1
|
Qin L, Xiao L, Zhu H, Du Y, Tang Y, Feng L. Translocator protein (18 kDa) positron emission tomography imaging as a biomarker of neuroinflammation in epilepsy. Neurol Sci 2024; 45:5201-5211. [PMID: 38879831 DOI: 10.1007/s10072-024-07648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/11/2024] [Indexed: 10/13/2024]
Abstract
Increasing evidence indicate that neuroinflammation triggered by glial cells plays a significant role in epileptogenesis. To this effect, the overexpression of translocator protein 18 kDa (TSPO) in activated microglia and astrocytes has been identified as an inflammatory biomarker in epilepsy. It is now possible to quantify neuroinflammation using non-invasive positron emission tomography (PET) imaging of TSPO. With the advancement of radiotracers, TSPO PET has become an innovative tool in elucidating the "neuroinflammatory machinery" of drug-resistant epilepsy. Furthermore, TSPO PET has demonstrated potential in detecting MRI-negative epileptogenic zones (EZ) and provided an innovative perspective in epileptic medical treatment. This manuscript presents a comprehensive exploration of the neuroinflammatory mechanisms of epilepsy, alongside a thorough review of TSPO PET studies conducted in clinical and preclinical settings. The primary objective is to deepen our understanding of epilepsy progression and to establish TSPO PET as an effective monitoring tool for treatment efficacy.
Collapse
Affiliation(s)
- Li Qin
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Haoyue Zhu
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yangsa Du
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Li Feng
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University (Jiangxi Branch), Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
2
|
Rey-Bretal D, García-Varela L, Gómez-Lado N, Moscoso A, Piñeiro-Fiel M, Díaz-Platas L, Medin S, Fernández-Ferreiro A, Ruibal Á, Sobrino T, Silva-Rodríguez J, Aguiar P. Quantitative brain [ 18F]FDG PET beyond normal blood glucose levels. Neuroimage 2024; 300:120873. [PMID: 39341474 DOI: 10.1016/j.neuroimage.2024.120873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction SUV measurements from static brain [18F]FDG PET acquisitions are a commonly used tool in preclinical research, providing a simple alternative for kinetic modelling, which requires complex and time-consuming dynamic acquisitions. However, SUV can be severely affected by the animal handling and preconditioning protocols, primarily by those that may induce changes in blood glucose levels (BGL). Here, we aimed at developing and investigating the feasibility of SUV-based approaches for a wide range of BGL far beyond normal values, and consequently, to develop and validate a new model to generate standardized and reproducible SUV measurements for any BGL. Material and methods We performed dynamic and static brain [18F]FDG PET acquisitions in 52 male Sprague-Dawley rats sorted into control (n = 10), non-fasting (n = 14), insulin-induced hypoglycemia (n = 12) and glucagon-induced hyperglycemia (n = 16) groups. Brain [18F]FDG PET images were cropped, aligned and co-registered to a standard template to calculate whole-brain and regional SUV. Cerebral Metabolic Rate of Glucose (CMRglc) was also estimated from 2-Tissue Compartment Model (2TCM) and Patlak plot for validation purposes. Results Our results showed that BGL=100±6 mg/dL can be considered a reproducible reference value for normoglycemia. Furthermore, we successfully established a 2nd-degree polynomial model (C1=0.66E-4, C2=-0.0408 and C3=7.298) relying exclusively on BGL measures at pre-[18F]FDG injection time, that characterizes more precisely the relationship between SUV and BGL for a wide range of BGL values (from 10 to 338 mg/dL). We confirmed the ability of this model to generate corrected SUV estimations that are highly correlated to CMRglc estimations (R2= 0.54 2TCM CMRgluc and R2= 0.49 Patlak CMRgluc). Besides, slight regional differences in SUV were found in animals from extreme BGL groups, showing that [18F]FDG uptake is mostly directed toward central regions of the brain when BGLs are significantly decreased. Conclusion Our study successfully established a non-linear model that relies exclusively on pre-scan BGL measurements to characterize the relationship between [18F]FDG SUV and BGL. The extensive validation confirmed its ability to generate SUV-based surrogates of CMRglu along a wide range of BGL and it holds the potential to be adopted as a standard protocol by the preclinical neuroimaging community using brain [18F]FDG PET imaging.
Collapse
Affiliation(s)
- David Rey-Bretal
- Molecular Imaging Biomarkers Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Biomarkers Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Lara García-Varela
- Molecular Imaging Biomarkers Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Biomarkers Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Noemí Gómez-Lado
- Molecular Imaging Biomarkers Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Biomarkers Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Alexis Moscoso
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
| | - Manuel Piñeiro-Fiel
- Molecular Imaging Biomarkers Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Biomarkers Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Lucía Díaz-Platas
- Galician PET Radiopharmacy Unit, GALARIA, University Clinical Hospital, Santiago de Compostela, Spain
| | - Santiago Medin
- Galician PET Radiopharmacy Unit, GALARIA, University Clinical Hospital, Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain; FarmaCHUS Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Álvaro Ruibal
- Molecular Imaging Biomarkers Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Biomarkers Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Jesús Silva-Rodríguez
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Reina Sofia Alzheimer Centre, CIEN Foundation, ISCIII, Madrid, Spain.
