1
|
Grebenciucova E, VanHaerents S. Interleukin 6: at the interface of human health and disease. Front Immunol 2023; 14:1255533. [PMID: 37841263 PMCID: PMC10569068 DOI: 10.3389/fimmu.2023.1255533] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Interleukin 6 (IL-6) is a pleiotropic cytokine executing a diverse number of functions, ranging from its effects on acute phase reactant pathways, B and T lymphocytes, blood brain barrier permeability, synovial inflammation, hematopoiesis, and embryonic development. This cytokine empowers the transition between innate and adaptive immune responses and helps recruit macrophages and lymphocytes to the sites of injury or infection. Given that IL-6 is involved both in the immune homeostasis and pathogenesis of several autoimmune diseases, research into therapeutic modulation of IL-6 axis resulted in the approval of a number of effective treatments for several autoimmune disorders like neuromyelitis optica spectrum disorder (NMOSD), rheumatoid arthritis, juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis (GCA), and cytokine release syndrome, associated with SARS-CoV2 pneumonia. This review discusses downstream inflammatory pathways of IL-6 expression and therapeutic applications of IL-6 blockade, currently investigated for the treatment of several other autoimmune conditions such as autoimmune encephalitis, autoimmune epilepsy, as well as myelin oligodendrocyte glycoprotein associated demyelination (MOGAD). This review further highlights the need for clinical trials to evaluate IL-6 blockade in disorders such neuropsychiatric lupus erythematosus (SLE), sarcoidosis and Behcet's.
Collapse
Affiliation(s)
- Elena Grebenciucova
- Feinberg School of Medicine, Department of Neurology, Northwestern University, Chicago, IL, United States
| | | |
Collapse
|
2
|
Pischiutta F, Caruso E, Cavaleiro H, Salgado AJ, Loane DJ, Zanier ER. Mesenchymal stromal cell secretome for traumatic brain injury: Focus on immunomodulatory action. Exp Neurol 2022; 357:114199. [PMID: 35952763 DOI: 10.1016/j.expneurol.2022.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022]
Abstract
The severity and long-term consequences of brain damage in traumatic brain injured (TBI) patients urgently calls for better neuroprotective/neuroreparative strategies for this devastating disorder. Mesenchymal stromal cells (MSCs) hold great promise and have been shown to confer neuroprotection in experimental TBI, mainly through paracrine mechanisms via secreted bioactive factors (i.e. secretome), which indicates significant potential for a cell-free neuroprotective approach. The secretome is composed of cytokines, chemokines, growth factors, proteins, lipids, nucleic acids, metabolites, and extracellular vesicles; it may offer advantages over MSCs in terms of delivery, safety, and variability of therapeutic response for brain injury. Immunomodulation by molecular factors secreted by MSCs is considered to be a key mechanism involved in their multi-potential therapeutic effects. Regulated neuroinflammation is required for healthy remodeling of central nervous system during development and adulthood. Moreover, immune cells and their secreted factors can also contribute to tissue repair and neurological recovery following acute brain injury. However, a chronic and maladaptive neuroinflammatory response can exacerbate TBI and contribute to progressive neurodegeneration and long-term neurological impairments. Here, we review the evidence for MSC-derived secretome as a therapy for TBI. Our framework incorporates a detailed analysis of in vitro and in vivo studies investigating the effects of the secretome on clinically relevant neurological and histopathological outcomes. We also describe the activation of immune cells after TBI and the immunomodulatory properties exerted by mediators released in the secretome. We then describe how ageing modifies central and systemic immune responses to TBI and discuss challenges and opportunities of developing secretome based neuroprotective therapies for elderly TBI populations. Finally, strategies aimed at modulating the secretome in order to boost its efficacy for TBI will also be discussed.
Collapse
Affiliation(s)
- Francesca Pischiutta
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy
| | - Enrico Caruso
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy; Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Helena Cavaleiro
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Stemmatters, Biotechnology and Regenerative Medicine, Guimarães, Portugal
| | - Antonio J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - David J Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Elisa R Zanier
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy.
| |
Collapse
|
3
|
Custers ML, Nestor L, De Bundel D, Van Eeckhaut A, Smolders I. Current Approaches to Monitor Macromolecules Directly from the Cerebral Interstitial Fluid. Pharmaceutics 2022; 14:pharmaceutics14051051. [PMID: 35631637 PMCID: PMC9146401 DOI: 10.3390/pharmaceutics14051051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
Gaining insights into the pharmacokinetic and pharmacodynamic properties of lead compounds is crucial during drug development processes. When it comes to the treatment of brain diseases, collecting information at the site of action is challenging. There are only a few techniques available that allow for the direct sampling from the cerebral interstitial space. This review concerns the applicability of microdialysis and other approaches, such as cerebral open flow microperfusion and electrochemical biosensors, to monitor macromolecules (neuropeptides, proteins, …) in the brain. Microdialysis and cerebral open flow microperfusion can also be used to locally apply molecules at the same time at the site of sampling. Innovations in the field are discussed, together with the pitfalls. Moreover, the ‘nuts and bolts’ of the techniques and the current research gaps are addressed. The implementation of these techniques could help to improve drug development of brain-targeted drugs.
Collapse
|
4
|
Casault C, Couillard P, Kromm J, Rosenthal E, Kramer A, Brindley P. Multimodal brain monitoring following traumatic brain injury: A primer for intensive care practitioners. J Intensive Care Soc 2022; 23:191-202. [PMID: 35615230 PMCID: PMC9125434 DOI: 10.1177/1751143720980273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
Traumatic brain injury (TBI) is common and potentially devastating. Traditional examination-based patient monitoring following TBI may be inadequate for frontline clinicians to reduce secondary brain injury through individualized therapy. Multimodal neurologic monitoring (MMM) offers great potential for detecting early injury and improving outcomes. By assessing cerebral oxygenation, autoregulation and metabolism, clinicians may be able to understand neurophysiology during acute brain injury, and offer therapies better suited to each patient and each stage of injury. Hence, we offer this primer on brain tissue oxygen monitoring, pressure reactivity index monitoring and cerebral microdialysis. This narrative review serves as an introductory guide to the latest clinically-relevant evidence regarding key neuromonitoring techniques.
Collapse
Affiliation(s)
- Colin Casault
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
| | - Philippe Couillard
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
- Department of Clinical
Neurosciences, University of Calgary, Calgary, Canada
| | - Julie Kromm
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
- Department of Clinical
Neurosciences, University of Calgary, Calgary, Canada
| | - Eric Rosenthal
- Department of Critical Care
Medicine, University of Alberta, Edmonton, Canada
| | - Andreas Kramer
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
- Department of Clinical
Neurosciences, University of Calgary, Calgary, Canada
| | - Peter Brindley
- Department of Neurology, Harvard
University, Boston, MA, USA
| |
Collapse
|
5
|
Metabolomics and Inflammatory Mediator Profiling for the Differentiation of Life-Threatening and Non-Severe Appendicitis in the Pediatric Population. Metabolites 2021; 11:metabo11100664. [PMID: 34677379 PMCID: PMC8539521 DOI: 10.3390/metabo11100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
While children with appendicitis often have excellent clinical outcomes, some develop life-threatening complications including sepsis and organ dysfunction requiring pediatric intensive care unit (PICU) support. Our study applied a metabolomics and inflammatory protein mediator (IPM) profiling approach to determine the bio-profiles of children who developed severe appendicitis compared with those that did not. We performed a prospective case-control study of children aged 0-17 years with a diagnosis of appendicitis. Cases had severe disease resulting in PICU admission. Primary controls had moderate appendicitis (perforation without PICU); secondary controls had mild appendicitis (non-perforated). Serum samples were analyzed using Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy and Gas Chromatography-Mass Spectrometry (GC-MS); IPM analysis was performed using plasma bead-based multiplex profiling. Comparisons were made using multivariate data statistical analysis. Fifty-three children were included (15 severe, 38 non-severe). Separation between severe and moderate appendicitis demonstrated excellent sensitivity and specificity (100%, 88%; 14 compounds), separation between severe and mild appendicitis also showed excellent sensitivity and specificity (91%, 90%; 16 compounds). Biomarker patterns derived from metabolomics and IPM profiling are capable of distinguishing children with severe appendicitis from those with less severe disease. These findings provide an important first step towards developing non-invasive diagnostic tools for clinicians in early identification of children who are at a high risk of developing severe appendicitis.
