1
|
Baghel R, Maan K, Dhariwal S, Kumari M, Sharma A, Manda K, Trivedi R, Rana P. Mild Blast Exposure Dysregulates Metabolic Pathways and Correlation Networking as Evident from LC-MS-Based Plasma Profiling. Mol Neurobiol 2024:10.1007/s12035-024-04429-5. [PMID: 39235645 DOI: 10.1007/s12035-024-04429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
Blast-induced trauma is emerging as a serious threat due to its wide pathophysiology where not only the brain but also a spectrum of organs is being affected. In the present study, we aim to identify the plasma-based metabolic dysregulations along with the associated temporal changes at 5-6 h, day 1 and day 7 post-injury in a preclinical animal model for blast exposure, through liquid chromatography-mass spectrometry (LC-MS). Using significantly advanced metabolomic and statistical bioinformatic platforms, we were able to elucidate better and unravel the complex networks of blast-induced neurotrauma (BINT) and its interlinked systemic effects. Significant changes were evident at 5-6 h with maximal changes at day 1. Temporal analysis also depicted progressive changes which continued till day 7. Significant associations of metabolic markers belonging to the class of amino acids, energy-related molecules, lipids, vitamin, hormone, phenolic acid, keto and histidine derivatives, nucleic acid molecules, uremic toxins, and uronic acids were observed. Also, the present study is the first of its kind where comprehensive, detailed pathway dysregulations of amino acid metabolism and biosynthesis, perturbed nucleotides, lipid peroxidation, and nucleic acid damage followed by correlation networking and multiomics networking were explored on preclinical animal models exposed to mild blast trauma. In addition, markers for systemic changes (renal dysfunction) were also observed. Global pathway predictions of unannotated peaks also presented important insights into BINT pathophysiology. Conclusively, the present study depicts important findings that might help underpin the biological mechanisms of blast-induced brain or systemic trauma.
Collapse
Grants
- (DHR)-YSF/DHR/12014/54/2020 Department of Health Research, India
- UGC Grant University Grants Commission
- UGC Grant University Grants Commission
- CSIR-Grant Council of Scientific and Industrial Research, India
- INM3 24 Defence R&D Organization (DRDO), Ministry of Defence, India
- INM3 24 Defence R&D Organization (DRDO), Ministry of Defence, India
- INM3 24 Defence R&D Organization (DRDO), Ministry of Defence, India
- INM3 24 Defence R&D Organization (DRDO), Ministry of Defence, India
Collapse
Affiliation(s)
- Ruchi Baghel
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
- Department of Health Research (DHR), IRCS Building, 2 FloorRed Cross Road, New Delhi, 110001, India
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, New Delhi, 110054, India
| | - Kiran Maan
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, New Delhi, 110054, India
| | - Seema Dhariwal
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, New Delhi, 110054, India
| | - Megha Kumari
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
| | - Apoorva Sharma
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, New Delhi, 110054, India
| | - Kailash Manda
- Department of Neurobehavioral Sciences, Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
| | - Richa Trivedi
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
| | - Poonam Rana
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India.
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, New Delhi, 110054, India.
| |
Collapse
|
2
|
Browning JL, Wilson KA, Shandra O, Wei X, Mahmutovic D, Maharathi B, Robel S, VandeVord PJ, Olsen ML. Applying Proteomics and Computational Approaches to Identify Novel Targets in Blast-Associated Post-Traumatic Epilepsy. Int J Mol Sci 2024; 25:2880. [PMID: 38474127 DOI: 10.3390/ijms25052880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Traumatic brain injury (TBI) can lead to post-traumatic epilepsy (PTE). Blast TBI (bTBI) found in Veterans presents with several complications, including cognitive and behavioral disturbances and PTE; however, the underlying mechanisms that drive the long-term sequelae are not well understood. Using an unbiased proteomics approach in a mouse model of repeated bTBI (rbTBI), this study addresses this gap in the knowledge. After rbTBI, mice were monitored using continuous, uninterrupted video-EEG for up to four months. Following this period, we collected cortex and hippocampus tissues from three groups of mice: those with post-traumatic epilepsy (PTE+), those without epilepsy (PTE-), and the control group (sham). Hundreds of differentially expressed proteins were identified in the cortex and hippocampus of PTE+ and PTE- relative to sham. Focusing on protein pathways unique to PTE+, pathways related to mitochondrial function, post-translational modifications, and transport were disrupted. Computational metabolic modeling using dysregulated protein expression predicted mitochondrial proton pump dysregulation, suggesting electron transport chain dysregulation in the epileptic tissue relative to PTE-. Finally, data mining enabled the identification of several novel and previously validated TBI and epilepsy biomarkers in our data set, many of which were found to already be targeted by drugs in various phases of clinical testing. These findings highlight novel proteins and protein pathways that may drive the chronic PTE sequelae following rbTBI.
Collapse
Affiliation(s)
- Jack L Browning
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kelsey A Wilson
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Oleksii Shandra
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Xiaoran Wei
- Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Dzenis Mahmutovic
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Biswajit Maharathi
- Neurology & Rehabilitation, University of Illinois, Chicago, IL 60612, USA
| | - Stefanie Robel
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pamela J VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Salem Veteran Affairs Medical Center, Salem, VA 24153, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
3
|
Sajja V, Shoge R, McNeil E, Van Albert S, Wilder D, Long J. Comparison of Biomechanical Outcome Measures From Characteristically Different Blast Simulators and the Influence of Exposure Location. Mil Med 2023; 188:288-294. [PMID: 37948259 DOI: 10.1093/milmed/usad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 05/23/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION Simulation of blast exposure in the laboratory has been inconsistent across laboratories. This is primarily because of adoption of the shock wave-generation techniques that are used in aerodynamic tests as opposed to application of blast exposures that are relevant to combat and training environments of a Warfighter. Because of the differences in blast signatures, characteristically different pathological consequences are observed among the preclinical studies. This is also further confounded by the varied exposure positioning of the animal subject (e.g., inside the blast simulator vs. at the mouth of the simulator). In this study, we compare biomechanical responses to blast exposures created in an advanced blast simulator (ABS) that generates "free-field"-like blast exposure with those produced by a traditionally applied cylindrical blast simulator (CBS) that generates a characteristically different blast signature. In addition, we have tested soft-armor vest protective responses with the ABS and CBS to compare the biomechanical responses to this form of personal protective equipment in each setting in a rodent model. MATERIALS AND METHODS Anesthetized male Sprague-Dawley rats (n = 6) were surgically probed with an intrathoracic pressure (ITP) transducer and an intracranial pressure (ICP) transducer directed into the lateral cerebral ventricle (Millar, Inc.). An ABS for short-duration blast or a CBS for long-duration blast was used to expose animals to an incident blast overpressure of 14.14 psi (impulse: 30.27 psi*msec) or 16.3 psi (impulse: 71.9 psi*msec) using a custom-made holder (n = 3-4/group). An external pitot probe located near the animal was used to measure the total pressure (tip) and static gauge (side-on) pressure. Data were recorded using a TMX-18 data acquisition system (AstroNova Inc.). MATLAB was used to analyze the recordings to identify the peak amplitudes and rise times of the pressure traces. Peak ICP, peak ITP, and their impulses were normalized by expressing them relative to the associated peak static pressure. RESULTS Normalized impulse (ABS: 1.02 ± 0.03 [vest] vs. 1.02 ± 0.01 [no-vest]; CBS: 1.21 ± 0.07 [vest] vs. 1.01 ± 0.01 [no-vest]) and peak pressure for ICP (ABS: 1.03 ± 0.03 [vest] vs. 0.99 ± 0.04 [no-vest]; CBS: 1.06 ± 0.08 [vest] vs. 1.13 ± 0.06 [no-vest]) remained unaltered when comparisons are made between vest and no-vest groups, and the normalized peak ITP (ABS: 1.50 ± 0.02 [vest] vs. 1.24 ± 0.16 [no-vest]; CBS: 1.71 ± 0.20 [vest] vs. 1.37 ± 0.06 [no-vest]) showed a trend of an increase in the vest group compared to the no-vest group. However, impulses in short-duration ABS (0.94 ± 0.06 [vest] vs. 0.92 ± 0.13 [no-vest]) blast remained unaltered, whereas a significant increase of ITP impulse (1.21 ± 0.07 [vest] vs. 1.17 ± 0.01 [no-vest]) in CBS was observed. CONCLUSIONS The differences in the biomechanical response between ABS and CBS could be potentially attributed to the higher dynamic pressures that are imparted from long-duration CBS blasts, which could lead to chest compression and rapid acceleration/deceleration. In addition, ICP and ITP responses occur independently of each other, with no evidence of thoracic surge.