| | - Pablo Aguiar
- Molecular Imaging Biomarkers Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Biomarkers Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Pybus AF, Bitarafan S, Brothers RO, Rohrer A, Khaitan A, Moctezuma FR, Udeshi K, Davies B, Triplett S, Griffin MN, Dammer EB, Rangaraju S, Buckley EM, Wood LB. Profiling the neuroimmune cascade in 3xTg-AD mice exposed to successive mild traumatic brain injuries. J Neuroinflammation 2024; 21:156. [PMID: 38872143 PMCID: PMC11177462 DOI: 10.1186/s12974-024-03128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/12/2024] [Indexed: 06/15/2024] Open
Abstract
Repetitive mild traumatic brain injuries (rmTBI) sustained within a window of vulnerability can result in long term cognitive deficits, depression, and eventual neurodegeneration associated with tau pathology, amyloid beta (Aβ) plaques, gliosis, and neuronal and functional loss. However, a comprehensive study relating acute changes in immune signaling and glial reactivity to neuronal changes and pathological markers after single and repetitive mTBIs is currently lacking. In the current study, we addressed the question of how repeated injuries affect the brain neuroimmune response in the acute phase of injury (< 24 h) by exposing the 3xTg-AD mouse model of tau and Aβ pathology to successive (1x-5x) once-daily weight drop closed-head injuries and quantifying immune markers, pathological markers, and transcriptional profiles at 30 min, 4 h, and 24 h after each injury. We used young adult 2-4 month old 3xTg-AD mice to model the effects of rmTBI in the absence of significant tau and Aβ pathology. We identified pronounced sexual dimorphism in this model, with females eliciting more diverse changes after injury compared to males. Specifically, females showed: (1) a single injury caused a decrease in neuron-enriched genes inversely correlated with inflammatory protein expression and an increase in AD-related genes within 24 h, (2) each injury significantly increased a group of cortical cytokines (IL-1α, IL-1β, IL-2, IL-9, IL-13, IL-17, KC) and MAPK phospho-proteins (phospho-Atf2, phospho-Mek1), several of which co-labeled with neurons and correlated with phospho-tau, and (3) repetitive injury caused increased expression of genes associated with astrocyte reactivity and macrophage-associated immune function. Collectively our data suggest that neurons respond to a single injury within 24 h, while other cell types, including astrocytes, transition to inflammatory phenotypes within days of repetitive injury.
Collapse
Affiliation(s)
- Alyssa F Pybus
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rowan O Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alivia Rohrer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Arushi Khaitan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Felix Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kareena Udeshi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brae Davies
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sydney Triplett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Martin N Griffin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric B Dammer
- Center for Neurodegenerative Diseases, School of Medicine, Emory University, Atlanta, GA, USA
| | - Srikant Rangaraju
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | - Erin M Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | - Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
4
|
Pybus AF, Bitarafan S, Brothers RO, Rohrer A, Khaitan A, Moctezuma FR, Udeshi K, Davies B, Triplett S, Dammer E, Rangaraju S, Buckley EM, Wood LB. Profiling the neuroimmune cascade in 3xTg mice exposed to successive mild traumatic brain injuries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544838. [PMID: 37397993 PMCID: PMC10312742 DOI: 10.1101/2023.06.13.544838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Repetitive mild traumatic brain injuries (rmTBI) sustained within a window of vulnerability can result in long term cognitive deficits, depression, and eventual neurodegeneration associated with tau pathology, amyloid beta (Aβ) plaques, gliosis, and neuronal and functional loss. However, we have limited understanding of how successive injuries acutely affect the brain to result in these devastating long-term consequences. In the current study, we addressed the question of how repeated injuries affect the brain in the acute phase of injury (<24hr) by exposing the 3xTg-AD mouse model of tau and Aβ pathology to successive (1x, 3x, 5x) once-daily weight drop closed-head injuries and quantifying immune markers, pathological markers, and transcriptional profiles at 30min, 4hr, and 24hr after each injury. We used young adult mice (2-4 months old) to model the effects of rmTBI relevant to young adult athletes, and in the absence of significant tau and Aβ pathology. Importantly, we identified pronounced sexual dimorphism, with females eliciting more differentially expressed proteins after injury compared to males. Specifically, females showed: 1) a single injury caused a decrease in neuron-enriched genes inversely correlated with inflammatory protein expression as well as an increase in AD-related genes within 24hr, 2) each injury significantly increased expression of a group of cortical cytokines (IL-1α, IL-1β, IL-2, IL-9, IL-13, IL-17, KC) and MAPK phospho-proteins (phospho-Atf2, phospho-Mek1), several of which were co-labeled with neurons and correlated with phospho-tau, and 3) repetitive injury caused increased expression of genes associated with astrocyte reactivity and immune function. Collectively our data suggest that neurons respond to a single injury within 24h, while other cell types including astrocytes transition to inflammatory phenotypes within days of repetitive injury.
Collapse
|
5
|
Yasmin A, Jokivarsi K, Poutiainen P, Pitkänen A, Gröhn O, Immonen R. Chronic hypometabolism in striatum and hippocampal network after traumatic brain injury and their relation with memory impairment - [18F]-FDG-PET and MRI 4 months after fluid percussion injury in rat. Brain Res 2022; 1788:147934. [PMID: 35483447 DOI: 10.1016/j.brainres.2022.147934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022]
Abstract
Hippocampal and thalamo-cortico-striatal networks are critical for memory function as well as execution of a variety of learning strategies. In subjects with memory impairment as a sequel of traumatic brain injury (TBI), the contribution of late metabolic depression across these networks to memory deficit is poorly understood. We used [18F]-FDG-PET to measure chronic post-TBI glucose uptake in the striatum and connected brain areas (septal and temporal hippocampus, thalamus, entorhinal cortex, frontoparietal cortex and amygdala) in rats with lateral fluid-percussion injury (LFPI). Then we assessed a link between network hypometabolism and memory impairment. At 4 months post TBI, glucose uptake was decreased in ipsilateral striatum (10%, p = 0.027), frontoparietal cortex (17%, p = 0.00009), and hippocampus (22%, p = 0.027) as compared to sham operated controls. Thalamic uptake was 6% lower ipsilaterally than contralaterally, p = 0.00004). At 5 months, Morris water maze (MWM) showed memory impairment in 83% of the rats with TBI. The lower the hippocampal or striatal [18F]-FDG uptake, the poorer the MWM performance (hippocampus: r = -0.471, p < 0.05; striatum: r = -0.696, p < 0.001). Striatal [18F]-FDG-PET identified the injured animals with memory impairment with 100% specificity and sensitivity (AUC = 1.000, p = 0.009). Interestingly, the low striatal glucose uptake was a better diagnostic biomarker for memory impairment than the reduced hippocampal (AUC = 0.806, p = 0.112) or entorhinal (AUC = 0.528, p = 0.885) glucose uptake. The volumetric atrophy assessed in T2 weighted MRI or the gliotic area in Nissl staining did not correlate with glucose uptake. Arterial spin labeling did not indicate any reduction in the striatal blood flow. Our study suggests that TBI-induced chronic hypometabolism in striatum contributes to the cognitive deficits.
