1
|
Yu W, Zhang R, Zhang A, Mei Y. Deciphering the Functions of Raphe-Hippocampal Serotonergic and Glutamatergic Circuits and Their Deficits in Alzheimer's Disease. Int J Mol Sci 2025; 26:1234. [PMID: 39941002 PMCID: PMC11818420 DOI: 10.3390/ijms26031234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Subcortical innervation of the hippocampus by the raphe nucleus is essential for emotional and cognitive control. The two major afferents from raphe to hippocampus originate from serotonergic and glutamatergic neurons, of which the serotonergic control of hippocampal inhibitory network, theta activity, and synaptic plasticity have been extensively explored in the growing body of literature, whereas those of glutamatergic circuits have received little attention. Notably, both serotonergic and glutamatergic circuits between raphe and hippocampus are disrupted in Alzheimer's disease (AD), which may contribute to initiation and progression of behavioral and psychological symptoms of dementia. Thus, deciphering the mechanism underlying abnormal raphe-hippocampal circuits in AD is crucial to prevent dementia-associated emotional and cognitive symptoms. In this review, we summarize the anatomical, neurochemical, and electrophysiological diversity of raphe nuclei as well as the architecture of raphe-hippocampal circuitry. We then elucidate subcortical control of hippocampal activity by raphe nuclei and their role in regulation of emotion and cognition. Additionally, we present an overview of disrupted raphe-hippocampal circuits in AD pathogenesis and analyze the available therapies that can potentially be used clinically to alleviate the neuropsychiatric symptoms and cognitive decline in AD course.
Collapse
Affiliation(s)
| | | | | | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer’s Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
2
|
Nishimura K, Sanchez-Molano J, Kerr N, Pressman Y, Silvera R, Khan A, Gajavelli S, Bramlett HM, Dietrich WD. Beneficial Effects of Human Schwann Cell-Derived Exosomes in Mitigating Secondary Damage After Penetrating Ballistic-Like Brain Injury. J Neurotrauma 2024; 41:2395-2412. [PMID: 38445369 PMCID: PMC11631803 DOI: 10.1089/neu.2023.0650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
There is a growing body of evidence that the delivery of cell-derived exosomes normally involved in intracellular communication can reduce secondary injury mechanisms after brain and spinal cord injury and improve outcomes. Exosomes are nanometer-sized vesicles that are released by Schwann cells and may have neuroprotective effects by reducing post-traumatic inflammatory processes as well as promoting tissue healing and functional recovery. The purpose of this study was to evaluate the beneficial effects of human Schwann-cell exosomes (hSC-Exos) in a severe model of penetrating ballistic-like brain injury (PBBI) in rats and investigate effects on multiple outcomes. Human Schwann cell processing protocols followed Current Good Manufacturing Practices (cGMP) with exosome extraction and purification steps approved by the Food and Drug Administration for an expanded access single ALS patient Investigational New Drug. Anesthetized male Sprague-Dawley rats (280-350g) underwent PBBI surgery or Sham procedures and, starting 30 min after injury, received either a dose of hSC-Exos or phosphate-buffered saline through the jugular vein. At 48h after PBBI, flow cytometry analysis of cortical tissue revealed that hSC-Exos administration reduced the number of activated microglia and levels of caspase-1, a marker of inflammasome activation. Neuropathological analysis at 21 days showed that hSC-Exos treatment after PBBI significantly reduced overall contusion volume and decreased the frequency of Iba-1 positive activated and amoeboid microglia by immunocytochemical analysis. This study revealed that the systemic administration of hSC-Exos is neuroprotective in a model of severe TBI and reduces secondary inflammatory injury mechanisms and histopathological damage. The administration of hSC-Exos represents a clinically relevant cell-based therapy to limit the detrimental effects of neurotrauma or other progressive neurological injuries by impacting multiple pathophysiological events and promoting neurological recovery.
Collapse
Affiliation(s)
- Kengo Nishimura
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Juliana Sanchez-Molano
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nadine Kerr
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yelena Pressman
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Risset Silvera
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Aisha Khan
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Helen M. Bramlett
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
| | - W. Dalton Dietrich
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
3
|
Ziesel D, Nowakowska M, Scheruebel S, Kornmueller K, Schäfer U, Schindl R, Baumgartner C, Üçal M, Rienmüller T. Electrical stimulation methods and protocols for the treatment of traumatic brain injury: a critical review of preclinical research. J Neuroeng Rehabil 2023; 20:51. [PMID: 37098582 PMCID: PMC10131365 DOI: 10.1186/s12984-023-01159-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/13/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of disabilities resulting from cognitive and neurological deficits, as well as psychological disorders. Only recently, preclinical research on electrical stimulation methods as a potential treatment of TBI sequelae has gained more traction. However, the underlying mechanisms of the anticipated improvements induced by these methods are still not fully understood. It remains unclear in which stage after TBI they are best applied to optimize the therapeutic outcome, preferably with persisting effects. Studies with animal models address these questions and investigate beneficial long- and short-term changes mediated by these novel modalities. METHODS In this review, we present the state-of-the-art in preclinical research on electrical stimulation methods used to treat TBI sequelae. We analyze publications on the most commonly used electrical stimulation methods, namely transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), deep brain stimulation (DBS) and vagus nerve stimulation (VNS), that aim to treat disabilities caused by TBI. We discuss applied stimulation parameters, such as the amplitude, frequency, and length of stimulation, as well as stimulation time frames, specifically the onset of stimulation, how often stimulation sessions were repeated and the total length of the treatment. These parameters are then analyzed in the context of injury severity, the disability under investigation and the stimulated location, and the resulting therapeutic effects are compared. We provide a comprehensive and critical review and discuss directions for future research. RESULTS AND CONCLUSION: We find that the parameters used in studies on each of these stimulation methods vary widely, making it difficult to draw direct comparisons between stimulation protocols and therapeutic outcome. Persisting beneficial effects and adverse consequences of electrical simulation are rarely investigated, leaving many questions about their suitability for clinical applications. Nevertheless, we conclude that the stimulation methods discussed here show promising results that could be further supported by additional research in this field.