Collapse
Affiliation(s)
| | | | - Elizabeth McNeil
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | - Donna Wilder
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Joseph Long
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
4
|
Hubbard WB, Vekaria HJ, Velmurugan GV, Kalimon OJ, Prajapati P, Brown E, Geisler JG, Sullivan PG. Mitochondrial Dysfunction After Repeated Mild Blast Traumatic Brain Injury Is Attenuated by a Mild Mitochondrial Uncoupling Prodrug. J Neurotrauma 2023; 40:2396-2409. [PMID: 37476976 PMCID: PMC10653072 DOI: 10.1089/neu.2023.0102] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Mild traumatic brain injury (mTBI) results in impairment of brain metabolism, which is propagated by mitochondrial dysfunction in the brain. Mitochondrial dysfunction has been identified as a pathobiological therapeutic target to quell cellular dyshomeostasis. Further, therapeutic approaches targeting mitochondrial impairments, such as mild mitochondrial uncoupling, have been shown to alleviate behavioral alterations after TBI. To examine how mild mitochondrial uncoupling modulates acute mitochondrial outcomes in a military-relevant model of mTBI, we utilized repeated blast overpressure of 11 psi peak overpressure to model repeated mild blast traumatic brain injury (rmbTBI) in rats followed by assessment of mitochondrial respiration and mitochondrial-related oxidative damage at 2 days post-rmbTBI. Treatment groups were administered 8 or 80 mg/kg MP201, a prodrug of 2,4 dinitrophenol (DNP) that displays improved pharmacokinetics compared with its metabolized form. Synaptic and glia-enriched mitochondria were isolated using fractionated a mitochondrial magnetic separation technique. There was a consistent physiological response, decreased heart rate, following mbTBI among experimental groups. Although there was a lack of injury effect in mitochondrial respiration of glia-enriched mitochondria, there were impairments in mitochondrial respiration in synaptic mitochondria isolated from the prefrontal cortex (PFC) and the amygdala/entorhinal/piriform cortex (AEP) region. Impairments in synaptic mitochondrial respiration were rescued by oral 80 mg/kg MP201 treatment after rmbTBI, which may be facilitated by increases in complex II and complex IV activity. Mitochondrial oxidative damage in glia-enriched mitochondria was increased in the PFC and hippocampus after rmbTBI. MP201 treatment alleviated elevated glia-enriched mitochondrial oxidative damage following rmbTBI. However, there was a lack of injury-associated differences in oxidative damage in synaptic mitochondria. Overall, our report demonstrates that rmbTBI results in mitochondrial impairment diffusely throughout the brain and mild mitochondrial uncoupling can restore mitochondrial bioenergetics and oxidative balance.
Collapse
Affiliation(s)
- W. Brad Hubbard
- Lexington Veterans' Affairs Healthcare System, Lexington, Kentucky, USA
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Hemendra J. Vekaria
- Lexington Veterans' Affairs Healthcare System, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
| | - Gopal V. Velmurugan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Olivia J. Kalimon
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
| | - Paresh Prajapati
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Emily Brown
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - John G. Geisler
- Mitochon Pharmaceuticals, Inc., Blue Bell, Pennsylvania, USA
| | - Patrick G. Sullivan
- Lexington Veterans' Affairs Healthcare System, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Balogh ZJ. Polytrauma: Acute acquired mitochondrial disease. Injury 2023:S0020-1383(23)00417-5. [PMID: 37160406 DOI: 10.1016/j.injury.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Zsolt J Balogh
- Department of Traumatology, John Hunter Hospital, Injury and Trauma Research Program, Hunter Medical Research Institute, Discipline of Surgery and Traumatology, University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
6
|
Liu J, Peng W, Yu F, Shen Y, Yu W, Lu Y, Lin W, Zhou M, Huang Z, Luo X, You W, Ke C. Genomic selection applications can improve the environmental performance of aquatics: A case study on the heat tolerance of abalone. Evol Appl 2022; 15:992-1001. [PMID: 35782008 PMCID: PMC9234619 DOI: 10.1111/eva.13388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/02/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Aquaculture is one of the world's fastest-growing and most traded food industries, but it is under the threat of climate-related risks represented by global warming, marine heatwave (MHW) events, ocean acidification, and deoxygenation. For the sustainable development of aquaculture, selective breeding may be a viable method to obtain aquatic economic species with greater tolerance to environmental stressors. In this study, we estimated the heritability of heat tolerance trait of Pacific abalone Haliotis discus hannai, performed genome-wide association studies (GWAS) analysis for heat tolerance to detect single nucleotide polymorphisms (SNPs) and candidate genes, and assessed the potential of genomic selection (GS) in the breeding of abalone industry. A total of 1120 individuals were phenotyped for their heat tolerance and genotyped with 64,788 quality-controlled SNPs. The heritability of heat tolerance was moderate (0.35-0.42) and the predictive accuracy estimated using BayesB (0.55 ± 0.05) was higher than that using GBLUP (0.40 ± 0.01). A total of 11 genome-wide significant SNPs and 2 suggestive SNPs were associated with heat tolerance of abalone, and 13 candidate genes were identified, including got2,znfx1,l(2)efl, and lrp5. Based on GWAS results, the prediction accuracy using the top 5K SNPs was higher than that using randomly selected SNPs and higher than that using all SNPs. These results suggest that GS is an efficient approach for improving the heat tolerance of abalone and pave the way for abalone selecting breeding programs in rapidly changing oceans.
Collapse
Affiliation(s)
- Junyu Liu
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Wenzhu Peng
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Feng Yu
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Yawei Shen
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Wenchao Yu
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Yisha Lu
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Weihong Lin
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Muzhi Zhou
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Zekun Huang
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Xuan Luo
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Weiwei You
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| |
Collapse
|
7
|
Rana P, Rama Rao KV, Ravula A, Trivedi R, D'Souza M, Singh AK, Gupta RK, Chandra N. Oxidative stress contributes to cerebral metabolomic profile changes in animal model of blast-induced traumatic brain injury. Metabolomics 2020; 16:39. [PMID: 32166461 DOI: 10.1007/s11306-020-1649-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/02/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Blast-induced neurotrauma (BINT) has been recognized as the common mode of traumatic brain injury amongst military and civilian personnel due to an increased insurgent activity domestically and abroad. Previous studies from this laboratory have identified three major pathological events following BINT which include blood brain barrier disruption the earliest event, followed by oxidative stress and neuroinflammation as secondary events occurring a few hours following blast. OBJECTIVES Our recent studies have also identified an increase in oxidative stress mediated by the activation of superoxide producing enzyme NADPH oxidase (NOX) in different brain regions at varying levels with neurons displaying higher oxidative stress (NOX activation) compared to any other neural cell. Since neurons have higher energy demands in brain and are more prone to oxidative damage, this study evaluated the effect of oxidative stress on blast-blast induced changes in metabolomics profiles in different brain regions. METHODS Animals were exposed to mild/moderate blast injury (180 kPa) and examined the metabolites of energy metabolism, amino acid metabolism as well as the profiles of plasma membrane metabolites in different brain regions at different time points (24 h, 3 day and 7 day) after blast using 1H NMR spectroscopy. Effect of apocynin, an inhibitor of superoxide producing enzyme NADPH oxidase on cerebral metabalomics profiles was also examined. RESULTS Several metabolomic profile changes were observed in frontal cortex and hippocampus with concomitant decrease in energy metabolism. In addition, glutamate/glutamine and other amino acid metabolism as well as metabolites involved in plasma membrane integrity were also altered. Hippocampus appears metabolically more vulnerable than the frontal cortex. A post-treatment of animals with apocynin, an inhibitor of NOX activation significantly prevented the changes in metabolite profiles. CONCLUSION Together these studies indicate that blast injury reduces both cerebral energy and neurotransmitter amino acid metabolism and that oxidative stress contributes to these processes. Thus, strategies aimed at reducing oxidative stress can have a therapeutic benefit in mitigating metabolic changes following BINT.
Collapse
Affiliation(s)
- Poonam Rana
- Metabolomics Research Facility, Division of Behavioral Neuroscience, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Kakulavarapu V Rama Rao
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102-1982, USA
| | - Arunreddy Ravula
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102-1982, USA
| | - Richa Trivedi
- Metabolomics Research Facility, Division of Behavioral Neuroscience, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Maria D'Souza
- Department of NMR, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Ajay K Singh
- Metabolomics Research Facility, Division of Behavioral Neuroscience, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Raj K Gupta
- US Department of Defense Blast Injury Research Program Coordinating Office, US Army MRMC, 504 Scott Street, Fort Detrick, MD, USA.
| | - Namas Chandra
- US Department of Defense Blast Injury Research Program Coordinating Office, US Army MRMC, 504 Scott Street, Fort Detrick, MD, USA.
