1
|
Koch KM, Nencka AS, Kurpad S, Budde MD. Diffusion Weighted Magnetic Resonance Imaging of Spinal Cord Injuries After Instrumented Fusion Stabilization. J Neurotrauma 2024; 41:2125-2132. [PMID: 38251658 DOI: 10.1089/neu.2023.0591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DW-MRI) is a promising technique for assessing spinal cord injury (SCI) that has historically been challenged by the presence of metallic stabilization hardware. This study leverages recent advances in metal-artifact resistant multi-spectral DW-MRI to enable diffusion quantification throughout the spinal cord even after fusion stabilization. Twelve participants with cervical spinal cord injuries treated with fusion stabilization and 49 asymptomatic able-bodied control participants underwent multi-spectral DW-MRI evaluation. Apparent diffusion coefficient (ADC) values were calculated in axial cord sections. Statistical modeling assessed ADC differences across cohorts and within distinct cord regions of the SCI participants (at, above, or below injured level). Computed models accounted for subject demographics and injury characteristics. ADC was found to be elevated at injured levels compared with non-injured levels (z = 3.2, p = 0.001), with ADC at injured levels decreasing over time since injury (z = -9.2, p < 0.001). Below the injury level, ADC was reduced relative to controls (z = -4.4, p < 0.001), with greater reductions after more severe injuries that correlated with lower extremity motor scores (z = 2.56, p = 0.012). No statistically significant differences in ADC above the level of injury were identified. By enabling diffusion analysis near fusion hardware, the multi-spectral DW-MRI technique allowed intuitive quantification of cord diffusion changes after SCI both at and away from injured levels. This demonstrates the approach's potential for assessing post-surgical spinal cord integrity throughout stabilized regions.
Collapse
Affiliation(s)
- Kevin M Koch
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Andrew S Nencka
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shekar Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Zheng Z, Couture D, Adams F, Roberson R, Ma R, Argenta L, Morykwas M. Attenuated Tissue Damage With Mechanical Tissue Resuscitation in a Pig Model of Spinal Cord Injury. J Neurotrauma 2024; 41:1020-1029. [PMID: 37830176 DOI: 10.1089/neu.2023.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Our previous studies on the treatment of spinal cord injuries with Mechanical Tissue Resuscitation (MTR) in rats have demonstrated that it can significantly improve the locomotor recovery and Basso Beattie Bresnahan scores. MTR treatment also reduced fluid accumulations by T2-imaging and improved the mean neural fiber number and fiber length in injured sites by fiber tractography. Myelin volume was also significantly preserved by MTR treatment. For further clinical application, a large animal model is necessary to assess this treatment. This study examined the effects of application of MTR on traumatic spinal cord injury in a swine model. Traumatic spinal cord contusion injuries in swine were created by controlled pneumatic impact device. Negative pressure at -75 mm Hg was continuously applied to the injured site through open cell silicone manifold for 7 days. In vivo magnetic resonance imaging for T2 and gradient echo (GRE) analysis employed a 3T machine, while a 7T machine was employed for diffusion tensor imaging (DTI) and fiber tractography. Histological hematoxylin and eosin (H&E) and Luxol fast blue staining were examined. MTR significantly reduced the mean injured volumes over 46% by T2-imaging in the injured sites from 477.34 ± 146.31 mm3 in non-treated group to 255.99 ± 70.28 mm3 in MTR treated group (p < 0.01). It also reduced fluid accumulations by relative T2 signal density in the epicenter of the spinal cord injury from 1.62 ± 0.27 in non-treated group to 1.22 ± 0.10 in the MTR treated group (p < 0.05). The mean injured tissue volume measured by H&E staining was 303.71 ± 78.21 mm3 in the non-treated group and decreased significantly to 162.16 ± 33.0 mm3 in the MTR treated group (p < 0.01). The myelin fiber bundles stained by Luxol blue were preserved much more in the MTR treated group (90 ± 29.71 mm3) than in the non-treated group (33.68 ± 24.99 mm3, p < 0.01). The fractional anisotropy (FA) values processed by DTI analysis are increased from 0.203 ± 0.027 in the untreated group to 0.238 ± 0.029 in MTR treatment group (p < 0.05). Fiber tractography showings the mean fiber numbers across the impacted area were increased over 112% from 327.0 ± 99.74 in the non-treated group to 694.83 ± 297.86 in the MTR treated group (p < 0.05). These results indicate local application of MTR for 7 days to spinal cord injury in a swine model decreased tissue injury, reduced tissue edema, and preserved more myelin fibers as well as nerve fibers in the injured spinal cord.
Collapse
Affiliation(s)
- Zhenlin Zheng
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Science, Winston-Salem, North Carolina, USA
| | - Daniel Couture
- Department of Neurosurgery, Wake Forest University Health Science, Winston-Salem, North Carolina, USA
| | - Farren Adams
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Science, Winston-Salem, North Carolina, USA
| | - Rebecca Roberson
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Science, Winston-Salem, North Carolina, USA
| | - Rong Ma
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Science, Winston-Salem, North Carolina, USA
| | - Louis Argenta
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Science, Winston-Salem, North Carolina, USA
| | - Michael Morykwas
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Science, Winston-Salem, North Carolina, USA
| |
Collapse
|
3
|
Chen LM, Wang F, Mishra A, Yang PF, Sengupta A, Reed JL, Gore JC. Longitudinal multiparametric MRI of traumatic spinal cord injury in animal models. Magn Reson Imaging 2023; 102:184-200. [PMID: 37343904 PMCID: PMC10528214 DOI: 10.1016/j.mri.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Multi-parametric MRI (mpMRI) technology enables non-invasive and quantitative assessments of the structural, molecular, and functional characteristics of various neurological diseases. Despite the recognized importance of studying spinal cord pathology, mpMRI applications in spinal cord research have been somewhat limited, partly due to technical challenges associated with spine imaging. However, advances in imaging techniques and improved image quality now allow longitudinal investigations of a comprehensive range of spinal cord pathological features by exploiting different endogenous MRI contrasts. This review summarizes the use of mpMRI techniques including blood oxygenation level-dependent (BOLD) functional MRI (fMRI), diffusion tensor imaging (DTI), quantitative magnetization transfer (qMT), and chemical exchange saturation transfer (CEST) MRI in monitoring different aspects of spinal cord pathology. These aspects include cyst formation and axonal disruption, demyelination and remyelination, changes in the excitability of spinal grey matter and the integrity of intrinsic functional circuits, and non-specific molecular changes associated with secondary injury and neuroinflammation. These approaches are illustrated with reference to a nonhuman primate (NHP) model of traumatic cervical spinal cord injuries (SCI). We highlight the benefits of using NHP SCI models to guide future studies of human spinal cord pathology, and demonstrate how mpMRI can capture distinctive features of spinal cord pathology that were previously inaccessible. Furthermore, the development of mechanism-based MRI biomarkers from mpMRI studies can provide clinically useful imaging indices for understanding the mechanisms by which injured spinal cords progress and repair. These biomarkers can assist in the diagnosis, prognosis, and evaluation of therapies for SCI patients, potentially leading to improved outcomes.
Collapse
Affiliation(s)
- Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anirban Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
4
|
Liu CB, Yang DG, Li J, Qin C, Zhang X, Liu J, Li DP, Li JJ. Diffusion tensor imaging reveals brain structure changes in dogs after spinal cord injury. Neural Regen Res 2023; 18:176-182. [PMID: 35799539 PMCID: PMC9241425 DOI: 10.4103/1673-5374.344839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
Plasma Cytokines Level and Spinal Cord MRI Predict Clinical Outcome in a Rat Glial Scar Cryoinjury Model. Biomedicines 2022; 10:biomedicines10102345. [DOI: 10.3390/biomedicines10102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Traumatic injury of the spinal cord is still one of the most challenging problems in the neurosurgical practice. Despite a long history of implementation of translational medicine in the field of spinal cord injury (SCI), it remains one of the most frequent causes of human disability and a critical situation for world healthcare systems. Here, we used our rat model of the of unilateral controlled SCI induced by a cryoinjury, which consistently reproduces glial scarring and posttraumatic cyst formation, and specifically evaluated histological, bioimaging and cytokine data. We propose a 10-grade scoring scale, which can objectively estimate the extent of damage of the experimental SCI according to the magnetic resonance imaging (MRI) results. It provides a homogeneous and reliable visual control of the dynamics of the posttraumatic processes, which makes it possible to clearly distinguish the extent of early damage, the formation of glial scars and the development of posttraumatic syringomyelic cysts. The concentration of cytokines and chemokines in the plasma following the experimental SCI increased up to two orders of magnitude in comparison with intact animals, suggesting that a traumatic injury of the spinal cord was accompanied by a remarkable cytokine storm. Our data suggested that the levels of IL-1α, IL-1β, TNFα, GRO/KC, G-CSF, IFNγ and IL-13 may be considered as a reliable prognostic index for SCI. Finally, we demonstrated that MRI together with plasma cytokines level directly correlated and reliably predicted the clinical outcome following SCI. The present study brings novel noninvasive and intravital methods for the evaluation of the therapeutic efficacy of SCI treatment protocols, which may be easily translated into the clinical practice.