Collapse
Affiliation(s)
- Amna Yasmin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Kimmo Jokivarsi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Pekka Poutiainen
- Department of Radiopharmacy, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Kuopio, Finland
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Olli Gröhn
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Riikka Immonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
6
|
Serpa RO, Ferguson L, Larson C, Bailard J, Cooke S, Greco T, Prins ML. Pathophysiology of Pediatric Traumatic Brain Injury. Front Neurol 2021; 12:696510. [PMID: 34335452 PMCID: PMC8319243 DOI: 10.3389/fneur.2021.696510] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
The national incidence of traumatic brain injury (TBI) exceeds that of any other disease in the pediatric population. In the United States the Centers for Disease Control and Prevention (CDC) reports 697,347 annual TBIs in children ages 0–19 that result in emergency room visits, hospitalization or deaths. There is a bimodal distribution within the pediatric TBI population, with peaks in both toddlers and adolescents. Preclinical TBI research provides evidence for age differences in acute pathophysiology that likely contribute to long-term outcome differences between age groups. This review will examine the timecourse of acute pathophysiological processes during cerebral maturation, including calcium accumulation, glucose metabolism and cerebral blood flow. Consequences of pediatric TBI are complicated by the ongoing maturational changes allowing for substantial plasticity and windows of vulnerabilities. This review will also examine the timecourse of later outcomes after mild, repeat mild and more severe TBI to establish developmental windows of susceptibility and altered maturational trajectories. Research progress for pediatric TBI is critically important to reveal age-associated mechanisms and to determine knowledge gaps for future studies.
Collapse
Affiliation(s)
- Rebecka O Serpa
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lindsay Ferguson
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cooper Larson
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Julie Bailard
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Samantha Cooke
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tiffany Greco
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mayumi L Prins
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
7
|
Wiegand TLT, Sollmann N, Bonke EM, Umeasalugo KE, Sobolewski KR, Plesnila N, Shenton ME, Lin AP, Koerte IK. Translational neuroimaging in mild traumatic brain injury. J Neurosci Res 2021; 100:1201-1217. [PMID: 33789358 DOI: 10.1002/jnr.24840] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 01/26/2023]
Abstract
Traumatic brain injuries (TBIs) are common with an estimated 27.1 million cases per year. Approximately 80% of TBIs are categorized as mild TBI (mTBI) based on initial symptom presentation. While in most individuals, symptoms resolve within days to weeks, in some, symptoms become chronic. Advanced neuroimaging has the potential to characterize brain morphometric, microstructural, biochemical, and metabolic abnormalities following mTBI. However, translational studies are needed for the interpretation of neuroimaging findings in humans with respect to the underlying pathophysiological processes, and, ultimately, for developing novel and more targeted treatment options. In this review, we introduce the most commonly used animal models for the study of mTBI. We then summarize the neuroimaging findings in humans and animals after mTBI and, wherever applicable, the translational aspects of studies available today. Finally, we highlight the importance of translational approaches and outline future perspectives in the field of translational neuroimaging in mTBI.
Collapse
Affiliation(s)
- Tim L T Wiegand
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Nico Sollmann
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Elena M Bonke
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Kosisochukwu E Umeasalugo
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Kristen R Sobolewski
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität, Munich, Germany
- Munich Cluster for Systems Neurology (Synergy), Munich, Germany
| | - Martha E Shenton
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander P Lin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Inga K Koerte
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Shultz SR, McDonald SJ, Corrigan F, Semple BD, Salberg S, Zamani A, Jones NC, Mychasiuk R. Clinical Relevance of Behavior Testing in Animal Models of Traumatic Brain Injury. J Neurotrauma 2020; 37:2381-2400. [DOI: 10.1089/neu.2018.6149] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Frances Corrigan
- Department of Anatomy, University of South Australia, Adelaide, South Australia, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Akram Zamani
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Nigel C. Jones
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Parente A, Maciel ES, J O Dierckx RA, Langendijk JA, de Vries EFJ, Doorduin J. Delayed effects of a single-dose whole-brain radiation therapy on glucose metabolism and myelin density: a longitudinal PET study. Int J Radiat Biol 2020; 96:1135-1143. [PMID: 32602390 DOI: 10.1080/09553002.2020.1787542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Radiotherapy is an important treatment option for brain tumors, but the unavoidable irradiation of normal brain tissue can lead to delayed cognitive impairment. The mechanisms involved are still not well explained and, therefore, new tools to investigate the processes leading to the delayed symptoms of brain irradiation are warranted. In this study, positron emission tomography (PET) is used to explore delayed functional changes induced by brain irradiation. MATERIALS AND METHODS Male Wistar rats were subjected to a single 25-Gy dose of whole brain X-ray irradiation, or sham-irradiation. To investigate delayed effects of radiation on cerebral glucose metabolism and myelin density, 18F-fluorodeoxyglucose (18F-FDG) PET scans were performed at baseline and on day 64 and 94, whereas N-11C-methyl-4,4'-diaminostilbene (11C-MeDAS) PET scans were performed at baseline and on day 60 and 90 post-irradiation. In addition, the open field test (OFT) and novel spatial recognition (NSR) test were performed at baseline and on days 59 and 89 to investigate whether whole brain irradiation induces behavioral changes. RESULTS Whole-brain irradiation caused loss of bodyweight and delayed cerebral hypometabolism, with 18F-FDG uptake in all brain regions being significantly decreased in irradiated rat on day 64 while it remained unchanged in control animals. Only amygdala and cortical brain regions of irradiated rats still showed reduced 18F-FDG uptake on day 94. 11C-MeDAS uptake in control animals was significantly lower on days 60 and 90 than at the baseline, suggesting a reduction in myelin density in young adults. In irradiated animals, 11C-MeDAS uptake was similarly reduced on day 60, but on day 90 tracer uptake was somewhat increased and not significantly different from baseline anymore. Behavioral tests showed a similar pattern in control and irradiated animals. In both groups, the OFT showed significantly reduced mobility on days 59 and 89, whereas the NSR did not reveal any significant changes in spatial memory over time. Interestingly, a positive correlation between the NSR and 11C-MeDAS uptake was observed in irradiated rats. CONCLUSIONS Whole-brain irradiation causes delayed brain hypometabolism, which is not accompanied by white matter loss. Irradiated animals showed similar behavioral changes over time as control animals and, therefore, cerebral hypometabolism could not be linked to behavioral abnormalities. However, spatial memory seems to be associated with myelin density in irradiated rats.