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102-1982, USA.
| |
Collapse
|
8
|
Zakarya R, Sapkota A, Chan YL, Shah J, Saad S, Bottle SE, Oliver BG, Gorrie CA, Chen H. Nitroxides affect neurological deficits and lesion size induced by a rat model of traumatic brain injury. Nitric Oxide 2020; 97:57-65. [PMID: 32061903 DOI: 10.1016/j.niox.2020.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 02/12/2020] [Indexed: 01/21/2023]
Abstract
Research has attributed tissue damage post-traumatic brain injury (TBI) to two-pronged effects, increased reactive oxygen species (ROS) and impairment of endogenous antioxidant defence systems, underpinned by manganese superoxide dismutase (MnSOD). Novel antioxidant nitroxides have been shown to mimic MnSOD to ameliorate oxidative stress related disorders. This study aimed to investigate the effects of two nitroxides, CTMIO and DCTEIO, on the neurological outcomes following moderate TBI in rats induced by a weight drop device. The rats were immediately treated with CTMIO and DCTEIO (40 mM in drinking water) post-injury for up to 2 weeks. The brains were histologically examined at 24 h and 6 weeks post injury. DCTEIO reduced the lesion size at both 24h and 6 weeks, with normalised performance in sensory, motor and cognitive tests at 24h post-injury. Astrogliosis was heightened by DCTEIO at 24h and still elevated at 6 weeks in this group. In TBI brains, cellular damage was evident as reflected by changes in markers of mitophagy and autophagy (increased fission marker dynamin-related protein (Drp)-1, and autophagy marker light chain 3 (LC3)A/B and reduced fusion marker optic atrophy (Opa)-1). These were normalised by DCTEIO treatment. CTMIO, on the other hand, seems to be toxic to the injured brains, by increasing injury size at 6 weeks. In conclusion, DCTEIO significantly improved tissue repair and preserved neurological function in rats with TBI possibly via a mitophagy mechanism. This study provides evidence for DCTEIO as a promising new option to alleviate lesion severity after moderate TBI, which is not actively treated.
Collapse
Affiliation(s)
- Razia Zakarya
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia; RCMB, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia
| | - Arjun Sapkota
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Jadvi Shah
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Sonia Saad
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, NSW, Australia
| | - Steven E Bottle
- Science and Engineering Faculty, Queensland University of Technology, QLD, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia; RCMB, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia
| | - Catherine A Gorrie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Harper MM, Woll AW, Evans LP, Delcau M, Akurathi A, Hedberg-Buenz A, Soukup DA, Boehme N, Hefti MM, Dutca LM, Anderson MG, Bassuk AG. Blast Preconditioning Protects Retinal Ganglion Cells and Reveals Targets for Prevention of Neurodegeneration Following Blast-Mediated Traumatic Brian Injury. Invest Ophthalmol Vis Sci 2019; 60:4159-4170. [PMID: 31598627 PMCID: PMC6785841 DOI: 10.1167/iovs.19-27565] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose The purpose of this study was to examine the effect of multiple blast exposures and blast preconditioning on the structure and function of retinal ganglion cells (RGCs), to identify molecular pathways that contribute to RGC loss, and to evaluate the role of kynurenine-3-monooxygenase (KMO) inhibition on RGC structure and function. Methods Mice were subjected to sham blast injury, one single blast injury, or three blast injuries separated by either 1 hour or 1 week, using a blast intensity of 20 PSI. To examine the effect of blast preconditioning, mice were subjected to sham blast injury, one single 20-PSI injury, or three blast injuries separated by 1 week (5 PSI, 5 PSI, 20 PSI and 5 PSI, 5 PSI, 5 PSI). RGC structure was analyzed by optical coherence tomography (OCT) and function was analyzed by the pattern electroretinogram (PERG). BRN3A-positive cells were quantified to determine RGC density. RNA-seq analysis was used to identify transcriptional changes between groups. Results Analysis of mice with multiple blast exposures of 20 PSI revealed no significant differences compared to one 20-pounds per square inch (PSI) exposure using OCT, PERG, or BRN3A cell counts. Analysis of mice exposed to two preconditioning 5-PSI blasts prior to one 20-PSI blast showed preservation of RGC structure and function. RNA-seq analysis of the retina identified multiple transcriptomic changes between conditions. Pharmacologic inhibition of KMO preserved RGC responses compared to vehicle-treated mice. Conclusions Preconditioning protects RGC from blast injury. Protective effects appear to involve changes in KMO activity, whose inhibition is also protective.
Collapse
Affiliation(s)
- Matthew M. Harper
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Addison W. Woll
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Lucy P. Evans
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, United States
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
| | - Michael Delcau
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Abhigna Akurathi
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
| | - Adam Hedberg-Buenz
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States
| | - Dana A. Soukup
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States
| | - Nickolas Boehme
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Marco M. Hefti
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States
| | - Laura M. Dutca
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Michael G. Anderson
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States
| | - Alexander G. Bassuk
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
- Department of Neurology, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
10
|
Skotak M, Townsend MT, Ramarao KV, Chandra N. A Comprehensive Review of Experimental Rodent Models of Repeated Blast TBI. Front Neurol 2019; 10:1015. [PMID: 31611839 PMCID: PMC6776622 DOI: 10.3389/fneur.2019.01015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
We reviewed the relevant literature delineating advances in the development of the experimental models of repeated blast TBI (rbTBI). It appears this subject is a relatively unexplored area considering the first work published in 2007 and the bulk of peer-reviewed papers was published post-2011. There are merely 34 papers published to date utilizing rodent rbTBI models. We performed an analysis and extracted basic parameters to capture the characteristics of the exposure conditions (the blast intensity, inter-exposure interval and the number of exposures), the age and weight of the animal models most commonly used in the studies, and their endpoints. Our analysis revealed three strains of rodents are predominantly used: Sprague Dawley and Long Evans rats and wild type (C57BL/6J) mice, and young adult animals 8 to 12-week-old are a preferred choice. Typical exposure conditions are the following: (1) peak overpressure in the 27–145 kPa (4–21 psi) range, (2) number of exposures: 2 (13.9%), 3 (63.9%), 5 (16.7%), or 12 (5.6%) with a single exposure used for a baseline comparison in 41.24% of the studies. Two inter-exposure interval durations were used: (1) short (1–30 min.) and (2) extended (24 h) between consecutive shock wave exposures. The experiments included characterization of repeated blast exposure effects on auditory, ocular and neurological function, with a focus on brain etiology in most of the published work. We present an overview of major histopathological findings, which are supplemented by studies implementing MRI (DTI) and behavioral changes after rbTBI in the acute (1–7 days post-injury), subacute (7–14 days), and chronic (>14 days) phases post-injury.
Collapse
Affiliation(s)
- Maciej Skotak
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Molly T Townsend
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Kakulavarapu V Ramarao
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Namas Chandra
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
11
|
Ning YL, Yang N, Chen X, Tian HK, Zhao ZA, Zhang XZ, Liu D, Li P, Zhao Y, Peng Y, Wang ZG, Chen JF, Zhou YG. Caffeine attenuates brain injury but increases mortality induced by high-intensity blast wave exposure. Toxicol Lett 2018; 301:90-97. [PMID: 30423366 DOI: 10.1016/j.toxlet.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/08/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022]
Abstract
Caffeine is a substance that is consumed worldwide, and it may exert neuroprotective effects against various cerebral insults, including neurotrauma, which is the most prevalent injury among military personnel. To investigate the effects of caffeine on high-intensity blast wave-induced severe blast injury in mice, three different paradigms of caffeine were applied to male C57BL/6 mice with severe whole body blast injury (WBBI). The results demonstrated that chronic caffeine treatment alleviated blast-induced traumatic brain injury (bTBI); however, both chronic and acute caffeine treatments exacerbated blast-induced lung injuries and, more importantly, increased both the cumulative and time-segmented mortalities postinjury. Interestingly, withdrawing caffeine intake preinjury resulted in favorable outcomes in mortality and lung injury, similar to the findings in water-treated mice, and had the trend to attenuate brain injury. These findings demonstrated that although drinking coffee or caffeine preparations attenuated blast-induced brain trauma, these beverages may place personnel in the battlefield at high risk of casualties, which will help us re-evaluate the therapeutic strategy of caffeine application, particularly in multiple-organ-trauma settings. Furthermore, these findings provided possible strategies for reducing the risk of casualties with caffeine consumption, which may help to change the coffee-drinking habits of military personnel.