Collapse
|
6
|
Absence of Stress Hyperglycemia Indicates the Most Severe Form of Blunt Liver Trauma. Diagnostics (Basel) 2021; 11:diagnostics11091667. [PMID: 34574008 PMCID: PMC8470453 DOI: 10.3390/diagnostics11091667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/24/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Stress hyperglycemia is common in trauma patients. Increasing injury severity and hemorrhage trigger hepatic gluconeogenesis, glycogenolysis, peripheral and hepatic insulin resistance. Consequently, we expect glucose levels to rise with injury severity in liver, kidney and spleen injuries. In contrast, we hypothesized that in the most severe form of blunt liver injury, stress hyperglycemia may be absent despite critical injury and hemorrhage. Methods: All patients with documented liver, kidney or spleen injuries, treated at a university hospital between 2000 and 2020 were charted. Demographic, laboratory, radiological, surgical and other data were analyzed. Results: A total of 772 patients were included. In liver (n = 456), spleen (n = 375) and kidney (n = 152) trauma, an increase in injury severity past moderate to severe (according to the American Association for the Surgery of Trauma, AAST III-IV) was associated with a concomitant rise in blood glucose levels independent of the affected organ. While stress-induced hyperglycemia was even more pronounced in the most severe forms (AAST V) of spleen (median 10.7 mmol/L, p < 0.0001) and kidney injuries (median 10.6 mmol/L, p = 0.004), it was absent in AAST V liver injuries, where median blood glucose level even fell (5.6 mmol/L, p < 0.0001). Conclusions: Absence of stress hyperglycemia on hospital admission could be a sign of most severe liver injury (AAST V). Blood glucose should be considered an additional diagnostic criterion for grading liver injury.
Collapse
|
7
|
Nichols P, Urriola J, Miller S, Bjorkman T, Mahady K, Vegh V, Nasrallah F, Winter C. Blood-brain barrier dysfunction significantly correlates with serum matrix metalloproteinase-7 (MMP-7) following traumatic brain injury. NEUROIMAGE-CLINICAL 2021; 31:102741. [PMID: 34225019 PMCID: PMC8264212 DOI: 10.1016/j.nicl.2021.102741] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023]
Abstract
Matrix metalloproteinase (MMP) 7 is elevated in traumatic brain injury. Blood brain barrier dysfunction as measured by DCE MRI can be expressed as KTrans. MMP-7 shows a strong correlation with BBB dysfunction shown on MRI. MMP-7 shows potential to function as a serum biomarker.
Objectives To determine if radiological evidence of blood brain barrier (BBB) dysfunction, measured using Dynamic Contrast Enhanced MRI (DCE-MRI), correlates with serum matrix metalloproteinase (MMP) levels in traumatic brain injury (TBI) patients, and thereby, identify a potential biomarker for BBB dysfunction. Patients and Methods 20 patients with a mild, moderate, or severe TBI underwent a DCE-MRI scan and BBB dysfunction was interpreted from KTrans. KTrans is a measure of capillary permeability that reflects the efflux of gadolinium contrast into the extra-cellar space. The serum samples were concurrently collected and later analysed for MMP-1, −2, −7, −9, and −10 levels using an ELISA assay. Statistical correlations between MMP levels and the KTrans value were calculated. Multiple testing was corrected using the Benjamin–Hochberg method to control the false‐discovery rate (FDR). Results Serum MMP-1 values ranged from 1.5 to 49.6 ng/ml (12 ± 12.7), MMP-2 values from 58.3 to 174.1 ng/ml (109.5 ± 26.7), MMP-7 from 1.5 to 31.5 ng/mL (10 ± 7.4), MMP-9 from 128.6 to 1917.5 ng/ml (647.7 ± 749.6) and MMP-10 from 0.1 to 0.6 ng/mL (0.3 ± 0.2). Non-parametric Spearman correlation analysis on the data showed significant positive relationship between KTrans and MMP-7 (r = 0.55, p < 0.01). Correlations were also found between KTrans and MMP-1 (r = 0.74, p < 0.0002) and MMP-2 (r = 0.5, p < 0.025) but the actual MMP values were not above reference ranges, limiting the interpretation of results. Statistically significant correlations between KTrans and either MMP-9 or −10 were not found. Conclusion This is the first study to show a correlation between DCE measures and MMP values in patients with a TBI. Our results support the suggestion that serum MMP-7 may be considered as a peripheral biomarker quantifying BBB dysfunction in TBI patients.
Collapse
Affiliation(s)
- Paul Nichols
- Department of Neurosurgery, Royal Brisbane and Women's Hospital, Australia.
| | - Javier Urriola
- Queensland Brain Institute, The University of Queensland, Australia; Australian e-Health Research Centre, CSIRO, Brisbane, Australia
| | - Stephanie Miller
- University of Queensland Centre for Clinical Research, The University of Queensland, Royal Brisbane and Women's Hospital, Australia
| | - Tracey Bjorkman
- University of Queensland Centre for Clinical Research, The University of Queensland, Royal Brisbane and Women's Hospital, Australia
| | - Kate Mahady
- Department of Radiology, Royal Brisbane and Women's Hospital, Australia
| | - Viktor Vegh
- The Centre for Advanced Imaging, The University of Queensland, Australia; The ARC Centre for Innovation in Biomedical Imaging Technology, Brisbane, Australia
| | - Fatima Nasrallah
- Queensland Brain Institute, The University of Queensland, Australia
| | - Craig Winter
- Department of Neurosurgery, Royal Brisbane and Women's Hospital, Australia; Faculty of Medicine, The University of Queensland, Australia; School of Clinical Sciences, Queensland University of Technology, Australia
| |
Collapse
|
8
|
Zou Z, Li L, Schäfer N, Huang Q, Maegele M, Gu Z. Endothelial glycocalyx in traumatic brain injury associated coagulopathy: potential mechanisms and impact. J Neuroinflammation 2021; 18:134. [PMID: 34126995 PMCID: PMC8204552 DOI: 10.1186/s12974-021-02192-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death and disability worldwide; more than 10 million people are hospitalized for TBI every year around the globe. While the primary injury remains unavoidable and not accessible to treatment, the secondary injury which includes oxidative stress, inflammation, excitotoxicity, but also complicating coagulation abnormalities, is potentially avoidable and profoundly affects the therapeutic process and prognosis of TBI patients. The endothelial glycocalyx, the first line of defense against endothelial injury, plays a vital role in maintaining the delicate balance between blood coagulation and anticoagulation. However, this component is highly vulnerable to damage and also difficult to examine. Recent advances in analytical techniques have enabled biochemical, visual, and computational investigation of this vascular component. In this review, we summarize the current knowledge on (i) structure and function of the endothelial glycocalyx, (ii) its potential role in the development of TBI associated coagulopathy, and (iii) the options available at present for detecting and protecting the endothelial glycocalyx.
Collapse
Affiliation(s)
- Zhimin Zou
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China
| | - Nadine Schäfer
- Institute for Research in Operative Medicine (IFOM), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Ostmerheimerstr. 200, D-51109, Köln, Germany
| | - Qiaobing Huang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Marc Maegele
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China. .,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China. .,Institute for Research in Operative Medicine (IFOM), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Ostmerheimerstr. 200, D-51109, Köln, Germany. .,Department for Trauma and Orthopedic Surgery, Cologne-Merheim Medical Center (CMMC), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Ostmerheimerstr. 200, D-51109, Köln, Germany.
| | - Zhengtao Gu
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China. .,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.
