked to the delayed attenuation of NeuN expression without concomitant neuronal death in the mouse. Brain Pathol 2021; 32:e13034. [PMID: 34729854 PMCID: PMC8877729 DOI: 10.1111/bpa.13034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/06/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
Mild traumatic brain injury (mTBI) affects brain structure and function and can lead to persistent abnormalities. Repetitive mTBI exacerbates the acute phase response to injury. Nonetheless, its long‐term implications remain poorly understood, particularly in the context of traumatic axonal injury (TAI), a player in TBI morbidity via axonal disconnection, synaptic loss and retrograde neuronal perturbation. In contrast to the examination of these processes in the acute phase of injury, the chronic‐phase burden of TAI and/or its implications for retrograde neuronal perturbation or death have received little consideration. To critically assess this issue, murine neocortical tissue was investigated at acute (24‐h postinjury, 24hpi) and chronic time points (28‐days postinjury, 28dpi) after singular or repetitive mTBI induced by central fluid percussion injury (cFPI). Neurons were immunofluorescently labeled for NeuroTrace and NeuN (all neurons), p‐c‐Jun (axotomized neurons) and DRAQ5 (cell nuclei), imaged in 3D and quantified in automated manner. Single mTBI produced axotomy in 10% of neurons at 24hpi and the percentage increased after repetitive injury. The fraction of p‐c‐Jun+ neurons decreased at 28dpi but without neuronal loss (NeuroTrace), suggesting their reorganization and/or repair following TAI. In contrast, NeuN+ neurons decreased with repetitive injury at 24hpi while the corresponding fraction of NeuroTrace+ neurons decreased over 28dpi. Attenuated NeuN expression was linked exclusively to non‐axotomized neurons at 24hpi which extended to the axotomized at 28dpi, revealing a delayed response of the axotomized neurons. Collectively, we demonstrate an increased burden of TAI after repetitive mTBI, which is most striking in the acute phase response to the injury. Our finding of widespread axotomy in large fields of intact neurons contradicts the notion that repetitive mTBI elicits progressive neuronal death, rather, emphasizing the importance of axotomy‐mediated change.
Collapse
Affiliation(s)
- Yasuaki Ogino
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Tytus Bernas
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - John E Greer
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Department of Surgery, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
15
|
Környei BS, Szabó V, Perlaki G, Balogh B, Szabó Steigerwald DK, Nagy SA, Tóth L, Büki A, Dóczi T, Bogner P, Schwarcz A, Tóth A. Cerebral Microbleeds May Be Less Detectable by Susceptibility Weighted Imaging MRI From 24 to 72 Hours After Traumatic Brain Injury. Front Neurosci 2021; 15:711074. [PMID: 34658762 PMCID: PMC8514822 DOI: 10.3389/fnins.2021.711074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/12/2021] [Indexed: 01/26/2023] Open
Abstract
Purpose: A former rodent study showed that cerebral traumatic microbleeds (TMBs) may temporarily become invisible shortly after injury when detected by susceptibility weighted imaging (SWI). The present study aims to validate this phenomenon in human SWI. Methods: In this retrospective study, 46 traumatic brain injury (TBI) patients in various forms of severity were included and willingly complied with our strict selection criteria. Clinical parameters potentially affecting TMB count, Rotterdam and Marshall CT score, Mayo Clinic Classification, contusion number, and total volume were registered. The precise time between trauma and MRI [5 h 19 min to 141 h 54 min, including SWI and fluid-attenuated inversion recovery (FLAIR)] was individually recorded; TMB and FLAIR lesion counts were assessed. Four groups were created based on elapsed time between the trauma and MRI: 0–24, 24–48, 48–72, and >72 h. Kruskal–Wallis, ANOVA, Chi-square, and Fisher’s exact tests were used to reveal differences among the groups within clinical and imaging parameters; statistical power was calculated retrospectively for each comparison. Results: The Kruskal–Wallis ANOVA with Conover post hoc analysis showed significant (p = 0.01; 1−β > 0.9) median TMB number differences in the subacute period: 0–24 h = 4.00 (n = 11); 24–48 h = 1 (n = 14); 48–72 h = 1 (n = 11); and 72 h ≤ 7.5 (n = 10). Neither clinical parameters nor FLAIR lesions depicted significant differences among the groups. Conclusion: Our results demonstrate that TMBs on SWI MRI may temporarily become less detectable at 24–72 h following TBI.
Collapse
Affiliation(s)
- Bálint S Környei
- Department of Medical Imaging, Medical School, University of Pécs, Pécs, Hungary
| | - Viktor Szabó
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Perlaki
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pécs Diagnostic Center, Pécs, Hungary
| | - Bendegúz Balogh
- Department of Medical Imaging, Medical School, University of Pécs, Pécs, Hungary
| | | | - Szilvia A Nagy
- MTA-PTE Clinical Neuroscience MR Research Group, Pécs Diagnostic Center, Pécs, Hungary.,Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Luca Tóth
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - András Büki
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Dóczi
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Bogner
- Department of Medical Imaging, Medical School, University of Pécs, Pécs, Hungary
| | - Attila Schwarcz
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Arnold Tóth
- Department of Medical Imaging, Medical School, University of Pécs, Pécs, Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| |
Collapse
|
16
|
Ross DE, Seabaugh JD, Seabaugh JM, Plumley J, Ha J, Burton JA, Vandervaart A, Mischel R, Blount A, Seabaugh D, Shepherd K, Barcelona J, Ochs AL. Patients with chronic mild or moderate traumatic brain injury have abnormal longitudinal brain volume enlargement more than atrophy. JOURNAL OF CONCUSSION 2021. [DOI: 10.1177/20597002211018049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction Many studies have found brain atrophy in patients with traumatic brain injury (TBI), but most of those studies examined patients with moderate or severe TBI. A few recent studies in patients with chronic mild or moderate TBI found abnormally large brain volume. Some of these studies used NeuroQuant®, FDA-cleared software for measuring MRI brain volume. It is not known if the abnormal enlargement occurs before or after injury. The purpose of the current study was to test the hypothesis that it occurs after injury. Methods 55 patients with chronic mild or moderate TBI were compared to NeuroQuant® normal controls ( n > 4000) with respect to MRI brain volume change from before injury (time 0 [t0], estimated volume) to after injury (t1, measured volume). A subset of 36 patients were compared to the normal controls with respect to longitudinal change of brain volume after injury from t1 to t2. Results The patients had abnormally fast increase of brain volume for multiple brain regions, including whole brain, cerebral cortical gray matter, and subcortical regions. Discussion This is the first report of extensive abnormal longitudinal brain volume enlargement in patients with TBI. In particular, the findings suggested that the previously reported findings of cross-sectional brain volume abnormal enlargement were due to longitudinal enlargement after, not before, injury. Abnormal longitudinal enlargement of the posterior cingulate cortex correlated with neuropathic headaches, partially replicating a previously reported finding that was associated with neuroinflammation.
Collapse
Affiliation(s)
- David E Ross
- Virginia Institute of Neuropsychiatry, Midlothian, USA
| | | | | | | | - Junghoon Ha
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | - Jason A Burton
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | | | - Ryan Mischel
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | - Alyson Blount
- Randolph Macon College, Undergraduate Program, Ashland, USA
| | | | - Katherine Shepherd
- Virginia Institute of Neuropsychiatry, Midlothian, USA
- James Madison University, Undergraduate Program, Harrisonburg, USA
| | | | - Alfred L Ochs
- Virginia Institute of Neuropsychiatry, Midlothian, USA
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | | |
Collapse
|
17
|
Amoo M, O'Halloran PJ, Henry J, Husien MB, Brennan P, Campbell M, Caird J, Curley GF. Permeability of the Blood-Brain Barrier after Traumatic Brain Injury; Radiological Considerations. J Neurotrauma 2021; 39:20-34. [PMID: 33632026 DOI: 10.1089/neu.2020.7545] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability, especially in young persons, and constitutes a major socioeconomic burden worldwide. It is regarded as the leading cause of mortality and morbidity in previously healthy young persons. Most of the mechanisms underpinning the development of secondary brain injury are consequences of disruption of the complex relationship between the cells and proteins constituting the neurovascular unit or a direct result of loss of integrity of the tight junctions (TJ) in the blood-brain barrier (BBB). A number of changes have been described in the BBB after TBI, including loss of TJ proteins, pericyte loss and migration, and altered expressions of water channel proteins at astrocyte end-feet processes. There is a growing research interest in identifying optimal biological and radiological biomarkers of severity of BBB dysfunction and its effects on outcomes after TBI. This review explores the microscopic changes occurring at the neurovascular unit, after TBI, and current radiological adjuncts for its evaluation in pre-clinical and clinical practice.