Collapse
|
6
|
Liu Y, Liu C, Qin C, Zhang X, Feng H, Wang Z, Li J. Evaluation of the effect of myelotomy on nerve function in rats with spinal cord injury by diffusion tensor imaging. Acta Radiol 2021; 62:1666-1673. [PMID: 33287549 DOI: 10.1177/0284185120975182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is a severe central nervous system injury that can generally induce different degrees of sensory and motor dysfunction. PURPOSE To clarify the changes of diffusion tensor imaging (DTI) parameters after spinal cord myelotomy in rats with SCI. MATERIAL AND METHODS Eighteen Sprague Dawley (SD) rats were randomly divided into the Sham group (n=6), SCI group (n=6), and Mye group (n=6), respectively. The DTI values at 1, 3, 7, and 21 days after modeling were collected by magnetic resonance imaging (MRI). The spinal specimen at the injury site was collected on the 21st day for Nissl's staining to assess the changes in neurons. RESULTS The fractional anisotropy (FA) values in both the SCI group and Mye group significantly decreased. In addition, the FA values between the two groups were statistically significant (P < 0.001). The apparent diffusion coefficient (ADC), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) values all decreased and then increased (P < 0.001). Pearson correlation test showed that the ADC, MD, and AD values were positively correlated with the Basso Beattie Bresnahan (BBB) score. Nissl's staining showed a higher number of Nissl's bodies, and deep staining of Nissl's bodies in the Mye group, while the morphology of neurons was relatively good. The number of neurons in the Mye group was significantly higher after myelotomy compared to the SCI group (P < 0.001). CONCLUSION The DTI parameters, especially ADC values, could non-invasively and quantifiably evaluate the efficacy of myelotomy for rats with SCI.
Collapse
Affiliation(s)
- Yi Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, PR China
- China Rehabilitation Science Institute, Beijing, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China
| | - Changbin Liu
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Beijing, PR China
| | - Chuan Qin
- School of Rehabilitation Medicine, Capital Medical University, Beijing, PR China
- China Rehabilitation Science Institute, Beijing, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China
| | - Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, PR China
- China Rehabilitation Science Institute, Beijing, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China
| | - Hao Feng
- School of Rehabilitation Medicine, Capital Medical University, Beijing, PR China
- China Rehabilitation Science Institute, Beijing, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China
| | - Zhanjing Wang
- Medical Experiment and Test Center, Capital Medical University, Beijing, PR China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, PR China
- China Rehabilitation Science Institute, Beijing, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China
| |
Collapse
|
7
|
Murphy SA, Furger R, Kurpad SN, Arpinar VE, Nencka A, Koch K, Budde MD. Filtered Diffusion-Weighted MRI of the Human Cervical Spinal Cord: Feasibility and Application to Traumatic Spinal Cord Injury. AJNR Am J Neuroradiol 2021; 42:2101-2106. [PMID: 34620590 DOI: 10.3174/ajnr.a7295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/07/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE In traumatic spinal cord injury, DTI is sensitive to injury but is unable to differentiate multiple pathologies. Axonal damage is a central feature of the underlying cord injury, but prominent edema confounds its detection. The purpose of this study was to examine a filtered DWI technique in patients with acute spinal cord injury. MATERIALS AND METHODS The MR imaging protocol was first evaluated in a cohort of healthy subjects at 3T (n = 3). Subsequently, patients with acute cervical spinal cord injury (n = 8) underwent filtered DWI concurrent with their acute clinical MR imaging examination <24 hours postinjury at 1.5T. DTI was obtained with 25 directions at a b-value of 800 s/mm2. Filtered DWI used spinal cord-optimized diffusion-weighting along 26 directions with a "filter" b-value of 2000 s/mm2 and a "probe" maximum b-value of 1000 s/mm2. Parallel diffusivity metrics obtained from DTI and filtered DWI were compared. RESULTS The high-strength diffusion-weighting perpendicular to the cord suppressed signals from tissues outside of the spinal cord, including muscle and CSF. The parallel ADC acquired from filtered DWI at the level of injury relative to the most cranial region showed a greater decrease (38.71%) compared with the decrease in axial diffusivity acquired by DTI (17.68%). CONCLUSIONS The results demonstrated that filtered DWI is feasible in the acute setting of spinal cord injury and reveals spinal cord diffusion characteristics not evident with conventional DTI.
Collapse
Affiliation(s)
- S A Murphy
- From the Department of Neurosurgery (S.A.M., R.F., S.N.K., M.D.B.)
| | - R Furger
- From the Department of Neurosurgery (S.A.M., R.F., S.N.K., M.D.B.)
- Center for Neurotrauma Research (R.F., S.N.K., M.D.B.)
| | - S N Kurpad
- From the Department of Neurosurgery (S.A.M., R.F., S.N.K., M.D.B.)
- Center for Neurotrauma Research (R.F., S.N.K., M.D.B.)
| | - V E Arpinar
- Center for Imaging Research (V.E.A., A.N., K.K.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - A Nencka
- Center for Imaging Research (V.E.A., A.N., K.K.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - K Koch
- Center for Imaging Research (V.E.A., A.N., K.K.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - M D Budde
- From the Department of Neurosurgery (S.A.M., R.F., S.N.K., M.D.B.)
- Center for Neurotrauma Research (R.F., S.N.K., M.D.B.)
| |
Collapse
|
8
|
Neckel ND, Dai H, Hanckel J, Lee Y, Albanese C, Rodriguez O. Skilled reach training enhances robotic gait training to restore overground locomotion following spinal cord injury in rats. Behav Brain Res 2021; 414:113490. [PMID: 34358574 DOI: 10.1016/j.bbr.2021.113490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
Rehabilitative training has been shown to improve motor function following spinal cord injury (SCI). Unfortunately, these gains are primarily task specific; where reach training only improves reaching, step training only improves stepping and stand training only improves standing. More troublesome is the tendency that the improvement in a trained task often comes at the expense of an untrained task. However, the task specificity of training does not preclude the benefits of combined rehabilitative training. Here we show that robot assisted gait training alone can partially reduce the deficits in unassisted overground locomotion following a C4/5 overhemisection injury in rats. When robot-assisted gait training is done in conjunction with skilled forelimb training, we observe a much greater level of recovery of unassisted overground locomotion. In order to provide reach training that would not interfere with our robotic gait training schedule, we prompted rats to increase the use of their forelimbs by replacing the standard overhead feeder with a custom made, deep welled hopper that dispensed nutritionally equivalent small milled pellets. We speculate that the increase in recovery from combined training is due to a more robust interneuronal relay network around the injury site. in vivo manganese-enhanced magnetic resonance imaging of the spinal cord indicated that there was no increase in the cellular activity, however ex vivo diffusion tensor imaging (DTI) suggested an increase in collateralization around the injury site in rats that received both reach training and robot assisted gait training.
Collapse
Affiliation(s)
- Nathan D Neckel
- Department of Neuroscience, Georgetown University, United States; Department of Rehabilitation Medicine, Georgetown University, United States.
| | - Haining Dai
- Department of Neuroscience, Georgetown University, United States
| | - John Hanckel
- Department of Neuroscience, Georgetown University, United States
| | - Yichien Lee
- Department of Oncology, Georgetown University, United States; Center for Translational Imaging, Georgetown University, United States
| | - Christopher Albanese
- Department of Oncology, Georgetown University, United States; Center for Translational Imaging, Georgetown University, United States
| | - Olga Rodriguez
- Department of Oncology, Georgetown University, United States; Center for Translational Imaging, Georgetown University, United States
| |
Collapse
|
9
|
Strotton MC, Bodey AJ, Wanelik K, Hobbs C, Rau C, Bradbury EJ. The spatiotemporal spread of cervical spinal cord contusion injury pathology revealed by 3D in-line phase contrast synchrotron X-ray microtomography. Exp Neurol 2020; 336:113529. [PMID: 33220238 PMCID: PMC7840595 DOI: 10.1016/j.expneurol.2020.113529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
Extensive structural changes occur within the spinal cord following traumatic injury. Acute tissue debris and necrotic tissue are broken down, proliferating local glia and infiltrating leukocytes remodel tissue biochemical and biophysical properties, and a chronic cavity surrounded by a scar forms at the injury epicentre. Serial-section 2D histology has traditionally assessed these features in experimental models of spinal cord injury (SCI) to measure the extent of tissue pathology and evaluate efficacy of novel therapies. However, this 2D snapshot approach overlooks slice intervening features, with accurate representation of tissue compromised by mechanical processing artefacts. 3D imaging avoids these caveats and allows full exploration of the injured tissue volume to characterise whole tissue pathology. Amongst 3D imaging modalities, Synchrotron Radiation X-ray microtomography (SRμCT) is advantageous for its speed, ability to cover large tissue volumes at high resolution, and need for minimal sample processing. Here we demonstrate how extended lengths of formalin-fixed, paraffin-embedded (FFPE) rat spinal cord can be completely imaged by SRμCT with micron resolution. Label-free contrast derived from X-ray phase interactions with low-density soft tissues, reveals spinal cord white matter, gray matter, tissue damage and vasculature, with tissue still viable for targeted 2D-histology after 3D imaging. We used SRμCT to quantify tissue pathology after a midline, cervical level (C6), 225 kDyne contusion injury over acute-to-chronic (24 h to 5 weeks) post injury time points. Quantification revealed acute tissue swelling prior to chronic atrophy across the whole imaged region (spanning 2 spinal segments above and below injury), along with rostro-caudal asymmetries in white and gray matter volume loss. 3D volumes revealed satellite damage in tissue far removed from the epicentre, and extensive rostro-caudal spread of damage through the base of the dorsal columns at 24 h post injury. This damage overlapped regions of vasogenic oedema, confirmed with subsequent histology. Tissue damage at later time points in border regions was most prominent in the dorsal columns, where it overlapped sites of damaged venous vasculature. Elaborating rostro-caudal and spatiotemporal asymmetries in reduced traumatic injury models centred on these regions may inform future treatments that seek to limit the spread of tissue pathology to these ‘at-risk’ regions. Whole rat spinal cord SRμCT tomograms (up to 20 mm length) with μm resolution Pathology of 3 SHAM and 24 acute-to-chronic C6 midline contusion SCIs quantified Rostro-caudal asymmetries in gray and white matter pathology progression Differences in ascending and descending dorsal column tract pathology Delayed rostral-caudal pathology associated with sites of venous vasculature
Collapse
Affiliation(s)
- Merrick C Strotton
- King's College London, Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, London Bridge, London SE1 1UL, UK.