| |
Collapse
|
9
|
Fakhoury M, Shakkour Z, Kobeissy F, Lawand N. Depression following traumatic brain injury: a comprehensive overview. Rev Neurosci 2020; 32:289-303. [PMID: 33661587 DOI: 10.1515/revneuro-2020-0037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury (TBI) represents a major health concern affecting the neuropsychological health; TBI is accompanied by drastic long-term adverse complications that can influence many aspects of the life of affected individuals. A substantial number of studies have shown that mood disorders, particularly depression, are the most frequent complications encountered in individuals with TBI. Post-traumatic depression (P-TD) is present in approximately 30% of individuals with TBI, with the majority of individuals experiencing symptoms of depression during the first year following head injury. To date, the mechanisms of P-TD are far from being fully understood, and effective treatments that completely halt this condition are still lacking. The aim of this review is to outline the current state of knowledge on the prevalence and risk factors of P-TD, to discuss the accompanying brain changes at the anatomical, molecular and functional levels, and to discuss current approaches used for the treatment of P-TD.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Neurology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
10
|
Sabouri E, Majdi A, Jangjui P, Rahigh Aghsan S, Naseri Alavi SA. Neutrophil-to-Lymphocyte Ratio and Traumatic Brain Injury: A Review Study. World Neurosurg 2020; 140:142-147. [DOI: 10.1016/j.wneu.2020.04.185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/28/2022]
|
11
|
Slavoaca D, Muresanu D, Birle C, Rosu OV, Chirila I, Dobra I, Jemna N, Strilciuc S, Vos P. Biomarkers in traumatic brain injury: new concepts. Neurol Sci 2020; 41:2033-2044. [PMID: 32157587 DOI: 10.1007/s10072-019-04238-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury is a multifaceted condition that encompasses a spectrum of injuries: contusions, axonal injuries in specific brain regions, edema, and hemorrhage. Brain injury determines a broad clinical and disability spectrum due to the implication of various cellular pathways, genetic phenotypes, and environmental factors. It is challenging to predict patient outcomes, to appropriately evaluate the patients, to determine a suitable treatment strategy and rehabilitation program, and to communicate with patient relatives. Biomarkers detected from body fluids are potential evaluation tools for traumatic brain injury patients. These may serve as internal indicators of cerebral damage, delivering valuable information about the dynamic cellular, biochemical, and molecular environments. The diagnostic and prognostic value of biomarkers tested both in animal models of traumatic brain injury is still under question, despite a considerable scientific literature. Recent publications emphasize that a more realistic approach involves combining multiple types of biomarkers with other investigative tools (imaging, outcome scales, and genetic polymorphisms). Additionally, there is increasing interest in the use of biomarkers as tools for treatment monitoring and as surrogate outcome variables to facilitate the design of distinct randomized controlled trials. This review highlights the latest available evidence regarding biomarkers in adults after traumatic brain injury and discusses new approaches in the evaluation of this patient group.
Collapse
Affiliation(s)
- Dana Slavoaca
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Dafin Muresanu
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania.
| | - Codruta Birle
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Olivia Verisezan Rosu
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Ioana Chirila
- Neurology Clinic, Cluj Emergency County Hospital, Cluj-Napoca, Romania
| | - Iulia Dobra
- Neurology Clinic, Cluj Emergency County Hospital, Cluj-Napoca, Romania
| | - Nicoleta Jemna
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Stefan Strilciuc
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Pieter Vos
- Department of Neurology, Slingeland Hospital, Doetinchem, The Netherlands
| |
Collapse
|
12
|
Diaz MF, Horton PD, Kumar A, Livingston M, Mohammadalipour A, Xue H, Skibber MA, Ewere A, Toledano Furman NE, Aroom KR, Zhang S, Gill BS, Cox CS, Wenzel PL. Injury intensifies T cell mediated graft-versus-host disease in a humanized model of traumatic brain injury. Sci Rep 2020; 10:10729. [PMID: 32612177 PMCID: PMC7330041 DOI: 10.1038/s41598-020-67723-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/10/2020] [Indexed: 12/29/2022] Open
Abstract
The immune system plays critical roles in promoting tissue repair during recovery from neurotrauma but is also responsible for unchecked inflammation that causes neuronal cell death, systemic stress, and lethal immunodepression. Understanding the immune response to neurotrauma is an urgent priority, yet current models of traumatic brain injury (TBI) inadequately recapitulate the human immune response. Here, we report the first description of a humanized model of TBI and show that TBI places significant stress on the bone marrow. Hematopoietic cells of the marrow are regionally decimated, with evidence pointing to exacerbation of underlying graft-versus-host disease (GVHD) linked to presence of human T cells in the marrow. Despite complexities of the humanized mouse, marrow aplasia caused by TBI could be alleviated by cell therapy with human bone marrow mesenchymal stromal cells (MSCs). We conclude that MSCs could be used to ameliorate syndromes triggered by hypercytokinemia in settings of secondary inflammatory stimulus that upset marrow homeostasis such as TBI. More broadly, this study highlights the importance of understanding how underlying immune disorders including immunodepression, autoimmunity, and GVHD might be intensified by injury.
Collapse
Affiliation(s)
- Miguel F Diaz
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Paulina D Horton
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Akshita Kumar
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Megan Livingston
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Amina Mohammadalipour
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hasen Xue
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Max A Skibber
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Adesuwa Ewere
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Naama E Toledano Furman
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kevin R Aroom
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Songlin Zhang
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Brijesh S Gill
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Charles S Cox
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Pamela L Wenzel
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Zeiler FA, Ercole A, Czosnyka M, Smielewski P, Hawryluk G, Hutchinson PJA, Menon DK, Aries M. Continuous cerebrovascular reactivity monitoring in moderate/severe traumatic brain injury: a narrative review of advances in neurocritical care. Br J Anaesth 2020; 124:440-453. [PMID: 31983411 DOI: 10.1016/j.bja.2019.11.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022] Open
Abstract
Impaired cerebrovascular reactivity in adult moderate and severe traumatic brain injury (TBI) is known to be associated with worse global outcome at 6-12 months. As technology has improved over the past decades, monitoring of cerebrovascular reactivity has shifted from intermittent measures, to experimentally validated continuously updating indices at the bedside. Such advances have led to the exploration of individualised physiologic targets in adult TBI management, such as optimal cerebral perfusion pressure (CPP) values, or CPP limits in which vascular reactivity is relatively intact. These targets have been shown to have a stronger association with outcome compared with existing consensus-based guideline thresholds in severe TBI care. This has sparked ongoing prospective trials of such personalised medicine approaches in adult TBI. In this narrative review paper, we focus on the concept of cerebral autoregulation, proposed mechanisms of control and methods of continuous monitoring used in TBI. We highlight multimodal cranial monitoring approaches for continuous cerebrovascular reactivity assessment, physiologic and neuroimaging correlates, and associations with outcome. Finally, we explore the recent 'state-of-the-art' advances in personalised physiologic targets based on continuous cerebrovascular reactivity monitoring, their benefits, and implications for future avenues of research in TBI.
Collapse
Affiliation(s)
- Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, Winnipeg, Canada; Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK; Biomedical Engineering, Faculty of Engineering, Winnipeg, Canada; Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Ari Ercole
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marek Czosnyka
- Section of Brain Physics, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Peter Smielewski
- Section of Brain Physics, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Gregory Hawryluk
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, Winnipeg, Canada
| | - Peter J A Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marcel Aries
- Department of Intensive Care, Maastricht UMC, Maastricht, the Netherlands
| |
Collapse
|
14
|
Abstract
Cerebral autoregulatory dysfunction after traumatic brain injury (TBI) is strongly linked to poor global outcome in patients at 6 months after injury. However, our understanding of the drivers of this dysfunction is limited. Genetic variation among individuals within a population gives rise to single-nucleotide polymorphisms (SNPs) that have the potential to influence a given patient's cerebrovascular response to an injury. Associations have been reported between a variety of genetic polymorphisms and global outcome in patients with TBI, but few studies have explored the association between genetic variants and cerebrovascular function after injury. In this Review, we explore polymorphisms that might play an important part in cerebral autoregulatory capacity after TBI. We outline a variety of SNPs, their biological substrates and their potential role in mediating cerebrovascular reactivity. A number of candidate polymorphisms exist in genes that are involved in myogenic, endothelial, metabolic and neurogenic vascular responses to injury. Furthermore, polymorphisms in genes involved in inflammation, the central autonomic response and cortical spreading depression might drive cerebrovascular reactivity. Identification of candidate genes involved in cerebral autoregulation after TBI provides a platform and rationale for further prospective investigation of the link between genetic polymorphisms and autoregulatory function.
Collapse
|
15
|
Peripheral loss of EphA4 ameliorates TBI-induced neuroinflammation and tissue damage. J Neuroinflammation 2019; 16:210. [PMID: 31711546 PMCID: PMC6844068 DOI: 10.1186/s12974-019-1605-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The continuum of pro- and anti-inflammatory response elicited by traumatic brain injury (TBI) is suggested to play a key role in the outcome of TBI; however, the underlying mechanisms remain ill -defined. METHODS Here, we demonstrate that using bone marrow chimeric mice and systemic inhibition of EphA4 receptor shifts the pro-inflammatory milieu to pro-resolving following acute TBI. RESULTS EphA4 expression is increased in the injured cortex as early as 2 h post-TBI and on CX3CR1gfp-positive cells in the peri-lesion. Systemic inhibition or genetic deletion of EphA4 significantly reduced cortical lesion volume and shifted the inflammatory profile of peripheral-derived immune cells to pro-resolving in the damaged cortex. These findings were consistent with in vitro studies showing EphA4 inhibition or deletion altered the inflammatory state of LPS-stimulated monocyte/macrophages towards anti-inflammatory. Phosphoarray analysis revealed that EphA4 may regulate pro-inflammatory gene expression by suppressing the mTOR, Akt, and NF-κB pathways. Our human metadata analysis further demonstrates increased EPHA4 and pro-inflammatory gene expression, which correlates with reduced AKT concurrent with increased brain injury severity in patients. CONCLUSIONS Overall, these findings implicate EphA4 as a novel mediator of cortical tissue damage and neuroinflammation following TBI.