Collapse
Affiliation(s)
- D Ziesel
- Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Graz, Austria
| | - M Nowakowska
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - S Scheruebel
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics Division, Medical University of Graz, Graz, Austria
| | - K Kornmueller
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics Division, Medical University of Graz, Graz, Austria
| | - U Schäfer
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - R Schindl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics Division, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - C Baumgartner
- Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - M Üçal
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - T Rienmüller
- Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
4
|
Surendrakumar S, Rabelo TK, Campos ACP, Mollica A, Abrahao A, Lipsman N, Burke MJ, Hamani C. Neuromodulation Therapies in Pre-Clinical Models of Traumatic Brain Injury: Systematic Review and Translational Applications. J Neurotrauma 2023; 40:435-448. [PMID: 35983592 DOI: 10.1089/neu.2022.0286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) has been associated with several lasting impairments that affect quality of life. Pre-clinical models of TBI have been studied to further our understanding of the underlying short-term and long-term symptomatology. Neuromodulation techniques have become of great interest in recent years as potential rehabilitative therapies after injury because of their capacity to alter neuronal activity and neural circuits in targeted brain regions. This systematic review aims to provide an overlook of the behavioral and neurochemical effects of transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS), deep brain stimulation (DBS), and vagus nerve stimulation (VNS) in pre-clinical TBI models. After screening 629 abstracts, 30 articles were pooled for review. These studies showed that tDCS, TMS, DBS, or VNS delivered to rodents restored TBI-induced deficits in coordination, balance, locomotor activity and improved cognitive impairments in memory, learning, and impulsivity. Potential mechanisms for these effects included neuroprotection, a decrease in apoptosis, neuroplasticity, and the restoration of neural circuit abnormalities. The translational value, potential applicability, and the interpretation of these findings in light of outcome data from clinical trials in patients with TBI are discussed.
Collapse
Affiliation(s)
- Shanan Surendrakumar
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Thallita Kelly Rabelo
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ana Carolina P Campos
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Adriano Mollica
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Neuropsychiatry Program, Department of Psychiatry, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Agessandro Abrahao
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Matthew J Burke
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Neuropsychiatry Program, Department of Psychiatry, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Tiefenbach J, Chan HH, Machado AG, Baker KB. Neurostimulation for Functional Recovery After Traumatic Brain Injury: Current Evidence and Future Directions for Invasive Surgical Approaches. Neurosurgery 2022; 91:823-830. [PMID: 36069568 PMCID: PMC10552985 DOI: 10.1227/neu.0000000000002134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
We aim to provide a comprehensive review of the current scientific evidence supporting the use of invasive neurostimulation in the treatment of deficits associated with traumatic brain injury (TBI), as well as to identify future directions for research and highlight important questions that remain unaddressed. Neurostimulation is a treatment modality with expanding applications in modern medical practice. Targeted electrical stimulation of specific brain regions has been shown to increase synaptogenesis and enhance structural reorganization of neuronal networks. This underlying therapeutic effect might be of high value for patients suffering from TBI because it could modulate neuronal connectivity and function of areas that are partially or completely spared after injury. The current published literature exploring the application of invasive neurostimulation for the treatment of functional deficits associated with TBI is scarce but promising. Rodent models have shown that targeted stimulation of the hippocampus or connecting structures can result in significant cognitive recovery, while stimulation of the motor cortex and deep cerebellar nuclei is associated with motor improvements. Data from clinical studies are extremely limited; single-patient reports and case series found neurostimulation to be effective in relieving motor symptoms, improving visuospatial memory, and supporting emotional adjustment. Looking forward, it will be important to identify stimulation targets and paradigms that can maximize improvement over multiple functional domains. It will also be important to corroborate the observed behavioral improvements with histological, electrophysiological, and radiological evidence. Finally, the impact of biological variables such as sex and age on the treatment outcomes needs to be explored.
Collapse
Affiliation(s)
- Jakov Tiefenbach
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio USA
| | - Hugh H. Chan
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio USA
| | - Andre G. Machado
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio USA
| | - Kenneth B. Baker
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio USA
| |
Collapse
|
6
|
Aronson JP, Katnani HA, Huguenard A, Mulvaney G, Bader ER, Yang JC, Eskandar EN. Phasic stimulation in the nucleus accumbens enhances learning after traumatic brain injury. Cereb Cortex Commun 2022; 3:tgac016. [PMID: 35529519 PMCID: PMC9070350 DOI: 10.1093/texcom/tgac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide. Despite improvements in survival, treatments that improve functional outcome remain lacking. There is, therefore, a pressing need to develop novel treatments to improve functional recovery. Here, we investigated task-matched deep-brain stimulation of the nucleus accumbens (NAc) to augment reinforcement learning in a rodent model of TBI. We demonstrate that task-matched deep brain stimulation (DBS) of the NAc can enhance learning following TBI. We further demonstrate that animals receiving DBS exhibited greater behavioral improvement and enhanced neural proliferation. Treated animals recovered to an uninjured behavioral baseline and showed retention of improved performance even after stimulation was stopped. These results provide encouraging early evidence for the potential of NAc DBS to improve functional outcomes following TBI and that its effects may be broad, with alterations in neurogenesis and synaptogenesis.
Collapse
Affiliation(s)
- Joshua P Aronson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Section of Neurosurgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Husam A Katnani
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Huguenard
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Graham Mulvaney
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward R Bader
- Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jimmy C Yang
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emad N Eskandar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
7
|
Faillot M, Chaillet A, Palfi S, Senova S. Rodent models used in preclinical studies of deep brain stimulation to rescue memory deficits. Neurosci Biobehav Rev 2021; 130:410-432. [PMID: 34437937 DOI: 10.1016/j.neubiorev.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Deep brain stimulation paradigms might be used to treat memory disorders in patients with stroke or traumatic brain injury. However, proof of concept studies in animal models are needed before clinical translation. We propose here a comprehensive review of rodent models for Traumatic Brain Injury and Stroke. We systematically review the histological, behavioral and electrophysiological features of each model and identify those that are the most relevant for translational research.