| | | | | | - Carl Hobbs
- King's College London, Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, London Bridge, London SE1 1UL, UK.
| | | | - Elizabeth J Bradbury
- King's College London, Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, London Bridge, London SE1 1UL, UK.
| |
Collapse
|
10
|
Longitudinal changes in DTI parameters of specific spinal white matter tracts correlate with behavior following spinal cord injury in monkeys. Sci Rep 2020; 10:17316. [PMID: 33057016 PMCID: PMC7560889 DOI: 10.1038/s41598-020-74234-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
This study aims to evaluate how parameters derived from diffusion tensor imaging reflect axonal disruption and demyelination in specific white matter tracts within the spinal cord of squirrel monkeys following traumatic injuries, and their relationships to function and behavior. After a unilateral section of the dorsal white matter tract of the cervical spinal cord, we found that both lesioned dorsal and intact lateral tracts on the lesion side exhibited prominent disruptions in fiber orientation, integrity and myelination. The degrees of pathological changes were significantly more severe in segments below the lesion than above. The lateral tract on the opposite (non-injured) side was minimally affected by the injury. Over time, RD, FA, and AD values of the dorsal and lateral tracts on the injured side closely tracked measurements of the behavioral recovery. This unilateral section of the dorsal spinal tract provides a realistic model in which axonal disruption and demyelination occur together in the cord. Our data show that specific tract and segmental FA and RD values are sensitive to the effects of injury and reflect specific behavioral changes, indicating their potential as relevant indicators of recovery or for assessing treatment outcomes. These observations have translational value for guiding future studies of human subjects with spinal cord injuries.
Collapse
|
11
|
Liu XY, Liang J, Wang Y, Zhong L, Zhao CY, Wei MG, Wang JJ, Sun XZ, Wang KQ, Duan JH, Chen C, Tu Y, Zhang S, Ming D, Li XH. Diffusion tensor imaging predicting neurological repair of spinal cord injury with transplanting collagen/chitosan scaffold binding bFGF. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:123. [PMID: 31686219 DOI: 10.1007/s10856-019-6322-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Prognosis and treatment evaluation of spinal cord injury (SCI) are still in the long-term research stage. Prognostic factors for SCI treatment need effective biomarker to assess therapeutic effect. Quantitative diffusion tensor imaging (DTI) may become a potential indicators for assessing SCI repair. However, its correlation with the results of locomotor function recovery and tissue repair has not been carefully studied. The aim of this study was to use quantitative DTI to predict neurological repair of SCI with transplanting collagen/chitosan scaffold binding basic fibroblast growth factor (bFGF). To achieve our research goals, T10 complete transection SCI model was established. Then collagen/chitosan mixture adsorbed with bFGF (CCS/bFGF) were implanted into rats with SCI. At 8 weeks after modeling, implanting CCS/bFGF demonstrated more significant improvements in locomotor function according to Basso-Beattie-Bresnahan (BBB) score, inclined-grid climbing test, and electrophysiological examinations. DTI was carried out to evaluate the repair of axons by diffusion tensor tractgraphy (DTT), fractional anisotropy (FA) and apparent diffusion coefficient (ADC), a numerical measure of relative white matter from the rostral to the caudal. Parallel to locomotor function recovery, the CCS/bFGF group could significantly promote the regeneration of nerve fibers tracts according to DTT, magnetic resonance imaging (MRI), Bielschowsky's silver staining and immunofluorescence staining. Positive correlations between imaging and locomotor function or histology were found at all locations from the rostral to the caudal (P < 0.0001). These results demonstrated that DTI might be used as an effective predictor for evaluating neurological repair after SCI in experimental trails and clinical cases.
Collapse
Affiliation(s)
- Xiao-Yin Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
- Tianjin Medical University, Qixiangtai Road No. 22, Tianjin, 300070, China
| | - Jun Liang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yi Wang
- Department of Neurology, Tianjin Hospital of Tianjin, Tianjin, 300211, China
| | - Lin Zhong
- Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Chang-Yu Zhao
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Meng-Guang Wei
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Jing-Jing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Xiao-Zhe Sun
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Ke-Qiang Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jing-Hao Duan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Chong Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Yue Tu
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Sai Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
12
|
Poplawski MM, Alizadeh M, Oleson CV, Fisher J, Marino RJ, Gorniak RJ, Leiby BE, Flanders AE. Application of Diffusion Tensor Imaging in Forecasting Neurological Injury and Recovery after Human Cervical Spinal Cord Injury. J Neurotrauma 2019; 36:3051-3061. [DOI: 10.1089/neu.2018.6092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Michael M. Poplawski
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mahdi Alizadeh
- Department of Neurosurgery, Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christina V. Oleson
- Department of Physical Medicine and Rehabilitation, Case Western Reserve School of Medicine, Cleveland, Ohio
| | - Joshua Fisher
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ralph J. Marino
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Richard J. Gorniak
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Benjamin E. Leiby
- Department of Biostatistics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam E. Flanders
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Kaushal M, Shabani S, Budde M, Kurpad S. Diffusion Tensor Imaging in Acute Spinal Cord Injury: A Review of Animal and Human Studies. J Neurotrauma 2019; 36:2279-2286. [PMID: 30950317 DOI: 10.1089/neu.2019.6379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Diffusion tensor imaging (DTI), based on the property of preferential diffusion of water molecules in biological tissue, is seeing increasing clinical application in the pathologies of the central nervous system. Spinal cord injury (SCI) is one such area where the use of DTI allows for the evaluation of changes to microstructure of the spinal cord not detected on routine conventional magnetic resonance imaging. The insights obtained from pre-clinical models of SCI indicate correlation of quantitative DTI indices with histology and function, which points to the potential of DTI as a non-invasive, viable biomarker for integrity of white matter tracts in the spinal cord. In this review, we describe DTI alterations in the acute phase of SCI in both animal models and human subjects and explore the underlying pathophysiology behind these changes.
Collapse
Affiliation(s)
- Mayank Kaushal
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Saman Shabani
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shekar Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
14
|
Shabani S, Kaushal M, Budde M, Kurpad SN. Correlation of magnetic resonance diffusion tensor imaging parameters with American Spinal Injury Association score for prognostication and long-term outcomes. Neurosurg Focus 2019; 46:E2. [DOI: 10.3171/2018.12.focus18595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/13/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVEConventional MRI is routinely used to demonstrate the anatomical site of spinal cord injury (SCI). However, quantitative and qualitative imaging parameters have limited use in predicting neurological outcomes. Currently, there are no reliable neuroimaging biomarkers to predict short- and long-term outcome after SCI.METHODSA prospective cohort of 23 patients with SCI (19 with cervical SCI [CSCI] and 4 with thoracic SCI [TSCI]) treated between 2007 and 2014 was included in the study. The American Spinal Injury Association (ASIA) score was determined at the time of arrival and at 1-year follow-up. Only 15 patients (12 with CSCI and 3 with TSCI) had 1-year follow-up. Whole-cord fractional anisotropy (FA) was determined at C1–2, following which C1–2 was divided into upper, middle, and lower segments and the corresponding FA value at each of these segments was calculated. Correlation analysis was performed between FA and ASIA score at time of arrival and 1-year follow-up.RESULTSCorrelation analysis showed a positive but nonsignificant correlation (p = 0.095) between FA and ASIA score for all patients (CSCI and TCSI) at the time of arrival. Additional regression analysis consisting of only patients with CSCI showed a significant correlation (p = 0.008) between FA and ASIA score at time of arrival as well as at 1-year follow-up (p = 0.025). Furthermore, in case of patients with CSCI, a significant correlation between FA value at each of the segments (upper, middle, and lower) of C1–2 and ASIA score at time of arrival was found (p = 0.017, p = 0.015, and p = 0.002, respectively).CONCLUSIONSIn patients with CSCI, the measurement of diffusion anisotropy of the high cervical cord (C1–2) correlates significantly with injury severity and long-term follow-up. However, this correlation is not seen in patients with TSCI. Therefore, FA can be used as an imaging biomarker for evaluating neural injury and monitoring recovery in patients with CSCI.