Collapse
Affiliation(s)
- Michael Amoo
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland.,Beacon Academy, Beacon Hospital, Sandyford, Dublin, Ireland
| | - Philip J O'Halloran
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Neurosurgery, Royal London Hospital, Whitechapel, London, United Kingdom
| | - Jack Henry
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Mohammed Ben Husien
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul Brennan
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Radiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | | | - John Caird
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Gerard F Curley
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
18
|
Richter S, Winzeck S, Kornaropoulos EN, Das T, Vande Vyvere T, Verheyden J, Williams GB, Correia MM, Menon DK, Newcombe VFJ. Neuroanatomical Substrates and Symptoms Associated With Magnetic Resonance Imaging of Patients With Mild Traumatic Brain Injury. JAMA Netw Open 2021; 4:e210994. [PMID: 33734414 PMCID: PMC7974642 DOI: 10.1001/jamanetworkopen.2021.0994] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
Importance Persistent symptoms after mild traumatic brain injury (mTBI) represent a major public health problem. Objective To identify neuroanatomical substrates of mTBI and the optimal timing for magnetic resonance imaging (MRI). Design, Setting, and Participants This prospective multicenter cohort study encompassed all eligible patients from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study (December 19, 2014, to December 17, 2017) and a local cohort (November 20, 2012, to December 19, 2013). Patients presented to the hospital within 24 hours of an mTBI (Glasgow Coma Score, 13-15), satisfied local criteria for computed tomographic scanning, and underwent MRI scanning less than 72 hours (MR1) and 2 to 3 weeks (MR2) after injury. In addition, 104 control participants were enrolled across all sites. Data were analyzed from January 1, 2019, to December 31, 2020. Exposure Mild TBI. Main Outcomes and Measures Volumes and diffusion parameters were extracted via automated bespoke pipelines. Symptoms were measured using the Rivermead Post Concussion Symptoms Questionnaire in the short term and the extended Glasgow Outcome Scale at 3 months. Results Among the 81 patients included in the analysis (73 CENTER-TBI and 8 local), the median age was 45 (interquartile range [IQR], 24-59; range, 14-85) years, and 57 (70.4%) were male. Structural sequences were available for all scans; diffusion data, for 73 MR1 and 79 MR2 scans. After adjustment for multiple comparisons between scans, visible lesions did not differ significantly, but cerebral white matter volume decreased (MR2:MR1 ratio, 0.98; 95% CI, 0.96-0.99) and ventricular volume increased (MR2:MR1 ratio, 1.06; 95% CI, 1.02-1.10). White matter volume was within reference limits on MR1 scans (patient to control ratio, 0.99; 95% CI, 0.97-1.01) and reduced on MR2 scans (patient to control ratio, 0.97; 95% CI, 0.95-0.99). Diffusion parameters changed significantly between scans in 13 tracts, following 1 of 3 trajectories. Symptoms measured by Rivermead Post Concussion Symptoms Questionnaire scores worsened in the progressive injury phenotype (median, +5.00; IQR, +2.00 to +5.00]), improved in the minimal change phenotype (median, -4.50; IQR, -9.25 to +1.75), and were variable in the pseudonormalization phenotype (median, 0.00; IQR, -6.25 to +9.00) (P = .02). Recovery was favorable for 33 of 65 patients (51%) and was more closely associated with MR1 than MR2 (area under the curve, 0.87 [95% CI, 0.78-0.96] vs 0.75 [95% CI, 0.62-0.87]; P = .009). Conclusions and Relevance These findings suggest that advanced MRI reveals potential neuroanatomical substrates of mTBI in white matter and is most strongly associated with odds of recovery if performed within 72 hours, although future validation is required.
Collapse
Affiliation(s)
- Sophie Richter
- University Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Stefan Winzeck
- University Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- BioMedIA, Department of Computing, Imperial College London, London, United Kingdom
| | - Evgenios N. Kornaropoulos
- University Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Tilak Das
- Department of Radiology, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Thijs Vande Vyvere
- Department of Radiology, University Hospital and University of Antwerp, Antwerp, Belgium
- Research and Development, icometrix, Leuven, Belgium
| | - Jan Verheyden
- Research and Development, icometrix, Leuven, Belgium
| | - Guy B. Williams
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Marta M. Correia
- MRC (Medical Research Council) Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - David K. Menon
- University Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Virginia F. J. Newcombe
- University Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
19
|
Toth L, Czigler A, Horvath P, Kornyei B, Szarka N, Schwarcz A, Ungvari Z, Buki A, Toth P. Traumatic brain injury-induced cerebral microbleeds in the elderly. GeroScience 2021; 43:125-136. [PMID: 33011936 PMCID: PMC8050119 DOI: 10.1007/s11357-020-00280-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) was shown to lead to the development of cerebral microbleeds (CMBs), which are associated with long term cognitive decline and gait disturbances in patients. The elderly is one of the most vulnerable parts of the population to suffer TBI. Importantly, ageing is known to exacerbate microvascular fragility and to promote the formation of CMBs. In this overview, the effect of ageing is discussed on the development and characteristics of TBI-related CMBs, with special emphasis on CMBs associated with mild TBI. Four cases of TBI-related CMBs are described to illustrate the concept that ageing exacerbates the deleterious microvascular effects of TBI and that similar brain trauma may induce more CMBs in old patients than in young ones. Recommendations are made for future prospective studies to establish the mechanistic effects of ageing on the formation of CMBs after TBI, and to determine long-term consequences of CMBs on clinically relevant outcome measures including cognitive performance, gait and balance function.
Collapse
Affiliation(s)
- Luca Toth
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Andras Czigler
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Peter Horvath
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
| | - Balint Kornyei
- Department of Radiology, University of Pecs, Medical School, Pecs, Hungary
| | - Nikolett Szarka
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Attila Schwarcz
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Andras Buki
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
| | - Peter Toth
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary.
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary.
- Reynolds Oklahoma Center on Aging, Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Public Health, Semmelweis University, Faculty of Medicine, Budapest, Hungary.
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary.
| |
Collapse
|
20
|
Clark AL, Weigand AJ, Bangen KJ, Merritt VC, Bondi MW, Delano-Wood L. Repetitive mTBI is associated with age-related reductions in cerebral blood flow but not cortical thickness. J Cereb Blood Flow Metab 2021; 41:431-444. [PMID: 32248731 PMCID: PMC8369996 DOI: 10.1177/0271678x19897443] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mild traumatic brain injury (mTBI) is a risk factor for Alzheimer's disease (AD), and evidence suggests cerebrovascular dysregulation initiates deleterious neurodegenerative cascades. We examined whether mTBI history alters cerebral blood flow (CBF) and cortical thickness in regions vulnerable to early AD-related changes. Seventy-four young to middle-aged Veterans (mean age = 34, range = 23-48) underwent brain scans. Participants were divided into: (1) Veteran Controls (n = 27), (2) 1-2 mTBIs (n = 26), and (2) 3+ mTBIs (n = 21) groups. Resting CBF was measured using MP-PCASL. T1 structural scans were processed with FreeSurfer. CBF and cortical thickness estimates were extracted from nine AD-vulnerable regions. Regression analyses examined whether mTBI moderated the association between age, CBF, and cortical thickness. Regressions adjusting for sex and posttraumatic stress revealed mTBI moderated the association between age and CBF of the precuneus as well as superior and inferior parietal cortices (p's < .05); increasing age was associated with lower CBF in the 3+ mTBIs group, but not in the VCs or 1-2 mTBIs groups. mTBI did not moderate associations between age and cortical thickness (p's >.05). Repetitive mTBI is associated with cerebrovascular dysfunction in AD-vulnerable regions and may accelerate pathological aging trajectories.
Collapse
Affiliation(s)
- Alexandra L Clark
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Alexandra J Weigand
- San Diego State University/University of California, San Diego (SDSU/UCSD) Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Katherine J Bangen
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Victoria C Merritt
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Mark W Bondi
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Lisa Delano-Wood
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, San Diego, CA, USA.,Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA, USA
| |
Collapse
|
21
|
Mahan MY, Rafter DJ, Truwit CL, Oswood M, Samadani U. Evaluation of diffusion measurements reveals radial diffusivity indicative of microstructural damage following acute, mild traumatic brain injury. Magn Reson Imaging 2020; 77:137-147. [PMID: 33359428 DOI: 10.1016/j.mri.2020.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/25/2020] [Accepted: 12/20/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE Mild TBI, characterized by microstructural damage, often undetectable on conventional imaging techniques, is a pervasive condition that disturbs brain function and can potentially result in long-term deficits. Deciphering the underlying microstructural damage in mild TBI is crucial for establishing a reliable diagnosis and enabling effective therapeutics. Efforts to capture this damage have been extensive, but results have been inconsistent and incomplete. METHODS To that effect, we set out to examine the shape of the diffusion tensor in mild TBI during the acute phase of injury. We inspected diffusivity and geometric measurements describing the diffusion tensor's shape and compared mild TBI (N = 34, 20.4-66.6 yo) measurements with those from healthy control (N = 42, 20.7-67.2 yo) participants using voxelwise tract-based spatial statistics. Subsequently, to explore associations between the diffusion measurements in mild TBI, we performed nonparametric statistics and machine learning techniques. RESULTS Overall, mild TBI displayed a diffuse increase in Dλ2, Dλ3, Dradial, Dmean, and Cspherical, with a diffuse decrease in Afractional, Amode, and Clinear, in addition to no change in Daxial or Cplanar. Most notably, our results provide evidence for Dradial as a potential biomarker for microstructural damage, specifically its main component Dλ2, based on their performance in discriminating between mild TBI and control groups. Afractional was also found to be important for discriminating between groups. CONCLUSION Our results revealed the importance of a diffusion measurement often overlooked, Dradial, in assessing TBI and suggest differentiating diffusion measurements has the potential utility to detect variations in the underlying pathophysiology after injury.
Collapse
Affiliation(s)
- Margaret Y Mahan
- Department of Biomedical Informatics and Computational Biology, University of Minnesota, 101 Pleasant St SE, Minneapolis, MN 55455, USA.
| | - Daniel J Rafter
- Department of Biomedical Informatics and Computational Biology, University of Minnesota, 101 Pleasant St SE, Minneapolis, MN 55455, USA
| | - Charles L Truwit
- Diagnostic Imaging, Philips Global, 6655 Wedgwood Rd N #105, Maple Grove, MN 55311, USA; Department of Radiology, Hennepin Healthcare, 701 Park Ave, Minneapolis, MN 55415, USA.
| | - Mark Oswood
- Department of Radiology, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA; Department of Radiology, Hennepin Healthcare, 701 Park Ave, Minneapolis, MN 55415, USA.
| | - Uzma Samadani
- Department of Biomedical Informatics and Computational Biology, University of Minnesota, 101 Pleasant St SE, Minneapolis, MN 55455, USA; Department of Neurosurgery, Minneapolis VA Medical Center, 1 Veterans Drive, Minneapolis, MN 55417, USA.