Collapse
Affiliation(s)
- Andrea Parente
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisa Scandiuzzi Maciel
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
The Acute and Early Effects of Whole-Brain Irradiation on Glial Activation, Brain Metabolism, and Behavior: a Positron Emission Tomography Study. Mol Imaging Biol 2020; 22:1012-1020. [PMID: 32052277 PMCID: PMC7343765 DOI: 10.1007/s11307-020-01483-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Purpose Radiotherapy is a frequently applied treatment modality for brain tumors. Concomitant irradiation of normal brain tissue can induce various physiological responses. The aim of this study was to investigate whether acute and early-delayed effects of brain irradiation on glial activation and brain metabolism can be detected with positron emission tomography (PET) and whether these effects are correlated with behavioral changes. Procedures Rats underwent 0-, 10-, or 25-Gy whole-brain irradiation. At 3 and 31 days post irradiation, 1-(2-chlorophenyl)-N-[11C]methyl-(1-methylpropyl)-3-isoquinoline carboxamide ([11C]PK11195) and 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) PET scans were acquired to detect changes in glial activation (neuroinflammation) and glucose metabolism, respectively. The open-field test (OFT) was performed on days 6 and 27 to assess behavioral changes. Results Twenty-five-gray-irradiated rats showed higher [11C]PK11195 uptake in most brain regions than controls on day 3 (striatum, hypothalamus, accumbens, septum p < 0.05), although some brain regions had lower uptake (cerebellum, parietal association/retrosplenial visual cortex, frontal association/motor cortex, somatosensory cortex, p < 0.05). On day 31, several brain regions in 25-Gy-irradiated rats still showed significantly higher [11C]PK11195 uptake than controls and 10-Gy-irradiated group (p < 0.05). Within-group analysis showed that [11C]PK11195 uptake in individual brain regions of 25-Gy treated rats remained stable or slightly increased between days 3 and 31. In contrast, a significant reduction (p < 0.05) in tracer uptake between days 3 and 31 was found in all brain areas of controls and 10-Gy-irradiated animals. Moreover, 10-Gy treatment led to a significantly higher [18F]FDG uptake on day 3 (p < 0.05). [18F]FDG uptake decreased between days 3 and 31 in all groups; no significant differences between groups were observed anymore on day 31, except for increased uptake in the hypothalamus in the 10-Gy group. The OFT did not show any significant differences between groups. Conclusions Non-invasive PET imaging indicated that brain irradiation induces neuroinflammation and a metabolic flare, without causing acute or early-delayed behavioral changes. Electronic supplementary material The online version of this article (10.1007/s11307-020-01483-y) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Leconte C, Benedetto C, Lentini F, Simon K, Ouaazizi C, Taib T, Cho A, Plotkine M, Mongeau R, Marchand-Leroux C, Besson VC. Histological and Behavioral Evaluation after Traumatic Brain Injury in Mice: A Ten Months Follow-Up Study. J Neurotrauma 2020; 37:1342-1357. [PMID: 31830858 DOI: 10.1089/neu.2019.6679] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a chronic pathology, inducing long-term deficits that remain understudied in pre-clinical studies. In this context, exploration, anxiety-like behavior, cognitive flexibility, and motor coordination were assessed until 5 and 10 months after an experimental TBI in the adult mouse, using two cohorts. In order to differentiate age, surgery, and remote gray and white matter lesions, three groups (unoperated, sham-operated, and TBI) were studied. TBI induced delayed motor coordination deficits at the pole test, 4.5 months after injury, that could be explained by gray and white matter damages in ipsilateral nigrostriatal structures (striatum, internal capsule) that were spreading to new structures between cohorts, at 5 versus 10 months after the injury. Further, TBI induced an enhanced exploratory behavior during stressful situations (active phase during actimetry test, object exploration in an open field), risk-taking behaviors in the elevated plus maze 5 months after injury, and a cognitive inflexibility in the Barnes maze that persisted until 9 months after the injury. These behavioral modifications could be related to the white and gray matter lesions observed in ipsi- and contralateral limbic structures (amygdala, hilus/cornu ammonis 4, hypothalamus, external capsule, corpus callosum, and cingular cortex) that were spreading to new structures between cohorts, at 5 months versus 10 months after the injury. The present study corroborates clinical findings on TBI and provides a relevant rodent chronic model which could help in validating pharmacological strategies against the chronic consequences of TBI.