Collapse
|
15
|
Motovylyak A, Skinner NP, Schmit BD, Wilkins N, Kurpad SN, Budde MD. Longitudinal In Vivo Diffusion Magnetic Resonance Imaging Remote from the Lesion Site in Rat Spinal Cord Injury. J Neurotrauma 2018; 36:1389-1398. [PMID: 30259800 DOI: 10.1089/neu.2018.5964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diffusion tensor imaging (DTI) has demonstrated success as a biomarker of spinal cord injury (SCI) severity as shown from numerous pre-clinical studies. However, artifacts from stabilization hardware at the lesion have precluded its use for longitudinal assessments. Previous research has documented ex vivo diffusion changes in the spinal cord both caudal and cranial to the injury epicenter. The aim of this study was to use a rat contusion model of SCI to evaluate the utility of in vivo cervical DTI after a thoracic injury. Forty Sprague-Dawley rats underwent a thoracic contusion (T8) of mild, moderate, severe, or sham severity. Magnetic resonance imaging (MRI) of the cervical cord was performed at 2, 30, and 90 days post-injury, and locomotor performance was assessed weekly using the Basso, Bresnahan, and Beattie (BBB) scoring scale. The relationships between BBB scores and MRI were assessed using region of interest analysis and voxel-wise linear regression of DTI, and free water elimination (FWE) modeling to reduce partial volume effects. At 90 days, axial diffusivity (ADFWE), mean diffusivity (MDFWE), and free water fraction (FWFFWE) using the FWE model were found to be significantly correlated with BBB score. FWE was found to be more predictive of injury severity than conventional DTI, specifically at later time-points. This study validated the use of FWE technique in spinal cord and demonstrated its sensitivity to injury remotely.
Collapse
Affiliation(s)
- Alice Motovylyak
- 1 Department of Biomedical Engineering, Marquette University/Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nathan P Skinner
- 2 Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin.,3 Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian D Schmit
- 1 Department of Biomedical Engineering, Marquette University/Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Natasha Wilkins
- 2 Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shekar N Kurpad
- 2 Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew D Budde
- 2 Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
16
|
Testing Pathological Variation of White Matter Tract in Adult Rats after Severe Spinal Cord Injury with MRI. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4068156. [PMID: 30534561 PMCID: PMC6252222 DOI: 10.1155/2018/4068156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/07/2018] [Accepted: 10/15/2018] [Indexed: 01/21/2023]
Abstract
The purpose of this study was to assess the pathological variation in white matter tracts in the adult severe thoracic contusion spinal cord injury (SCI) rat models combined with in vivo magnetic resonance imaging (MRI), as well as the effect of spared white matter (WM) quantity on hindlimb motor function recovery. 7.0T MRI was conducted for all experimental animals before SCI and 1, 3, 7, and 14 days after SCI. The variation in the white matter tract in different regions of the spinal cord after SCI was examined by luxol fast blue (LFB) staining, NF200 immunochemistry, and diffusion tensor imaging (DTI) parameters, including fraction anisotropy, mean diffusivity, axial diffusion, and radial diffusivity. Meanwhile, Basso-Beattie-Bresnahan (BBB) open-field scoring was performed to evaluate the behavior of the paraplegic hind limbs. The quantitative analysis showed that spared white matter measures assessed by LFB and MRI had a close correlation (R2 = 0.8508). The percentage of spared white matter area was closely correlated with BBB score (R2 = 0.8460). After SCI, spared white matter in the spinal cord, especially the ventral column WM, played a critical role in motor function restoration. The results suggest that the first three days provides a key time window for SCI protection and treatment; spared white matter, especially in the ventral column, plays a key role in motor function recovery in rats. Additionally, DTI may be an important noninvasive technique to diagnose acute SCI degree as well as a tool to evaluate functional prognosis. During the transition from nerve protection toward clinical treatment after SCI, in vivo DTI may serve as an emerging noninvasive technique to diagnose acute SCI degree and predict the degree of spontaneous functional recovery after SCI.
Collapse
|
17
|
Optimising complementary soft tissue synchrotron X-ray microtomography for reversibly-stained central nervous system samples. Sci Rep 2018; 8:12017. [PMID: 30104610 PMCID: PMC6089931 DOI: 10.1038/s41598-018-30520-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/24/2018] [Indexed: 11/08/2022] Open
Abstract
Synchrotron radiation microtomography (SRμCT) is a nominally non-destructive 3D imaging technique which can visualise the internal structures of whole soft tissues. As a multi-stage technique, the cumulative benefits of optimising sample preparation, scanning parameters and signal processing can improve SRμCT imaging efficiency, image quality, accuracy and ultimately, data utility. By evaluating different sample preparations (embedding media, tissue stains), imaging (projection number, propagation distance) and reconstruction (artefact correction, phase retrieval) parameters, a novel methodology (combining reversible iodine stain, wax embedding and inline phase contrast) was optimised for fast (~12 minutes), high-resolution (3.2-4.8 μm diameter capillaries resolved) imaging of the full diameter of a 3.5 mm length of rat spinal cord. White-grey matter macro-features and micro-features such as motoneurons and capillary-level vasculature could then be completely segmented from the imaged volume for analysis through the shallow machine learning SuRVoS Workbench. Imaged spinal cord tissue was preserved for subsequent histology, establishing a complementary SRμCT methodology that can be applied to study spinal cord pathologies or other nervous system tissues such as ganglia, nerves and brain. Further, our 'single-scan iterative downsampling' approach and side-by-side comparisons of mounting options, sample stains and phase contrast parameters should inform efficient, effective future soft tissue SRμCT experiment design.
Collapse
|
18
|
Liu CB, Yang DG, Zhang X, Zhang WH, Li DP, Zhang C, Qin C, Du LJ, Li J, Gao F, Zhang J, Zuo ZT, Yang ML, Li JJ. Degeneration of white matter and gray matter revealed by diffusion tensor imaging and pathological mechanism after spinal cord injury in canine. CNS Neurosci Ther 2018; 25:261-272. [PMID: 30076687 DOI: 10.1111/cns.13044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/07/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022] Open
Abstract
AIM Exploration of the mechanism of spinal cord degeneration may be the key to treatment of spinal cord injury (SCI). This study aimed to investigate the degeneration of white matter and gray matter and pathological mechanism in canine after SCI. METHODS Diffusion tensor imaging (DTI) was performed on canine models with normal (n = 5) and injured (n = 7) spinal cords using a 3.0T MRI scanner at precontusion and 3 hours, 24 hours, 6 weeks, and 12 weeks postcontusion. The tissue sections were stained using H&E and immunohistochemistry. RESULTS For white matter, fractional anisotropy (FA) values significantly decreased in lesion epicenter, caudal segment 1 cm away from epicenter, and caudal segment 2 cm away from epicenter (P = 0.003, P = 0.004, and P = 0.013, respectively) after SCI. Apparent diffusion coefficient (ADC) values were initially decreased and then increased in lesion epicenter and caudal segment 1 cm away from epicenter (P < 0.001 and P = 0.010, respectively). There are no significant changes in FA and ADC values in rostral segments (P > 0.05). For gray matter, ADC values decreased initially and then increased in lesion epicenter (P < 0.001), and overall trend decreased in caudal segment 1 cm away from epicenter (P = 0.039). FA values did not change significantly (P > 0.05). Pathological examination confirmed the dynamic changes of DTI parameters. CONCLUSION Diffusion tensor imaging is more sensitive to degeneration of white matter than gray matter, and the white matter degeneration may be not symmetrical which meant the caudal degradation appeared to be more severe than the rostral one.
Collapse
Affiliation(s)
- Chang-Bin Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - De-Gang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Wen-Hao Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Da-Peng Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chao Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chuan Qin
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jie Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zhen-Tao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,The Innovation Center of Excellence on Brain Science, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Liang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
19
|
Skinner NP, Lee SY, Kurpad SN, Schmit BD, Muftuler LT, Budde MD. Filter-probe diffusion imaging improves spinal cord injury outcome prediction. Ann Neurol 2018; 84:37-50. [PMID: 29752739 PMCID: PMC6119508 DOI: 10.1002/ana.25260] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Diffusion-weighted imaging (DWI) is a powerful tool for investigating spinal cord injury (SCI), but has limited specificity for axonal damage, which is the most predictive feature of long-term functional outcome. In this study, a technique designed to detect acute axonal injury, filter-probe double diffusion encoding (FP-DDE), is compared with standard DWI for predicting long-term functional and cellular outcomes. METHODS This study extends FP-DDE to predict long-term functional and histological outcomes in a rat SCI model of varying severities (n = 58). Using a 9.4T magnetic resonance imaging (MRI) system, a whole-cord FP-DDE spectroscopic voxel was acquired in 3 minutes at the lesion site and compared to DWI at 48 hours postinjury. Relationships with chronic (30-day) locomotor and histological outcomes were evaluated with linear regression. RESULTS The FP-DDE measure of parallel diffusivity (ADC|| ) was significantly related to chronic hind limb locomotor functional outcome (R2 = 0.63, p < 0.0001), and combining this measurement with acute functional scores demonstrated prognostic benefit versus functional testing alone (p = 0.0007). Acute ADC|| measurements were also more closely related to the number of injured axons measured 30 days after the injury than standard DWI. Furthermore, acute FP-DDE images showed a clear and easily interpretable pattern of injury that closely corresponded with chronic MRI and histology observations. INTERPRETATION Collectively, these results demonstrate FP-DDE benefits from greater specificity for acute axonal damage in predicting functional and histological outcomes with rapid acquisition and fully automated analysis, improving over standard DWI. FP-DDE is a promising technique compatible with clinical settings, with potential research and clinical applications for evaluation of spinal cord pathology. Ann Neurol 2018;83:37-50.