Collapse
Affiliation(s)
- Ya-Lei Ning
- Molecular Biology Center, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400038, China; Collaborative Innovation Center for Brain Science, Army Medical University, Chongqing, 400038, China
| | - Nan Yang
- Molecular Biology Center, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xing Chen
- Molecular Biology Center, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hua-Ke Tian
- Department of Trauma and Microsurgery, the PLA No. 324 Hospital, Chongqing, 400020, China
| | - Zi-Ai Zhao
- Molecular Biology Center, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Zhu Zhang
- Trauma Center, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Dong Liu
- Trauma Center, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ping Li
- Molecular Biology Center, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400038, China; Collaborative Innovation Center for Brain Science, Army Medical University, Chongqing, 400038, China
| | - Yan Zhao
- Molecular Biology Center, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400038, China; Collaborative Innovation Center for Brain Science, Army Medical University, Chongqing, 400038, China
| | - Yan Peng
- Molecular Biology Center, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zheng-Guo Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400038, China; Department four, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Yuan-Guo Zhou
- Molecular Biology Center, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400038, China; Collaborative Innovation Center for Brain Science, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
12
|
Cernak I, Stein DG, Elder GA, Ahlers S, Curley K, DePalma RG, Duda J, Ikonomovic M, Iverson GL, Kobeissy F, Koliatsos VE, Leggieri MJ, Pacifico AM, Smith DH, Swanson R, Thompson FJ, Tortella FC. Preclinical modelling of militarily relevant traumatic brain injuries: Challenges and recommendations for future directions. Brain Inj 2018; 31:1168-1176. [PMID: 28981339 PMCID: PMC9351990 DOI: 10.1080/02699052.2016.1274779] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As a follow-up to the 2008 state-of-the-art (SOTA) conference on traumatic brain injuries (TBIs), the 2015 event organized by the United States Department of Veterans Affairs (VA) Office of Research and Development (ORD) analysed the knowledge gained over the last 7 years as it relates to basic scientific methods, experimental findings, diagnosis, therapy, and rehabilitation of TBIs and blast-induced neurotraumas (BINTs). The current article summarizes the discussions and recommendations of the scientific panel attending the Preclinical Modeling and Therapeutic Development Workshop of the conference, with special emphasis on factors slowing research progress and recommendations for ways of addressing the most significant pitfalls.
Collapse
Affiliation(s)
- Ibolja Cernak
- a Military and Veterans' Clinical Rehabilitation Research, Faculty of Rehabilitation Medicine , University of Alberta , Edmonton , Alberta , Canada
| | - Donald G Stein
- b Emory School of Medicine , Department of Emergency Medicine Brain Research Laboratory , Atlanta , Georgia , USA
| | - Gregory A Elder
- c James J. Peters VA Medical Center , Bronx , NY , USA.,d Icahn School of Medicine at Mount Sinai , New York , New York , USA
| | - Stephn Ahlers
- e Operational and Undersea Medicine, Naval Medical Research Center , Silver Spring , MD , USA
| | - Kenneth Curley
- f Iatrikos Research and Development Strategies, LLC , Tampa , FL , USA.,g Department of Surgery , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Ralph G DePalma
- h VA ORD & Department of Surgery , Uniformed Services University of the Health Sciences, Office of Research and Development , Washington , DC , USA
| | - John Duda
- i Parkinson's Disease Research, Education and Clinical Center, Philadelphia VA Medical Center; and Department of Neurology , Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA
| | - Milos Ikonomovic
- j Department of Neurology , University of Pittsburgh , Pittsburgh , PA , USA
| | - Grant L Iverson
- k Neuropsychology Outcome Assessment Laboratory, Department of Physical Medicine and Rehabilitation , Harvard Medical School , Boston , MA , USA
| | - Firas Kobeissy
- l Psychoproteomics and Nanotechnology Research Center, Department of Psychiatry , The Evelyn F and William L. McKnight Brain Institute, University of Florida , Gainesville , FL , USA
| | - Vassilis E Koliatsos
- m Department of Pathology (Neuropathology) and Neurology , Johns Hopkins School of Medicine , Baltimore , MD , USA
| | - Michael J Leggieri
- n DoD Blast Injury Research Program Coordinating Office, U.S. Army Medical Research and Materiel Command , Ft Detrick , MD , USA
| | - Anthony M Pacifico
- o Alzheimer's and Epilepsy Research Programs, Congressionally Directed Medical Research Programs; US Department of Health and Human Services , Telemedicine and Advanced Technology Research Center , Fort Detrick , MD , USA
| | - Douglas H Smith
- p The Robert A. Groff Professor of Neurosurgery/Research and Education, Department of Neurosurgery/PENN's Center for Brain Injury and Repair , University of Pennsylvania , Philadelphia , PA , USA
| | - Raymond Swanson
- q Department of Neurology , University of California San Francisco; and Neurology Service, SFVAMC , San Francisco , CA , USA
| | - Floyd J Thompson
- r Brain Rehabilitation Research Center, Malcom Randall VAMC; Physiological Sciences and Professor Emeritus, Neuroscience, University of Florida , Gainesville , FL , USA
| | - Frank C Tortella
- s Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research ; Silver Spring , MD , USA
| |
Collapse
|
13
|
Agoston DV. Modeling the Long-Term Consequences of Repeated Blast-Induced Mild Traumatic Brain Injuries. J Neurotrauma 2018; 34:S44-S52. [PMID: 28937952 DOI: 10.1089/neu.2017.5317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Repeated mild traumatic brain injury (rmTBI) caused by playing collision sports or by exposure to blasts during military operations can lead to late onset, chronic diseases such as chronic traumatic encephalopathy (CTE), a progressive neurodegenerative condition that manifests in increasingly severe neuropsychiatric abnormalities years after the last injury. Currently, because of the heterogeneity of the clinical presentation, confirmation of a CTE diagnosis requires post-mortem examination of the brain. The hallmarks of CTE are abnormal accumulation of phosphorylated tau protein, TDP-43 immunoreactive neuronal cytoplasmic inclusions, and astroglial abnormalities, but the pathomechanism leading to these terminal findings remains unknown. Animal modeling can play an important role in the identification of CTE pathomechanisms, the development of early stage diagnostic and prognostic biomarkers, and pharmacological interventions. Modeling the long-term consequences of blast rmTBI in animals is especially challenging because of the complexities of blast physics and animal-to-human scaling issues. This review summarizes current knowledge about the pathobiologies of CTE and rmbTBI and discusses problems as well as potential solutions related to high-fidelity modeling of rmbTBI and determining its long-term consequences.
Collapse
Affiliation(s)
- Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University , Bethesda, Maryland; Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
14
|
Masri S, Zhang LS, Luo H, Pace E, Zhang J, Bao S. Blast Exposure Disrupts the Tonotopic Frequency Map in the Primary Auditory Cortex. Neuroscience 2018; 379:428-434. [PMID: 29625214 DOI: 10.1016/j.neuroscience.2018.03.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022]
Abstract
Blast exposure can cause various auditory disorders including tinnitus, hyperacusis, and other central auditory processing disorders. While this is suggestive of pathologies in the central auditory system, the impact of blast exposure on central auditory processing remains poorly understood. Here we examined the effects of blast shockwaves on acoustic response properties and the tonotopic frequency map in the auditory cortex. We found that multiunits recorded from the auditory cortex exhibited higher acoustic thresholds and broader frequency tuning in blast-exposed animals. Furthermore, the frequency map in the primary auditory cortex was distorted. These changes may contribute to central auditory processing disorders.