| |
Collapse
|
22
|
Mohammadian M, Roine T, Hirvonen J, Kurki T, Posti JP, Katila AJ, Takala RSK, Tallus J, Maanpää HR, Frantzén J, Hutchinson PJ, Newcombe VF, Menon DK, Tenovuo O. Alterations in Microstructure and Local Fiber Orientation of White Matter Are Associated with Outcome after Mild Traumatic Brain Injury. J Neurotrauma 2020; 37:2616-2623. [PMID: 32689872 DOI: 10.1089/neu.2020.7081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mild traumatic brain injury (mTBI) can have long-lasting consequences. We investigated white matter (WM) alterations at 6-12 months following mTBI using diffusion tensor imaging (DTI) and assessed if the alterations associate with outcome. Eighty-five patients with mTBI underwent diffusion-weighted magnetic resonance imaging (MRI) on average 8 months post-injury and patients' outcome was assessed at the time of imaging using the Glasgow Outcome Scale-Extended (GOS-E). Additionally, 30 age-matched patients with extracranial orthopedic injuries were used as control subjects. Voxel-wise analysis of the data was performed using a tract-based spatial statistics (TBSS) approach and differences in microstructural metrics between groups were investigated. Further, the susceptibility of the abnormalities to specific fiber orientations was investigated by analyzing the first eigenvector of the diffusion tensor in the voxels with significant differences. We found significantly lower fractional anisotropy (FA) and higher mean diffusivity (MD) and radial diffusivity (RD) in patients with mTBI compared with control subjects, whereas no significant differences were observed in axial diffusivity (AD) between the groups. The differences were present bilaterally in several WM regions and correlated with outcome. Moreover, multiple clusters were found in the principal fiber orientations of the significant voxels in anisotropy, and similar orientation patterns were found for the diffusivity metrics. These directional clusters correlated with patients' functional outcome. Our study showed that mTBI is associated with WM changes at the chronic stage and these alterations occur in several WM regions. In addition, several significant clusters of WM alterations in specific fiber orientations were found and these clusters were associated with outcome.
Collapse
Affiliation(s)
- Mehrbod Mohammadian
- Department of Clinical Neurosciences, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland.,Turku Brain Injury Center, Intensive Care Medicine and Pain Management, Turku University Hospital, Turku, Finland
| | - Timo Roine
- Turku Brain and Mind Center, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Jussi Hirvonen
- Department of Radiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland
| | - Timo Kurki
- Department of Clinical Neurosciences, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland.,Turku Brain Injury Center, Intensive Care Medicine and Pain Management, Turku University Hospital, Turku, Finland.,Department of Radiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland
| | - Jussi P Posti
- Department of Clinical Neurosciences, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland.,Turku Brain Injury Center, Intensive Care Medicine and Pain Management, Turku University Hospital, Turku, Finland.,Department of Neurosurgery, Division of Clinical Neurosciences, Intensive Care Medicine and Pain Management, Turku University Hospital, Turku, Finland
| | - Ari J Katila
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital, Turku, Finland.,Anesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland
| | - Riikka S K Takala
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital, Turku, Finland.,Anesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland
| | - Jussi Tallus
- Department of Clinical Neurosciences, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland.,Turku Brain Injury Center, Intensive Care Medicine and Pain Management, Turku University Hospital, Turku, Finland
| | - Henna-Riikka Maanpää
- Turku Brain Injury Center, Intensive Care Medicine and Pain Management, Turku University Hospital, Turku, Finland.,Department of Neurosurgery, Division of Clinical Neurosciences, Intensive Care Medicine and Pain Management, Turku University Hospital, Turku, Finland
| | - Janek Frantzén
- Department of Clinical Neurosciences, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland.,Department of Neurosurgery, Division of Clinical Neurosciences, Intensive Care Medicine and Pain Management, Turku University Hospital, Turku, Finland
| | - Peter J Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | - David K Menon
- Division of Anesthesia, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Olli Tenovuo
- Department of Clinical Neurosciences, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland.,Turku Brain Injury Center, Intensive Care Medicine and Pain Management, Turku University Hospital, Turku, Finland
| |
Collapse
|
23
|
Bobholz SA, Brett BL, España LY, Huber DL, Mayer AR, Harezlak J, Broglio SP, McAllister T, McCrea MA, Meier TB. Prospective study of the association between sport-related concussion and brain morphometry (3T-MRI) in collegiate athletes: study from the NCAA-DoD CARE Consortium. Br J Sports Med 2020; 55:169-174. [PMID: 32917671 DOI: 10.1136/bjsports-2020-102002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To determine the acute and early long-term associations of sport-related concussion (SRC) and subcortical and cortical structures in collegiate contact sport athletes. METHODS Athletes with a recent SRC (n=99) and matched contact (n=91) and non-contact sport controls (n=95) completed up to four neuroimaging sessions from 24 to 48 hours to 6 months postinjury. Subcortical volumes (amygdala, hippocampus, thalamus and dorsal striatum) and vertex-wise measurements of cortical thickness/volume were computed using FreeSurfer. Linear mixed-effects models examined the acute and longitudinal associations between concussion and structural metrics, controlling for intracranial volume (or mean thickness) and demographic variables (including prior concussions and sport exposure). RESULTS There were significant group-dependent changes in amygdala volumes across visits (p=0.041); this effect was driven by a trend for increased amygdala volume at 6 months relative to subacute visits in contact controls, with no differences in athletes with SRC. No differences were observed in any cortical metric (ie, thickness or volume) for primary or secondary analyses. CONCLUSION A single SRC had minimal associations with grey matter structure across a 6-month time frame.
Collapse
Affiliation(s)
- Samuel A Bobholz
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Benjamin L Brett
- Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lezlie Y España
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daniel L Huber
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Andrew R Mayer
- Neurology and Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.,The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA.,Psychology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jaroslaw Harezlak
- Epidemiology and Biostatistics, Indiana University, Bloomington, Indiana, USA
| | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas McAllister
- Psychiatry, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Michael A McCrea
- Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Timothy B Meier
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA .,Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
24
|
In Vivo Diffusion Tensor Imaging in Acute and Subacute Phases of Mild Traumatic Brain Injury in Rats. eNeuro 2020; 7:ENEURO.0476-19.2020. [PMID: 32424056 PMCID: PMC7307627 DOI: 10.1523/eneuro.0476-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 04/27/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is the most common form of TBI with 10–25% of the patients experiencing long-lasting symptoms. The potential of diffusion tensor imaging (DTI) for evaluating microstructural damage after TBI is widely recognized, but the interpretation of DTI changes and their relationship with the underlying tissue damage is unclear. We studied how both axonal damage and gliosis contribute to DTI alterations after mTBI. We induced mTBI using the lateral fluid percussion (LFP) injury model in adult male Sprague Dawley rats and scanned them at 3 and 28 d post-mTBI. To characterize the DTI findings in the tissue, we assessed the histology by performing structure tensor (ST)-based analysis and cell counting on myelin-stained and Nissl-stained sections, respectively. In particular, we studied the contribution of two tissue components, myelinated axons and cellularity, to the DTI changes. Fractional anisotropy (FA), mean diffusivity (MD), and axial diffusivity (AD) were decreased in both white and gray matter areas in the acute phase post-mTBI, mainly at the primary lesion site. In the subacute phase, FA and AD were decreased in the white matter, external capsule, corpus callosum, and internal capsule. Our quantitative histologic assessment revealed axonal damage and gliosis throughout the brain in both white and gray matter, consistent with the FA and AD changes. Our findings suggest that the usefulness of in vivo DTI is limited in its detection of secondary damage distal to the primary lesion, while at the lesion site, DTI detected progressive microstructural damage in the white and gray matter after mTBI.
Collapse
|
25
|
Eyolfson E, Yamakawa GR, Griep Y, Collins R, Carr T, Wang M, Lohman AW, Mychasiuk R. Examining the Progressive Behavior and Neuropathological Outcomes Associated with Chronic Repetitive Mild Traumatic Brain Injury in Rats. Cereb Cortex Commun 2020; 1:tgaa002. [PMID: 34296084 PMCID: PMC8152839 DOI: 10.1093/texcom/tgaa002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
While the physical and behavioral symptomologies associated with a single mild traumatic brain injury (mTBI) are typically transient, repetitive mTBIs (RmTBI) have been associated with persisting neurological deficits. Therefore, this study examined the progressive changes in behavior and the neuropathological outcomes associated with chronic RmTBI through adolescence and adulthood in male and female Sprague Dawley rats. Rats experienced 2 mTBIs/week for 15 weeks and were periodically tested for changes in motor behavior, cognitive function, emotional disturbances, and aggression. Brain tissue was examined for neuropathological changes in ventricle size and presentation of Iba1 and GFAP. We did not see progressively worse behavioral impairments with the accumulation of injuries or time, but did find evidence for neurological and functional change (motor disturbance, reduced exploration, reduced aggression, alteration in depressive-like behavior, deficits in short-term working memory). Neuropathological assessment of RmTBI animals identified an increase in ventricle size, prolonged changes in GFAP, and sex differences in Iba1, in the corpus callosum, thalamus, and medial prefrontal cortex. Telomere length reduced exponentially as the injury load increased. Overall, chronic RmTBI did not result in accumulating behavioral impairment, and there is a need to further investigate progressive behavioral changes associated with repeated injuries in adolescence and young adulthood.