Collapse
Affiliation(s)
- Nathan P Skinner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI
| | - Seung-Yi Lee
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI
- Neuroscience Doctoral Program, Medical College of Wisconsin, Milwaukee, WI
- Biophysics Graduate Program, Medical College of Wisconsin, Milwaukee, WI
| | - Shekar N Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI
| | - L Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
20
|
Cao X, Fang L, Cui CY, Gao S, Wang TW. DTI and pathological changes in a rabbit model of radiation injury to the spinal cord after 125I radioactive seed implantation. Neural Regen Res 2018; 13:528-535. [PMID: 29623940 PMCID: PMC5900518 DOI: 10.4103/1673-5374.228758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Excessive radiation exposure may lead to edema of the spinal cord and deterioration of the nervous system. Magnetic resonance imaging can be used to judge and assess the extent of edema and to evaluate pathological changes and thus may be used for the evaluation of spinal cord injuries caused by radiation therapy. Radioactive 125I seeds to irradiate 90% of the spinal cord tissue at doses of 40–100 Gy (D90) were implanted in rabbits at T10 to induce radiation injury, and we evaluated their safety for use in the spinal cord. Diffusion tensor imaging showed that with increased D90, the apparent diffusion coefficient and fractional anisotropy values were increased. Moreover, pathological damage of neurons and microvessels in the gray matter and white matter was aggravated. At 2 months after implantation, obvious pathological injury was visible in the spinal cords of each group. Magnetic resonance diffusion tensor imaging revealed the radiation injury to the spinal cord, and we quantified the degree of spinal cord injury through apparent diffusion coefficient and fractional anisotropy.
Collapse
Affiliation(s)
- Xia Cao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Le Fang
- First Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Chuan-Yu Cui
- Department of MRI, Fourth Hospital, Jilin University, Changchun, Jilin Province, China
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Tian-Wei Wang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
21
|
Liu C, Yang D, Li J, Li D, Yang M, Sun W, Meng Q, Zhang W, Cai C, Du L, Li J, Gao F, Gu R, Feng Y, Dong X, Miao Q, Yang X, Zuo Z. Dynamic diffusion tensor imaging of spinal cord contusion: A canine model. J Neurosci Res 2018; 96:1093-1103. [PMID: 29485189 DOI: 10.1002/jnr.24222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/29/2017] [Accepted: 01/12/2018] [Indexed: 11/08/2022]
Abstract
This study aimed to explore the dynamic diffusion tensor imaging (DTI) of changes in spinal cord contusion using a canine model of injury involving rostral and caudal levels. In this study, a spinal cord contusion model was established in female dogs using a custom-made weight-drop lesion device. DTI was performed on dogs with injured spinal cords (n=7) using a Siemens 3.0T MRI scanner at pre-contusion and at 3 h, 24 h, 6 weeks and 12 weeks post-injury. The tissue sections were stained for immunohistochemical analysis. Canine models of spinal cord contusion were created successfully using the weight-drop lesion device. The fractional anisotropy (FA) value of lesion epicenter decreased, while the apparent diffusion coefficient (ADC), mean diffusivity (MD), and radial diffusivity (RD) values increased, and the extent of the curve was apparent gradually. The site and time affected the DTI parameters significantly in the whole spinal cord, ADC (site, P < 0.001 and time, P = 0.077, respectively); FA (site, P < 0.001 and time, P = 0.002, respectively). Immunohistological analysis of GFAP and NF revealed the pathologic changes of reactive astrocytes and axons, as well as the cavity and glial scars occurring during chronic SCI. DTI is a sensitive and noninvasive imaging tool useful to assess edema, hemorrhage, cavity formation, structural damage and reconstruction of axon, and myelin in dogs. The DTI parameters after contusion vary. However, the curves of ADC, MD, and RD were nearly similar and the FA curve was distinct. All the DTI parameters were affected by distance and time.
Collapse
Affiliation(s)
- Changbin Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Degang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Dapeng Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Mingliang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Wei Sun
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Qianru Meng
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Wenhao Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Chang Cai
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Liangjie Du
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Jun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Rui Gu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Yutong Feng
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Xuechao Dong
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Qi Miao
- Zibo Shanhang Medical Engineering Co., ltd, Zibo, Shandong, 255000, China
| | - Xinghua Yang
- School of Public Health, Capital Medical University, 10 Xitoutiao, Youanmen, Beijing, 100069, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,The Innovation Center of Excellence on Brain Science, Chinese Academy of Sciences, Beijing, 100049, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Alizadeh M, Fisher J, Saksena S, Sultan Y, Conklin CJ, Middleton DM, Finsterbusch J, Krisa L, Flanders AE, Faro SH, Mulcahey M, Mohamed FB. Reduced Field of View Diffusion Tensor Imaging and Fiber Tractography of the Pediatric Cervical and Thoracic Spinal Cord Injury. J Neurotrauma 2018; 35:452-460. [PMID: 29073810 PMCID: PMC5793949 DOI: 10.1089/neu.2017.5174] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The aim of this study is to assess the utility and effectiveness of diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) of the entire pediatric cervical and thoracic spinal cord toward discrimination of typically developing (TD) controls and subjects with spinal cord injury (SCI). A total of 43 pediatric subjects, including 23 TD subjects ranging in age from 6 to 16 years old and 20 subjects with SCI ranging in age from 7 to 16 years, were recruited and scanned using a 3.0 Tesla magnetic resonance scanner. Reduced field of view diffusion tensor images were acquired axially to cover the entire spinal cord across two slabs. For DTI analysis, motion correction was performed by coregistration of the diffusion-weighted images to the reference image (b0). Streamline deterministic tractography results were generated from the preprocessed data. DTI and DTT parameters of the whole cord, including fractional anisotropy (FA), mean diffusivity (MD), tract length, and tract density, were calculated, averaged across the whole spinal cord, and compared between the TD and SCI groups. Statistically significant decreases have been shown in FA (TD = 0.46 ± 0.11; SCI = 0.37 ± 0.09; p < 0.0001) and tract density (TD = 405.93 ± 243.84; SCI = 268.90 ± 270.34; p < 0.0001). However, the mean length of tracts and MD did not show significant differences. When investigating differences in DTI and DTT parameters above and below the injury site, it was shown that the FA and tract density in patients with cervical SCI decreased significantly in the thoracic region. An identical trend was observed in the cervical region for patients with thoracic SCI as well. When comparing TD and SCI subjects, FA and tract density were the most sensitive parameters in detecting functional changes of the spinal cord in chronic pediatric SCI. The results show that both DTI and DTT have the potential to be imaging biomarkers in the diagnosis of SCI.
Collapse
Affiliation(s)
- Mahdi Alizadeh
- Department of Neurosurgery, Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Joshua Fisher
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sona Saksena
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yusra Sultan
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | - Chris J. Conklin
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Devon M. Middleton
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jürgen Finsterbusch
- Institut für Systemische Neurowissenschaften, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Krisa
- Department of Physical Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam E. Flanders
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Scott H. Faro
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - M.J. Mulcahey
- Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Feroze B. Mohamed
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Liu CB, Yang DG, Meng QR, Li DP, Yang ML, Sun W, Zhang WH, Cai C, Du LJ, Li J, Gao F, Yu Y, Zhang X, Zuo ZT, Li JJ. Dynamic correlation of diffusion tensor imaging and neurological function scores in beagles with spinal cord injury. Neural Regen Res 2018; 13:877-886. [PMID: 29863019 PMCID: PMC5998642 DOI: 10.4103/1673-5374.232485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Exploring the relationship between different structure of the spinal cord and functional assessment after spinal cord injury is important. Quantitative diffusion tensor imaging can provide information about the microstructure of nerve tissue and can quantify the pathological damage of spinal cord white matter and gray matter. In this study, a custom-designed spinal cord contusion-impactor was used to damage the T10 spinal cord of beagles. Diffusion tensor imaging was used to observe changes in the whole spinal cord, white matter, and gray matter, and the Texas Spinal Cord Injury Score was used to assess changes in neurological function at 3 hours, 24 hours, 6 weeks, and 12 weeks after injury. With time, fractional anisotropy values after spinal cord injury showed a downward trend, and the apparent diffusion coefficient, mean diffusivity, and radial diffusivity first decreased and then increased. The apparent diffusion-coefficient value was highly associated with the Texas Spinal Cord Injury Score for the whole spinal cord (R = 0.919, P = 0.027), white matter (R = 0.932, P = 0.021), and gray matter (R = 0.882, P = 0.048). Additionally, the other parameters had almost no correlation with the score (P > 0.05). In conclusion, the highest and most significant correlation between diffusion parameters and neurological function was the apparent diffusion-coefficient value for white matter, indicating that it could be used to predict the recovery of neurological function accurately after spinal cord injury.