Collapse
Affiliation(s)
- Matthieu Faillot
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Antoine Chaillet
- Laboratoire des Signaux et Systèmes (L2S-UMR8506) - CentraleSupélec, Université Paris Saclay, Institut Universitaire de France, France
| | - Stéphane Palfi
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Suhan Senova
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France.
| |
Collapse
|
8
|
Jermakowicz WJ, Carballosa-Gautam MM, Vitores AA, Hentall ID. Brainstem-Evoked Transcription of Defensive Genes After Spinal Cord Injury. Front Cell Neurosci 2019; 13:510. [PMID: 31803022 PMCID: PMC6877476 DOI: 10.3389/fncel.2019.00510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
The spinal cord after injury shows altered transcription in numerous genes. We tested in a pilot study whether the nucleus raphé magnus, a descending serotonergic brainstem region whose stimulation improves recovery after incomplete spinal cord injury (SCI), can influence these transcriptional changes. Rats received 2 h of low-frequency electrical stimulation in the raphé magnus 3 days after an impact contusion at segment T8. Comparison groups lacked injuries or activated stimulators or both. Immediately following stimulation, spinal cords were extracted, their RNA transcriptome sequenced, and differential gene expression quantified. Confirming many previous studies, injury primarily increased inflammatory and immune transcripts and decreased those related to lipid and cholesterol synthesis and neuronal signaling. Stimulation plus injury, contrasted with injury alone, caused significant changes in 43 transcripts (39 increases, 4 decreases), all protein-coding. Injury itself decreased only four of these 43 transcripts, all reversed by stimulation, and increased none of them. The non-specific 5-HT7 receptor antagonist pimozide reversed 25 of the 43 changes. Stimulation in intact rats principally caused decreases in transcripts related to oxidative phosphorylation, none of which were altered by stimulation in injury. Gene ontology (biological process) annotations comparing stimulation with either no stimulation or pimozide treatment in injured rats highlighted defense responses to lipopolysaccharides and microorganisms, and also erythrocyte development and oxygen transport (possibly yielding cellular oxidant detoxification). Connectivity maps of human orthologous genes generated in the CLUE database of perturbagen-response transcriptional signatures showed that drug classes whose effects in injured rats most closely resembled stimulation without pimozide include peroxisome proliferator-activated receptor agonists and angiotensin receptor blockers, which are reportedly beneficial in SCI. Thus the initial transcriptional response of the injured spinal cord to raphé magnus stimulation is upregulation of genes that in various ways are mostly protective, some probably located in recently arrived myeloid cells.
Collapse
Affiliation(s)
- Walter J Jermakowicz
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Miami, FL, United States
| | - Melissa M Carballosa-Gautam
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Miami, FL, United States
| | - Alberto A Vitores
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Miami, FL, United States
| | - Ian D Hentall
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Miami, FL, United States
| |
Collapse
|
9
|
Kundu B, Brock AA, Englot DJ, Butson CR, Rolston JD. Deep brain stimulation for the treatment of disorders of consciousness and cognition in traumatic brain injury patients: a review. Neurosurg Focus 2019; 45:E14. [PMID: 30064315 DOI: 10.3171/2018.5.focus18168] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is a looming epidemic, growing most rapidly in the elderly population. Some of the most devastating sequelae of TBI are related to depressed levels of consciousness (e.g., coma, minimally conscious state) or deficits in executive function. To date, pharmacological and rehabilitative therapies to treat these sequelae are limited. Deep brain stimulation (DBS) has been used to treat a number of pathologies, including Parkinson disease, essential tremor, and epilepsy. Animal and clinical research shows that targets addressing depressed levels of consciousness include components of the ascending reticular activating system and areas of the thalamus. Targets for improving executive function are more varied and include areas that modulate attention and memory, such as the frontal and prefrontal cortex, fornix, nucleus accumbens, internal capsule, thalamus, and some brainstem nuclei. The authors review the literature addressing the use of DBS to treat higher-order cognitive dysfunction and disorders of consciousness in TBI patients, while also offering suggestions on directions for future research.
Collapse
Affiliation(s)
| | | | - Dario J Englot
- 2Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | |
Collapse
|
10
|
Sekar S, Zhang Y, Miranzadeh Mahabadi H, Parvizi A, Taghibiglou C. Low-Field Magnetic Stimulation Restores Cognitive and Motor Functions in the Mouse Model of Repeated Traumatic Brain Injury: Role of Cellular Prion Protein. J Neurotrauma 2019; 36:3103-3114. [PMID: 31020907 DOI: 10.1089/neu.2018.5918] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Traumatic brain injury (TBI)/concussion is a growing epidemic throughout the world. Memory and neurobehavioral dysfunctions are among the sequelae of TBI. Dislodgement of cellular prion protein (PrPc) and disruption of circadian rhythm have been linked to TBI. Low-field magnetic stimulation (LFMS) is a new noninvasive repetitive transcranial magnetic stimulation (rTMS) technique that generates diffused and low-intensity magnetic stimulation to deep cortical and subcortical areas. The role of LFMS on PrPc, proteins related to the circadian rhythm, and behavior alterations in a repeated TBI mouse model were studied in the present study. TBI was induced to the mice (right hemisphere) using weight-drop method, once daily for 3 days. LFMS treatment was given for 20 min once daily for 4 days (immediately after each TBI induction). The results showed that LFMS-treated TBI mice significantly improved cognitive and motor function as evidenced by open field exploration, rotarod, and novel location recognition tasks. In addition, a significant increase in PrPc and decreased glial fibrillary acidic protein levels were observed in cortical and hippocampal regions of LFMS-treated TBI mice brain compared with sham-treated TBI mice, while neuronal nuclei level was significantly increased in cortical region. In LFMS-treated mice, a decrease in proteins related to circadian rhythm were observed, compared with sham-treated TBI mice. The results obtained from the study demonstrated the neuroprotective effect of LFMS, which may be through regulating PrPc and/or proteins related to circadian rhythm. Thus, the present study suggests that LFMS may improve the subject's neurological condition following TBI.