Collapse
Affiliation(s)
- Claire Leconte
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chiara Benedetto
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Federica Lentini
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Kristin Simon
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chahid Ouaazizi
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Toufik Taib
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Angelo Cho
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Michel Plotkine
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Raymond Mongeau
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Catherine Marchand-Leroux
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Valérie C Besson
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
12
|
Jaiswal S, Knutsen AK, Wilson CM, Fu AH, Tucker LB, Kim Y, Bittner KC, Whiting MD, McCabe JT, Dardzinski BJ. Mild traumatic brain injury induced by primary blast overpressure produces dynamic regional changes in [18F]FDG uptake. Brain Res 2019; 1723:146400. [DOI: 10.1016/j.brainres.2019.146400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/18/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
|
13
|
Bodnar CN, Roberts KN, Higgins EK, Bachstetter AD. A Systematic Review of Closed Head Injury Models of Mild Traumatic Brain Injury in Mice and Rats. J Neurotrauma 2019; 36:1683-1706. [PMID: 30661454 PMCID: PMC6555186 DOI: 10.1089/neu.2018.6127] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mild TBI (mTBI) is a significant health concern. Animal models of mTBI are essential for understanding mechanisms, and pathological outcomes, as well as to test therapeutic interventions. A variety of closed head models of mTBI that incorporate different aspects (i.e., biomechanics) of the mTBI have been reported. The aim of the current review was to compile a comprehensive list of the closed head mTBI rodent models, along with the common data elements, and outcomes, with the goal to summarize the current state of the field. Publications were identified from a search of PubMed and Web of Science and screened for eligibility following PRISMA guidelines. Articles were included that were closed head injuries in which the authors classified the injury as mild in rats or mice. Injury model and animal-specific common data elements, as well as behavioral and histological outcomes, were collected and compiled from a total of 402 articles. Our results outline the wide variety of methods used to model mTBI. We also discovered that female rodents and both young and aged animals are under-represented in experimental mTBI studies. Our findings will aid in providing context comparing the injury models and provide a starting point for the selection of the most appropriate model of mTBI to address a specific hypothesis. We believe this review will be a useful starting place for determining what has been done and what knowledge is missing in the field to reduce the burden of mTBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Kelly N. Roberts
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
14
|
Ebert SE, Jensen P, Ozenne B, Armand S, Svarer C, Stenbaek DS, Moeller K, Dyssegaard A, Thomsen G, Steinmetz J, Forchhammer BH, Knudsen GM, Pinborg LH. Molecular imaging of neuroinflammation in patients after mild traumatic brain injury: a longitudinal 123 I-CLINDE single photon emission computed tomography study. Eur J Neurol 2019; 26:1426-1432. [PMID: 31002206 DOI: 10.1111/ene.13971] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/15/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND PURPOSE Neuroinflammation has been proposed as part of the pathogenesis of post-concussion symptoms (PCS), but the inflammatory response of the human brain to mild traumatic brain injury (mTBI) remains unknown. We hypothesized that a neuroinflammatory response is present in mTBI at 1-2 weeks post-injury and persists in patients with PCS. METHODS We scanned 14 patients with mTBI without signs of structural damage at 1-2 weeks and 3-4 months post-injury and 22 healthy controls once using the single photon emission computed tomography tracer 123 I-CLINDE, which visualizes translocator protein (TSPO), a protein upregulated in active immune cells. PCS was defined as three or more persisting symptoms from the Rivermead Post Concussion Symptoms Questionnaire at 3 months post-injury. RESULTS Across brain regions, patients had significantly higher 123 I-CLINDE binding to TSPO than healthy controls, both at 1-2 weeks after the injury in all patients (P = 0.011) and at 3-4 months in the seven patients with PCS (P = 0.006) and in the six patients with good recovery (P = 0.018). When the nine brain regions were tested separately and results were corrected for multiple comparisons, no individual region differed significantly, but all estimated parameters indicated increased 123 I-CLINDE binding to TSPO, ranging from 2% to 19% in all patients at 1-2 weeks, 13% to 27% in patients with PCS at 3-4 months and -9% to 17% in patients with good recovery at 3-4 months. CONCLUSIONS Neuroinflammation was present in mTBI at 1-2 weeks post-injury and persisted at 3-4 months post-injury with a tendency to be most pronounced in patients with PCS.
Collapse
Affiliation(s)
- S E Ebert
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P Jensen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - B Ozenne
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - S Armand
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - C Svarer
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - D S Stenbaek
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - K Moeller
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Neuroanaesthesiology, Rigshospitalet, Copenhagen, Denmark
| | - A Dyssegaard
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - G Thomsen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - J Steinmetz
- Trauma Center, Rigshospitalet, Copenhagen, Denmark
| | - B H Forchhammer
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - G M Knudsen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - L H Pinborg
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
15
|
Kopschina Feltes P, de Vries EFJ, Juarez-Orozco LE, Kurtys E, Dierckx RAJO, Moriguchi-Jeckel CM, Doorduin J. Repeated social defeat induces transient glial activation and brain hypometabolism: A positron emission tomography imaging study. J Cereb Blood Flow Metab 2019; 39:439-453. [PMID: 29271288 PMCID: PMC6399731 DOI: 10.1177/0271678x17747189] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/25/2017] [Accepted: 11/08/2017] [Indexed: 01/22/2023]
Abstract
Psychosocial stress is a risk factor for the development of depression. Recent evidence suggests that glial activation could contribute to the development of depressive-like behaviour. This study aimed to evaluate in vivo whether repeated social defeat (RSD) induces short- and long-term inflammatory and metabolic alterations in the brain through positron emission tomography (PET). Male Wistar rats ( n = 40) were exposed to RSD by dominant Long-Evans rats on five consecutive days. Behavioural and biochemical alterations were assessed at baseline, day 5/6 and day 24/25 after the RSD protocol. Glial activation (11C-PK11195 PET) and changes in brain metabolism (18F-FDG PET) were evaluated on day 6, 11 and 25 (short-term), and at 3 and 6 months (long-term). Defeated rats showed transient depressive- and anxiety-like behaviour, increased corticosterone and brain IL-1β levels, as well as glial activation and brain hypometabolism in the first month after RSD. During the third- and six-month follow-up, no between-group differences in any investigated parameter were found. Therefore, non-invasive PET imaging demonstrated that RSD induces transient glial activation and reduces brain glucose metabolism in rats. These imaging findings were associated with stress-induced behavioural changes and support the hypothesis that neuroinflammation could be a contributing factor in the development of depression.