Collapse
Affiliation(s)
- Chang-Bin Liu
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - De-Gang Yang
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Qian-Ru Meng
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Da-Peng Li
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Ming-Liang Yang
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Wei Sun
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Wen-Hao Zhang
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chang Cai
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jun Li
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zhen-Tao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences; The Innovation Center of Excellence on Brain Science, Chinese Academy of Sciences; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
24
|
Budde MD, Skinner NP, Muftuler LT, Schmit BD, Kurpad SN. Optimizing Filter-Probe Diffusion Weighting in the Rat Spinal Cord for Human Translation. Front Neurosci 2017; 11:706. [PMID: 29311786 PMCID: PMC5742102 DOI: 10.3389/fnins.2017.00706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022] Open
Abstract
Diffusion tensor imaging (DTI) is a promising biomarker of spinal cord injury (SCI). In the acute aftermath, DTI in SCI animal models consistently demonstrates high sensitivity and prognostic performance, yet translation of DTI to acute human SCI has been limited. In addition to technical challenges, interpretation of the resulting metrics is ambiguous, with contributions in the acute setting from both axonal injury and edema. Novel diffusion MRI acquisition strategies such as double diffusion encoding (DDE) have recently enabled detection of features not available with DTI or similar methods. In this work, we perform a systematic optimization of DDE using simulations and an in vivo rat model of SCI and subsequently implement the protocol to the healthy human spinal cord. First, two complementary DDE approaches were evaluated using an orientationally invariant or a filter-probe diffusion encoding approach. While the two methods were similar in their ability to detect acute SCI, the filter-probe DDE approach had greater predictive power for functional outcomes. Next, the filter-probe DDE was compared to an analogous single diffusion encoding (SDE) approach, with the results indicating that in the spinal cord, SDE provides similar contrast with improved signal to noise. In the SCI rat model, the filter-probe SDE scheme was coupled with a reduced field of view (rFOV) excitation, and the results demonstrate high quality maps of the spinal cord without contamination from edema and cerebrospinal fluid, thereby providing high sensitivity to injury severity. The optimized protocol was demonstrated in the healthy human spinal cord using the commercially-available diffusion MRI sequence with modifications only to the diffusion encoding directions. Maps of axial diffusivity devoid of CSF partial volume effects were obtained in a clinically feasible imaging time with a straightforward analysis and variability comparable to axial diffusivity derived from DTI. Overall, the results and optimizations describe a protocol that mitigates several difficulties with DTI of the spinal cord. Detection of acute axonal damage in the injured or diseased spinal cord will benefit the optimized filter-probe diffusion MRI protocol outlined here.
Collapse
Affiliation(s)
- Matthew D. Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Nathan P. Skinner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, United States
| | - L. Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian D. Schmit
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Shekar N. Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
25
|
Zheng ZL, Morykwas MJ, Tatter S, Gordon S, McGee M, Green H, Argenta LC. Ameliorating Spinal Cord Injury in an Animal Model With Mechanical Tissue Resuscitation. Neurosurgery 2017; 78:868-76. [PMID: 26479704 DOI: 10.1227/neu.0000000000001063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) is a major worldwide cause of mortality and disability with limited treatment options. Previous research applying controlled negative pressure to traumatic brain injury in rat and swine models resulted in smaller injuries and more rapid recovery. OBJECTIVE To examine the effects of the application of a controlled vacuum (mechanical tissue resuscitation [MTR]) to SCI in a rat model under several magnitudes of vacuum. METHODS Controlled contusion SCIs were created in rats. Vacuums of -50 and -75 mm Hg were compared. Analysis included open-field locomotor performance, magnetic resonance imaging (in vivo T2, ex vivo diffusion tensor imaging and fiber tractography), and histological assessments. RESULTS MTR treatment significantly improved the locomotor recovery from a Basso, Beattie, and Bresnahan score of 7.8 ± 1.9 to 11.4 ± 1.2 and 10.7 ± 1.9 at -50- and -75-mm Hg pressures, respectively, 4 weeks after injury. Both pressures also reduced fluid accumulations > 10% by T2-imaging in SCI sites. The mean fiber number and mean fiber length were greater across injured sites after MTR treatment, especially with treatment with -50 mm Hg. Myelin volume was increased significantly by 60% in the group treated with -50 mm Hg. CONCLUSION MTR of SCI in a rat model is effective in reducing edema in the injured cord, preserving myelin survival, and improving the rate and quantity of functional recovery. ABBREVIATIONS BBB, Basso, Beattie, and BresnahanDTI, diffusion tensor imagingFA, fractional anisotropyMTR, mechanical tissue resuscitationMTR50, mechanical tissue resuscitation with 50-mm Hg subatmospheric pressureMTR75, mechanical tissue resuscitation with 75-mm Hg subatmospheric pressureROI, region of interestSCI, spinal cord injury.
Collapse
Affiliation(s)
- Zhen-Lin Zheng
- Departments of *Plastic and Reconstructive Surgery, and ‡Neurosurgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina; §Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | | | | | | | | | | | |
Collapse
|
26
|
Liao S, Ni S, Cao Y, Yin X, Wu T, Lu H, Hu J, Wu H, Lang Y. The 3D characteristics of post-traumatic syringomyelia in a rat model: a propagation-based synchrotron radiation microtomography study. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:1218-1225. [PMID: 29091065 DOI: 10.1107/s1600577517011201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/30/2017] [Indexed: 06/07/2023]
Abstract
Many published literature sources have described the histopathological characteristics of post-traumatic syringomyelia (PTS). However, three-dimensional (3D) visualization studies of PTS have been limited due to the lack of reliable 3D imaging techniques. In this study, the imaging efficiency of propagation-based synchrotron radiation microtomography (PB-SRµCT) was determined to detect the 3D morphology of the cavity and surrounding microvasculature network in a rat model of PTS. The rat model of PTS was established using the infinite horizon impactor to produce spinal cord injury (SCI), followed by a subarachnoid injection of kaolin to produce arachnoiditis. PB-SRµCT imaging and histological examination, as well as fluorescence staining, were conducted on the animals at the tenth week after SCI. The 3D morphology of the cystic cavity was vividly visualized using PB-SRµCT imaging. The quantitative parameters analyzed by PB-SRµCT, including the lesion and spared spinal cord tissue area, the minimum and maximum diameters in the cystic cavity, and cavity volume, were largely consistent with the results of the histological assessment. Moreover, the 3D morphology of the cavity and surrounding angioarchitecture could be simultaneously detected on the PB-SRµCT images. This study demonstrated that high-resolution PB-SRµCT could be used for the 3D visualization of trauma-induced spinal cord cavities and provides valuable quantitative data for cavity characterization. PB-SRµCT could be used as a reliable imaging technique and offers a novel platform for tracking cavity formation and morphological changes in an experimental animal model of PTS.
Collapse
Affiliation(s)
- Shenghui Liao
- School of Information Science and Engineering, Central South University, Changsha 410008, People's Republic of China
| | - Shuangfei Ni
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410008, People's Republic of China
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Hao Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Ye Lang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| |
Collapse
|
27
|
Vedantam A, Viswanathan A. Quantification of Cordotomy Lesion Using Spinal Cord Diffusion Tensor Imaging. Neurosurgery 2017; 64:199-202. [PMID: 28899047 DOI: 10.1093/neuros/nyx244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/28/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Aditya Vedantam
- Department of Neurosurgery, Baylor Col-lege of Medicine, Hoston, Texas
| | | |
Collapse
|
28
|
Wang-Leandro A, Hobert MK, Alisauskaite N, Dziallas P, Rohn K, Stein VM, Tipold A. Spontaneous acute and chronic spinal cord injuries in paraplegic dogs: a comparative study of in vivo diffusion tensor imaging. Spinal Cord 2017; 55:1108-1116. [DOI: 10.1038/sc.2017.83] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/12/2017] [Accepted: 06/20/2017] [Indexed: 12/17/2022]
|
29
|
Cohen Y, Anaby D, Morozov D. Diffusion MRI of the spinal cord: from structural studies to pathology. NMR IN BIOMEDICINE 2017; 30:e3592. [PMID: 27598689 DOI: 10.1002/nbm.3592] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/01/2016] [Accepted: 07/05/2016] [Indexed: 05/27/2023]
Abstract
Diffusion MRI is extensively used to study brain microarchitecture and pathologies, and water diffusion appears highly anisotropic in the white matter (WM) of the spinal cord (SC). Despite these facts, the use of diffusion MRI to study the SC, which has increased in recent years, is much less common than that in the brain. In the present review, after a brief outline of early studies of diffusion MRI (DWI) and diffusion tensor MRI (DTI) of the SC, we provide a short survey on DTI and on diffusion MRI methods beyond the tensor that have been used to study SC microstructure and pathologies. After introducing the porous view of WM and describing the q-space approach and q-space diffusion MRI (QSI), we describe other methodologies that can be applied to study the SC. Selected applications of the use of DTI, QSI, and other more advanced diffusion MRI methods to study SC microstructure and pathologies are presented, with some emphasis on the use of less conventional diffusion methodologies. Because of length constraints, we concentrate on structural studies and on a few selected pathologies. Examples of the use of diffusion MRI to study dysmyelination, demyelination as in experimental autoimmune encephalomyelitis and multiple sclerosis, amyotrophic lateral sclerosis, and traumatic SC injury are presented. We conclude with a brief summary and a discussion of challenges and future directions for diffusion MRI of the SC. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yoram Cohen
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Debbie Anaby
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Darya Morozov
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Jirjis MB, Valdez C, Vedantam A, Schmit BD, Kurpad SN. Diffusion tensor imaging as a biomarker for assessing neuronal stem cell treatments affecting areas distal to the site of spinal cord injury. J Neurosurg Spine 2017; 26:243-251. [DOI: 10.3171/2016.5.spine151319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
The aims of this study were to determine if the morphological and functional changes induced by neural stem cell (NSC) grafts after transplantation into the rodent spinal cord can be detected using MR diffusion tensor imaging (DTI) and, furthermore, if the DTI-derived mean diffusivity (MD) metric could be a biomarker for cell transplantation in spinal cord injury (SCI).