Collapse
Affiliation(s)
- Samer Masri
- Neuroscience Graduate Program, University of Arizona, Tucson, AZ 85724, United States
| | - Li S Zhang
- Department of Physiology, University of Arizona, Tucson, AZ 85724, United States
| | - Hao Luo
- Department of Otolaryngology, Wayne State University, Detroit, MI 48201, United States
| | - Edward Pace
- Department of Otolaryngology, Wayne State University, Detroit, MI 48201, United States
| | - Jinsheng Zhang
- Department of Otolaryngology, Wayne State University, Detroit, MI 48201, United States; Department of Communication Sciences & Disorders, Wayne State University, Detroit, MI 48201, United States
| | - Shaowen Bao
- Neuroscience Graduate Program, University of Arizona, Tucson, AZ 85724, United States; Department of Physiology, University of Arizona, Tucson, AZ 85724, United States.
| |
Collapse
|
15
|
Song H, Cui J, Simonyi A, Johnson CE, Hubler GK, DePalma RG, Gu Z. Linking blast physics to biological outcomes in mild traumatic brain injury: Narrative review and preliminary report of an open-field blast model. Behav Brain Res 2018; 340:147-158. [DOI: 10.1016/j.bbr.2016.08.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/13/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022]
|
16
|
Ganau M, Syrmos N, Paris M, Ganau L, Ligarotti GKI, Moghaddamjou A, Chibbaro S, Soddu A, Ambu R, Prisco L. Current and Future Applications of Biomedical Engineering for Proteomic Profiling: Predictive Biomarkers in Neuro-Traumatology. MEDICINES 2018; 5:medicines5010019. [PMID: 29401743 PMCID: PMC5874584 DOI: 10.3390/medicines5010019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Abstract
This systematic review aims to summarize the impact of nanotechnology and biomedical engineering in defining clinically meaningful predictive biomarkers in patients with traumatic brain injury (TBI), a critical worldwide health problem with an estimated 10 billion people affected annually worldwide. Data were collected through a review of the existing English literature performed on Scopus, MEDLINE, MEDLINE in Process, EMBASE, and/or Cochrane Central Register of Controlled Trials. Only experimental articles revolving around the management of TBI, in which the role of new devices based on innovative discoveries coming from the field of nanotechnology and biomedical engineering were highlighted, have been included and analyzed in this study. Based on theresults gathered from this research on innovative methods for genomics, epigenomics, and proteomics, their future application in this field seems promising. Despite the outstanding technical challenges of identifying reliable biosignatures for TBI and the mixed nature of studies herein described (single cells proteomics, biofilms, sensors, etc.), the clinical implementation of those discoveries will allow us to gain confidence in the use of advanced neuromonitoring modalities with a potential dramatic improvement in the management of those patients.
Collapse
Affiliation(s)
- Mario Ganau
- Department of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada.
- School of Medicine, University of Cagliari, 09124 Cagliari, Italy.
| | - Nikolaos Syrmos
- School of Medicine, Aristotle University of Thessaloniki, 54623 Thessaloniki, Greece.
| | - Marco Paris
- National Hospital for Neurology and Neurosurgery, University College London, London WC1N 3BG, UK.
| | - Laura Ganau
- School of Medicine, University of Cagliari, 09124 Cagliari, Italy.
| | | | - Ali Moghaddamjou
- Department of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada.
| | - Salvatore Chibbaro
- Division of Neurosurgery, University of Strasbourg, 67000 Strasbourg, France.
| | - Andrea Soddu
- Brain and Mind Institute, Physics & Astronomy Department, Western University, London, ON N6A 3K7, Canada.
| | - Rossano Ambu
- School of Medicine, University of Cagliari, 09124 Cagliari, Italy.
| | - Lara Prisco
- John Radcliffe Hospital, Oxford University, Oxford OX3 9DU, UK.
| |
Collapse
|
17
|
Somayaji MR, Przekwas AJ, Gupta RK. Combination Therapy for Multi-Target Manipulation of Secondary Brain Injury Mechanisms. Curr Neuropharmacol 2018; 16:484-504. [PMID: 28847295 PMCID: PMC6018188 DOI: 10.2174/1570159x15666170828165711] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/10/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a major healthcare problem that affects millions of people worldwide. Despite advances in understanding and developing preventative and treatment strategies using preclinical animal models, clinical trials to date have failed, and a 'magic bullet' for effectively treating TBI-induced damage does not exist. Thus, novel pharmacological strategies to effectively manipulate the complex and heterogeneous pathophysiology of secondary injury mechanisms are needed. Given that goal, this paper discusses the relevance and advantages of combination therapies (COMTs) for 'multi-target manipulation' of the secondary injury cascade by administering multiple drugs to achieve an optimal therapeutic window of opportunity (e.g., temporally broad window) and compares these regimens to monotherapies that manipulate a single target with a single drug at a given time. Furthermore, we posit that integrated mechanistic multiscale models that combine primary injury biomechanics, secondary injury mechanobiology/neurobiology, physiology, pharmacology and mathematical programming techniques could account for vast differences in the biological space and time scales and help to accelerate drug development, to optimize pharmacological COMT protocols and to improve treatment outcomes.
Collapse
Affiliation(s)
| | | | - Raj K. Gupta
- Department of Defense Blast Injury Research Program Coordinating Office, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA
| |
Collapse
|
18
|
Sajja VSSS, Jablonska A, Haughey N, Bulte JWM, Stevens RD, Long JB, Walczak P, Janowski M. Sphingolipids and microRNA Changes in Blood following Blast Traumatic Brain Injury: An Exploratory Study. J Neurotrauma 2017; 35:353-361. [PMID: 29020847 DOI: 10.1089/neu.2017.5009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
At present, accurate and reliable biomarkers to ascertain the presence, severity, or prognosis of blast traumatic brain injury (bTBI) are lacking. There is an urgent need to establish accurate and reliable biomarkers capable of mbTBI detection. Currently, there are no studies that identify changes in miRNA and lipids at varied severities of bTBI. Various biological components such as lipids, circulating mRNA, and miRNA, could potentially be detected using advanced techniques such as next-generation sequencing and mass spectroscopy. Therefore, plasma analysis is an attractive approach with which to diagnose and treat brain injuries. Subacute changes in plasma microRNA (miRNA) and lipid composition for sphingolipids were evaluated in a murine model of mild-to-moderate bTBI using next-generation sequencing and mass spectroscopy respectively. Animals were exposed at 17, 17 × 3, and 20 psi blast intensities using a calibrated blast simulator. Plasma lipid profiling demonstrated decreased C18 fatty acid chains of sphingomyelins and increased ceramide levels when compared with controls. Plasma levels of brain-enriched miRNA, miR-127 were increased in all groups while let-7a, b, and g were reduced in the 17 × 3 and 20 psi groups, but let 7d was increased in the 17 psi group. The majority of the miRs and lipids are highly conserved across different species, making them attractive to explore and potentially employ as diagnostic markers. It is tempting to speculate that sphingolipids, miR-128, and the let-7 family could predict mTBI, while a combination of miR-484, miR-122, miR-148a, miR-130a, and miR-223 could be used to predict the overall status of injury following blast injury.
Collapse
Affiliation(s)
- Venkata Siva Sai Sujith Sajja
- 1 Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University , Baltimore, Maryland.,3 Johns Hopkins Military & Veterans Health Institute , Baltimore, Maryland.,4 Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Anna Jablonska
- 1 Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Norman Haughey
- 5 Department of Neurology and Neurosurgery, Richard T. Johnson Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine , Baltimore, Maryland.,6 Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Jeff W M Bulte
- 1 Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Robert D Stevens
- 1 Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University , Baltimore, Maryland.,5 Department of Neurology and Neurosurgery, Richard T. Johnson Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine , Baltimore, Maryland.,7 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Joseph B Long
- 4 Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Piotr Walczak
- 1 Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University , Baltimore, Maryland.,8 Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury , Olsztyn, Poland
| | - Miroslaw Janowski
- 1 Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University , Baltimore, Maryland.,9 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
19
|
Honorat JA, Nakatsuji Y, Shimizu M, Kinoshita M, Sumi-Akamaru H, Sasaki T, Takata K, Koda T, Namba A, Yamashita K, Sanda E, Sakaguchi M, Kumanogoh A, Shirakura T, Tamura M, Sakoda S, Mochizuki H, Okuno T. Febuxostat ameliorates secondary progressive experimental autoimmune encephalomyelitis by restoring mitochondrial energy production in a GOT2-dependent manner. PLoS One 2017; 12:e0187215. [PMID: 29107957 PMCID: PMC5673182 DOI: 10.1371/journal.pone.0187215] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress and mitochondrial dysfunction are important determinants of neurodegeneration in secondary progressive multiple sclerosis (SPMS). We previously showed that febuxostat, a xanthine oxidase inhibitor, ameliorated both relapsing-remitting and secondary progressive experimental autoimmune encephalomyelitis (EAE) by preventing neurodegeneration in mice. In this study, we investigated how febuxostat protects neuron in secondary progressive EAE. A DNA microarray analysis revealed that febuxostat treatment increased the CNS expression of several mitochondria-related genes in EAE mice, most notably including GOT2, which encodes glutamate oxaloacetate transaminase 2 (GOT2). GOT2 is a mitochondrial enzyme that oxidizes glutamate to produce α-ketoglutarate for the Krebs cycle, eventually leading to the production of adenosine triphosphate (ATP). Whereas GOT2 expression was decreased in the spinal cord during the chronic progressive phase of EAE, febuxostat-treated EAE mice showed increased GOT2 expression. Moreover, febuxostat treatment of Neuro2a cells in vitro ameliorated ATP exhaustion induced by rotenone application. The ability of febuxostat to preserve ATP production in the presence of rotenone was significantly reduced by GOT2 siRNA. GOT2-mediated ATP synthesis may be a pivotal mechanism underlying the protective effect of febuxostat against neurodegeneration in EAE. Accordingly, febuxostat may also have clinical utility as a disease-modifying drug in SPMS.