Collapse
Affiliation(s)
- Sathiya Sekar
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yanbo Zhang
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hajar Miranzadeh Mahabadi
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Amirhassan Parvizi
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Changiz Taghibiglou
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
Cellular Changes in Injured Rat Spinal Cord Following Electrical Brainstem Stimulation. Brain Sci 2019; 9:brainsci9060124. [PMID: 31142050 PMCID: PMC6628227 DOI: 10.3390/brainsci9060124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 01/06/2023] Open
Abstract
Spinal cord injury (SCI) is a major cause of disability and pain, but little progress has been made in its clinical management. Low-frequency electrical stimulation (LFS) of various anti-nociceptive targets improves outcomes after SCI, including motor recovery and mechanical allodynia. However, the mechanisms of these beneficial effects are incompletely delineated and probably multiple. Our aim was to explore near-term effects of LFS in the hindbrain's nucleus raphe magnus (NRM) on cellular proliferation in a rat SCI model. Starting 24 h after incomplete contusional SCI at C5, intermittent LFS at 8 Hz was delivered wirelessly to NRM. Controls were given inactive stimulators. At 48 h, 5-bromodeoxyuridine (BrdU) was administered and, at 72 h, spinal cords were extracted and immunostained for various immune and neuroglial progenitor markers and BrdU at the level of the lesion and proximally and distally. LFS altered cell marker counts predominantly at the dorsal injury site. BrdU cell counts were decreased. Individually and in combination with BrdU, there were reductions in CD68 (monocytes) and Sox2 (immature neural precursors) and increases in Blbp (radial glia) expression. CD68-positive cells showed increased co-staining with iNOS. No differences in the expression of GFAP (glia) and NG2 (oligodendrocytes) or in GFAP cell morphology were found. In conclusion, our work shows that LFS of NRM in subacute SCI influences the proliferation of cell types implicated in inflammation and repair, thus providing mechanistic insight into deep brain stimulation as a neuromodulatory treatment for this devastating pathology.
Collapse
|
12
|
Tucker LB, Velosky AG, McCabe JT. Applications of the Morris water maze in translational traumatic brain injury research. Neurosci Biobehav Rev 2018; 88:187-200. [PMID: 29545166 DOI: 10.1016/j.neubiorev.2018.03.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/21/2022]
Abstract
Acquired traumatic brain injury (TBI) is frequently accompanied by persistent cognitive symptoms, including executive function disruptions and memory deficits. The Morris Water Maze (MWM) is the most widely-employed laboratory behavioral test for assessing cognitive deficits in rodents after experimental TBI. Numerous protocols exist for performing the test, which has shown great robustness in detecting learning and memory deficits in rodents after infliction of TBI. We review applications of the MWM for the study of cognitive deficits following TBI in pre-clinical studies, describing multiple ways in which the test can be employed to examine specific aspects of learning and memory. Emphasis is placed on dependent measures that are available and important controls that must be considered in the context of TBI. Finally, caution is given regarding interpretation of deficits as being indicative of dysfunction of a single brain region (hippocampus), as experimental models of TBI most often result in more diffuse damage that disrupts multiple neural pathways and larger functional networks that participate in complex behaviors required in MWM performance.
Collapse
Affiliation(s)
- Laura B Tucker
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Alexander G Velosky
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Joseph T McCabe
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
13
|
Abstract
The success of naturalistic or therapeutic neuroregeneration likely depends on an internal milieu that facilitates the survival, proliferation, migration, and differentiation of stem cells and their assimilation into neural networks. Migraine attacks are an integrated sequence of physiological processes that may protect the brain from oxidative stress by releasing growth factors, suppressing apoptosis, stimulating neurogenesis, encouraging mitochondrial biogenesis, reducing the production of oxidants, and upregulating antioxidant defenses. Thus, the migraine attack may constitute a physiologic environment conducive to stem cells. In this paper, key components of migraine are reviewed – neurogenic inflammation with release of calcitonin gene-related peptide (CGRP) and substance P, plasma protein extravasation, platelet activation, release of serotonin by platelets and likely by the dorsal raphe nucleus, activation of endothelial nitric oxide synthase (eNOS), production of brain-derived neurotrophic factor (BDNF) and, in migraine aura, cortical spreading depression – along with their potential neurorestorative aspects. The possibility is considered of using these components to facilitate successful stem cell transplantation. Potential methods for doing so are discussed, including chemical stimulation of the TRPA1 ion channel, conjoint activation of a subset of migraine components, invasive and noninvasive deep brain stimulation of the dorsal raphe nucleus, transcranial focused ultrasound, and stimulation of the Zusanli (ST36) acupuncture point.
Collapse
Affiliation(s)
- Jonathan M Borkum
- Department of Psychology, University of Maine, Orono; Health Psych Maine, Waterville, ME, USA
| |
Collapse
|
14
|
Vitores AA, Sloley SS, Martinez C, Carballosa-Gautam MM, Hentall ID. Some Autonomic Deficits of Acute or Chronic Cervical Spinal Contusion Reversed by Interim Brainstem Stimulation. J Neurotrauma 2017; 35:560-572. [PMID: 29160143 DOI: 10.1089/neu.2017.5123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Prolonged electrical stimulation of the hindbrain's nucleus raphe magnus (NRM) or of its major midbrain input region, the periaqueductal gray (PAG), was previously found in rats to promote recovery from sensory-motor and histological deficits of acute thoracic spinal cord injury (SCI). Here, some visceral deficits of acute and chronic midline cervical (C5) contusion are similarly examined. Cranially implanted wireless stimulators delivered intermittent 8 Hz, 30-70 μA cathodal pulse trains to a brainstem microelectrode. Injured controls were given inactive stimulators; rats without injuries or implants were also compared. Rectal distension or squeezing of the forepaws caused an exaggerated rise in mean arterial pressure in injured, untreated rats under anesthesia on post-injury week 6, probably reflecting autonomic dysreflexia (AD). These pressor responses became normal when 7 days of unilateral PAG stimulation was started on the injury day. Older untreated injuries (weeks 18-19) showed normal pressor responses, but unexpectedly had significant resting and nociceptive bradycardia, which was reversed by 3 weeks of PAG stimulation started on weeks 7 or 12. Subsequent chronic studies examined gastric emptying (GE), as indicated by intestinal transit of gavaged dye, and serum chemistry. GE and fasting serum insulin were reduced on injury weeks 14-15, and were both normalized by ∼5 weeks of PAG stimulation begun in weeks 7-8. Increases in calcitonin gene-related peptide, a prominent visceral afferent neurotransmitter, measured near untreated injuries (first thoracic segment) in superficial dorsal laminae were reversed by acutely or chronically initiated PAG stimulation. The NRM, given 2-3 weeks of stimulation beginning 2 days after SCI, prevented abnormalities in both pressor responses and GE on post-injury week 9, consistent with its relaying of repair commands from the PAG. The descending PAG-NRM axis thus exhibits broadly restorative influences on visceral as well as sensory-motor deficits, improving chronic as well as acute signs of injury.