METHODS
A spinal contusion was produced at the T-8 vertebral level in 40 Sprague Dawley rats that were separated into 4 groups, including a sham group (injury without NSC injection), NSC control group (injury with saline injection), co-injection control group (injury with Prograf), and the experimental group (injury with NSC and Prograf injection). The NSC injection was completed 1 week after injury into the site of injury and the rats in the experimental group were compared to the rats from the sham, NSC control, and co-injection groups. The DTI index, MD, was assessed in vivo at 2, 5, and 10 weeks and ex vivo at 10 weeks postinjury on a 9.4-T Bruker scanner using a spin-echo imaging sequence. DTI data of the cervical spinal cord from the sham surgery, injury with saline injection, injury with injection of Prograf only, and injury with C17.2 NSC and Prograf injection were examined to evaluate if cellular proliferation induced by intrathoracic C17.2 engraftment was detectable in a noninvasive manner.
RESULTS
At 5 weeks after injury, the average fractional anisotropy, longitudinal diffusion (LD) and radial diffusion (RD) coefficients, and MD of water (average of the RD and LD eigenvalues in the stem cell line–treated group) increased to an average of 1.44 × 10−3 sec/mm2 in the cervical segments, while the control groups averaged 0.98 × 10−3 s/mm2. Post hoc Tukey's honest significant difference tests demonstrated that the transplanted stem cells had significantly higher MD values than the other groups (p = 0.032 at 5 weeks). In vivo and ex vivo findings at 10 weeks displayed similar results. This statistical difference between the stem cell line and the other groups was maintained at the 10-week postinjury in vivo and ex vivo time points.
CONCLUSIONS
These results indicate that the DTI-derived MD metric collected from noninvasive imaging techniques may provide useful biomarker indices for transplantation interventions that produce changes in the spinal cord structure and function. Though promising, the results demonstrated here suggest additional work is needed before implementation in a clinical setting.
Collapse
Affiliation(s)
- Michael B. Jirjis
- 1Department of Biomedical Engineering, Marquette University
- 3Air Force Research Laboratory, 711th Human Performance Wing, Human Effectiveness Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, and
| | - Chris Valdez
- 4National Research Council Research Associateship Program, Joint Base San Antonio, Fort Sam Houston, San Antonio, Texas
| | - Aditya Vedantam
- 2Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | | | - Shekar N. Kurpad
- 2Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| |
Collapse
|
31
|
Reliability of TMS metrics in patients with chronic incomplete spinal cord injury. Spinal Cord 2016; 54:980-990. [DOI: 10.1038/sc.2016.47] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/18/2016] [Accepted: 02/28/2016] [Indexed: 12/26/2022]
|
32
|
Patel SP, Smith TD, VanRooyen JL, Powell D, Cox DH, Sullivan PG, Rabchevsky AG. Serial Diffusion Tensor Imaging In Vivo Predicts Long-Term Functional Recovery and Histopathology in Rats following Different Severities of Spinal Cord Injury. J Neurotrauma 2016; 33:917-28. [PMID: 26650623 DOI: 10.1089/neu.2015.4185] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The current study demonstrates the feasibility of using serial magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) in vivo to quantify temporally spinal cord injury (SCI) pathology in adult female Sprague-Dawley rats that were scanned prior to a moderate or severe upper lumbar contusion SCI. Injured rats were behaviorally tested for hind limb locomotion (Basso, Beattie, Bresnahan [BBB] scores) weekly for 4 weeks and scanned immediately after each session, ending with terminal gait analyses prior to euthanasia. As a measure of tissue integrity, fractional anisotropy (FA) values were significantly lower throughout the spinal cord in both injury cohorts at all time-points examined versus pre-injury. Moreover, FA values were significantly lower following severe versus moderate SCI at all time-points, and FA values at the injury epicenters at all time-points were significantly correlated with both spared white and gray matter volumes, as well as lesion volumes. Critically, quantified FA values at subacute (24 h) and all subsequent time-points were highly predictive of terminal behavior, reflected in significant correlations with both weekly BBB scores and terminal gait parameters. Critically, the finding that clinically relevant subacute (24 h) FA values accurately predict long-term functional recovery may obviate long-term studies to assess the efficacy of therapeutics tested experimentally or clinically. In summary, this study demonstrates a reproducible serial MRI procedure to predict the long-term impact of contusion SCI on both behavior and histopathology using subacute DTI metrics obtained in vivo to accurately predict multiple terminal outcome measures, which can be particularly valuable when comparing experimental interventions.
Collapse
Affiliation(s)
- Samir P Patel
- 1 Spinal Cord and Brain Injury Research Center, University of Kentucky , Lexington, Kentucky.,2 Department of Physiology, University of Kentucky , Lexington, Kentucky
| | - Taylor D Smith
- 1 Spinal Cord and Brain Injury Research Center, University of Kentucky , Lexington, Kentucky
| | - Jenna L VanRooyen
- 1 Spinal Cord and Brain Injury Research Center, University of Kentucky , Lexington, Kentucky.,2 Department of Physiology, University of Kentucky , Lexington, Kentucky
| | - David Powell
- 4 Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky , Lexington, Kentucky.,5 Department of Biomedical Imaging, University of Kentucky , Lexington, Kentucky
| | - David H Cox
- 1 Spinal Cord and Brain Injury Research Center, University of Kentucky , Lexington, Kentucky
| | - Patrick G Sullivan
- 1 Spinal Cord and Brain Injury Research Center, University of Kentucky , Lexington, Kentucky.,3 Department of Anatomy and Neurobiology, University of Kentucky , Lexington, Kentucky
| | - Alexander G Rabchevsky
- 1 Spinal Cord and Brain Injury Research Center, University of Kentucky , Lexington, Kentucky.,2 Department of Physiology, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
33
|
Talbott JF, Nout-Lomas YS, Wendland MF, Mukherjee P, Huie JR, Hess CP, Mabray MC, Bresnahan JC, Beattie MS. Diffusion-Weighted Magnetic Resonance Imaging Characterization of White Matter Injury Produced by Axon-Sparing Demyelination and Severe Contusion Spinal Cord Injury in Rats. J Neurotrauma 2016; 33:929-42. [PMID: 26483094 DOI: 10.1089/neu.2015.4102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alterations in magnetic resonance imaging (MRI)-derived measurements of water diffusion parallel (D∥) and perpendicular (D⊥) to white matter tracts have been specifically attributed to pathology of axons and myelin, respectively. We test the hypothesis that directional diffusion measurements can distinguish between axon-sparing chemical demyelination and severe contusion spinal cord white matter injury. Adult rats received either unilateral ethidium bromide (EB) microinjections (chemical demyelination) into the lateral funiculus of the spinal cord at C5 or were subjected to unilateral severe contusion spinal cord injury (SCI). Diffusion MRI metrics in the lateral funiculus were analyzed at early and late time-points following injury and correlated with histology. Early EB-demyelination resulted in a significant elevation in D⊥ and significant reduction in D∥ at the injury epicenter, with histological evidence of uniform axon preservation. Alterations in D⊥ and D∥ at the epicenter of early EB-demyelination were not significantly different from those observed with severe contusion at the epicenter, where histology demonstrated severe combined axonal and myelin injury. Diffusion abnormalities away from the injury epicenter were seen with contusion injury, but not with EB-demyelination. Chronic EB lesions underwent endogenous remyelination with normalization of diffusion metrics, whereas chronic contusion resulted in persistently altered diffusivities. In the early setting, directional diffusion measurements at the injury epicenter associated with chemical demyelination are indistinguishable from those seen with severe contusive SCI, despite dramatic pathologic differences between injury models. Caution is advised in interpretation of diffusion metrics with respect to specific white matter structural alterations. Diffusion analysis should not be limited to the epicenter of focal spinal lesions as alterations marginal to the epicenter are useful for assessing the nature of focal white matter injury.