Collapse
Affiliation(s)
- Paula Kopschina Feltes
- Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, University Medical Center Groningen,
Groningen, the Netherlands
- Biomedical Gerontology, Pontifical
Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Brain Institute of Rio Grande do Sul
(BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre,
Brazil
| | - Erik FJ de Vries
- Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, University Medical Center Groningen,
Groningen, the Netherlands
| | - Luis E Juarez-Orozco
- Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, University Medical Center Groningen,
Groningen, the Netherlands
| | - Ewelina Kurtys
- Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, University Medical Center Groningen,
Groningen, the Netherlands
| | - Rudi AJO Dierckx
- Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, University Medical Center Groningen,
Groningen, the Netherlands
| | - Cristina M Moriguchi-Jeckel
- Biomedical Gerontology, Pontifical
Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Brain Institute of Rio Grande do Sul
(BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre,
Brazil
| | - Janine Doorduin
- Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, University Medical Center Groningen,
Groningen, the Netherlands
| |
Collapse
|
16
|
Koenig JB, Dulla CG. Dysregulated Glucose Metabolism as a Therapeutic Target to Reduce Post-traumatic Epilepsy. Front Cell Neurosci 2018; 12:350. [PMID: 30459556 PMCID: PMC6232824 DOI: 10.3389/fncel.2018.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of disability worldwide and can lead to post-traumatic epilepsy. Multiple molecular, cellular, and network pathologies occur following injury which may contribute to epileptogenesis. Efforts to identify mechanisms of disease progression and biomarkers which predict clinical outcomes have focused heavily on metabolic changes. Advances in imaging approaches, combined with well-established biochemical methodologies, have revealed a complex landscape of metabolic changes that occur acutely after TBI and then evolve in the days to weeks after. Based on this rich clinical and preclinical data, combined with the success of metabolic therapies like the ketogenic diet in treating epilepsy, interest has grown in determining whether manipulating metabolic activity following TBI may have therapeutic value to prevent post-traumatic epileptogenesis. Here, we focus on changes in glucose utilization and glycolytic activity in the brain following TBI and during seizures. We review relevant literature and outline potential paths forward to utilize glycolytic inhibitors as a disease-modifying therapy for post-traumatic epilepsy.
Collapse
Affiliation(s)
- Jenny B Koenig
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
17
|
Imaging biomarkers of epileptogenecity after traumatic brain injury - Preclinical frontiers. Neurobiol Dis 2018; 123:75-85. [PMID: 30321600 DOI: 10.1016/j.nbd.2018.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/04/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Posttraumatic epilepsy (PTE) is a major neurodegenerative disease accounting for 20% of symptomatic epilepsy cases. A long latent phase offers a potential window for prophylactic treatment strategies to prevent epilepsy onset, provided that the patients at risk can be identified. Some promising imaging biomarker candidates for posttraumatic epileptogenesis have been identified, but more are required to provide the specificity and sensitivity for accurate prediction. Experimental models and preclinical longitudinal, multimodal imaging studies allow follow-up of complex cascade of events initiated by traumatic brain injury, as well as monitoring of treatment effects. Preclinical imaging data from the posttraumatic brain are rich in information, yet examination of their specific relevance to epilepsy is lacking. Accumulating evidence from ongoing preclinical studies in TBI support insight into processes involved in epileptogenesis, e.g. inflammation and changes in functional and structural brain-wide connectivity. These efforts are likely to produce both new biomarkers and treatment targets for PTE.
Collapse
|
18
|
Boerema AS, Heesterbeek M, Boersma SA, Schoemaker R, de Vries EFJ, van Heuvelen MJG, Van der Zee EA. Beneficial Effects of Whole Body Vibration on Brain Functions in Mice and Humans. Dose Response 2018; 16:1559325818811756. [PMID: 30574028 PMCID: PMC6299320 DOI: 10.1177/1559325818811756] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/03/2018] [Accepted: 10/16/2018] [Indexed: 01/08/2023] Open
Abstract
The biological consequences of mechanical whole body vibration (WBV) on the brain are not well documented. The aim of the current study was to further investigate the effects of a 5-week WBV intervention on brain functions. Mice (C57Bl/6J males, age 15 weeks) were exposed to 30 Hz WBV sessions (10 minutes per day, 5 days per week, for a period of 5 weeks; n = 10). Controls received the same intervention without the actual vibration (n = 10). Humans (both genders, age ranging from 44-99 years) were also exposed to daily sessions of 30 Hz WBV (4 minutes per day, 4 days per week, for a period of 5 weeks; n = 18). Controls received the same protocol using a 1 Hz protocol (n = 16). Positron emission tomography imaging was performed in the mice, and revealed that glucose uptake was not changed as a consequence of the 5-week WBV intervention. Whole body vibration did, however, improve motor performance and reduced arousal-induced home cage activity. Cognitive tests in humans revealed a selective improvement in the Stroop Color-Word test. Taken together, it is concluded that WBV is a safe intervention to improve brain functioning, although the subtle effects suggest that the protocol is as yet suboptimal.
Collapse
Affiliation(s)
- Ate S. Boerema
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Molecular Neurobiology, University of Groningen, Groningen, the Netherlands
| | - Marelle Heesterbeek
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Molecular Neurobiology, University of Groningen, Groningen, the Netherlands
| | - Selma A. Boersma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Molecular Neurobiology, University of Groningen, Groningen, the Netherlands
| | - Regien Schoemaker
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Molecular Neurobiology, University of Groningen, Groningen, the Netherlands
| | - Erik F. J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marieke J. G. van Heuvelen
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Eddy A. Van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Molecular Neurobiology, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
19
|
Truettner JS, Bramlett HM, Dietrich WD. Hyperthermia and Mild Traumatic Brain Injury: Effects on Inflammation and the Cerebral Vasculature. J Neurotrauma 2018; 35:940-952. [PMID: 29108477 DOI: 10.1089/neu.2017.5303] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mild traumatic brain injury (mTBI) or concussion represents the majority of brain trauma in the United States. The pathophysiology of mTBI is complex and may include both focal and diffuse injury patterns. In addition to altered circuit dysfunction and traumatic axonal injury (TAI), chronic neuroinflammation has also been implicated in the pathophysiology of mTBI. Recently, our laboratory has reported the detrimental effects of mild hyperthermic mTBI in terms of worsening histopathological and behavioral outcomes. To clarify the role of temperature-sensitive neuroinflammatory processes on these consequences, we evaluated the effects of elevated brain temperature (39°C) on altered microglia/macrophage phenotype patterns after mTBI, changes in leukocyte recruitment, and TAI. Sprague-Dawley male rats underwent mild parasagittal fluid-percussion injury under normothermic (37°C) or hyperthermic (39°C) conditions. Cortical and hippocampal regions were analyzed using several cellular and molecular outcome measures. At 24 h, the ratio of iNOS-positive (M1 type phenotype) to arginase-positive (M2 type phenotype) cells after hyperthermic mTBI showed an increase compared with normothermia by flow cytometry. Inflammatory response gene arrays also demonstrated a significant increase in several classes of pro-inflammatory genes with hyperthermia treatment over normothermia. The injury-induced expression of chemokine ligand 2 (Ccl2) and alpha-2-macroglobulin were also increased with hyperthermic mTBI. With western blot analysis, an increase in CD18 and intercellular cell adhesion molecule-1 (ICAM-1) with hyperthermia and a significant increase in Iba1 reactive microglia are reported in the cerebral cortex. Together, these results demonstrate significant differences in the cellular and molecular consequences of raised brain temperature at the time of mTBI. The observed polarization toward a M1-phenotype with mild hyperthermia would be expected to augment chronic inflammatory cascades, sustained functional deficits, and increased vulnerability to secondary insults. Mild elevations in brain temperature may contribute to the more severe and longer lasting consequences of mTBI or concussion reported in some patients.