Collapse
Affiliation(s)
- Alberto A Vitores
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Stephanie S Sloley
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Catalina Martinez
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Melissa M Carballosa-Gautam
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Ian D Hentall
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| |
Collapse
|
15
|
Paterno R, Folweiler KA, Cohen AS. Pathophysiology and Treatment of Memory Dysfunction After Traumatic Brain Injury. Curr Neurol Neurosci Rep 2017; 17:52. [PMID: 28500417 PMCID: PMC5861722 DOI: 10.1007/s11910-017-0762-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Memory is fundamental to everyday life, and cognitive impairments resulting from traumatic brain injury (TBI) have devastating effects on TBI survivors. A contributing component to memory impairments caused by TBI is alteration in the neural circuits associated with memory function. In this review, we aim to bring together experimental findings that characterize behavioral memory deficits and the underlying pathophysiology of memory-involved circuits after TBI. While there is little doubt that TBI causes memory and cognitive dysfunction, it is difficult to conclude which memory phase, i.e., encoding, maintenance, or retrieval, is specifically altered by TBI. This is most likely due to variation in behavioral protocols and experimental models. Additionally, we review a selection of experimental treatments that hold translational potential to mitigate memory dysfunction following injury.
Collapse
Affiliation(s)
- Rosalia Paterno
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Abramson Research Center, Rm. 816-h, Philadelphia, PA, 19104, USA.
| | - Kaitlin A Folweiler
- Department of Anesthesiology and Critical Care Medicine, Joseph Stokes, Jr. Research Institute, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Rm. 816-h, Philadelphia, PA, 19104, USA
| | - Akiva S Cohen
- Department of Anesthesiology and Critical Care Medicine, Joseph Stokes, Jr. Research Institute, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Rm. 816-h, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Abramson Research Center, Rm. 816-h, Philadelphia, PA, 19104, USA
| |
Collapse
|
16
|
Madsen PM, Sloley SS, Vitores AA, Carballosa-Gautam MM, Brambilla R, Hentall ID. Prolonged stimulation of a brainstem raphe region attenuates experimental autoimmune encephalomyelitis. Neuroscience 2017; 346:395-402. [PMID: 28147248 PMCID: PMC5337132 DOI: 10.1016/j.neuroscience.2017.01.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/22/2022]
Abstract
Multiple sclerosis (MS), a neuroinflammatory disease, has few treatment options, none entirely adequate. We studied whether prolonged electrical microstimulation of a hindbrain region (the nucleus raphe magnus) can attenuate experimental autoimmune encephalomyelitis, a murine model of MS induced by MOG35-55 injection. Eight days after symptoms emerged, a wireless electrical stimulator with an attached microelectrode was implanted cranially, and daily intermittent stimulation was begun in awake, unrestrained mice. The thoracic spinal cord was analyzed for changes in histology (on day 29) and gene expression (on day 37), with a focus on myelination and cytokine production. Controls, with inactive implants, showed a phase of disease exacerbation on days 19-25 that stimulation for >16days eliminated. Prolonged stimulation also reduced numbers of infiltrating immune cells and increased numbers of myelinated axons. It additionally lowered genetic expression of some pro-inflammatory cytokines (interferon gamma and tumor necrosis factor) and platelet-derived growth factor receptor alpha, a marker of oligodendrocyte precursors, while raising expression of myelin basic protein. Studies of restorative treatments for MS might profitably consider ways to stimulate the raphe magnus, directly or via its inputs, or to emulate its serotonergic and peptidergic output.
Collapse
Affiliation(s)
- Pernille M Madsen
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Stephanie S Sloley
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA
| | - Alberto A Vitores
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA
| | | | - Roberta Brambilla
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA.
| | - Ian D Hentall
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA.
| |
Collapse
|
17
|
Abstract
Disorders of learning and memory have a large social and economic impact in today's society. Unfortunately, existing medical treatments have shown limited clinical efficacy or potential for modification of the disease course. Deep brain stimulation is a successful treatment for movement disorders and has shown promise in a variety of other diseases including psychiatric disorders. The authors review the potential of neuromodulation for the treatment of disorders of learning and memory. They briefly discuss learning circuitry and its involvement in Alzheimer disease and traumatic brain injury. They then review the literature supporting various targets for neuromodulation to improve memory in animals and humans. Multiple targets including entorhinal cortex, fornix, nucleus basalis of Meynert, basal ganglia, and pedunculopontine nucleus have shown a promising potential for improving dysfunctional memory by mechanisms such as altering firing patterns in neuronal networks underlying memory and increasing synaptic plasticity and neurogenesis. Significant work remains to be done to translate these findings into durable clinical therapies.