Collapse
Affiliation(s)
- Eric Eyolfson
- Department of Psychology, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Psychology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Yannick Griep
- Department of Psychology, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Psychology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Division of Epidemiology, Stress Research Institute, Stockholm University, 106 91 Stockholm, Sweden
- Behavioral Science Institute, Radbound University, 9104, 6500 HE, Nijmegen, The Netherlands
| | - Reid Collins
- Department of Psychology, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Psychology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Thomas Carr
- Department of Cell Biology and Anatomy, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Melinda Wang
- Department of Psychology, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Psychology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Alexander W Lohman
- Department of Cell Biology and Anatomy, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Richelle Mychasiuk
- Department of Psychology, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Psychology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| |
Collapse
|
26
|
van der Kleij LA, De Vis JB, Restivo MC, Turtzo LC, Hendrikse J, Latour LL. Subarachnoid Hemorrhage and Cerebral Perfusion Are Associated with Brain Volume Decrease in a Cohort of Predominantly Mild Traumatic Brain Injury Patients. J Neurotrauma 2020; 37:600-607. [PMID: 31642407 PMCID: PMC7045349 DOI: 10.1089/neu.2019.6514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biomarkers are needed to identify traumatic brain injury (TBI) patients at risk for accelerated brain volume loss and its associated functional impairment. Subarachnoid hemorrhage (SAH) has been shown to affect cerebral volume and perfusion, possibly by induction of inflammation and vasospasm. The purpose of this study was to assess the impact of SAH due to trauma on cerebral perfusion and brain volume. For this, magnetic resonance imaging (MRI) was performed <48 h and at 90 days after TBI. The <48-h scan was used to assess SAH presence and perfusion. Brain volume changes were assessed quantitatively over time. Differences in brain volume change and perfusion were compared between SAH and non-SAH patients. A linear regression analysis with clinical and imaging variables was used to identify predictors of brain volume change. All patients had a relatively good status on admission, and 83% presented with the maximum Glasgow Coma Scale (GCS) score. Brain volume decrease was greater in the 11 SAH patients (-3.2%, interquartile range [IQR] -4.8 to -1.3%) compared with the 46 non-SAH patients (-0.4%, IQR -1.8 to 0.9%; p < 0.001). Brain perfusion was not affected by SAH, but it was correlated with brain volume change (ρ = 0.39; p < 0.01). Forty-three percent of brain volume change was explained by SAH (β -0.40, p = 0.001), loss of consciousness (β -0.24, p = 0.035), and peak perfusion curve signal intensity height (0.27, p = 0.012). SAH and lower perfusion in the acute phase may identity TBI patients at increased risk for accelerated brain volume loss, in addition to loss of consciousness occurrence. Future studies should determine whether the findings apply to TBI patients with worse clinical status on admission. SAH predicts brain volume decrease independent of brain perfusion. This indicates the adverse effects of SAH extend beyond vasoconstriction, and that hypoperfusion also occurs separately from SAH.
Collapse
Affiliation(s)
- Lisa A. van der Kleij
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Jill B. De Vis
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Matthew C. Restivo
- Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - L. Christine Turtzo
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
- Acute Studies Core, Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lawrence L. Latour
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
- Acute Studies Core, Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland
| |
Collapse
|
27
|
Ross DE, Seabaugh JD, Seabaugh JM, Alvarez C, Ellis LP, Powell C, Hall C, Reese C, Cooper L, Ochs AL. Patients with chronic mild or moderate traumatic brain injury have abnormal brain enlargement. Brain Inj 2019; 34:11-19. [DOI: 10.1080/02699052.2019.1669074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- David E. Ross
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
| | | | | | - Claudia Alvarez
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- Randolph Macon College, Ashland, VA, USA
| | - Laura Peyton Ellis
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- Randolph Macon College, Ashland, VA, USA
| | - Christopher Powell
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Christopher Hall
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- University of Virginia, Charlottesville, VA, USA
| | - Christopher Reese
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- University of North Carolina at Wilmington, Wilmington, NC, USA
| | - Leah Cooper
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alfred L. Ochs
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
28
|
Use of diffusion tension imaging in the evaluation of pediatric concussions. Musculoskelet Sci Pract 2019; 42:162-165. [PMID: 31085066 DOI: 10.1016/j.msksp.2019.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate whether quantitative metrics of white matter fractional anisotropy (FA) and mean diffusivity (MD) were different in patients presenting to our clinic with persistent symptoms after a concussion. DESIGN Matched control retrospective study. SETTING Primary not-for-profit Institution. PATIENTS Consecutive patients seen at a primary care institution's Sports Concussion Clinic for sport-related concussion that underwent diffusion tensor imaging. Interventions (Independent variables): Type of sports, days from Injury, number of symptoms, weeks out when Magnetic Resonance Imaging (MRI) ordered, history of psychological issues, length of symptoms, age, sex, MRI imaging data. MAIN OUTCOME MEASURE Difference in white matter FA and MD. RESULTS Seventeen concussion patients, ages 9 and 17 (average = 12.5 years; median = 13 years, 11 males and 6 females), were matched with age and gender controls who had an MRI following a complaint of headache. Patients reported an average of 11.5 concussion symptoms, out of a total possible 22 and were seen at an average of 30 days post injury. No region met tract based spatial statistics criteria for significant differences between concussed and healthy control groups (all p > 0.05). Similarly, when comparing group averages from the atlas based regional summaries, no region met the 0.2 false discovery rate (FDR) threshold for significant differences (the smallest unadjusted p-values were 0.02 for MD and 0.14 for FA). CONCLUSIONS Our results did not show measurable diffusion tensor imaging (DTI) changes with standard clinical data acquisition and quantitative processing for the individual patient. At this time DTI should not be considered a technique that can diagnose concussion within an individual subject.
Collapse
|
29
|
Yin B, Li DD, Huang H, Gu CH, Bai GH, Hu LX, Zhuang JF, Zhang M. Longitudinal Changes in Diffusion Tensor Imaging Following Mild Traumatic Brain Injury and Correlation With Outcome. Front Neural Circuits 2019; 13:28. [PMID: 31133818 PMCID: PMC6514143 DOI: 10.3389/fncir.2019.00028] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/01/2019] [Indexed: 11/13/2022] Open
Abstract
The chronic consequences of traumatic brain injury (TBI) may contribute to the increased risk for early cognitive decline and dementia, primarily due to diffusion axonal injury. Previous studies in mild TBI (mTBI) have been controversial in describing the white matter tract integrity changes occurring at acute and subacute post-injury. In this prospective longitudinal study, we aim to investigate the longitudinal changes of white matter (WM) using diffusion tensor imaging (DTI) and their correlations with neuropsychological tests. Thirty-three patients with subacute mTBI and 31 matched healthy controls were studied with an extensive imaging and clinical battery. Neuroimaging was obtained within 7 days post-injury for acute scans and repeated at 1 and 3 months post-injury. Using a region-of-interest-based approach, tract-based spatial statistics was used to conduct voxel-wise analysis on diffusion changes in mTBI and was compared to those of healthy matched controls, scanned during the same time period and rescanned with an interval similar to that of patients. We found decreased fractional anisotropy (FA) values in the left anterior limb of internal capsule (ALIC) and right inferior fronto-occipital fasciculus (IFOF) during the 7 days post-injury, which showed longitudinal evidence of recovery following 1 month post-injury. Increased FA values in these two tracts at 1 month post-injury were positively associated with better performance on cognitive information processing speed at initial assessment. By contrast, there were also some tracts (right anterior corona radiata, forceps major, and body of corpus callosum) exhibiting the continuing loss of integrity sustaining even beyond 3 months, which can predict the persisting post-concussion syndromes. Continuing loss of structural integrity in some tracts may contribute to the persistent post-concussion syndromes in mTBI patients, suggesting certain tracts providing an objective biomarker for tracking the pathological recovery process following mTBI.
Collapse
Affiliation(s)
- Bo Yin
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan-Dong Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huan Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cheng-Hui Gu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guang-Hui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liu-Xun Hu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jin-Fei Zhuang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
30
|
Cubon VA, Murugavel M, Holmes KW, Dettwiler A. Preliminary evidence from a prospective DTI study suggests a posterior-to-anterior pattern of recovery in college athletes with sports-related concussion. Brain Behav 2018; 8:e01165. [PMID: 30566282 PMCID: PMC6305925 DOI: 10.1002/brb3.1165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 09/04/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES We compared the integrity of white matter (WM) microstructure to the course of recovery in athletes who sustained one sports-related concussion (SRC), assessing individual longitudinal changes in WM fiber tracts following SRC using pre- and post-injury measurements. MATERIALS AND METHODS Baseline diffusion tensor imaging (DTI) scans and neuropsychological tests were collected on 53 varsity contact-sport college athletes. Participants (n = 13) who subsequently sustained an SRC underwent DTI scans and neuropsychological testing at 2 days, 2 weeks, and 2 months following injury. RESULTS Relying on tract-based spatial statistics (TBSS) analyses, we found that radial diffusivity (RD) and mean diffusivity (MD) were significantly increased at 2 days post-injury compared to the same-subject baseline (corrected p < 0.02). These alterations were visible in anterior/posterior WM regions spanning both hemispheres, demonstrating a diffuse pattern of injury after concussion. Implicated WM fiber tracts at 2 days include the following: right superior/inferior longitudinal fasciculus; right/left inferior fronto-occipital fasciculus; right corticospinal tract; right acoustic radiation; right/left anterior thalamic radiations; right/left uncinate fasciculus; and forceps major/minor. At 2 weeks post-injury, persistently elevated RD and MD were observed solely in prefrontal portions of WM fiber tracts (using same-subject contrasts). No significant differences were found for FA in any of the post-injury comparisons to baseline. Plots of individual subject RD and MD in prefrontal WM demonstrated homogenous increases from baseline to just after SRC; thereafter, trajectories became more variable. Most subjects' diffusivity values remained elevated at 2 months post-injury relative to their own baseline. Over the 2-month period after SRC, recovery of WM fiber tracts appeared to follow a posterior-to-anterior trend, paralleling the posterior-anterior pattern of WM maturation previously identified in the normal population. CONCLUSION These results suggest greater vulnerability of prefrontal regions to SRC, underline the importance of an individualized approach to concussion management, and show promise for using RD and MD for imaging-based diagnosis of SRC.