Collapse
Affiliation(s)
- Josephe A. Honorat
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuji Nakatsuji
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail: (TO); (YN)
| | - Mikito Shimizu
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Kinoshita
- Department of Neurology, Osaka General Medical Center, Osaka, Osaka, Japan
| | - Hisae Sumi-Akamaru
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazushiro Takata
- Department of Neurology, Osaka General Medical Center, Osaka, Osaka, Japan
| | - Toru Koda
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Akiko Namba
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuya Yamashita
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Eri Sanda
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Manabu Sakaguchi
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takashi Shirakura
- Pharmaceutical Development Research Laboratories, Teijin Pharma Ltd., Hino, Tokyo, Japan
| | - Mizuho Tamura
- Pharmaceutical Development Research Laboratories, Teijin Pharma Ltd., Hino, Tokyo, Japan
| | - Saburo Sakoda
- Department of Neurology, National Hospital Organization Toneyama National Hospital, Toyonaka, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail: (TO); (YN)
| |
Collapse
|
20
|
Sawyer TW, Ritzel DV, Wang Y, Josey T, Villanueva M, Nelson P, Song Y, Shei Y, Hennes G, Vair C, Parks S, Fan C, McLaws L. Primary Blast Causes Delayed Effects without Cell Death in Shell-Encased Brain Cell Aggregates. J Neurotrauma 2017; 35:174-186. [PMID: 28726571 DOI: 10.1089/neu.2016.4961] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previous work in this laboratory used underwater explosive exposures to isolate the effects of shock-induced principle stress without shear on rat brain aggregate cultures. The current study has utilized simulated air blast to expose aggregates in suspension and enclosed within a spherical shell, enabling the examination of a much more complex biomechanical insult. Culture medium-filled spheres were exposed to single pulse overpressures of 15-30 psi (∼6-7 msec duration) and measurements within the sphere at defined sites showed complex and spatially dependent pressure changes. When brain aggregates were exposed to similar conditions, no cell death was observed and no changes in several commonly used biomarkers of traumatic brain injury (TBI) were noted. However, similarly to underwater blast, immediate and transient increases in the protein kinase B signaling pathway were observed at early time-points (3 days). In contrast, the oligodendrocyte marker 2',3'-cyclic nucleotide 3'-phosphodiesterase, as well as vascular endothelial growth factor, both displayed markedly delayed (14-28 days) and pressure-dependent responses. The imposition of a spherical shell between the single pulse shock wave and the target brain tissue introduces greatly increased complexity to the insult. This work shows that brain tissue can not only discriminate the nature of the pressure changes it experiences, but that a portion of its response is significantly delayed. These results have mechanistic implications for the study of primary blast-induced TBI and also highlight the importance of rigorously characterizing the actual pressure variations experienced by target tissue in primary blast studies.
Collapse
Affiliation(s)
- Thomas W Sawyer
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | | | - Yushan Wang
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Tyson Josey
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Mercy Villanueva
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Peggy Nelson
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Yanfeng Song
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Yimin Shei
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Grant Hennes
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Cory Vair
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | | | - Changyang Fan
- 4 Canada West Biosciences , Camrose, Alberta, Canada
| | - Lori McLaws
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| |
Collapse
|
21
|
Lucke-Wold BP, Turner RC, Logsdon AF, Rosen CL, Qaiser R. Blast Scaling Parameters: Transitioning from Lung to Skull Base Metrics. JOURNAL OF SURGERY AND EMERGENCY MEDICINE 2017; 1. [PMID: 28386605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/28/2022]
Abstract
Neurotrauma from blast exposure is one of the single most characteristic injuries of modern warfare. Understanding blast traumatic brain injury is critical for developing new treatment options for warfighters and civilians exposed to improvised explosive devices. Unfortunately, the pre-clinical models that are widely utilized to investigate blast exposure are based on archaic lung based parameters developed in the early 20th century. Improvised explosive devices produce a different type of injury paradigm than the typical mortar explosion. Protective equipment for the chest cavity has also improved over the past 100 years. In order to improve treatments, it is imperative to develop models that are based more on skull-based parameters. In this mini-review, we discuss the important anatomical and biochemical features necessary to develop a skull-based model.
Collapse
Affiliation(s)
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University, Morgantown, WV, USA
| | | | - Charles L Rosen
- Department of Neurosurgery, West Virginia University, Morgantown, WV, USA
| | - Rabia Qaiser
- Department of Neurosurgery, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
22
|
Abstract
Explosive blast injury has become the most prevalent injury in recent military conflicts and terrorist attacks. The magnitude of this kind of polytrauma is complex due to the basic physics of blast and the surrounding environments. Therefore, development of stable, reproducible and controllable animal model using an ideal blast simulation device is the key of blast injury research. The present review addresses the modeling of blast injury and applications of shock tubes.
Collapse
Affiliation(s)
- Ya-Lei Ning
- Molecular Biology Center, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University,Chongqing 400042, China
| | | |
Collapse
|
23
|
Ning YL, Yang N, Chen X, Zhao ZA, Zhang XZ, Chen XY, Li P, Zhao Y, Zhou YG. Chronic caffeine exposure attenuates blast-induced memory deficit in mice. Chin J Traumatol 2017; 18:204-11. [PMID: 26764541 DOI: 10.1016/j.cjtee.2015.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To investigate the effects of three different ways of chronic caffeine administration on blast- induced memory dysfunction and to explore the underlying mechanisms. METHODS Adult male C57BL/6 mice were used and randomly divided into five groups: control: without blast exposure, con-water: administrated with water continuously before and after blast-induced traumatic brain injury (bTBI), con-caffeine: administrated with caffeine continuously for 1 month before and after bTBI, pre-caffeine: chronically administrated with caffeine for 1 month before bTBI and withdrawal after bTBI, post-caffeine: chronically administrated with caffeine after bTBI. After being subjected to moderate intensity of blast injury, mice were recorded for learning and memory performance using Morris water maze (MWM) paradigms at 1, 4, and 8 weeks post-blast injury. Neurological deficit scoring, glutamate concentration, proinflammatory cytokines production, and neuropathological changes at 24 h, 1, 4, and 8 weeks post-bTBI were examined to evaluate the brain injury in early and prolonged stages. Adenosine A1 receptor expression was detected using qPCR. RESULTS All of the three ways of chronic caffeine exposure ameliorated blast-induced memory deficit, which is correlated with the neuroprotective effects against excitotoxicity, inflammation, astrogliosis and neuronal loss at different stages of injury. Continuous caffeine treatment played positive roles in both early and prolonged stages of bTBI; pre-bTBI and post-bTBI treatment of caffeine tended to exert neuroprotective effects at early and prolonged stages of bTBI respectively. Up-regulation of adenosine A1 receptor expression might contribute to the favorable effects of chronic caffeine consumption. CONCLUSION Since caffeinated beverages are widely consumed in both civilian and military personnel and are convenient to get, the results may provide a promising prophylactic strategy for blast-induced neurotrauma and the consequent cognitive impairment.
Collapse
Affiliation(s)
- Ya-Lei Ning
- Molecular Biology Center, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery and Daping Hospital,Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Blast injury has become the major life- and function-threatening injuries in recent warfares. There is increased research interest in the mental disorders caused by blast-induced traumatic brain injury (bTBI), which has been proved as one of the "signature wounds" in modern battlefield. We reviewed the recent progresses in bTBI-related researches and concluded that the new era of blast injury research has shifted from the traditional physical impairments to cognitive dysfunctional/mental disorders that are proved to be more related to the outcome of combat casualty care.