Collapse
|
16
|
Banoei MM, Casault C, Metwaly SM, Winston BW. Metabolomics and Biomarker Discovery in Traumatic Brain Injury. J Neurotrauma 2019; 35:1831-1848. [PMID: 29587568 DOI: 10.1089/neu.2017.5326] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of disability and mortality worldwide. The TBI pathogenesis can induce broad pathophysiological consequences and clinical outcomes attributed to the complexity of the brain. Thus, the diagnosis and prognosis are important issues for the management of mild, moderate, and severe forms of TBI. Metabolomics of readily accessible biofluids is a promising tool for establishing more useful and reliable biomarkers of TBI than using clinical findings alone. Metabolites are an integral part of all biochemical and pathophysiological pathways. Metabolomic processes respond to the internal and external stimuli resulting in an alteration of metabolite concentrations. Current high-throughput and highly sensitive analytical tools are capable of detecting and quantifying small concentrations of metabolites, allowing one to measure metabolite alterations after a pathological event when compared to a normal state or a different pathological process. Further, these metabolic biomarkers could be used for the assessment of injury severity, discovery of mechanisms of injury, and defining structural damage in the brain in TBI. Metabolic biomarkers can also be used for the prediction of outcome, monitoring treatment response, in the assessment of or prognosis of post-injury recovery, and potentially in the use of neuroplasticity procedures. Metabolomics can also enhance our understanding of the pathophysiological mechanisms of TBI, both in primary and secondary injury. Thus, this review presents the promising application of metabolomics for the assessment of TBI as a stand-alone platform or in association with proteomics in the clinical setting.
Collapse
Affiliation(s)
| | - Colin Casault
- 1 Department of Critical Care Medicine, University of Calgary , Alberta, Canada
| | | | - Brent W Winston
- 2 Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, University of Calgary , Calgary, Alberta, Canada
| |
Collapse
|
17
|
Lykhmus O, Kalashnyk O, Koval L, Voytenko L, Uspenska K, Komisarenko S, Deryabina O, Shuvalova N, Kordium V, Ustymenko A, Kyryk V, Skok M. Mesenchymal Stem Cells or Interleukin-6 Improve Episodic Memory of Mice Lacking α7 Nicotinic Acetylcholine Receptors. Neuroscience 2019; 413:31-44. [DOI: 10.1016/j.neuroscience.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
|
18
|
Agoston DV, Vink R, Helmy A, Risling M, Nelson D, Prins M. How to Translate Time: The Temporal Aspects of Rodent and Human Pathobiological Processes in Traumatic Brain Injury. J Neurotrauma 2019; 36:1724-1737. [PMID: 30628544 PMCID: PMC7643768 DOI: 10.1089/neu.2018.6261] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) triggers multiple pathobiological responses with differing onsets, magnitudes, and durations. Identifying the therapeutic window of individual pathologies is critical for successful pharmacological treatment. Dozens of experimental pharmacotherapies have been successfully tested in rodent models, yet all of them (to date) have failed in clinical trials. The differing time scales of rodent and human biological and pathological processes may have contributed to these failures. We compared rodent versus human time scales of TBI-induced changes in cerebral glucose metabolism, inflammatory processes, axonal integrity, and water homeostasis based on published data. We found that the trajectories of these pathologies run on different timescales in the two species, and it appears that there is no universal "conversion rate" between rodent and human pathophysiological processes. For example, the inflammatory process appears to have an abbreviated time scale in rodents versus humans relative to cerebral glucose metabolism or axonal pathologies. Limitations toward determining conversion rates for various pathobiological processes include the use of differing outcome measures in experimental and clinical TBI studies and the rarity of longitudinal studies. In order to better translate time and close the translational gap, we suggest 1) using clinically relevant outcome measures, primarily in vivo imaging and blood-based proteomics, in experimental TBI studies and 2) collecting data at multiple post-injury time points with a frequency exceeding the expected information content by two or three times. Combined with a big data approach, we believe these measures will facilitate the translation of promising experimental treatments into clinical use.
Collapse
Affiliation(s)
- Denes V. Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland
| | - Robert Vink
- Division of Health Science, University of South Australia, Adelaide, Australia
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - David Nelson
- Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Mayumi Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
19
|
Zetterberg H, Winblad B, Bernick C, Yaffe K, Majdan M, Johansson G, Newcombe V, Nyberg L, Sharp D, Tenovuo O, Blennow K. Head trauma in sports - clinical characteristics, epidemiology and biomarkers. J Intern Med 2019; 285:624-634. [PMID: 30481401 DOI: 10.1111/joim.12863] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Traumatic brain injury (TBI) is clinically divided into a spectrum of severities, with mild TBI being the least severe form and a frequent occurrence in contact sports, such as ice hockey, American football, rugby, horse riding and boxing. Mild TBI is caused by blunt nonpenetrating head trauma that causes movement of the brain and stretching and tearing of axons, with diffuse axonal injury being a central pathogenic mechanism. Mild TBI is in principle synonymous with concussion; both have similar criteria in which the most important elements are acute alteration or loss of consciousness and/or post-traumatic amnesia following head trauma and no apparent brain changes on standard neuroimaging. Symptoms in mild TBI are highly variable and there are no validated imaging or fluid biomarkers to determine whether or not a patient with a normal computerized tomography scan of the brain has neuronal damage. Mild TBI typically resolves within a few weeks but 10-15% of concussion patients develop postconcussive syndrome. Repetitive mild TBI, which is frequent in contact sports, is a risk factor for a complicated recovery process. This overview paper discusses the relationships between repetitive head impacts in contact sports, mild TBI and chronic neurological symptoms. What are these conditions, how common are they, how are they linked and can they be objectified using imaging or fluid-based biomarkers? It gives an update on the current state of research on these questions with a specific focus on clinical characteristics, epidemiology and biomarkers.
Collapse
Affiliation(s)
- H Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - B Winblad
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - C Bernick
- Neurological Institute, Cleveland Clinic, Las Vegas, NV, USA
| | - K Yaffe
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA.,San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - M Majdan
- Department of Public Health, Faculty of Health Sciences and Social Work, Trnava University, Trnava, Slovakia
| | - G Johansson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - V Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrookes Hospital, Cambridge, Cambs, UK
| | - L Nyberg
- Centre for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - D Sharp
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - O Tenovuo
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Neurology, University of Turku, Turku, Finland
| | - K Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
20
|
Dissemination of brain inflammation in traumatic brain injury. Cell Mol Immunol 2019; 16:523-530. [PMID: 30846842 DOI: 10.1038/s41423-019-0213-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is recognized as a global health problem due to its increasing occurrence, challenging treatment, and persistent impacts on brain pathophysiology. Neural cell death in patients with TBI swiftly causes inflammation in the injured brain areas, which is recognized as focal brain inflammation. Focal brain inflammation causes secondary brain injury by exacerbating brain edema and neuronal death, while also exerting divergent beneficial effects, such as sealing the damaged limitans and removing cellular debris. Recent evidence from patients with TBI and studies on animal models suggest that brain inflammation after TBI is not only restricted to the focal lesion but also disseminates to remote areas of the brain. The dissemination of inflammation has been detected within days after the primary injury and persists chronically. This state of inflammation may be related to remote complications of TBI in patients, such as hyperthermia and hypopituitarism, and may lead to progressive neurodegeneration, such as chronic traumatic encephalopathy. Future studies should focus on understanding the mechanisms that govern the initiation and propagation of brain inflammation after TBI and its impacts on post-trauma brain pathology.