Collapse
Affiliation(s)
- Valerie A Cubon
- Department of Chemistry and Biochemistry, Kent State University at Trumbull, Warren, Ohio
| | - Murali Murugavel
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Katharine W Holmes
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Annegret Dettwiler
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| |
Collapse
|
31
|
Mustafi SM, Harezlak J, Koch KM, Nencka AS, Meier TB, West JD, Giza CC, DiFiori JP, Guskiewicz KM, Mihalik JP, LaConte SM, Duma SM, Broglio SP, Saykin AJ, McCrea M, McAllister TW, Wu YC. Acute White-Matter Abnormalities in Sports-Related Concussion: A Diffusion Tensor Imaging Study from the NCAA-DoD CARE Consortium. J Neurotrauma 2018; 35:2653-2664. [PMID: 29065805 DOI: 10.1089/neu.2017.5158] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sports-related concussion (SRC) is an important public health issue. Although standardized assessment tools are useful in the clinical management of acute concussion, the underlying pathophysiology of SRC and the time course of physiological recovery after injury remain unclear. In this study, we used diffusion tensor imaging (DTI) to detect white matter alterations in football players within 48 h after SRC. As part of the NCAA-DoD CARE Consortium study of SRC, 30 American football players diagnosed with acute concussion and 28 matched controls received clinical assessments and underwent advanced magnetic resonance imaging scans. To avoid selection bias and partial volume effects, whole-brain skeletonized white matter was examined by tract-based spatial statistics to investigate between-group differences in DTI metrics and their associations with clinical outcome measures. Mean diffusivity was significantly higher in brain white matter of concussed athletes, particularly in frontal and subfrontal long white matter tracts. In the concussed group, axial diffusivity was significantly correlated with the Brief Symptom Inventory and there was a similar trend with the symptom severity score of the Sport Concussion Assessment Tool. In addition, concussed athletes with higher fractional anisotropy performed better on the cognitive component of the Standardized Assessment of Concussion. Overall, the results of this study are consistent with the hypothesis that SRC is associated with changes in white matter tracts shortly after injury, and these differences are correlated clinically with acute symptoms and functional impairments.
Collapse
Affiliation(s)
- Sourajit Mitra Mustafi
- 1 Department of Radiology and Imaging Sciences, Indiana University School of Medicine , Indianapolis, Indiana
| | - Jaroslaw Harezlak
- 2 Department of Epidemiology and Biostatistics, School of Public Health, Indiana University , Bloomington, Indiana
| | - Kevin M Koch
- 3 Department of Radiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Andrew S Nencka
- 3 Department of Radiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Timothy B Meier
- 4 Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - John D West
- 1 Department of Radiology and Imaging Sciences, Indiana University School of Medicine , Indianapolis, Indiana
| | - Christopher C Giza
- 5 Department of Neurosurgery, David Geffen School of Medicine at University of California Los Angeles, Division of Pediatric Neurology, Mattel Children's Hospital-UCLA Los Angeles , California
| | - John P DiFiori
- 6 Division of Sports Medicine, Departments of Family Medicine and Orthopedics, University of California Los Angeles , Los Angeles, California
| | - Kevin M Guskiewicz
- 7 Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Jason P Mihalik
- 7 Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Stephen M LaConte
- 8 School of Biomedical Engineering and Sciences, Wake-Forest and Virginia Tech University , Virginia Tech Carilion Research Institute, Roanoke, Virginia
| | - Stefan M Duma
- 9 School of Biomedical Engineering and Sciences, Wake-Forest and Virginia Tech University , Blacksburg, Virginia
| | - Steven P Broglio
- 10 NeuroTrauma Research Laboratory, School of Kinesiology, University of Michigan , Ann Arbor, Michigan
| | - Andrew J Saykin
- 1 Department of Radiology and Imaging Sciences, Indiana University School of Medicine , Indianapolis, Indiana
| | - Michael McCrea
- 4 Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Thomas W McAllister
- 11 Department of Psychology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Yu-Chien Wu
- 1 Department of Radiology and Imaging Sciences, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
32
|
Stewan Feltrin F, Zaninotto AL, Guirado VMP, Macruz F, Sakuno D, Dalaqua M, Magalhães LGA, Paiva WS, Andrade AFD, Otaduy MCG, Leite CC. Longitudinal changes in brain volumetry and cognitive functions after moderate and severe diffuse axonal injury. Brain Inj 2018; 32:1208-1217. [PMID: 30024781 DOI: 10.1080/02699052.2018.1494852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Diffuse axonal injury (DAI) induces a long-term process of brain atrophy and cognitive deficits. The goal of this study was to determine whether there are correlations between brain volume loss, microhaemorrhage load (MHL) and neuropsychological performance during the first year after DAI. METHODS Twenty-four patients with moderate or severe DAI were evaluated at 2, 6 and 12 months post-injury. MHL was evaluated at 3 months, and brain volumetry was evaluated at 3, 6 and 12 months. The trail making test (TMT) was used to evaluate executive function (EF), and the Hopkins verbal learning test (HVLT) was used to evaluate episodic verbal memory (EVM) at 6 and 12 months. RESULTS There were significant white matter volume (WMV), subcortical grey matter volume and total brain volume (TBV) reductions during the study period (p < 0.05). MHL was correlated only with WMV reduction. EF and EVM were not correlated with MHL but were, in part, correlated with WMV and TBV reductions. CONCLUSIONS Our findings suggest that MHL may be a predictor of WMV reduction but cannot predict EF or EVM in DAI. Brain atrophy progresses over time, but patients showed better EF and EVM in some of the tests, which could be due to neuroplasticity.
Collapse
Affiliation(s)
- Fabrício Stewan Feltrin
- a Laboratory of Magnetic Resonance, LIM44, Department of Radiology , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Ana Luiza Zaninotto
- b Division of Psychology , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Vinícius M P Guirado
- c Division of Neurosurgery , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Fabiola Macruz
- a Laboratory of Magnetic Resonance, LIM44, Department of Radiology , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Daniel Sakuno
- d Department of Radiology , Hospital Universitário HU-UEPG, Universidade Estadual de Ponta Grossa , Ponta Grossa , Brazil
| | - Mariana Dalaqua
- e Department of Radiology , Hospital Israelita Albert Einstein , São Paulo , Brazil
| | | | - Wellingson Silva Paiva
- c Division of Neurosurgery , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Almir Ferreira de Andrade
- c Division of Neurosurgery , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Maria C G Otaduy
- a Laboratory of Magnetic Resonance, LIM44, Department of Radiology , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Claudia C Leite
- a Laboratory of Magnetic Resonance, LIM44, Department of Radiology , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| |
Collapse
|
33
|
Wu YC, Mustafi SM, Harezlak J, Kodiweera C, Flashman LA, McAllister TW. Hybrid Diffusion Imaging in Mild Traumatic Brain Injury. J Neurotrauma 2018; 35:2377-2390. [PMID: 29786463 PMCID: PMC6196746 DOI: 10.1089/neu.2017.5566] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is an important public health problem. Although conventional medical imaging techniques can detect moderate-to-severe injuries, they are relatively insensitive to mTBI. In this study, we used hybrid diffusion imaging (HYDI) to detect white matter alterations in 19 patients with mTBI and 23 other trauma control patients. Within 15 days (standard deviation = 10) of brain injury, all subjects underwent magnetic resonance HYDI and were assessed with a battery of neuropsychological tests of sustained attention, memory, and executive function. Tract-based spatial statistics (TBSS) was used for voxel-wise statistical analyses within the white matter skeleton to study between-group differences in diffusion metrics, within-group correlations between diffusion metrics and clinical outcomes, and between-group interaction effects. The advanced diffusion imaging techniques, including neurite orientation dispersion and density imaging (NODDI) and q-space analyses, appeared to be more sensitive then classic diffusion tensor imaging. Only NODDI-derived intra-axonal volume fraction (Vic) demonstrated significant group differences (i.e., 5–9% lower in the injured brain). Within the mTBI group, Vic and a q-space measure, P0, correlated with 6 of 10 neuropsychological tests, including measures of attention, memory, and executive function. In addition, the direction of correlations differed significantly between groups (R2 > 0.71 and pinteration < 0.03). Specifically, in the control group, higher Vic and P0 were associated with better performances on clinical assessments, whereas in the mTBI group, higher Vic and P0 were associated with worse performances with correlation coefficients >0.83. In summary, the NODDI-derived axonal density index and q-space measure for tissue restriction demonstrated superior sensitivity to white matter changes shortly after mTBI. These techniques hold promise as a neuroimaging biomarker for mTBI.
Collapse
Affiliation(s)
- Yu-Chien Wu
- 1 Department of Radiology and Imaging Sciences, Indiana University School of Medicine , Indianapolis, Indiana
| | - Sourajit M Mustafi
- 1 Department of Radiology and Imaging Sciences, Indiana University School of Medicine , Indianapolis, Indiana
| | - Jaroslaw Harezlak
- 2 Department of Epidemiology and Biostatistics, School of Public Health, Indiana University , Bloomington, Indiana
| | - Chandana Kodiweera
- 3 Dartmouth Brain Imaging Center, Dartmouth College , Hanover, New Hampshire
| | - Laura A Flashman
- 4 Department of Psychiatry, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center , Lebanon, New Hampshire
| | - Thomas W McAllister
- 5 Department of Psychiatry, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
34
|
Haider MN, Leddy JJ, Hinds AL, Aronoff N, Rein D, Poulsen D, Willer BS. Intracranial pressure changes after mild traumatic brain injury: a systematic review. Brain Inj 2018; 32:809-815. [PMID: 29701515 PMCID: PMC6192525 DOI: 10.1080/02699052.2018.1469045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/12/2018] [Accepted: 04/21/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Intracranial pressure (ICP) after mild traumatic brain injury (mTBI) is poorly studied due to lack of sensitive non-invasive methods. The purpose of this review was to summarize the existing knowledge of changes in ICP after mTBI. Literature selection: PubMed, Embase, CINAHL, and Scopus were searched by three reviewers independently up to December 2016. INCLUSION CRITERIA animal and human studies measuring ICP and brain oedema after an mTBI. EXCLUSION CRITERIA moderate and severe forms of traumatic brain injury, repeat samples, and studies that measured ICP at the time of impact but not after. Study quality was assessed using Downs and Black criteria. RESULTS Of 1067 papers, 9 studies were included. In human studies, one provided direct evidence on increased, one provided indirect evidence of increased, and two provided indirect evidence of decreased ICP. In animal studies, three studies provided direct evidence of increased, one provided indirect evidence of increased, and one provided indirect evidence of no change in ICP. CONCLUSION The existing research suggests that there may be increased ICP after mTBI and animal studies suggest an elevation for days which returns to baseline, which corresponds with functional and symptomatic recovery. Future human studies using sensitive indirect methods to measure ICP longitudinally after mTBI are needed.