Collapse
Affiliation(s)
- Yan Zhao
- Molecular Biology Center, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | | |
Collapse
|
25
|
Sawyer TW, Lee JJ, Villanueva M, Wang Y, Nelson P, Song Y, Fan C, Barnes J, McLaws L. The Effect of Underwater Blast on Aggregating Brain Cell Cultures. J Neurotrauma 2017; 34:517-528. [PMID: 27163293 DOI: 10.1089/neu.2016.4430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although the deleterious effects of primary blast on gas-filled organs are well accepted, the effect of blast-induced shock waves on the brain is less clear because of factors that complicate the interpretation of clinical and experimental data. Brain cell aggregate cultures are comprised of multiple differentiated brain cell types and were used to examine the effects of underwater blast. Suspensions of these cultures encased in dialysis tubing were exposed to explosive-generated underwater blasts of low (∼300 kPa), medium (∼2,700 kPa), or high (∼14,000 kPa) intensities and harvested at 1-28 days post-exposure. No changes in gross morphology were noted immediately or weeks after blast wave exposure, and no increases in either apoptotic (caspase-3) or necrotic (lactate dehydrogenase) cell death were observed. Changes in neuronal (neurofilament H, acetylcholinesterase, and choline acetyltransferase) and glial (glial fibrillary acidic protein, glutamine synthetase) endpoints did not occur. However, significant time- and pressure-related increases in Akt (protein kinase B) phosphorylation were noted, as well as declines in vascular endothelial growth factor levels, implicating pathways involved in cellular survival mechanisms. The free-floating nature of the aggregates during blast wave exposure, coupled with their highly hydrolyzed dialysis tubing containment, results in minimized boundary effects, thus enabling accurate assessment of brain cell response to a simplified shock-induced stress wave. This work shows that, at its simplest, blast-induced shock waves produce subtle changes in brain tissue. This study has mechanistic implications for the study of primary blast-induced traumatic brain injury and supports the thesis that underwater blast may cause subtle changes in the brains of submerged individuals.
Collapse
Affiliation(s)
- Thomas W Sawyer
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Julian J Lee
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Mercy Villanueva
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Yushan Wang
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Peggy Nelson
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Yanfeng Song
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Chengyang Fan
- 2 Canada West Biosciences , Calgary, Alberta, Canada
| | - Julia Barnes
- 3 Hyland Quality Systems , Medicine Hat, Alberta, Canada
| | - Lori McLaws
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| |
Collapse
|
26
|
Sajja VSSS, Hubbard WB, Hall CS, Ghoddoussi F, Galloway MP, VandeVord PJ. Enduring deficits in memory and neuronal pathology after blast-induced traumatic brain injury. Sci Rep 2015; 5:15075. [PMID: 26537106 PMCID: PMC4633584 DOI: 10.1038/srep15075] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/15/2015] [Indexed: 01/06/2023] Open
Abstract
Few preclinical studies have assessed the long-term neuropathology and behavioral deficits after sustaining blast-induced neurotrauma (BINT). Previous studies have shown extensive astrogliosis and cell death at acute stages (<7 days) but the temporal response at a chronic stage has yet to be ascertained. Here, we used behavioral assays, immmunohistochemistry and neurochemistry in limbic areas such as the amygdala (Amy), Hippocampus (Hipp), nucleus accumbens (Nac), and prefrontal cortex (PFC), to determine the long-term effects of a single blast exposure. Behavioral results identified elevated avoidance behavior and decreased short-term memory at either one or three months after a single blast event. At three months after BINT, markers for neurodegeneration (FJB) and microglia activation (Iba-1) increased while index of mature neurons (NeuN) significantly decreased in all brain regions examined. Gliosis (GFAP) increased in all regions except the Nac but only PFC was positive for apoptosis (caspase-3). At three months, tau was selectively elevated in the PFC and Hipp whereas α-synuclein transiently increased in the Hipp at one month after blast exposure. The composite neurochemical measure, myo-inositol+glycine/creatine, was consistently increased in each brain region three months following blast. Overall, a single blast event resulted in enduring long-term effects on behavior and neuropathological sequelae.
Collapse
Affiliation(s)
| | - W Brad Hubbard
- School of Biomedical Engineering and Sciences, Virginia Polytechnic and State University, Blacksburg, VA
| | - Christina S Hall
- School of Biomedical Engineering and Sciences, Virginia Polytechnic and State University, Blacksburg, VA
| | - Farhad Ghoddoussi
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI
| | - Matthew P Galloway
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI.,Department of Psychiatry, Wayne State University School of Medicine, Detroit, MI
| | - Pamela J VandeVord
- School of Biomedical Engineering and Sciences, Virginia Polytechnic and State University, Blacksburg, VA.,Salem VA Medical Center, Research &Development Service, Salem, VA, USA
| |
Collapse
|
27
|
Li H, Li X, Smerin SE, Zhang L, Jia M, Xing G, Su YA, Wen J, Benedek D, Ursano R. Mitochondrial Gene Expression Profiles and Metabolic Pathways in the Amygdala Associated with Exaggerated Fear in an Animal Model of PTSD. Front Neurol 2014; 5:164. [PMID: 25295026 PMCID: PMC4172054 DOI: 10.3389/fneur.2014.00164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 08/15/2014] [Indexed: 12/19/2022] Open
Abstract
The metabolic mechanisms underlying the development of exaggerated fear in post-traumatic stress disorder (PTSD) are not well defined. In the present study, alteration in the expression of genes associated with mitochondrial function in the amygdala of an animal model of PTSD was determined. Amygdala tissue samples were excised from 10 non-stressed control rats and 10 stressed rats, 14 days post-stress treatment. Total RNA was isolated, cDNA was synthesized, and gene expression levels were determined using a cDNA microarray. During the development of the exaggerated fear associated with PTSD, 48 genes were found to be significantly upregulated and 37 were significantly downregulated in the amygdala complex based on stringent criteria (p < 0.01). Ingenuity pathway analysis revealed up- or downregulation in the amygdala complex of four signaling networks – one associated with inflammatory and apoptotic pathways, one with immune mediators and metabolism, one with transcriptional factors, and one with chromatin remodeling. Thus, informatics of a neuronal gene array allowed us to determine the expression profile of mitochondrial genes in the amygdala complex of an animal model of PTSD. The result is a further understanding of the metabolic and neuronal signaling mechanisms associated with delayed and exaggerated fear.
Collapse
Affiliation(s)
- He Li
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Xin Li
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center , Washington, DC , USA
| | - Stanley E Smerin
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Lei Zhang
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Min Jia
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Guoqiang Xing
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Yan A Su
- Department of Gene and Protein Biomarkers, GenProMarkers , Rockville, MD , USA
| | - Jillian Wen
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - David Benedek
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Robert Ursano
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| |
Collapse
|
28
|
Therapeutic effect of sildenafil on blast-induced tinnitus and auditory impairment. Neuroscience 2014; 269:367-82. [DOI: 10.1016/j.neuroscience.2014.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/20/2014] [Accepted: 03/11/2014] [Indexed: 11/19/2022]
|
29
|
Boyko M, Gruenbaum SE, Gruenbaum BF, Shapira Y, Zlotnik A. Brain to blood glutamate scavenging as a novel therapeutic modality: a review. J Neural Transm (Vienna) 2014; 121:971-9. [PMID: 24623040 DOI: 10.1007/s00702-014-1181-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/11/2014] [Indexed: 12/27/2022]
Abstract
It is well known that abnormally elevated glutamate levels in the brain are associated with secondary brain injury following acute and chronic brain insults. As such, a tight regulation of brain glutamate concentrations is of utmost importance in preventing the neurodegenerative effects of excess glutamate. There has been much effort in recent years to better understand the mechanisms by which glutamate is reduced in the brain to non-toxic concentrations, and in how to safely accelerate these mechanisms. Blood glutamate scavengers such as oxaloacetate, pyruvate, glutamate-oxaloacetate transaminase, and glutamate-pyruvate transaminase have been shown to reduce blood glutamate concentrations, thereby increasing the driving force of the brain to blood glutamate efflux and subsequently reducing brain glutamate levels. In the past decade, blood glutamate scavengers have gained increasing international interest, and its uses have been applied to a wide range of experimental contexts in animal models of traumatic brain injury, ischemic stroke, subarachnoid hemorrhage, epilepsy, migraine, and malignant gliomas. Although glutamate scavengers have not yet been used in humans, there is increasing evidence that their use may provide effective and exciting new therapeutic modalities. Here, we review the laboratory evidence for the use of blood glutamate scavengers. Other experimental neuroprotective treatments thought to scavenge blood glutamate, including estrogen and progesterone, beta-adrenergic activation, hypothermia, insulin and glucagon, and hemodialysis and peritoneal dialysis are also discussed. The evidence reviewed here will hopefully pave the way for future clinical trials.