Collapse
|
21
|
Casault C, Al Sultan AS, Banoei M, Couillard P, Kramer A, Winston BW. Cytokine Responses in Severe Traumatic Brain Injury: Where There Is Smoke, Is There Fire? Neurocrit Care 2019; 30:22-32. [PMID: 29569129 DOI: 10.1007/s12028-018-0522-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This scoping review will discuss the basic functions and prognostic significance of the commonly researched cytokines implicated in severe traumatic brain injury (sTBI), including tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), transforming growth factor-β (TGF-β), substance P, and soluble CD40 ligand (sCD40L). A scoping review was undertaken with an electronic search for articles from the Ovid MEDLINE, PUBMED and EMBASE databases from 1995 to 2017. Inclusion criteria were original research articles, and reviews including both animal models and human clinical studies of acute (< 3 months) sTBI. Selected articles included both isolated sTBI and sTBI with systemic injury. After applying the inclusion criteria and removing duplicates, 141 full-text articles, 126 original research articles and 15 review articles, were evaluated in compiling this review paper. A single reviewer, CC, completed the review in two phases. During the first phase, titles and abstracts of selected articles were reviewed for inclusion. A second evaluation was then conducted on the full text of all selected articles to ensure relevancy. From our current understanding of the literature, it is unlikely a single biomarker will be sufficient in accurately prognosticating patients with sTBI. Intuitively, a more severe injury will demonstrate higher levels of inflammatory cytokines which may correlate as a marker of severe injury. This does not mean, necessarily, these cytokines have a direct and causal role in the poor outcome of the patient. Further research is required to better delineate the complex systemic inflammatory and CNS interactions that occur during sTBI before they can be applied as a reliable prognostic tool.
Collapse
Affiliation(s)
- Colin Casault
- Department of Critical Care Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada. .,Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Abdulaziz S Al Sultan
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Mohammad Banoei
- Department of Critical Care Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Philippe Couillard
- Department of Critical Care Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Andreas Kramer
- Department of Critical Care Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Brent W Winston
- Department of Critical Care Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Departments of Medicine and Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Regner A, Meirelles LDS, Ikuta N, Cecchini A, Simon D. Prognostic utility of circulating nucleic acids in acute brain injuries. Expert Rev Mol Diagn 2018; 18:925-938. [PMID: 30307786 DOI: 10.1080/14737159.2018.1535904] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Acute brain injuries represent major causes of morbidity and mortality worldwide. Nevertheless, therapeutic options are centered mainly on supportive care, and accurate prognosis prediction following traumatic brain injury (TBI) or stroke remains a challenge in clinical settings. Areas covered: Circulating DNA and RNA have shown potential as predictive molecules in acute brain injuries. In particular, plasma cell-free DNA (cfDNA) levels have been correlated to severity, mortality, and outcome after TBI and stroke. The real-time quantitative polymerase chain reaction (qPCR) is the most widely used technique for determination of cfDNA in brain injuries; however, to consider the use of cfDNA in emergency settings, a quicker and easier methodology for detection should be established. A recent study proposed detection of cfDNA applying a rapid fluorescent test that showed compatible results with qPCR. Expert commentary: As a promising perspective, detection of cfDNA levels using simple, rapid, and cheap methodology has potential to translate to clinic as a point-of-care marker, supporting the clinical decision-making in emergency care settings. Conversely, miRNA profiles may be used as signatures to determine the type and severity of injuries. Additionally, in the future, some miRNAs may constitute innovative neurorestorative therapies without the common hurdles associated with cell therapy.
Collapse
Affiliation(s)
- Andrea Regner
- a School of Medicine , Lutheran University of Brazil , Canoas , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil
| | - Lindolfo da Silva Meirelles
- a School of Medicine , Lutheran University of Brazil , Canoas , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil
| | - Nilo Ikuta
- b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil
| | - Andre Cecchini
- a School of Medicine , Lutheran University of Brazil , Canoas , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil.,c Neurosurgery Service , Cristo Redentor Hospital , Porto Alegre , Brazil
| | - Daniel Simon
- a School of Medicine , Lutheran University of Brazil , Canoas , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil
| |
Collapse
|
23
|
Shommu NS, Jenne CN, Blackwood J, Joffe AR, Martin DA, Thompson GC, Vogel HJ. Metabolomic and inflammatory mediator based biomarker profiling as a potential novel method to aid pediatric appendicitis identification. PLoS One 2018; 13:e0193563. [PMID: 29529041 PMCID: PMC5846776 DOI: 10.1371/journal.pone.0193563] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/14/2018] [Indexed: 11/18/2022] Open
Abstract
Various limitations hinder the timely and accurate diagnosis of appendicitis in pediatric patients. The present study aims to investigate the potential of metabolomics and cytokine profiling for improving the diagnosis of pediatric appendicitis. Serum and plasma samples were collected from pediatric patients for metabolic and inflammatory mediator analyses respectively. Targeted metabolic profiling was performed using Proton Nuclear Magnetic Resonance Spectroscopy and Flow Injection Analysis Mass Spectrometry/Mass Spectrometry and targeted cytokine/chemokine profiling was completed using a multiplex platform to compare children with and without appendicitis. Twenty-three children with appendicitis and 35 control children without appendicitis from the Alberta Sepsis Network pediatric cohorts were included. Metabolomic profiling revealed clear separation between the two groups with very good sensitivity (80%), specificity (97%), and AUROC (0.93 ± 0.05) values. Inflammatory mediator analysis also distinguished the two groups with high sensitivity (82%), specificity (100%), and AUROC (0.97 ± 0.02) values. A biopattern comprised of 9 metabolites and 7 inflammatory compounds was detected to be significant for the separation between appendicitis and control groups. Integration of these 16 significant compounds resulted in a combined metabolic and cytokine profile that also demonstrated strong separation between the two groups with 81% sensitivity, 100% specificity and AUROC value of 0.96 ± 0.03. The study demonstrated that metabolomics and cytokine mediator profiling is capable of distinguishing children with appendicitis from those without. These results suggest a potential new approach for improving the identification of appendicitis in children.
Collapse
Affiliation(s)
- Nusrat S. Shommu
- Bio-NMR Center, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Craig N. Jenne
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Jaime Blackwood
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Ari R. Joffe
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Dori-Ann Martin
- Department of Pediatrics and Emergency Medicine, University of Calgary, Calgary, AB, Canada
| | - Graham C. Thompson
- Department of Pediatrics and Emergency Medicine, University of Calgary, Calgary, AB, Canada
| | - Hans J. Vogel
- Bio-NMR Center, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
24
|
The Influence of Systemic Immune Response and Sleep Modulation on the Secondary Effects of Traumatic Brain Injury in the Rodent Model. J Neurosci 2018; 36:7341-2. [PMID: 27413144 DOI: 10.1523/jneurosci.1418-16.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/05/2016] [Indexed: 11/21/2022] Open
|
25
|
Cerebrospinal fluid and brain extracellular fluid in severe brain trauma. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:237-258. [DOI: 10.1016/b978-0-12-804279-3.00014-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Bodnar CN, Morganti JM, Bachstetter AD. Depression following a traumatic brain injury: uncovering cytokine dysregulation as a pathogenic mechanism. Neural Regen Res 2018; 13:1693-1704. [PMID: 30136679 PMCID: PMC6128046 DOI: 10.4103/1673-5374.238604] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A substantial number of individuals have long-lasting adverse effects from a traumatic brain injury (TBI). Depression is one of these long-term complications that influences many aspects of life. Depression can limit the ability to return to work, and even worsen cognitive function and contribute to dementia. The mechanistic cause for the increased depression risk associated with a TBI remains to be defined. As TBI results in chronic neuroinflammation, and priming of glia to a secondary challenge, the inflammatory theory of depression provides a promising framework for investigating the cause of depression following a TBI. Increases in cytokines similar to those seen in depression in the general population are also increased following a TBI. Biomarker levels of cytokines peak within hours-to-days after the injury, yet pro-inflammatory cytokines may still be elevated above physiological levels months-to-years following TBI, which is the time frame in which post-TBI depression can persist. As tumor necrosis factor α and interleukin 1 can signal directly at the neuronal synapse, pathophysiological levels of these cytokines can detrimentally alter neuronal synaptic physiology. The purpose of this review is to outline the current evidence for the inflammatory hypothesis of depression specifically as it relates to depression following a TBI. Moreover, we will illustrate the potential synaptic mechanisms by which tumor necrosis factor α and interleukin 1 could contribute to depression. The association of inflammation with the development of depression is compelling; however, in the context of post-TBI depression, the role of inflammation is understudied. This review attempts to highlight the need to understand and treat the psychological complications of a TBI, potentially by neuroimmune modulation, as the neuropsychiatric disabilities can have a great impact on the rehabilitation from the injury, and overall quality of life.