Collapse
Affiliation(s)
- Sarah K B Bick
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Emad N Eskandar
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
18
|
Surgical Neurostimulation for Spinal Cord Injury. Brain Sci 2017; 7:brainsci7020018. [PMID: 28208601 PMCID: PMC5332961 DOI: 10.3390/brainsci7020018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 01/07/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating neurological condition characterized by a constellation of symptoms including paralysis, paraesthesia, pain, cardiovascular, bladder, bowel and sexual dysfunction. Current treatment for SCI involves acute resuscitation, aggressive rehabilitation and symptomatic treatment for complications. Despite the progress in scientific understanding, regenerative therapies are lacking. In this review, we outline the current state and future potential of invasive and non-invasive neuromodulation strategies including deep brain stimulation (DBS), spinal cord stimulation (SCS), motor cortex stimulation (MCS), transcutaneous direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) in the context of SCI. We consider the ability of these therapies to address pain, sensorimotor symptoms and autonomic dysregulation associated with SCI. In addition to the potential to make important contributions to SCI treatment, neuromodulation has the added ability to contribute to our understanding of spinal cord neurobiology and the pathophysiology of SCI.
Collapse
|
19
|
Vagus Nerve Stimulation and Other Neuromodulation Methods for Treatment of Traumatic Brain Injury. Neurocrit Care 2017; 24:308-19. [PMID: 26399249 DOI: 10.1007/s12028-015-0203-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The objective of this paper is to review the current literature regarding the use of vagus nerve stimulation (VNS) in preclinical models of traumatic brain injury (TBI) as well as discuss the potential role of VNS along with alternative neuromodulation approaches in the treatment of human TBI. Data from previous studies have demonstrated VNS-mediated improvement following TBI in animal models. In these cases, VNS was observed to enhance motor and cognitive recovery, attenuate cerebral edema and inflammation, reduce blood brain barrier breakdown, and confer neuroprotective effects. Yet, the underlying mechanisms by which VNS enhances recovery following TBI remain to be fully elucidated. Several hypotheses have been offered including: a noradrenergic mechanism, reduction in post-TBI seizures and hyper-excitability, anti-inflammatory effects, attenuation of blood-brain barrier breakdown, and cerebral edema. We present other potential mechanisms by which VNS acts including enhancement of synaptic plasticity and recruitment of endogenous neural stem cells, stabilization of intracranial pressure, and interaction with the ghrelin system. In addition, alternative methods for the treatment of TBI including deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, and focused ultrasound stimulation are discussed. Although the primary source data show that VNS improves TBI outcomes, it remains to be determined if these findings can be translated to clinical settings.
Collapse
|
20
|
Pevzner A, Izadi A, Lee DJ, Shahlaie K, Gurkoff GG. Making Waves in the Brain: What Are Oscillations, and Why Modulating Them Makes Sense for Brain Injury. Front Syst Neurosci 2016; 10:30. [PMID: 27092062 PMCID: PMC4823270 DOI: 10.3389/fnsys.2016.00030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/22/2016] [Indexed: 01/19/2023] Open
Abstract
Traumatic brain injury (TBI) can result in persistent cognitive, behavioral and emotional deficits. However, the vast majority of patients are not chronically hospitalized; rather they have to manage their disabilities once they are discharged to home. Promoting recovery to pre-injury level is important from a patient care as well as a societal perspective. Electrical neuromodulation is one approach that has shown promise in alleviating symptoms associated with neurological disorders such as in Parkinson’s disease (PD) and epilepsy. Consistent with this perspective, both animal and clinical studies have revealed that TBI alters physiological oscillatory rhythms. More recently several studies demonstrated that low frequency stimulation improves cognitive outcome in models of TBI. Specifically, stimulation of the septohippocampal circuit in the theta frequency entrained oscillations and improved spatial learning following TBI. In order to evaluate the potential of electrical deep brain stimulation for clinical translation we review the basic neurophysiology of oscillations, their role in cognition and how they are changed post-TBI. Furthermore, we highlight several factors for future pre-clinical and clinical studies to consider, with the hope that it will promote a hypothesis driven approach to subsequent experimental designs and ultimately successful translation to improve outcome in patients with TBI.
Collapse
Affiliation(s)
- Aleksandr Pevzner
- Department of Neurological Surgery, University of California-DavisSacramento, CA, USA; Center for Neuroscience, University of California-DavisSacramento, CA, USA
| | - Ali Izadi
- Department of Neurological Surgery, University of California-DavisSacramento, CA, USA; Center for Neuroscience, University of California-DavisSacramento, CA, USA
| | - Darrin J Lee
- Department of Neurological Surgery, University of California-DavisSacramento, CA, USA; Center for Neuroscience, University of California-DavisSacramento, CA, USA
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California-DavisSacramento, CA, USA; Center for Neuroscience, University of California-DavisSacramento, CA, USA
| | - Gene G Gurkoff
- Department of Neurological Surgery, University of California-DavisSacramento, CA, USA; Center for Neuroscience, University of California-DavisSacramento, CA, USA
| |
Collapse
|
21
|
Gummadavelli A, Kundishora AJ, Willie JT, Andrews JP, Gerrard JL, Spencer DD, Blumenfeld H. Neurostimulation to improve level of consciousness in patients with epilepsy. Neurosurg Focus 2016; 38:E10. [PMID: 26030698 DOI: 10.3171/2015.3.focus1535] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When drug-resistant epilepsy is poorly localized or surgical resection is contraindicated, current neurostimulation strategies such as deep brain stimulation and vagal nerve stimulation can palliate the frequency or severity of seizures. However, despite medical and neuromodulatory therapy, a significant proportion of patients continue to experience disabling seizures that impair awareness, causing disability and risking injury or sudden unexplained death. We propose a novel strategy in which neuromodulation is used not only to reduce seizures but also to ameliorate impaired consciousness when the patient is in the ictal and postictal states. Improving or preventing alterations in level of consciousness may have an effect on morbidity (e.g., accidents, drownings, falls), risk for death, and quality of life. Recent studies may have elucidated underlying networks and mechanisms of impaired consciousness and yield potential novel targets for neuromodulation. The feasibility, benefits, and pitfalls of potential deep brain stimulation targets are illustrated in human and animal studies involving minimally conscious/vegetative states, movement disorders, depth of anesthesia, sleep-wake regulation, and epilepsy. We review evidence that viable therapeutic targets for impaired consciousness associated with seizures may be provided by key nodes of the consciousness system in the brainstem reticular activating system, hypothalamus, basal ganglia, thalamus, and basal forebrain.