Collapse
Affiliation(s)
- Matthew Boyko
- Department of Anesthesiology and Critical Care, Faculty of Health Sciences, Soroka Medical Center Ben Gurion University of the Negev, Beer Sheba, Israel
| | | | | | | | | |
Collapse
|
30
|
Zhang YP, Cai J, Shields LBE, Liu N, Xu XM, Shields CB. Traumatic brain injury using mouse models. Transl Stroke Res 2014; 5:454-71. [PMID: 24493632 DOI: 10.1007/s12975-014-0327-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 12/09/2013] [Accepted: 01/05/2014] [Indexed: 12/14/2022]
Abstract
The use of mouse models in traumatic brain injury (TBI) has several advantages compared to other animal models including low cost of breeding, easy maintenance, and innovative technology to create genetically modified strains. Studies using knockout and transgenic mice demonstrating functional gain or loss of molecules provide insight into basic mechanisms of TBI. Mouse models provide powerful tools to screen for putative therapeutic targets in TBI. This article reviews currently available mouse models that replicate several clinical features of TBI such as closed head injuries (CHI), penetrating head injuries, and a combination of both. CHI may be caused by direct trauma creating cerebral concussion or contusion. Sudden acceleration-deceleration injuries of the head without direct trauma may also cause intracranial injury by the transmission of shock waves to the brain. Recapitulation of temporary cavities that are induced by high-velocity penetrating objects in the mouse brain are difficult to produce, but slow brain penetration injuries in mice are reviewed. Synergistic damaging effects on the brain following systemic complications are also described. Advantages and disadvantages of CHI mouse models induced by weight drop, fluid percussion, and controlled cortical impact injuries are compared. Differences in the anatomy, biomechanics, and behavioral evaluations between mice and humans are discussed. Although the use of mouse models for TBI research is promising, further development of these techniques is warranted.
Collapse
Affiliation(s)
- Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA,
| | | | | | | | | | | |
Collapse
|
31
|
Moffett JR, Arun P, Ariyannur PS, Namboodiri AMA. N-Acetylaspartate reductions in brain injury: impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation. FRONTIERS IN NEUROENERGETICS 2013; 5:11. [PMID: 24421768 PMCID: PMC3872778 DOI: 10.3389/fnene.2013.00011] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/09/2013] [Indexed: 12/22/2022]
Abstract
N-Acetylaspartate (NAA) is employed as a non-invasive marker for neuronal health using proton magnetic resonance spectroscopy (MRS). This utility is afforded by the fact that NAA is one of the most concentrated brain metabolites and that it produces the largest peak in MRS scans of the healthy human brain. NAA levels in the brain are reduced proportionately to the degree of tissue damage after traumatic brain injury (TBI) and the reductions parallel the reductions in ATP levels. Because NAA is the most concentrated acetylated metabolite in the brain, we have hypothesized that NAA acts in part as an extensive reservoir of acetate for acetyl coenzyme A synthesis. Therefore, the loss of NAA after TBI impairs acetyl coenzyme A dependent functions including energy derivation, lipid synthesis, and protein acetylation reactions in distinct ways in different cell populations. The enzymes involved in synthesizing and metabolizing NAA are predominantly expressed in neurons and oligodendrocytes, respectively, and therefore some proportion of NAA must be transferred between cell types before the acetate can be liberated, converted to acetyl coenzyme A and utilized. Studies have indicated that glucose metabolism in neurons is reduced, but that acetate metabolism in astrocytes is increased following TBI, possibly reflecting an increased role for non-glucose energy sources in response to injury. NAA can provide additional acetate for intercellular metabolite trafficking to maintain acetyl CoA levels after injury. Here we explore changes in NAA, acetate, and acetyl coenzyme A metabolism in response to brain injury.
Collapse
Affiliation(s)
- John R. Moffett
- Neuroscience Program, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | | | | | | |
Collapse
|
32
|
Khatri N, Man HY. Synaptic activity and bioenergy homeostasis: implications in brain trauma and neurodegenerative diseases. Front Neurol 2013; 4:199. [PMID: 24376435 PMCID: PMC3858785 DOI: 10.3389/fneur.2013.00199] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/26/2013] [Indexed: 12/14/2022] Open
Abstract
Powered by glucose metabolism, the brain is the most energy-demanding organ in our body. Adequate ATP production and regulation of the metabolic processes are essential for the maintenance of synaptic transmission and neuronal function. Glutamatergic synaptic activity utilizes the largest portion of bioenergy for synaptic events including neurotransmitter synthesis, vesicle recycling, and most importantly, the postsynaptic activities leading to channel activation and rebalancing of ionic gradients. Bioenergy homeostasis is coupled with synaptic function via activities of the sodium pumps, glutamate transporters, glucose transport, and mitochondria translocation. Energy insufficiency is sensed by the AMP-activated protein kinase (AMPK), a master metabolic regulator that stimulates the catalytic process to enhance energy production. A decline in energy supply and a disruption in bioenergy homeostasis play a critical role in multiple neuropathological conditions including ischemia, stroke, and neurodegenerative diseases including Alzheimer’s disease and traumatic brain injuries.
Collapse
Affiliation(s)
- Natasha Khatri
- Department of Biology, Boston University , Boston, MA , USA ; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine , Boston, MA , USA
| | - Heng-Ye Man
- Department of Biology, Boston University , Boston, MA , USA ; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine , Boston, MA , USA
| |
Collapse
|
33
|
Ferreira APO, Rodrigues FS, Della-Pace ID, Mota BC, Oliveira SM, Velho Gewehr CDC, Bobinski F, de Oliveira CV, Brum JS, Oliveira MS, Furian AF, de Barros CSL, Ferreira J, Santos ARSD, Fighera MR, Royes LFF. The effect of NADPH-oxidase inhibitor apocynin on cognitive impairment induced by moderate lateral fluid percussion injury: role of inflammatory and oxidative brain damage. Neurochem Int 2013; 63:583-93. [PMID: 24076474 DOI: 10.1016/j.neuint.2013.09.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/07/2013] [Accepted: 09/16/2013] [Indexed: 12/25/2022]
Abstract
Traumatic brain injury (TBI) is a devastating disease that commonly causes persistent mental disturbances and cognitive deficits. Although studies have indicated that overproduction of free radicals, especially superoxide (O2(-)) derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is a common underlying mechanism of pathophysiology of TBI, little information is available regarding the role of apocynin, an NADPH oxidase inhibitor, in neurological consequences of TBI. Therefore, the present study evaluated the therapeutic potential of apocynin for treatment of inflammatory and oxidative damage, in addition to determining its action on neuromotor and memory impairments caused by moderate fluid percussion injury in mice (mLFPI). Statistical analysis revealed that apocynin (5mg/kg), when injected subcutaneously (s.c.) 30min and 24h after injury, had no effect on neuromotor deficit and brain edema, however it provided protection against mLFPI-induced object recognition memory impairment 7days after neuronal injury. The same treatment protected against mLFPI-induced IL-1β, TNF-α, nitric oxide metabolite content (NOx) 3 and 24h after neuronal injury. Moreover, apocynin treatment reduced oxidative damage (protein carbonyl, lipoperoxidation) and was effective against mLFPI-induced Na(+), K(+)-ATPase activity inhibition. The present results were accompanied by effective reduction in lesion volume when analyzed 7days after neuronal injury. These data suggest that superoxide (O2(-)) derived from NADPH oxidase can contribute significantly to cognitive impairment, and that the post injury treatment with specific NADPH oxidase inhibitors, such as apocynin, may provide a new therapeutic approach to the control of neurological disabilities induced by TBI.
Collapse
Affiliation(s)
- Ana Paula Oliveira Ferreira
- Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós - Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda Silva Rodrigues
- Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós - Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Iuri Domingues Della-Pace
- Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós - Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Bibiana Castagna Mota
- Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós - Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Programa de Pós - Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Camila de Campos Velho Gewehr
- Programa de Pós - Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Franciane Bobinski
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianólpolis, SC, Brazil
| | - Clarissa Vasconcelos de Oliveira
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Juliana Sperotto Brum
- Departamento de Patologia, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Mauro Schneider Oliveira
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Ana Flavia Furian
- Departamento de Ciência e Tecnologia de Alimentos, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Juliano Ferreira
- Programa de Pós - Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Adair Roberto Soares Dos Santos
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianólpolis, SC, Brazil
| | - Michele Rechia Fighera
- Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós - Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Luiz Fernando Freire Royes
- Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós - Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|