Collapse
Affiliation(s)
- Colleen N Bodnar
- Spinal Cord & Brain Injury Research Center, University of Kentucky; Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Josh M Morganti
- Department of Neuroscience, University of Kentucky; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Adam D Bachstetter
- Spinal Cord & Brain Injury Research Center, University of Kentucky; Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
27
|
Carteron L, Bouzat P, Oddo M. Cerebral Microdialysis Monitoring to Improve Individualized Neurointensive Care Therapy: An Update of Recent Clinical Data. Front Neurol 2017; 8:601. [PMID: 29180981 PMCID: PMC5693841 DOI: 10.3389/fneur.2017.00601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/27/2017] [Indexed: 01/04/2023] Open
Abstract
Cerebral microdialysis (CMD) allows bedside semicontinuous monitoring of patient brain extracellular fluid. Clinical indications of CMD monitoring are focused on the management of secondary cerebral and systemic insults in acute brain injury (ABI) patients [mainly, traumatic brain injury (TBI), subarachnoid hemorrhage, and intracerebral hemorrhage (ICH)], specifically to tailor several routine interventions—such as optimization of cerebral perfusion pressure, blood transfusion, glycemic control and oxygen therapy—in the individual patient. Using CMD as clinical research tool has greatly contributed to identify and better understand important post-injury mechanisms—such as energy dysfunction, posttraumatic glycolysis, post-aneurysmal early brain injury, cortical spreading depressions, and subclinical seizures. Main CMD metabolites (namely, lactate/pyruvate ratio, and glucose) can be used to monitor the brain response to specific interventions, to assess the extent of injury, and to inform about prognosis. Recent consensus statements have provided guidelines and recommendations for CMD monitoring in neurocritical care. Here, we summarize recent clinical investigation conducted in ABI patients, specifically focusing on the role of CMD to guide individualized intensive care therapy and to improve our understanding of the complex disease mechanisms occurring in the immediate phase following ABI. Promising brain biomarkers will also be described.
Collapse
Affiliation(s)
- Laurent Carteron
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besançon, University of Bourgogne - Franche-Comté, Besançon, France
| | - Pierre Bouzat
- Department of Anesthesiology and Critical Care, University Hospital Grenoble, Grenoble, France
| | - Mauro Oddo
- Department of Intensive Care Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Thelin EP, Hall CE, Gupta K, Carpenter KLH, Chandran S, Hutchinson PJ, Patani R, Helmy A. Elucidating Pro-Inflammatory Cytokine Responses after Traumatic Brain Injury in a Human Stem Cell Model. J Neurotrauma 2017; 35:341-352. [PMID: 28978285 PMCID: PMC5784793 DOI: 10.1089/neu.2017.5155] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cytokine mediated inflammation likely plays an important role in secondary pathology after traumatic brain injury (TBI). The aim of this study was to elucidate secondary cytokine responses in an in vitro enriched (>80%) human stem cell-derived neuronal model. We exposed neuronal cultures to pre-determined and clinically relevant pathophysiological levels of tumor necrosis factor-α (TNF), interleukin-6 (IL-6) and interleukin-1β (IL-1β), shown to be present in the inflammatory aftermath of TBI. Data from this reductionist human model were then compared with our in vivo data. Human embryonic stem cell (hESC)-derived neurons were exposed to recombinant TNF (1–10,000 pg/mL), IL-1β (1–10,000 pg/mL), and IL-6 (0.1–1000 ng/mL). After 1, 24, and 72 h, culture supernatant was sampled and analyzed using a human cytokine/chemokine 42-plex Milliplex kit on the Luminex platform. The culture secretome revealed both a dose- and/or time-dependent release of cytokines. The IL-6 and TNF exposure each resulted in significantly increased levels of >10 cytokines over time, while IL-1β increased the level of C-X-C motif chemokine 10 (CXCL10/IP10) alone. Importantly, these patterns are consistent with our in vivo (human) TBI data, thus validating our human stem cell-derived neuronal platform as a clinically useful reductionist model. Our data cumulatively suggest that IL-6 and TNF have direct actions, while the action of IL-1β on human neurons likely occurs indirectly through inflammatory cells. The hESC-derived neurons provide a valuable platform to model cytokine mediated inflammation and can provide important insights into the mechanisms of neuroinflammation after TBI.
Collapse
Affiliation(s)
- Eric Peter Thelin
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom .,2 Department of Clinical Neuroscience, Karolinska Institutet , Stockholm, Sweden
| | - Claire E Hall
- 3 Department of Molecular Neuroscience, Institute of Neurology, University College London , London, United Kingdom
| | - Kunal Gupta
- 4 Department of Neurological Surgery, Oregon Health & Science University , Portland, Oregon
| | - Keri L H Carpenter
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom .,5 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Siddharthan Chandran
- 6 Centre for Clinical Brain Sciences, University of Edinburgh , Edinburgh, United Kingdom
| | - Peter J Hutchinson
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom .,5 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Rickie Patani
- 3 Department of Molecular Neuroscience, Institute of Neurology, University College London , London, United Kingdom .,7 The Francis Crick Institute , London, United Kingdom
| | - Adel Helmy
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| |
Collapse
|
29
|
Zhou ZW, Li F, Zheng ZT, Li YD, Chen TH, Gao WW, Chen JL, Zhang JN. Erythropoietin regulates immune/inflammatory reaction and improves neurological function outcomes in traumatic brain injury. Brain Behav 2017; 7:e00827. [PMID: 29201540 PMCID: PMC5698857 DOI: 10.1002/brb3.827] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/25/2017] [Accepted: 08/10/2017] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) remains a leading cause of disability and death among young people in China. Unfortunately, no specific pharmacological agents to block the progression of secondary brain injury have been approved for clinical treatment. Recently, neuroprotective effects of erythropoietin (EPO) have been demonstrated in addition to its principal function in erythropoiesis, and hence it is viewed as a potential drug for TBI. In this study, we have investigated the neuroprotective effects of EPO associated with immune/inflammatory modulation in a mouse experimental TBI model. METHODS EPO (5000 U/kg body weight, i.p.) was injected at 1 hr, 1, 2, and 3 days after TBI, and its effect on cognitive function, brain edema, immune/inflammatory cells including regulatory T cells (Tregs), neutrophils, CD3+ T cells, and microglia, cytokines including interleukin-10 (IL-10), transforming growth factor-β (TGF-β), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were evaluated at different time points after treatment. RESULTS EPO treatment significantly decreased brain edema and improved cognitive function when compared to Saline-treated mice (p < .05). EPO treatment also significantly increased Tregs level in spleen and injured brain tissue as well as significantly reduced the infiltration and activation of immune/inflammatory cells (neutrophils, CD3+T cells, and microglia) in the injured hemisphere compared to Saline-treated control animals (p < .05). In addition, ELISA analysis demonstrated that EPO treatment increased the expression of anti-inflammatory cytokine IL-10, but decreased the expression of proinflammatory cytokine IL-1β and TNF-α in the injured brain tissue (p < .05). CONCLUSIONS These findings suggest that EPO could improve neurological and cognitive functional outcomes as well as regulate immune/inflammatory reaction in TBI.