Collapse
Affiliation(s)
- Mohammad N Haider
- Department of Orthopedics and Sports Medicine, State University of New York at Buffalo
- Department of Neuroscience, State University of New York at Buffalo
| | - John J Leddy
- Department of Orthopedics and Sports Medicine, State University of New York at Buffalo
| | - Andrea L Hinds
- Department of Orthopedics and Sports Medicine, State University of New York at Buffalo
| | - Nell Aronoff
- Health Sciences Library, State University of New York at Buffalo
| | - Diane Rein
- Health Sciences Library, State University of New York at Buffalo
| | - David Poulsen
- Department of Neurosurgery, State University of New York at Buffalo
| | - Barry S Willer
- Department of Psychiatry, State University of New York at Buffalo
| |
Collapse
|
35
|
White Matter Associations With Performance Validity Testing in Veterans With Mild Traumatic Brain Injury: The Utility of Biomarkers in Complicated Assessment. J Head Trauma Rehabil 2018; 31:346-59. [PMID: 26360002 DOI: 10.1097/htr.0000000000000183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Failure on performance validity tests (PVTs) is common in Veterans with histories of mild traumatic brain injury (mTBI), leading to questionable validity of clinical presentations. PARTICIPANTS Using diffusion tensor imaging, we investigated white matter (WM) integrity and cognition in 79 Veterans with history of mTBI who passed PVTs (n = 43; traumatic brain injury [TBI]-passed), history of mTBI who failed at least 1 PVT (n = 13; TBI-failed), and military controls (n = 23; MCs) with no history of TBI. RESULTS The TBI-failed group demonstrated significantly lower cognitive scores relative to MCs and the TBI-passed group; however, no such differences were observed between MCs and the TBI-passed group. On a global measure of WM integrity (ie, WM burden), the TBI-failed group showed more overall WM abnormalities than the other groups. However, no differences were observed between the MCs and TBI-passed group on WM burden. Interestingly, regional WM analyses revealed abnormalities in the anterior internal capsule and cingulum of both TBI subgroups relative to MCs. Moreover, compared with the TBI-passed group, the TBI-failed group demonstrated significantly decreased WM integrity in the corpus callosum. CONCLUSIONS Findings revealed that, within our sample, WM abnormalities are evident in those who fail PVTs. This study adds to the burgeoning PVT literature by suggesting that poor PVT performance does not negate the possibility of underlying WM abnormalities in military personnel with history of mTBI.
Collapse
|
36
|
Lefebvre G, Chamard E, Proulx S, Tremblay S, Halko M, Soman S, de Guise E, Pascual-Leone A, Théoret H. Increased Myo-Inositol in Primary Motor Cortex of Contact Sports Athletes without a History of Concussion. J Neurotrauma 2018; 35:953-962. [PMID: 29279021 DOI: 10.1089/neu.2017.5254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The objective of the study was to determine whether repetitive hits to the head at a subclinical level are associated with structural and functional brain abnormalities and whether these effects are influenced by high levels of fitness associated with intense physical activity. Seventy-two college students were recruited: 24 nonathletic, 24 athletes practicing a varsity contact sport, and 24 athletes practicing a varsity noncontact sport. They were recruited for a neuropsychological evaluation and a magnetic resonance imaging session that included magnetic resonance spectroscopy of primary motor cortex (M1) and prefrontal cortex and susceptibility-weighted imaging. There was no evidence for reduced cognitive performance or presence of micro bleeds in contact sports athletes. Abnormalities in contact sports athletes were found for myo-inositol concentration (mIns) in M1, where levels were significantly higher compared with noncontact sports athletes (p = 0.016) and nonathletes (p = 0.029). In prefrontal cortex, glutamate + glutamine (Glx) was significantly reduced in contact sports athletes compared with noncontact sports athletes (p = 0.016), and a similar reduction was observed for gamma-aminobutyric acid (GABA) levels (p = 0.005). Varsity contact sports are associated with area-specific alterations in mIns concentration in the primary motor cortex. In the prefrontal cortex, high levels of fitness could modulate the effects of head impact exposure on prefrontal metabolite concentration. Indeed, although athletes in contact and noncontact sports show different neurometabolic profiles, they do not differ from sedentary controls.
Collapse
Affiliation(s)
- Geneviève Lefebvre
- Department of Psychology, University of Montreal, Montreal, Québec, Canada
| | - Emilie Chamard
- Department of Psychology, University of Montreal, Montreal, Québec, Canada
| | | | - Sara Tremblay
- Department of Psychology, University of Montreal, Montreal, Québec, Canada
| | - Mark Halko
- Division of Cognitive Neurology and Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Salil Soman
- Department of Radiology, Division of Neuroradiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Elaine de Guise
- Department of Psychology, University of Montreal, Montreal, Québec, Canada
| | - Alvaro Pascual-Leone
- Division of Cognitive Neurology and Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Institut de Neurorrehabilitacion Guttmann, Universitat Autonoma, Barcelona, Spain
| | - Hugo Théoret
- Department of Psychology, University of Montreal, Montreal, Québec, Canada
- Research Center, CHU Sainte-Justine, Montreal, Québec, Canada
| |
Collapse
|
37
|
Lancaster MA, Olson DV, McCrea MA, Nelson LD, LaRoche AA, Muftuler LT. Acute white matter changes following sport-related concussion: A serial diffusion tensor and diffusion kurtosis tensor imaging study. Hum Brain Mapp 2018; 37:3821-3834. [PMID: 27237455 DOI: 10.1002/hbm.23278] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/05/2016] [Accepted: 05/23/2016] [Indexed: 01/23/2023] Open
Abstract
Recent neuroimaging studies have suggested that following sport-related concussion (SRC) physiological brain alterations may persist after an athlete has shown full symptom recovery. Diffusion MRI is a versatile technique to study white matter injury following SRC, yet serial follow-up studies in the very acute stages following SRC utilizing a comprehensive set of diffusion metrics are lacking. The aim of the current study was to characterize white matter changes within 24 hours of concussion in a group of high school and collegiate athletes, using Diffusion Tensor and Diffusion Kurtosis Tensor metrics. Participants were reassessed a week later. At 24 hours post-injury, the concussed group reported significantly more concussion symptoms than a well-matched control group and demonstrated poorer performance on a cognitive screening measure, yet these differences were nonsignificant at the 8-day follow-up. Similarly, within 24-hours after injury, the concussed group exhibited a widespread decrease in mean diffusivity, increased axial kurtosis and, to a lesser extent, decreased axial and radial diffusivities compared with control subjects. At 8 days post injury, the differences in these diffusion metrics were even more widespread in the injured athletes, despite improvement of symptoms and cognitive performance. These MRI findings suggest that the athletes might not have reached full physiological recovery a week after the injury. These findings have significant implications for the management of SRC because allowing an athlete to return to play before the brain has fully recovered from injury may have negative consequences. Hum Brain Mapp 37:3821-3834, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Melissa A Lancaster
- Department of Neurology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226.,Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226
| | - Daniel V Olson
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226
| | - Michael A McCrea
- Department of Neurology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226.,Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226
| | - Lindsay D Nelson
- Department of Neurology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226.,Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226
| | - Ashley A LaRoche
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226
| | - L Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226.
| |
Collapse
|
38
|
Davenport ND, Gullickson JT, Grey SF, Hirsch S, Sponheim SR. Longitudinal evaluation of ventricular volume changes associated with mild traumatic brain injury in military service members. Brain Inj 2018; 32:1245-1255. [PMID: 29985658 DOI: 10.1080/02699052.2018.1494854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PRIMARY OBJECTIVE To investigate differences in longitudinal trajectories of ventricle-brain ratio (VBR), a general measure of brain atrophy, between Veterans with and without history of mild traumatic brain injury (mTBI). RESEARCH DESIGN Structural magnetic resonance imaging (MRI) was used to calculate VBR in 70 Veterans with a history of mTBI and 34 Veterans without such history at two time points approximately 3 and 8 years after a combat deployment. MAIN OUTCOMES AND RESULTS Both groups demonstrated a quadratic relationship between VBR and age that is consistent with normal developmental trajectories. Veterans with history of mTBI had larger total brain volume, but no interaction between mTBI and age was observed for brain volume, ventricular volume, or VBR. CONCLUSIONS In our longitudinal sample of deployed Veterans, mTBI was not associated with gross brain atrophy as reflected by abnormally high VBR or abnormal increases in VBR over time.
Collapse
Affiliation(s)
- Nicholas D Davenport
- a Minneapolis Veterans Affairs Health Care System , Minneapolis , MN , USA.,b Department of Psychiatry , University of Minnesota , Minneapolis , MN , USA
| | - James T Gullickson
- a Minneapolis Veterans Affairs Health Care System , Minneapolis , MN , USA.,b Department of Psychiatry , University of Minnesota , Minneapolis , MN , USA
| | - Scott F Grey
- c RTI International , Research Triangle Park , NC , USA
| | - Shawn Hirsch
- c RTI International , Research Triangle Park , NC , USA
| | - Scott R Sponheim
- a Minneapolis Veterans Affairs Health Care System , Minneapolis , MN , USA.,b Department of Psychiatry , University of Minnesota , Minneapolis , MN , USA
| | -
- a Minneapolis Veterans Affairs Health Care System , Minneapolis , MN , USA.,b Department of Psychiatry , University of Minnesota , Minneapolis , MN , USA
| |
Collapse
|
39
|
Oehr L, Anderson J. Diffusion-Tensor Imaging Findings and Cognitive Function Following Hospitalized Mixed-Mechanism Mild Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Arch Phys Med Rehabil 2017; 98:2308-2319. [DOI: 10.1016/j.apmr.2017.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/06/2017] [Accepted: 03/21/2017] [Indexed: 11/25/2022]
|
40
|
Dall'Acqua P, Johannes S, Mica L, Simmen HP, Glaab R, Fandino J, Schwendinger M, Meier C, Ulbrich EJ, Müller A, Jäncke L, Hänggi J. Prefrontal Cortical Thickening after Mild Traumatic Brain Injury: A One-Year Magnetic Resonance Imaging Study. J Neurotrauma 2017; 34:3270-3279. [PMID: 28847215 DOI: 10.1089/neu.2017.5124] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to evaluate group-by-time interactions between gray matter morphology of healthy controls and that of patients with mild traumatic brain injury (mTBI) as they transitioned from acute to chronic stages, and to relate these findings to long-term cognitive alterations to identify distinct recovery trajectories between good outcome (GO) and poor outcome (PO). High-resolution T1-weighted magnetic resonance images were acquired in 49 mTBI patients within 7 days and 1 year post-injury and at equivalent times in 49 healthy controls. Using linear mixed-effects models, we performed mass-univariate analyses and associated the results of the interaction with changes in cognitive performance. Morphological alterations indexed by increased or decreased cortical thickness have been expected mainly in frontal, parietal, and temporal brain regions. A significant interaction was found in cortical thickness, spatially restricted to bilateral structures of the prefrontal cortex, showing thickening in mTBI and normal developmental thinning in controls. A discrete thickness increase that can interpreted as the absence of cortical thinning typically seen in the healthy population was associated with cognitive recovery in the GO subgroup, while the exaggerated cortical thickening in the PO patients was linked to worsening cognitive performance. Thickness of the prefrontal cortex is subject to structural alterations during the first year after mTBI. Beside beneficial neuroplasticity, a prolonged state of neuroinflammation for symptomatic patients (maladaptive neuroplasticity) cannot be excluded. If the underlying cellular processes responsible for cortical thickening following mTBI have been determined, brain stimulation or even pharmacological intervention targeting the prefrontal cortex might promote endogenous neural restoration.