Collapse
Affiliation(s)
- Jessie S Truettner
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
20
|
de la Tremblaye PB, O'Neil DA, LaPorte MJ, Cheng JP, Beitchman JA, Thomas TC, Bondi CO, Kline AE. Elucidating opportunities and pitfalls in the treatment of experimental traumatic brain injury to optimize and facilitate clinical translation. Neurosci Biobehav Rev 2018; 85:160-175. [PMID: 28576511 PMCID: PMC5709241 DOI: 10.1016/j.neubiorev.2017.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/12/2017] [Indexed: 12/19/2022]
Abstract
The aim of this review is to discuss the research presented in a symposium entitled "Current progress in characterizing therapeutic strategies and challenges in experimental CNS injury" which was presented at the 2016 International Behavioral Neuroscience Society annual meeting. Herein we discuss diffuse and focal traumatic brain injury (TBI) and ensuing chronic behavioral deficits as well as potential rehabilitative approaches. We also discuss the effects of stress on executive function after TBI as well as the response of the endocrine system and regulatory feedback mechanisms. The role of the endocannabinoids after CNS injury is also discussed. Finally, we conclude with a discussion of antipsychotic and antiepileptic drugs, which are provided to control TBI-induced agitation and seizures, respectively. The review consists predominantly of published data.
Collapse
Affiliation(s)
- Patricia B de la Tremblaye
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Darik A O'Neil
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Megan J LaPorte
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jeffrey P Cheng
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joshua A Beitchman
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, United States; Midwestern University, Glendale, AZ, United States
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, United States; Phoenix VA Healthcare System, Phoenix, AZ, United States
| | - Corina O Bondi
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony E Kline
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
21
|
Guglielmetti C, Chou A, Krukowski K, Najac C, Feng X, Riparip LK, Rosi S, Chaumeil MM. In vivo metabolic imaging of Traumatic Brain Injury. Sci Rep 2017; 7:17525. [PMID: 29235509 PMCID: PMC5727520 DOI: 10.1038/s41598-017-17758-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/29/2017] [Indexed: 11/10/2022] Open
Abstract
Complex alterations in cerebral energetic metabolism arise after traumatic brain injury (TBI). To date, methods allowing for metabolic evaluation are highly invasive, limiting our understanding of metabolic impairments associated with TBI pathogenesis. We investigated whether 13C MRSI of hyperpolarized (HP) [1-13C] pyruvate, a non-invasive metabolic imaging method, could detect metabolic changes in controlled cortical injury (CCI) mice (n = 57). Our results show that HP [1-13C] lactate-to-pyruvate ratios were increased in the injured cortex at acute (12/24 hours) and sub-acute (7 days) time points after injury, in line with decreased pyruvate dehydrogenase (PDH) activity, suggesting impairment of the oxidative phosphorylation pathway. We then used the colony-stimulating factor-1 receptor inhibitor PLX5622 to deplete brain resident microglia prior to and after CCI, in order to confirm that modulations of HP [1-13C] lactate-to-pyruvate ratios were linked to microglial activation. Despite CCI, the HP [1-13C] lactate-to-pyruvate ratio at the injury cortex of microglia-depleted animals at 7 days post-injury remained unchanged compared to contralateral hemisphere, and PDH activity was not affected. Altogether, our results demonstrate that HP [1-13C] pyruvate has great potential for in vivo non-invasive detection of cerebral metabolism post-TBI, providing a new tool to monitor the effect of therapies targeting microglia/macrophages activation after TBI.
Collapse
Affiliation(s)
- Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Austin Chou
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, 1001 Potrero Ave, Bldg. 1, Room 101, San Francisco, CA, 94110, USA
| | - Karen Krukowski
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, 1001 Potrero Ave, Bldg. 1, Room 101, San Francisco, CA, 94110, USA
| | - Chloe Najac
- Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Xi Feng
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, 1001 Potrero Ave, Bldg. 1, Room 101, San Francisco, CA, 94110, USA
| | - Lara-Kirstie Riparip
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, 1001 Potrero Ave, Bldg. 1, Room 101, San Francisco, CA, 94110, USA
| | - Susanna Rosi
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA. .,Brain and Spinal Injury Center, University of California, 1001 Potrero Ave, Bldg. 1, Room 101, San Francisco, CA, 94110, USA. .,Department of Neurological Surgery, University of California, San Francisco, CA, USA. .,Weill Institute for Neuroscience, University of California, San Francisco, CA, USA. .,Kavli Institute of Fundamental Neuroscience, University of California, San Francisco, CA, USA.
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA. .,Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States.