Collapse
Affiliation(s)
- Zi-Wei Zhou
- Department of Neurosurgery Tianjin Medical University General Hospital Heping District Tianjin China.,Tianjin Neurological Institute Tianjin China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System Ministry of Education Heping District Tianjin China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System Heping District Tianjin China
| | - Fei Li
- Department of Neurosurgery Tianjin Medical University General Hospital Heping District Tianjin China
| | - Zhi-Tong Zheng
- Department of Neurosurgery Tianjin Medical University General Hospital Heping District Tianjin China
| | - Ya-Dan Li
- Intensive Care Units Tianjin Huanhu Hospital Tianjin China
| | - Tong-Heng Chen
- Department of Neurosurgery The Second Hospital Tianjin Medical University Hexi District Tianjin China
| | - Wei-Wei Gao
- Department of Neurosurgery Tianjin Medical University General Hospital Heping District Tianjin China.,Tianjin Neurological Institute Tianjin China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System Ministry of Education Heping District Tianjin China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System Heping District Tianjin China
| | - Jie-Li Chen
- Department of Neurology Henry Ford Hospital Detroit MI USA
| | - Jian-Ning Zhang
- Department of Neurosurgery Tianjin Medical University General Hospital Heping District Tianjin China.,Tianjin Neurological Institute Tianjin China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System Ministry of Education Heping District Tianjin China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System Heping District Tianjin China
| |
Collapse
|
30
|
Thelin EP, Tajsic T, Zeiler FA, Menon DK, Hutchinson PJA, Carpenter KLH, Morganti-Kossmann MC, Helmy A. Monitoring the Neuroinflammatory Response Following Acute Brain Injury. Front Neurol 2017; 8:351. [PMID: 28775710 PMCID: PMC5517395 DOI: 10.3389/fneur.2017.00351] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) are major contributors to morbidity and mortality. Following the initial insult, patients may deteriorate due to secondary brain damage. The underlying molecular and cellular cascades incorporate components of the innate immune system. There are different approaches to assess and monitor cerebral inflammation in the neuro intensive care unit. The aim of this narrative review is to describe techniques to monitor inflammatory activity in patients with TBI and SAH in the acute setting. The analysis of pro- and anti-inflammatory cytokines in compartments of the central nervous system (CNS), including the cerebrospinal fluid and the extracellular fluid, represent the most common approaches to monitor surrogate markers of cerebral inflammatory activity. Each of these compartments has a distinct biology that reflects local processes and the cross-talk between systemic and CNS inflammation. Cytokines have been correlated to outcomes as well as ongoing, secondary injury progression. Alongside the dynamic, focal assay of humoral mediators, imaging, through positron emission tomography, can provide a global in vivo measurement of inflammatory cell activity, which reveals long-lasting processes following the initial injury. Compared to the innate immune system activated acutely after brain injury, the adaptive immune system is likely to play a greater role in the chronic phase as evidenced by T-cell-mediated autoreactivity toward brain-specific proteins. The most difficult aspect of assessing neuroinflammation is to determine whether the processes monitored are harmful or beneficial to the brain as accumulating data indicate a dual role for these inflammatory cascades following injury. In summary, the inflammatory component of the complex injury cascade following brain injury may be monitored using different modalities. Using a multimodal monitoring approach can potentially aid in the development of therapeutics targeting different aspects of the inflammatory cascade and improve the outcome following TBI and SAH.
Collapse
Affiliation(s)
- Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tamara Tajsic
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Frederick Adam Zeiler
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Rady Faculty of Health Sciences, Department of Surgery, University of Manitoba, Winnipeg, MB, Canada.,Clinician Investigator Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Peter J A Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Maria Cristina Morganti-Kossmann
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia.,Department of Child Health, Barrow Neurological Institute at Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, United States
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
31
|
Zeiler FA, Thelin EP, Czosnyka M, Hutchinson PJ, Menon DK, Helmy A. Cerebrospinal Fluid and Microdialysis Cytokines in Severe Traumatic Brain Injury: A Scoping Systematic Review. Front Neurol 2017; 8:331. [PMID: 28740480 PMCID: PMC5502380 DOI: 10.3389/fneur.2017.00331] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/23/2017] [Indexed: 11/20/2022] Open
Abstract
Objective To perform two scoping systematic reviews of the literature on cytokine measurement in: 1. cerebral microdialysis (CMD) and 2. cerebrospinal fluid (CSF) in severe traumatic brain injury (TBI) patients. Methods Two separate systematic reviews were conducted: one for CMD cytokines and the second for CSF cytokines. Both were conducted in severe TBI (sTBI) patients only. Data sources Articles from MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library (inception to October 2016), reference lists of relevant articles, and gray literature were searched. Study selection Two reviewers independently identified all manuscripts utilizing predefined inclusion/exclusion criteria. A two-tier filter of references was conducted. Data extraction Patient demographic and study data were extracted to tables. Results There were 19 studies identified describing the analysis of cytokines via CMD in 267 sTBI patients. Similarly, there were 32 studies identified describing the analysis of CSF cytokines in 1,363 sTBI patients. The two systematic reviews demonstrated: 1. limited literature available on CMD cytokine measurement in sTBI, with some preliminary data supporting feasibility of measurement and associations between cytokines and patient outcome. 2. Various CSF measured cytokines may be associated with patient outcome at 6–12 months, including interleukin (IL)-1b, IL-1ra, IL-6, IL-8, IL-10, and tumor necrosis factor 3. There is little to no literature in support of an association between CSF cytokines and neurophysiologic or tissue outcomes. Conclusion The evaluation of CMD and CSF cytokines is an emerging area of the literature in sTBI. Further, large prospective multicenter studies on cytokines in CMD and CSF need to be conducted.
Collapse
Affiliation(s)
- Frederick A Zeiler
- Department of Surgery, Section of Neurosurgery, University of Manitoba, Winnipeg, MB, Canada.,Clinician Investigator Program, University of Manitoba, Winnipeg, MB, Canada.,Department of Anesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David K Menon
- Department of Anesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
32
|
Neurotrauma: The Crosstalk between Neurotrophins and Inflammation in the Acutely Injured Brain. Int J Mol Sci 2017; 18:ijms18051082. [PMID: 28524074 PMCID: PMC5454991 DOI: 10.3390/ijms18051082] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/25/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality among young individuals worldwide. Understanding the pathophysiology of neurotrauma is crucial for the development of more effective therapeutic strategies. After the trauma occurs, immediate neurologic damage is produced by the traumatic forces; this primary injury triggers a secondary wave of biochemical cascades together with metabolic and cellular changes, called secondary neural injury. In the scenario of the acutely injured brain, the ongoing secondary injury results in ischemia and edema culminating in an uncontrollable increase in intracranial pressure. These areas of secondary injury progression, or areas of “traumatic penumbra”, represent crucial targets for therapeutic interventions. Neurotrophins are a class of signaling molecules that promote survival and/or maintenance of neurons. They also stimulate axonal growth, synaptic plasticity, and neurotransmitter synthesis and release. Therefore, this review focuses on the role of neurotrophins in the acute post-injury response. Here, we discuss possible endogenous neuroprotective mechanisms of neurotrophins in the prevailing environment surrounding the injured areas, and highlight the crosstalk between neurotrophins and inflammation with focus on neurovascular unit cells, particularly pericytes. The perspective is that neurotrophins may represent promising targets for research on neuroprotective and neurorestorative processes in the short-term following TBI.
Collapse
|
33
|
Abstract
Traumatic brain injury (TBI) is an injury to the brain caused by an external mechanical force, affecting millions of people worldwide. The disease course and prognosis are often unpredictable, and it can be challenging to determine an early diagnosis in case of mild injury as well as to accurately phenotype the injury. There is currently no cure for TBI-drugs having failed repeatedly in clinical trials-but an intense effort has been put to identify effective neuroprotective treatment. The detection of novel biomarkers, to understand more of the disease mechanism, facilitates early diagnosis, predicts disease progression, and develops molecularly targeted therapies that would be of high clinical interest. Over the last decade, there has been an increasing effort and initiative toward finding TBI-specific biomarker candidates. One promising strategy has been to use state-of-the-art neuroproteomics approaches to assess clinical biofluids and compare the cerebrospinal fluid (CSF) and blood proteome between TBI and control patients or between different subgroups of TBI. In this chapter, we summarize and discuss the status of biofluid proteomics in TBI, with a particular focus on the latest findings.
Collapse
|
34
|
Microdialysis of Large Molecules. J Pharm Sci 2016; 105:3233-3242. [DOI: 10.1016/j.xphs.2016.08.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/01/2016] [Accepted: 08/22/2016] [Indexed: 12/21/2022]
|
35
|
Matrix Metalloproteinases in the Interstitial Space. Protein Sci 2016. [DOI: 10.1201/9781315374307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Early Gelatinase Activity Is Not a Determinant of Long-Term Recovery after Traumatic Brain Injury in the Immature Mouse. PLoS One 2015; 10:e0143386. [PMID: 26588471 PMCID: PMC4654502 DOI: 10.1371/journal.pone.0143386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022] Open
Abstract
The gelatinases, matrix metalloproteinases (MMP)-2 and MMP-9, are thought to be key mediators of secondary damage in adult animal models of brain injury. Moreover, an acute increase in these proteases in plasma and brain extracellular fluid of adult patients with moderate-to-severe traumatic brain injuries (TBIs) is associated with poorer clinical outcomes and mortality. Nonetheless, their involvement after TBI in the pediatric brain remains understudied. Using a murine model of TBI at postnatal day 21 (p21), approximating a toddler-aged child, we saw upregulation of active and pro-MMP-9 and MMP-2 by gelatin zymography at 48 h post-injury. We therefore investigated the role of gelatinases on long-term structural and behavioral outcomes after injury after acute inhibition with a selective gelatinase inhibitor, p-OH SB-3CT. After systemic administration, p-OH SB-3CT crossed the blood-brain barrier at therapeutically-relevant concentrations. TBI at p21 induced hyperactivity, deficits in spatial learning and memory, and reduced sociability when mice were assessed at adulthood, alongside pronounced tissue loss in key neuroanatomical regions. Acute and short-term post-injury treatment with p-OH SB-3CT did not ameliorate these long-term behavioral, cognitive, or neuropathological deficits as compared to vehicle-treated controls, suggesting that these deficits were independent of MMP-9 and MMP-2 upregulation. These findings emphasize the vulnerability of the immature brain to the consequences of traumatic injuries. However, early upregulation of gelatinases do not appear to be key determinants of long-term recovery after an early-life injury.