Collapse
Affiliation(s)
- Patrizia Dall'Acqua
- 1 Bellikon Rehabilitation Clinic , Bellikon, Switzerland .,2 Department of Psychology, University of Zurich , Zurich, Switzerland
| | - Sönke Johannes
- 1 Bellikon Rehabilitation Clinic , Bellikon, Switzerland
| | - Ladislav Mica
- 3 Division of Trauma Surgery, University Hospital Zurich , Zurich, Switzerland
| | - Hans-Peter Simmen
- 3 Division of Trauma Surgery, University Hospital Zurich , Zurich, Switzerland
| | | | - Javier Fandino
- 5 Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Markus Schwendinger
- 6 Interdisciplinary Emergency Center , Baden Cantonal Hospital, Baden, Switzerland
| | - Christoph Meier
- 7 Department of Surgery, Waid Hospital Zurich , Zurich, Switzerland
| | - Erika Jasmin Ulbrich
- 8 Institute of Diagnostic and Interventional Radiology, University Hospital Zurich , Zurich, Switzerland
| | - Andreas Müller
- 9 Brain and Trauma Foundation Grisons , Chur, Switzerland
| | - Lutz Jäncke
- 2 Department of Psychology, University of Zurich , Zurich, Switzerland .,10 International Normal Aging and Plasticity Imaging Center, University of Zurich , Zurich, Switzerland .,11 University Research Priority Program, Dynamic of Healthy Aging, University of Zurich , Zurich, Switzerland
| | - Jürgen Hänggi
- 2 Department of Psychology, University of Zurich , Zurich, Switzerland
| |
Collapse
|
41
|
Hellstrøm T, Westlye LT, Kaufmann T, Trung Doan N, Søberg HL, Sigurdardottir S, Nordhøy W, Helseth E, Andreassen OA, Andelic N. White matter microstructure is associated with functional, cognitive and emotional symptoms 12 months after mild traumatic brain injury. Sci Rep 2017; 7:13795. [PMID: 29061970 PMCID: PMC5653776 DOI: 10.1038/s41598-017-13628-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/27/2017] [Indexed: 02/04/2023] Open
Abstract
Identifying patients at risk of poor outcome after mild traumatic brain injury (MTBI) is essential to aid prognostics and treatment. Diffuse axonal injury (DAI) may be the primary pathologic feature of MTBI but is normally not detectable by conventional imaging technology. This lack of sensitivity of clinical imaging techniques has impeded a pathophysiologic understanding of the long-term cognitive and emotional consequences of MTBI, which often remain unnoticed and are attributed to factors other than the injury. Diffusion tensor imaging (DTI) is sensitive to microstructural properties of brain tissue and has been suggested to be a promising candidate for the detection of DAI in vivo. In this study, we report strong associations between brain white matter DTI and self-reported cognitive, somatic and emotional symptoms at 12 months post-injury in 134 MTBI patients. The anatomical distribution suggested global associations, in line with the diffuse symptomatology, although the strongest effects were found in frontal regions including the genu of the corpus callosum and the forceps minor. These findings support the hypothesis that DTI may provide increased sensitivity to the diffuse pathophysiology of MTBI and suggest an important role of advanced Magnetic Resonance Imaging (MRI) in trauma care.
Collapse
Affiliation(s)
- Torgeir Hellstrøm
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Lars T Westlye
- KG Jebsen Centre for Psychosis Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway & Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- KG Jebsen Centre for Psychosis Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway & Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nhat Trung Doan
- KG Jebsen Centre for Psychosis Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway & Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Helene L Søberg
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | | | - Wibeke Nordhøy
- Deptartment of Diagnostic Physics, Clinic of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Eirik Helseth
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Psychosis Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway & Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nada Andelic
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
- Institute of Health and Society, CHARM Research Centre for Habilitation and Rehabilitation Models & Services, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
42
|
Connor DE, Chaitanya GV, Chittiboina P, McCarthy P, Scott LK, Schrott L, Minagar A, Nanda A, Alexander JS. Variations in the cerebrospinal fluid proteome following traumatic brain injury and subarachnoid hemorrhage. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2017; 24:169-183. [PMID: 28549769 PMCID: PMC7303909 DOI: 10.1016/j.pathophys.2017.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 04/06/2017] [Accepted: 04/28/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Proteomic analysis of cerebrospinal fluid (CSF) has shown great promise in identifying potential markers of injury in neurodegenerative diseases [1-13]. Here we compared CSF proteomes in healthy individuals, with patients diagnosed with traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) in order to characterize molecular biomarkers which might identify these different clinical states and describe different molecular mechanisms active in each disease state. METHODS Patients presenting to the Neurosurgery service at the Louisiana State University Hospital-Shreveport with an admitting diagnosis of TBI or SAH were prospectively enrolled. Patients undergoing CSF sampling for diagnostic procedures were also enrolled as controls. CSF aliquots were subjected to 2-dimensional gel electrophoresis (2D GE) and spot percentage densities analyzed. Increased or decreased spot expression (compared to controls) was defined in terms of in spot percentages, with spots showing consistent expression change across TBI or SAH specimens being followed up by Matrix-Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). Polypeptide masses generated were matched to known standards using a search of the NCBI and/or GenPept databases for protein matches. Eight hundred fifteen separately identifiable polypeptide migration spots were identified on 2D GE gels. MALDI-MS successfully identified 13 of 22 selected 2D GE spots as recognizable polypeptides. RESULTS Statistically significant changes were noted in the expression of fibrinogen, carbonic anhydrase-I (CA-I), peroxiredoxin-2 (Prx-2), both α and β chains of hemoglobin, serotransferrin (Tf) and N-terminal haptoglobin (Hp) in TBI and SAH specimens, as compared to controls. The greatest mean fold change among all specimens was seen in CA-I and Hp at 30.7 and -25.7, respectively. TBI specimens trended toward greater mean increases in CA-I and Prx-2 and greater mean decreases in Hp and Tf. CONCLUSIONS Consistent CSF elevation of CA-I and Prx-2 with concurrent depletion of Hp and Tf may represent a useful combination of biomarkers for the prediction of severity and prognosis following brain injury.
Collapse
Affiliation(s)
- David E Connor
- Baptist Health Neurosurgery Arkansas, Little Rock, AR, United States.
| | - Ganta V Chaitanya
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States.
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD, United States.
| | - Paul McCarthy
- Department of Medicine, Sect. of Nephrology, University of Maryland, Baltimore, MD, United States.
| | - L Keith Scott
- Department of Critical Care Medicine, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Lisa Schrott
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Anil Nanda
- Department of Neurosurgery, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| |
Collapse
|
43
|
Haller S. Advance MR imaging in sports-related concussion and mild traumatic brain injury - ready for clinical use? (Commentary on Tremblay et al
. 2017). Eur J Neurosci 2017; 46:1954-1955. [DOI: 10.1111/ejn.13643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sven Haller
- Affidea CDRC Centre Diagnostique Radiologique de Carouge Clos de la Fonderie; 1, 1227 Carouge Switzerland
- Department of Surgical Sciences, Radiology; Uppsala University; Uppsala Sweden
- Department of Neuroradiology; University Hospital Freiburg; Freiburg Germany
- Faculty of Medicine; University of Geneva; Geneva Switzerland
| |
Collapse
|
44
|
Hellstrøm T, Westlye LT, Sigurdardottir S, Brunborg C, Soberg HL, Holthe Ø, Server A, Lund MJ, Andreassen OA, Andelic N. Longitudinal changes in brain morphology from 4 weeks to 12 months after mild traumatic brain injury: Associations with cognitive functions and clinical variables. Brain Inj 2017; 31:674-685. [DOI: 10.1080/02699052.2017.1283537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- T. Hellstrøm
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - L. T. Westlye
- KG Jebsen Centre for Psychosis Research/Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - S. Sigurdardottir
- Department of Research, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norwa
- CHARM Resarch Centre for Habilitation and Rehabilitation Models & Services, Oslo, Norway
| | - C. Brunborg
- Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - H. L. Soberg
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Ø. Holthe
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - A. Server
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - M. J. Lund
- KG Jebsen Centre for Psychosis Research/Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - O. A. Andreassen
- KG Jebsen Centre for Psychosis Research/Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - N. Andelic
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
- CHARM Resarch Centre for Habilitation and Rehabilitation Models & Services, Oslo, Norway
| |
Collapse
|
45
|
Asken BM, DeKosky ST, Clugston JR, Jaffee MS, Bauer RM. Diffusion tensor imaging (DTI) findings in adult civilian, military, and sport-related mild traumatic brain injury (mTBI): a systematic critical review. Brain Imaging Behav 2017; 12:585-612. [DOI: 10.1007/s11682-017-9708-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Narayana PA. White matter changes in patients with mild traumatic brain injury: MRI perspective. Concussion 2017; 2:CNC35. [PMID: 30202576 PMCID: PMC6093760 DOI: 10.2217/cnc-2016-0028] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/10/2017] [Indexed: 12/20/2022] Open
Abstract
This review focuses on white matter (WM) changes in mild traumatic brain injury (mTBI) as assessed by multimodal MRI. All the peer reviewed publications on WM changes in mTBI from January 2011 through September 2016 are included in this review. This review is organized as follows: introduction to mTBI, the basics of multimodal MRI techniques that are potentially useful for probing the WM integrity, summary and critical evaluation of the published literature on the application of multimodal MRI techniques to assess the changes of WM in mTBI, and correlation of MRI measures with behavioral deficits. The MRI–pathology correlation studies based on preclinical models of mTBI are also reviewed. Finally, the author's perspective of future research directions is described.