| |
Collapse
|
22
|
España LY, Lee RM, Ling JM, Jeromin A, Mayer AR, Meier TB. Serial Assessment of Gray Matter Abnormalities after Sport-Related Concussion. J Neurotrauma 2017; 34:3143-3152. [DOI: 10.1089/neu.2017.5002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Lezlie Y. España
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ryan M. Lee
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Josef M. Ling
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | | | - Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
- Neurology Department, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| |
Collapse
|
23
|
Brabazon F, Wilson CM, Shukla DK, Mathur S, Jaiswal S, Bermudez S, Byrnes KR, Selwyn R. [18F]FDG-PET Combined with MRI Elucidates the Pathophysiology of Traumatic Brain Injury in Rats. J Neurotrauma 2017; 34:1074-1085. [DOI: 10.1089/neu.2016.4540] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Fiona Brabazon
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Colin M. Wilson
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Dinesh K Shukla
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sanjeev Mathur
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Shalini Jaiswal
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sara Bermudez
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Kimberly R. Byrnes
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Reed Selwyn
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Radiology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
24
|
Dona O, Noseworthy MD, DeMatteo C, Connolly JF. Fractal Analysis of Brain Blood Oxygenation Level Dependent (BOLD) Signals from Children with Mild Traumatic Brain Injury (mTBI). PLoS One 2017; 12:e0169647. [PMID: 28072842 PMCID: PMC5224975 DOI: 10.1371/journal.pone.0169647] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/20/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Conventional imaging techniques are unable to detect abnormalities in the brain following mild traumatic brain injury (mTBI). Yet patients with mTBI typically show delayed response on neuropsychological evaluation. Because fractal geometry represents complexity, we explored its utility in measuring temporal fluctuations of brain resting state blood oxygen level dependent (rs-BOLD) signal. We hypothesized that there could be a detectable difference in rs-BOLD signal complexity between healthy subjects and mTBI patients based on previous studies that associated reduction in signal complexity with disease. METHODS Fifteen subjects (13.4 ± 2.3 y/o) and 56 age-matched (13.5 ± 2.34 y/o) healthy controls were scanned using a GE Discovery MR750 3T MRI and 32-channel RF-coil. Axial FSPGR-3D images were used to prescribe rs-BOLD (TE/TR = 35/2000ms), acquired over 6 minutes. Motion correction was performed and anatomical and functional images were aligned and spatially warped to the N27 standard atlas. Fractal analysis, performed on grey matter, was done by estimating the Hurst exponent using de-trended fluctuation analysis and signal summation conversion methods. RESULTS AND CONCLUSIONS Voxel-wise fractal dimension (FD) was calculated for every subject in the control group to generate mean and standard deviation maps for regional Z-score analysis. Voxel-wise validation of FD normality across controls was confirmed, and non-Gaussian voxels (3.05% over the brain) were eliminated from subsequent analysis. For each mTBI patient, regions where Z-score values were at least 2 standard deviations away from the mean (i.e. where |Z| > 2.0) were identified. In individual patients the frequently affected regions were amygdala (p = 0.02), vermis(p = 0.03), caudate head (p = 0.04), hippocampus(p = 0.03), and hypothalamus(p = 0.04), all previously reported as dysfunctional after mTBI, but based on group analysis. It is well known that the brain is best modeled as a complex system. Therefore a measure of complexity using rs-BOLD signal FD could provide an additional method to grade and monitor mTBI. Furthermore, this approach can be personalized thus providing unique patient specific assessment.
Collapse
Affiliation(s)
- Olga Dona
- McMaster School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- Imaging Research Centre, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
| | - Michael D. Noseworthy
- McMaster School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- Imaging Research Centre, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada
- Department of Radiology, McMaster University, Hamilton, Ontario, Canada
| | - Carol DeMatteo
- School of Rehabilitation Medicine, McMaster University, Hamilton, Ontario, Canada
| | - John F. Connolly
- McMaster School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- Department of Linguistics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
25
|
Israel I, Ohsiek A, Al-Momani E, Albert-Weissenberger C, Stetter C, Mencl S, Buck AK, Kleinschnitz C, Samnick S, Sirén AL. Combined [(18)F]DPA-714 micro-positron emission tomography and autoradiography imaging of microglia activation after closed head injury in mice. J Neuroinflammation 2016; 13:140. [PMID: 27266706 PMCID: PMC4897946 DOI: 10.1186/s12974-016-0604-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/30/2016] [Indexed: 11/27/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of death and disability. Neuroinflammation contributes to acute damage after TBI and modulates long-term evolution of degenerative and regenerative responses to injury. The aim of the present study was to evaluate the relationship of microglia activation to trauma severity, brain energy metabolism, and cellular reactions to injury in a mouse closed head injury model using combined in vivo PET imaging, ex vivo autoradiography, and immunohistochemistry. Methods A weight-drop closed head injury model was used to produce a mixed diffuse and focal TBI or a purely diffuse mild TBI (mTBI) in C57BL6 mice. Lesion severity was determined by evaluating histological damage and functional outcome using a standardized neuroscore (NSS), gliosis, and axonal injury by immunohistochemistry. Repeated intra-individual in vivo μPET imaging with the specific 18-kDa translocator protein (TSPO) radioligand [18F]DPA-714 was performed on day 1, 7, and 16 and [18F]FDG-μPET imaging for energy metabolism on days 2–5 after trauma using freshly synthesized radiotracers. Immediately after [18F]DPA-714-μPET imaging on days 7 and 16, cellular identity of the [18F]DPA-714 uptake was confirmed by exposing freshly cut cryosections to film autoradiography and successive immunostaining with antibodies against the microglia/macrophage marker IBA-1. Results Functional outcome correlated with focal brain lesions, gliosis, and axonal injury. [18F]DPA-714-μPET showed increased radiotracer uptake in focal brain lesions on days 7 and 16 after TBI and correlated with reduced cerebral [18F]FDG uptake on days 2–5, with functional outcome and number of IBA-1 positive cells on day 7. In autoradiography, [18F]DPA-714 uptake co-localized with areas of IBA1-positive staining and correlated strongly with both NSS and the number of IBA1-positive cells, gliosis, and axonal injury. After mTBI, numbers of IBA-1 positive cells with microglial morphology increased in both brain hemispheres; however, uptake of [18F]DPA-714 was not increased in autoradiography or in μPET imaging. Conclusions [18F]DPA-714 uptake in μPET/autoradiography correlates with trauma severity, brain metabolic deficits, and microglia activation after closed head TBI.
Collapse
Affiliation(s)
- Ina Israel
- Department of Nuclear Medicine, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Andrea Ohsiek
- Experimental Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Ehab Al-Momani
- Department of Nuclear Medicine, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Christiane Albert-Weissenberger
- Experimental Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, 97080, Würzburg, Germany.,Department of Neurology, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Christian Stetter
- Experimental Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Stine Mencl
- Department of Neurology, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Würzburg, 97080, Würzburg, Germany.,Department of Neurology, University Hospital Essen, 45147, Essen, Germany
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Anna-Leena Sirén
- Experimental Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|