Collapse
Affiliation(s)
- Jason F Talbott
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - Yvette S Nout-Lomas
- 2 College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| | - Michael F Wendland
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California
| | - Pratik Mukherjee
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - J Russell Huie
- 3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - Christopher P Hess
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California
| | - Marc C Mabray
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California
| | - Jacqueline C Bresnahan
- 3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - Michael S Beattie
- 3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| |
Collapse
|
34
|
Li XF, Yang Y, Lin CB, Xie FR, Liang WG. Assessment of the diagnostic value of diffusion tensor imaging in patients with spinal cord compression: a meta-analysis. ACTA ACUST UNITED AC 2015; 49:e4769. [PMID: 26628393 PMCID: PMC4681415 DOI: 10.1590/1414-431x20154769] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022]
Abstract
We investigated the diagnostic value of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of magnetic resonance diffusion tensor imaging (DTI) in patients with spinal cord compression (SCC) using a meta-analysis framework. Multiple scientific literature databases were exhaustively searched to identify articles relevant to this study. Mean values and standardized mean differences (SMDs) were calculated for the ADC and FA in normal and diseased tissues. The STATA version 12.0 software was used for statistical analysis. Of the 41 articles initially retrieved through database searches, 11 case-control studies were eligible for the meta-analysis and contained a combined total of 645 human subjects (394 patients with SCC and 251 healthy controls). All 11 studies reported data on FA, and 9 contained data related to the ADC. The combined SMDs of the ADC and FA showed that the ADC was significantly higher and the FA was lower in patients with SCC than in healthy controls. Subgroup analysis based on the b value showed higher ADCs in patients with SCC than in healthy controls at b values of both ≤500 and >500 s/mm2. In summary, the main findings of this meta-analysis revealed an increased ADC and decreased FA in patients with SCC, indicating that DTI is an important diagnostic imaging tool to assess patients suspected to have SCC.
Collapse
Affiliation(s)
- X F Li
- Department of Spine Surgery, Guangxi Orthopaedics and Traumatology Hospital, Nanning, China
| | - Y Yang
- Department of Spine Surgery, Guangxi Orthopaedics and Traumatology Hospital, Nanning, China
| | - C B Lin
- Department of Spine Surgery, Guangxi Orthopaedics and Traumatology Hospital, Nanning, China
| | - F R Xie
- Department of Spine Surgery, Guangxi Orthopaedics and Traumatology Hospital, Nanning, China
| | - W G Liang
- Department of Spine Surgery, Guangxi Orthopaedics and Traumatology Hospital, Nanning, China
| |
Collapse
|
35
|
Agger P, Lass T, Smerup M, Frandsen J, Pedersen M. Optimal preservation of porcine cardiac tissue prior to diffusion tensor magnetic resonance imaging. J Anat 2015; 227:695-701. [PMID: 26391195 DOI: 10.1111/joa.12377] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2015] [Indexed: 11/26/2022] Open
Abstract
The effects of ex vivo preservation techniques on the quality of diffusion tensor magnetic resonance imaging in hearts are poorly understood, and the optimal handling procedure prior to investigation remains to be determined. Therefore, 24 porcine hearts were examined in six groups treated with different preservation techniques, including chemical fixation and freezing. Diffusion properties of each heart were assessed with diffusion tensor imaging in terms of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da) and radial diffusivity (Dr). Tractography was performed to visualize the course of the cardiomyocytes, assuming greater diffusivity in the longitudinal than the transverse axis of individual cardiomyocytes. Significant differences in MD, Da and Dr were found, as well as in FA between groups (P < 0.001). Freezing of specimens resulted in the lowest mean FA of 0.21 (0.06) and highest Dr of 8.92 (1.5) mm2 s(-1) . The highest mean FA was found to be 0.43 (0.11) in hearts perfusion-fixed with formalin. Calculated tractographies were indistinguishable among groups except in frozen specimens, where no fibres could be tracked. Perfusion fixation with formalin provided the best tractography, but immersion fixation yielded diffusion data most similar to fresh hearts. These findings suggest that parameters derived from diffusion tensor imaging in ex vivo hearts are sensitive to fixation and storage methods. In particular, freezing of specimens should be avoided prior to diffusion tensor imaging investigation due to significant changes in diffusion parameters and subsequent image deteriorations.
Collapse
Affiliation(s)
- Peter Agger
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark.,Comparative Medicine Lab, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Lass
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Smerup
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Frandsen
- Center for Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.,MR Research Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
36
|
Jirjis MB, Vedantam A, Budde MD, Kalinosky B, Kurpad SN, Schmit BD. Severity of spinal cord injury influences diffusion tensor imaging of the brain. J Magn Reson Imaging 2015; 43:63-74. [DOI: 10.1002/jmri.24964] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/18/2015] [Indexed: 01/07/2023] Open
Affiliation(s)
- Michael B. Jirjis
- Department of Biomedical Engineering; Marquette University; Milwaukee Wisconsin USA
| | - Aditya Vedantam
- Department of Neurosurgery; Medical College of Wisconsin; Milwaukee Wisconsin USA
| | - Matthew D. Budde
- Department of Neurosurgery; Medical College of Wisconsin; Milwaukee Wisconsin USA
| | - Benjamin Kalinosky
- Department of Biomedical Engineering; Marquette University; Milwaukee Wisconsin USA
| | - Shekar N. Kurpad
- Department of Neurosurgery; Medical College of Wisconsin; Milwaukee Wisconsin USA
| | - Brian D. Schmit
- Department of Biomedical Engineering; Marquette University; Milwaukee Wisconsin USA
| |
Collapse
|
37
|
Abstract
Magnetic resonance imaging (MRI) is the state of the art approach for assessing the status of the spinal cord noninvasively, and can be used as a diagnostic and prognostic tool in cases of disease or injury. Diffusion weighted imaging (DWI), is sensitive to the thermal motion of water molecules and allows for inferences of tissue microstructure. This report describes a protocol to acquire and analyze DWI of the rat cervical spinal cord on a small-bore animal system. It demonstrates an imaging setup for the live anesthetized animal and recommends a DWI acquisition protocol for high-quality imaging, which includes stabilization of the cord and control of respiratory motion. Measurements with diffusion weighting along different directions and magnitudes (b-values) are used. Finally, several mathematical models of the resulting signal are used to derive maps of the diffusion processes within the spinal cord tissue that provide insight into the normal cord and can be used to monitor injury or disease processes noninvasively.
Collapse
Affiliation(s)
| | - Brian Schmit
- Department of Biomedical Engineering, Marquette University
| | - Shekar Kurpad
- Department of Neurosurgery, Medical College of Wisconsin
| | | |
Collapse
|
38
|
In vivo evaluation of rabbit sciatic nerve regeneration with diffusion tensor imaging (DTI): correlations with histology and behavior. Magn Reson Imaging 2015; 33:95-101. [DOI: 10.1016/j.mri.2014.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 08/23/2014] [Accepted: 09/22/2014] [Indexed: 11/21/2022]
|
39
|
Vedantam A, Eckardt G, Wang MC, Schmit BD, Kurpad SN. High Cervical Fractional Anisotropy as an Imaging Marker for Spinal Cord Injury. Neurosurgery 2014; 61 Suppl 1:167-70. [DOI: 10.1227/neu.0000000000000413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Aditya Vedantam
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Gerald Eckardt
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Marjorie C. Wang
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian D. Schmit
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| | - Shekar N. Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
40
|
Kelley BJ, Harel NY, Kim CY, Papademetris X, Coman D, Wang X, Hasan O, Kaufman A, Globinsky R, Staib LH, Cafferty WBJ, Hyder F, Strittmatter SM. Diffusion tensor imaging as a predictor of locomotor function after experimental spinal cord injury and recovery. J Neurotrauma 2014; 31:1362-73. [PMID: 24779685 DOI: 10.1089/neu.2013.3238] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Traumatic spinal cord injury (SCI) causes long-term disability with limited functional recovery linked to the extent of axonal connectivity. Quantitative diffusion tensor imaging (DTI) of axonal integrity has been suggested as a potential biomarker for prognostic and therapeutic evaluation after trauma, but its correlation with functional outcomes has not been clearly defined. To examine this application, female Sprague-Dawley rats underwent midthoracic laminectomy followed by traumatic spinal cord contusion of differing severities or laminectomy without contusion. Locomotor scores and hindlimb kinematic data were collected for 4 weeks post-injury. Ex vivo DTI was then performed to assess axonal integrity using tractography and fractional anisotropy (FA), a numerical measure of relative white matter integrity, at the injury epicenter and at specific intervals rostral and caudal to the injury site. Immunohistochemistry for tissue sparing was also performed. Statistical correlation between imaging data and functional performance was assessed as the primary outcome. All injured animals showed some recovery of locomotor function, while hindlimb kinematics revealed graded deficits consistent with injury severity. Standard T2 magnetic resonance sequences illustrated conventional spinal cord morphology adjacent to contusions while corresponding FA maps indicated graded white matter pathology within these adjacent regions. Positive correlations between locomotor (Basso, Beattie, and Bresnahan score and gait kinematics) and imaging (FA values) parameters were also observed within these adjacent regions, most strongly within caudal segments beyond the lesion. Evaluation of axonal injury by DTI provides a mechanism for functional recovery assessment in a rodent SCI model. These findings suggest that focused DTI analysis of caudal spinal cord should be studied in human cases in relationship to motor outcome to augment outcome biomarkers for clinical cases.
Collapse
Affiliation(s)
- Brian J Kelley
- 1 Department of Neurosurgery, Yale University School of Medicine , New Haven, Connecticut
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|