Collapse
Affiliation(s)
- Ponnada A Narayana
- Department of Diagnostic & Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
47
|
Toth A, Kornyei B, Kovacs N, Rostas T, Buki A, Doczi T, Bogner P, Schwarcz A. Both hemorrhagic and non-hemorrhagic traumatic MRI lesions are associated with the microstructural damage of the normal appearing white matter. Behav Brain Res 2017; 340:106-116. [PMID: 28249729 DOI: 10.1016/j.bbr.2017.02.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/11/2016] [Accepted: 02/22/2017] [Indexed: 10/20/2022]
Abstract
Traumatic microbleeds (TMBs) and non-hemorrhagic lesions (NHLs) on MRI are regarded as surrogate markers of diffuse axonal injury. However, the actual relation between lesional and diffuse pathology remained unclear, since lesions were related to clinical parameters, largely influenced by extracranial factors. The aim of this study is to directly compare TMBs, NHLs and their regional features with the co-existing diffuse injury of the normal appearing white matter (NAWM) as measured by diffusion tensor imaging (DTI). Thirty-eight adults with a closed traumatic brain injury (12 mild, 4 moderate and 22 severe) who underwent susceptibility weighted imaging (SWI), T1-, T2 weighted and FLAIR MRI and routine CT were included in the study. TMB (on SWI) and NHL (on T1-, T2 weighted and FLAIR images) features and Rotterdam scores were evaluated. DTI metrics such as fractional anisotropy (FA) and mean diffusivity (MD) were measured over different NAWM regions. Clinical parameters including age; Glasgow Coma Scale; Rotterdam score; TMB and NHL features were correlated to regional NAWM diffusivity using multiple regression. Overall NHL presence and basal ganglia area TMB load were significantly, negatively correlated with the subcortical NAWM FA values (partial r=-0.37 and -0.36; p=0.006 and 0.025, respectively). The presence of any NHL, or TMBs located in the basal ganglia area indicates diffuse NAWM damage even after adjusting for clinical and CT parameters. To estimate DAI, a conventional lesional MRI pathology evaluation might at least in part substitute the use of quantitative DTI, which is yet not widely feasible in a clinical setting.
Collapse
Affiliation(s)
- Arnold Toth
- Department of Neurosurgery, Pécs Medical School, Rét. u. 2, H-7623 Pécs, Hungary; Department of Radiology, Pécs Medical School, Ifjusag str. 13, H-7624 Pécs, Hungary.
| | - Balint Kornyei
- Department of Neurosurgery, Pécs Medical School, Rét. u. 2, H-7623 Pécs, Hungary
| | - Noemi Kovacs
- Department of Neurosurgery, Pécs Medical School, Rét. u. 2, H-7623 Pécs, Hungary
| | - Tamas Rostas
- Department of Radiology, Pécs Medical School, Ifjusag str. 13, H-7624 Pécs, Hungary
| | - Andras Buki
- Department of Neurosurgery, Pécs Medical School, Rét. u. 2, H-7623 Pécs, Hungary; MTA-PTE Clinical Neuroscience MR Research Group, Hungary
| | - Tamas Doczi
- Department of Neurosurgery, Pécs Medical School, Rét. u. 2, H-7623 Pécs, Hungary; Diagnostic Center of Pécs, Rét. u. 2, H-7623 Pécs, Hungary; MTA-PTE Clinical Neuroscience MR Research Group, Hungary
| | - Peter Bogner
- Department of Neurosurgery, Pécs Medical School, Rét. u. 2, H-7623 Pécs, Hungary; Department of Radiology, Pécs Medical School, Ifjusag str. 13, H-7624 Pécs, Hungary
| | - Attila Schwarcz
- Department of Neurosurgery, Pécs Medical School, Rét. u. 2, H-7623 Pécs, Hungary; MTA-PTE Clinical Neuroscience MR Research Group, Hungary
| |
Collapse
|
48
|
Rose SC, Schaffer CE, Young JA, McNally KA, Fischer AN, Heyer GL. Utilization of conventional neuroimaging following youth concussion. Brain Inj 2017; 31:260-266. [DOI: 10.1080/02699052.2016.1235285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sean C. Rose
- Division of Pediatric Neurology, Nationwide Children’s Hospital and Department of Neurology, The Ohio State University, Columbus, OH, USA
| | | | - Julie A. Young
- Division of Sports Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kelly A. McNally
- Division of Pediatric Psychology and Neuropsychology, Nationwide Children’s Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | | | - Geoffrey L. Heyer
- Division of Pediatric Neurology, Nationwide Children’s Hospital and Department of Neurology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
49
|
Wu X, Kirov II, Gonen O, Ge Y, Grossman RI, Lui YW. MR Imaging Applications in Mild Traumatic Brain Injury: An Imaging Update. Radiology 2016; 279:693-707. [PMID: 27183405 DOI: 10.1148/radiol.16142535] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mild traumatic brain injury (mTBI), also commonly referred to as concussion, affects millions of Americans annually. Although computed tomography is the first-line imaging technique for all traumatic brain injury, it is incapable of providing long-term prognostic information in mTBI. In the past decade, the amount of research related to magnetic resonance (MR) imaging of mTBI has grown exponentially, partly due to development of novel analytical methods, which are applied to a variety of MR techniques. Here, evidence of subtle brain changes in mTBI as revealed by these techniques, which are not demonstrable by conventional imaging, will be reviewed. These changes can be considered in three main categories of brain structure, function, and metabolism. Macrostructural and microstructural changes have been revealed with three-dimensional MR imaging, susceptibility-weighted imaging, diffusion-weighted imaging, and higher order diffusion imaging. Functional abnormalities have been described with both task-mediated and resting-state blood oxygen level-dependent functional MR imaging. Metabolic changes suggesting neuronal injury have been demonstrated with MR spectroscopy. These findings improve understanding of the true impact of mTBI and its pathogenesis. Further investigation may eventually lead to improved diagnosis, prognosis, and management of this common and costly condition. (©) RSNA, 2016.
Collapse
Affiliation(s)
- Xin Wu
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| | - Ivan I Kirov
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| | - Oded Gonen
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| | - Yulin Ge
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| | - Robert I Grossman
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| | - Yvonne W Lui
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| |
Collapse
|
50
|
Bramlett HM, Dietrich WD, Dixon CE, Shear DA, Schmid KE, Mondello S, Wang KKW, Hayes RL, Povlishock JT, Tortella FC, Kochanek PM. Erythropoietin Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. J Neurotrauma 2016; 33:538-52. [PMID: 26670694 DOI: 10.1089/neu.2015.4116] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Experimental studies targeting traumatic brain injury (TBI) have reported that erythropoietin (EPO) is an endogenous neuroprotectant in multiple models. In addition to its neuroprotective effects, it has also been shown to enhance reparative processes including angiogenesis and neurogenesis. Based on compelling pre-clinical data, EPO was tested by the Operation Brain Trauma Therapy (OBTT) consortium to evaluate therapeutic potential in multiple TBI models along with biomarker assessments. Based on the pre-clinical TBI literature, two doses of EPO (5000 and 10,000 IU/kg) were tested given at 15 min after moderate fluid percussion brain injury (FPI), controlled cortical impact (CCI), or penetrating ballistic-like brain injury (PBBI) with subsequent behavioral, histopathological, and biomarker outcome assessments. There was a significant benefit on beam walk with the 5000 IU dose in CCI, but no benefit on any other motor task across models in OBTT. Also, no benefit of EPO treatment across the three TBI models was noted using the Morris water maze to assess cognitive deficits. Lesion volume analysis showed no treatment effects after either FPI or CCI; however, with the 5000 IU/kg dose of EPO, a paradoxical increase in lesion volume and percent hemispheric tissue loss was seen after PBBI. Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) in blood at 4 or 24 h after injury. No treatment effects were seen on biomarker levels after FPI, whereas treatment at either dose exacerbated the increase in GFAP at 24 h in PBBI but attenuated 24-4 h delta UCH-L1 levels at high dose in CCI. Our data indicate a surprising lack of efficacy of EPO across three established TBI models in terms of behavioral, histopathological, and biomarker assessments. Although we cannot rule out the possibility that other doses or more prolonged treatment could show different effects, the lack of efficacy of EPO reduced enthusiasm for its further investigation in OBTT.
Collapse
Affiliation(s)
- Helen M Bramlett
- 1 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami , Miami, Florida.,2 Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
| | - W Dalton Dietrich
- 1 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami , Miami, Florida
| | - C Edward Dixon
- 3 Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Deborah A Shear
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Kara E Schmid
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Stefania Mondello
- 5 Department of Neurosciences, University of Messina , Messina, Italy
| | - Kevin K W Wang
- 6 Center of Neuroproteomics and Biomarkers Research, Department of Psychiatry and Neuroscience, University of Florida. Gainesville, Florida
| | - Ronald L Hayes
- 7 Center for Innovative Research, Center for Neuroproteomics and Biomarkers Research , Banyan Biomarkers, Inc., Alachua, Florida
| | - John T Povlishock
- 8 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| | - Frank C Tortella
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Patrick M Kochanek
- 9 Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|