Collapse
Affiliation(s)
| | | | - Jon T Willie
- 2Departments of Neurosurgery and Neurology, Emory University School of Medicine, Atlanta, Georgia
| | | | | | | | - Hal Blumenfeld
- Departments of 1Neurosurgery.,3Neurology, and.,4Neurobiology, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
22
|
Osier ND, Carlson SW, DeSana A, Dixon CE. Chronic Histopathological and Behavioral Outcomes of Experimental Traumatic Brain Injury in Adult Male Animals. J Neurotrauma 2015; 32:1861-82. [PMID: 25490251 PMCID: PMC4677114 DOI: 10.1089/neu.2014.3680] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The purpose of this review is to survey the use of experimental animal models for studying the chronic histopathological and behavioral consequences of traumatic brain injury (TBI). The strategies employed to study the long-term consequences of TBI are described, along with a summary of the evidence available to date from common experimental TBI models: fluid percussion injury; controlled cortical impact; blast TBI; and closed-head injury. For each model, evidence is organized according to outcome. Histopathological outcomes included are gross changes in morphology/histology, ventricular enlargement, gray/white matter shrinkage, axonal injury, cerebrovascular histopathology, inflammation, and neurogenesis. Behavioral outcomes included are overall neurological function, motor function, cognitive function, frontal lobe function, and stress-related outcomes. A brief discussion is provided comparing the most common experimental models of TBI and highlighting the utility of each model in understanding specific aspects of TBI pathology. The majority of experimental TBI studies collect data in the acute postinjury period, but few continue into the chronic period. Available evidence from long-term studies suggests that many of the experimental TBI models can lead to progressive changes in histopathology and behavior. The studies described in this review contribute to our understanding of chronic TBI pathology.
Collapse
Affiliation(s)
- Nicole D. Osier
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaun W. Carlson
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony DeSana
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Seton Hill University, Greensburg, Pennsylvania
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- V.A. Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Meneses A, Perez-Garcia G, Liy-Salmeron G, Ponce-López T, Lacivita E, Leopoldo M. 5-HT7 receptor activation: procognitive and antiamnesic effects. Psychopharmacology (Berl) 2015; 232:595-603. [PMID: 25074446 DOI: 10.1007/s00213-014-3693-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/16/2014] [Indexed: 12/31/2022]
Abstract
RATIONALE The serotonin (5-hydroxytryptamine (5-HT)) 5-HT7 receptor is localized in brain areas mediating memory; however, the role of this receptor on memory remains little explored. OBJECTIVE First, demonstrating the associative nature of Pavlovian/instrumental autoshaping (P/I-A) task, rats were exposed (three sessions) to CS-US (Pavlovian autoshaping), truly random control, free operant, and presentations of US or CS, and they were compared with rats trained-tested for one session to the P/I-A procedure. Also, effects of the 5-HT7 receptor agonist LP-211 administered intraperitoneally after training was determined on short- (1.5 h) and long-term memory 24 and 48 h) and on scopolamine-induced memory impairment and cAMP production. METHODS Autoshaping and its behavioral controls were studied. Other animals were subjected to an autoshaping training session and immediately afterwards were given (intraperitoneal) vehicle or LP-211 (0.1-10 mg/kg) and/or scopolamine (0.2 mg/kg) and tested for short-term memory (STM) and long-term memory (LTM); their brains were extracted for the cAMP ELISA immunoassay. RESULTS P/I-A group produced the higher %CR. LP-211 did not affect STM; nonetheless, at 0.5 and 1.0 mg/kg, it improved LTM. The 5-HT7 receptor antagonist SB-269970 (SB; 10.0 mg/kg) alone had no effect; nevertheless, the LP-211 (1.0 mg/kg) LTM facilitation was reversed by SB. The scopolamine (0.2 mg/kg) induced-decrement in CR was accompanied by significant increased cAMP production. The scopolamine-induced decrement in CR and increments in cAMP were significantly attenuated by LP-211. CONCLUSIONS Autoshaping is a reliable associative learning task whose consolidation is facilitated by the 5-HT7 receptor agonist LP-211.
Collapse
Affiliation(s)
- A Meneses
- Depto. de Farmacobiología, CINVESTAV-IPN, México City, México,
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Traumatic brain injury (TBI) remains a significant public health problem and is a leading cause of death and disability in many countries. Durable treatments for neurological function deficits following TBI have been elusive, as there are currently no FDA-approved therapeutic modalities for mitigating the consequences of TBI. Neurostimulation strategies using various forms of electrical stimulation have recently been applied to treat functional deficits in animal models and clinical stroke trials. The results from these studies suggest that neurostimulation may augment improvements in both motor and cognitive deficits after brain injury. Several studies have taken this approach in animal models of TBI, showing both behavioral enhancement and biological evidence of recovery. There have been only a few studies using deep brain stimulation (DBS) in human TBI patients, and future studies are warranted to validate the feasibility of this technique in the clinical treatment of TBI. In this review, the authors summarize insights from studies employing neurostimulation techniques in the setting of brain injury. Moreover, they relate these findings to the future prospect of using DBS to ameliorate motor and cognitive deficits following TBI.