Collapse
|
37
|
Abdul-Muneer PM, Pfister BJ, Haorah J, Chandra N. Role of Matrix Metalloproteinases in the Pathogenesis of Traumatic Brain Injury. Mol Neurobiol 2015; 53:6106-6123. [PMID: 26541883 DOI: 10.1007/s12035-015-9520-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/28/2015] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Studies revealed that the pathogenesis of TBI involves upregulation of MMPs. MMPs form a large family of closely related zinc-dependent endopeptidases, which are primarily responsible for the dynamic remodulation of the extracellular matrix (ECM). Thus, they are involved in several normal physiological processes like growth, development, and wound healing. During pathophysiological conditions, MMPs proteolytically degrade various components of ECM and tight junction (TJ) proteins of BBB and cause BBB disruption. Impairment of BBB causes leakiness of the blood from circulation to brain parenchyma that leads to microhemorrhage and edema. Further, MMPs dysregulate various normal physiological processes like angiogenesis and neurogenesis, and also they participate in the inflammatory and apoptotic cascades by inducing or regulating the specific mediators and their receptors. In this review, we explore the roles of MMPs in various physiological/pathophysiological processes associated with neurological complications, with special emphasis on TBI.
Collapse
Affiliation(s)
- P M Abdul-Muneer
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Bryan J Pfister
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - James Haorah
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Namas Chandra
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
38
|
Clinical evidence of inflammation driving secondary brain injury: a systematic review. J Trauma Acute Care Surg 2015; 78:184-91. [PMID: 25539220 DOI: 10.1097/ta.0000000000000468] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite advances in both prevention and treatment, traumatic brain injury (TBI) remains one of the most burdensome diseases; 2% of the US population currently lives with disabilities resulting from TBI. Recent advances in the understanding of inflammation and its impact on the pathophysiology of trauma have increased the interest in inflammation as a possible mediator in TBI outcome. OBJECTIVES The goal of this systematic review is to address the question: "What is the evidence in humans that inflammation is linked to secondary brain injury?" As the experimental evidence has been well described elsewhere, this review will focus on the clinical evidence for inflammation as a mechanism of secondary brain injury. DATA SOURCES Medline database (1996-Week 1 June 2014), Pubmed and Google Scholar databases were queried for relevant studies. STUDY ELIGIBILITY CRITERIA Studies were eligible if participants were adults and/or children who sustained moderate or severe TBI in the acute phase of injury, published in English. Studies published in the last decade (since 2004) were preferentially included. Trials could be observational or interventional in nature. APPRAISAL AND SYNTHESIS METHODS To address the quality of the studies retrieved, we applied the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) criteria to assess the limitations of the included studies. RESULTS Trauma initiates local central nervous system as well as systemic immune activation. Numerous observational studies describe elevation of pro-inflammatory cytokines that are associated with important clinical variables including neurologic outcome and mortality. A small number of clinical trials have included immunomodulating strategies, but no intervention to date has proven effective in improving outcomes after TBI. LIMITATIONS Inclusion of studies not initially retrieved by the search terms may have biased our results. Additionally, some reports may have been inadvertently excluded due to use of non-search term key words. Conclusions and Implications of Key Findings Clinical evidence of inflammation causing secondary brain injury in humans is gaining momentum. While inflammation is certainly present, it is not clear from the literature at what juncture inflammation becomes maladaptive, promoting secondary injury rather than facilitating repairand identifying patients with maladaptive inflammation (neuro-inflammation, systemic, or both) after TBI remains elusive. Direct agonism/antagonism represents an exciting target for future study. LEVEL OF EVIDENCE Systematic review, level III.
Collapse
|
39
|
Gruol DL. IL-6 regulation of synaptic function in the CNS. Neuropharmacology 2014; 96:42-54. [PMID: 25445486 DOI: 10.1016/j.neuropharm.2014.10.023] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/20/2022]
Abstract
A growing body of evidence supports a role for glial-produced neuroimmune factors, including the cytokine IL-6, in CNS physiology and pathology. CNS expression of IL-6 has been documented in the normal CNS at low levels and at elevated levels in several neurodegenerative or psychiatric disease states as well as in CNS infection and injury. The altered CNS function associated with these conditions raises the possibility that IL-6 has neuronal or synaptic actions. Studies in in vitro and in vivo models confirmed this possibility and showed that IL-6 can regulate a number of important neuronal and synaptic functions including synaptic transmission and synaptic plasticity, an important cellular mechanism of memory and learning. Behavioral studies in animal models provided further evidence of an important role for IL-6 as a regulator of CNS pathways that are critical to cognitive function. This review summarizes studies that have lead to our current state of knowledge. In spite of the progress that has been made, there is a need for a greater understanding of the physiological and pathophysiological actions of IL-6 in the CNS, the mechanisms underlying these actions, conditions that induce production of IL-6 in the CNS and therapeutic strategies that could ameliorate or promote IL-6 actions. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- Donna L Gruol
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
40
|
|
41
|
Xu B, Yu DM, Liu FS. Effect of siRNA‑induced inhibition of IL‑6 expression in rat cerebral gliocytes on cerebral edema following traumatic brain injury. Mol Med Rep 2014; 10:1863-8. [PMID: 25109513 DOI: 10.3892/mmr.2014.2462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 04/25/2014] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effect of RNA interference (RNAi) on the inhibition of interleukin (IL)‑6 expression in rat cerebral gliocytes in vitro and rat cerebral traumatic tissues in vivo, as well as the effect of RNAi on cerebral edema. pSUPER vectors containing IL‑6 small hairpin RNA (pSUPER‑IL‑6 1‑5) were designed, constructed and transfected into C6 rat glioma cells using cationic liposomes. ELISA was used to select the plasmid with the strongest interference effect. A freefall method was used to generate a rat brain injury model and rats were randomly divided into treatment, empty plasmid and control groups (n=14/group). IL‑6 levels, water content and sodium content were determined in the brain tissues at 24 and 72 h post‑injury. pSUPER‑IL‑6 was effectively transfected into C6 cells and was found to inhibit the expression of IL‑6 rather than IL‑8. The pSUPER‑IL‑6 1 vector was most effective in inducing RNAi. In vivo, IL‑6 levels were observed to be lowest in the interference group and there were statistically significant differences in water and sodium content among the experimental groups (P<0.05). RNAi was found to inhibit IL‑6 expression in vivo and in vitro in rat cerebral gliocytes, and the reduction of the IL‑6 levels was found to reduce post‑traumatic cerebral edema.
Collapse
Affiliation(s)
- Bin Xu
- Department of Emergency, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Dong-Ming Yu
- Department of Emergency, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Fu-Sheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
42
|
Algattas H, Huang JH. Traumatic Brain Injury pathophysiology and treatments: early, intermediate, and late phases post-injury. Int J Mol Sci 2013; 15:309-41. [PMID: 24381049 PMCID: PMC3907812 DOI: 10.3390/ijms15010309] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 12/02/2013] [Accepted: 12/20/2013] [Indexed: 12/25/2022] Open
Abstract
Traumatic Brain Injury (TBI) affects a large proportion and extensive array of individuals in the population. While precise pathological mechanisms are lacking, the growing base of knowledge concerning TBI has put increased emphasis on its understanding and treatment. Most treatments of TBI are aimed at ameliorating secondary insults arising from the injury; these insults can be characterized with respect to time post-injury, including early, intermediate, and late pathological changes. Early pathological responses are due to energy depletion and cell death secondary to excitotoxicity, the intermediate phase is characterized by neuroinflammation and the late stage by increased susceptibility to seizures and epilepsy. Current treatments of TBI have been tailored to these distinct pathological stages with some overlap. Many prophylactic, pharmacologic, and surgical treatments are used post-TBI to halt the progression of these pathologic reactions. In the present review, we discuss the mechanisms of the pathological hallmarks of TBI and both current and novel treatments which target the respective pathways.
Collapse
Affiliation(s)
- Hanna Algattas
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 441, Rochester, NY 14642, USA.
| | - Jason H Huang
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 441, Rochester, NY 14642, USA.
| |
Collapse
|