Collapse
Affiliation(s)
- Samuel S Shin
- Department of Neurological Surgery, University of Pittsburgh, Pennsylvania
| | | | | | | |
Collapse
|
25
|
Tabansky I, Quinkert AW, Rahman N, Muller SZ, Lofgren J, Rudling J, Goodman A, Wang Y, Pfaff DW. Temporally-patterned deep brain stimulation in a mouse model of multiple traumatic brain injury. Behav Brain Res 2014; 273:123-32. [PMID: 25072520 DOI: 10.1016/j.bbr.2014.07.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/16/2014] [Accepted: 07/19/2014] [Indexed: 10/25/2022]
Abstract
We report that mice with closed-head multiple traumatic brain injury (TBI) show a decrease in the motoric aspects of generalized arousal, as measured by automated, quantitative behavioral assays. Further, we found that temporally-patterned deep brain stimulation (DBS) can increase generalized arousal and spontaneous motor activity in this mouse model of TBI. This arousal increase is input-pattern-dependent, as changing the temporal pattern of DBS can modulate its effect on motor activity. Finally, an extensive examination of mouse behavioral capacities, looking for deficits in this model of TBI, suggest that the strongest effects of TBI in this model are found in the initiation of any kind of movement.
Collapse
Affiliation(s)
- Inna Tabansky
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, Box 275, New York, NY 10065, United States.
| | - Amy Wells Quinkert
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, Box 275, New York, NY 10065, United States
| | - Nadera Rahman
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, Box 275, New York, NY 10065, United States
| | - Salomon Zev Muller
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, Box 275, New York, NY 10065, United States
| | - Jesper Lofgren
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, Box 275, New York, NY 10065, United States; Linkoping University, Faculty of Health Sciences, Hälsouniversitetet Kansliet 581 83 Linköping, Sweden
| | - Johan Rudling
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, Box 275, New York, NY 10065, United States; Linkoping University, Faculty of Health Sciences, Hälsouniversitetet Kansliet 581 83 Linköping, Sweden
| | - Alyssa Goodman
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, Box 275, New York, NY 10065, United States
| | - Yingping Wang
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, Box 275, New York, NY 10065, United States
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, Box 275, New York, NY 10065, United States
| |
Collapse
|
26
|
Gold EM, Su D, López-Velázquez L, Haus DL, Perez H, Lacuesta GA, Anderson AJ, Cummings BJ. Functional assessment of long-term deficits in rodent models of traumatic brain injury. Regen Med 2014; 8:483-516. [PMID: 23826701 DOI: 10.2217/rme.13.41] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Traumatic brain injury (TBI) ranks as the leading cause of mortality and disability in the young population worldwide. The annual US incidence of TBI in the general population is estimated at 1.7 million per year, with an estimated financial burden in excess of US$75 billion a year in the USA alone. Despite the prevalence and cost of TBI to individuals and society, no treatments have passed clinical trial to clinical implementation. The rapid expansion of stem cell research and technology offers an alternative to traditional pharmacological approaches targeting acute neuroprotection. However, preclinical testing of these approaches depends on the selection and characterization of appropriate animal models. In this article we consider the underlying pathophysiology for the focal and diffuse TBI subtypes, discuss the existing preclinical TBI models and functional outcome tasks used for assessment of injury and recovery, identify criteria particular to preclinical animal models of TBI in which stem cell therapies can be tested for safety and efficacy, and review these criteria in the context of the existing TBI literature. We suggest that 2 months post-TBI is the minimum period needed to evaluate human cell transplant efficacy and safety. Comprehensive review of the published TBI literature revealed that only 32% of rodent TBI papers evaluated functional outcome ≥1 month post-TBI, and only 10% evaluated functional outcomes ≥2 months post-TBI. Not all published papers that evaluated functional deficits at a minimum of 2 months post-TBI reported deficits; hence, only 8.6% of overall TBI papers captured in this review demonstrated functional deficits at 2 months or more postinjury. A 2-month survival and assessment period would allow sufficient time for differentiation and integration of human neural stem cells with the host. Critically, while trophic effects might be observed at earlier time points, it will also be important to demonstrate the sustainability of such an effect, supporting the importance of an extended period of in vivo observation. Furthermore, regulatory bodies will likely require at least 6 months survival post-transplantation for assessment of toxicology/safety, particularly in the context of assessing cell abnormalities.
Collapse
Affiliation(s)
- Eric M Gold
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine 2030 Gross Hall, CA 92697-1705, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Carballosa-Gonzalez MM, Vitores A, Hentall ID. Hindbrain raphe stimulation boosts cyclic adenosine monophosphate and signaling proteins in the injured spinal cord. Brain Res 2013; 1543:165-72. [PMID: 24246733 DOI: 10.1016/j.brainres.2013.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/05/2013] [Accepted: 11/09/2013] [Indexed: 12/20/2022]
Abstract
Early recovery from incomplete spinal cord contusion is improved by prolonged stimulation of the hindbrain's serotonergic nucleus raphe magnus (NRM). Here we examine whether increases in cyclic adenosine monophosphate (cAMP), an intracellular signaling molecule with several known restorative actions on damaged neural tissue, could play a role. Subsequent changes in cAMP-dependent phosphorylation of protein kinase A (PKA) and PKA-dependent phosphorylation of the transcription factor "cAMP response element-binding protein" (CREB) are also analyzed. Rats with moderate weight-drop injury at segment T8 received 2h of NRM stimulation beginning three days after injury, followed immediately by separate extraction of cervical, thoracic and lumbar spinal cord for immunochemical assay. Controls lacked injury, stimulation or both. Injury reduced cAMP levels to under half of normal in all three spinal regions. NRM stimulation completely restored these levels, while producing no significant change in non-injured rats. Pretreatment with the 5-HT7 receptor antagonist pimozide (1 mg/kg, intraperitoneal) lowered cAMP in non-injured rats to injury amounts, which were unchanged by NRM stimulation. The phosphorylated fraction of PKA (pPKA) and CREB (pCREB) was reduced significantly in all three regions after SCI and restored by NRM stimulation, except for pCREB in lumbar segments. In conclusion, SCI produces spreading deficits in cAMP, pPKA and pCREB that are reversible by Gs protein-coupled 5-HT receptors responding to raphe-spinal activity, although these signaling molecules are not reactive to NRM stimulation in normal tissue. These findings can partly explain the benefits of NRM stimulation after SCI.
Collapse
Affiliation(s)
| | - Alberto Vitores
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ian D Hentall
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|