1
|
Smith AM, Grayson BE. A strike to the head: Parallels between the pediatric and adult human and the rodent in traumatic brain injury. J Neurosci Res 2024; 102:e25364. [PMID: 38953607 DOI: 10.1002/jnr.25364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Traumatic brain injury (TBI) is a condition that occurs commonly in children from infancy through adolescence and is a global health concern. Pediatric TBI presents with a bimodal age distribution, with very young children (0-4 years) and adolescents (15-19 years) more commonly injured. Because children's brains are still developing, there is increased vulnerability to the effects of head trauma, which results in entirely different patterns of injury than in adults. Pediatric TBI has a profound and lasting impact on a child's development and quality of life, resulting in long-lasting consequences to physical, cognitive, and emotional development. Chronic issues like learning disabilities, behavioral problems, and emotional disturbances can develop. Early intervention and ongoing support are critical for minimizing these long-term deficits. Many animal models of TBI exist, and each varies significantly, displaying different characteristics of clinical TBI. The neurodevelopment differs in the rodent from the human in timing and effect, so TBI outcomes in the juvenile rodent can thus vary from the human child. The current review compares findings from preclinical TBI work in juvenile and adult rodents to clinical TBI research in pediatric and adult humans. We focus on the four brain regions most affected by TBI: the prefrontal cortex, corpus callosum, hippocampus, and hypothalamus. Each has its unique developmental projections and thus is impacted by TBI differently. This review aims to compare the healthy neurodevelopment of these four brain regions in humans to the developmental processes in rodents.
Collapse
Affiliation(s)
- Allie M Smith
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Bernadette E Grayson
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Population Health Science, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
2
|
Obenaus A, Noarbe BP, Lee JB, Panchenko PE, Noarbe SD, Lee YC, Badaut J. Progressive lifespan modifications in the corpus callosum following a single juvenile concussion in male mice monitored by diffusion MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572925. [PMID: 38187748 PMCID: PMC10769374 DOI: 10.1101/2023.12.21.572925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Introduction The sensitivity of white matter (WM) in acute and chronic moderate-severe traumatic brain injury (TBI) has been established. In concussion syndromes, particularly in preclinical rodent models, there is lacking a comprehensive longitudinal study spanning the lifespan of the mouse. We previously reported early modifications to WM using clinically relevant neuroimaging and histological measures in a model of juvenile concussion at one month post injury (mpi) who then exhibited cognitive deficits at 12mpi. For the first time, we assess corpus callosum (CC) integrity across the lifespan after a single juvenile concussion utilizing diffusion MRI (dMRI). Methods C57Bl/6 mice were exposed to sham or two severities of closed-head concussion (Grade 1, G1, speed 2 m/sec, depth 1mm; Grade 2, G2, 3m/sec, 3mm) using an electromagnetic impactor at postnatal day 17. In vivo diffusion tensor imaging was conducted at 1, 3, 6, 12 and 18 mpi (21 directions, b=2000 mm2/sec) and processed for dMRI parametric maps: fractional anisotropy (FA), axial (AxD), radial (RD) and mean diffusivity (MD). Whole CC and regional CC data were extracted. To identify the biological basis of altered dMRI metrics, astrocyte and microglia in the CC were characterized at 1 and 12 mpi by immunohistochemistry. Results Whole CC analysis revealed altered FA and RD trajectories following juvenile concussion. Shams exhibited a temporally linear increase in FA with age while G1/G2 mice had plateaued FA values. G2 concussed mice exhibited high variance of dMRI metrics at 12mpi, which was attributed to the heterogeneity of TBI on the anterior CC. Regional analysis of dMRI metrics at the impact site unveiled significant differences between G2 and sham mice. The dMRI findings appear to be driven, in part, by loss of astrocyte process lengths and increased circularity and decreased cell span ratios in microglia. Conclusion For the first time, we demonstrate progressive perturbations to WM of male mice after a single juvenile concussion across the mouse lifespan. The CC alterations were dependent on concussion severity with elevated sensitivity in the anterior CC that was related to astrocyte and microglial morphology. Our findings suggest that long-term monitoring of children with juvenile concussive episodes using dMRI is warranted, focusing on vulnerable WM tracts.
Collapse
Affiliation(s)
- Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Brenda P. Noarbe
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Jeong Bin Lee
- Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, US
| | | | - Sean D. Noarbe
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Yu Chiao Lee
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Jerome Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France
| |
Collapse
|
3
|
Rosen G, Kirsch D, Horowitz S, Cherry JD, Nicks R, Kelley H, Uretsky M, Dell'Aquila K, Mathias R, Cormier KA, Kubilus CA, Mez J, Tripodis Y, Stein TD, Alvarez VE, Alosco ML, McKee AC, Huber BR. Three dimensional evaluation of cerebrovascular density and branching in chronic traumatic encephalopathy. Acta Neuropathol Commun 2023; 11:123. [PMID: 37491342 PMCID: PMC10369801 DOI: 10.1186/s40478-023-01612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts (RHI) and characterized by perivascular accumulations of hyperphosphorylated tau protein (p-tau) at the depths of the cortical sulci. Studies of living athletes exposed to RHI, including concussive and nonconcussive impacts, have shown increased blood-brain barrier permeability, reduced cerebral blood flow, and alterations in vasoreactivity. Blood-brain barrier abnormalities have also been reported in individuals neuropathologically diagnosed with CTE. To further investigate the three-dimensional microvascular changes in individuals diagnosed with CTE and controls, we used SHIELD tissue processing and passive delipidation to optically clear and label blocks of postmortem human dorsolateral frontal cortex. We used fluorescent confocal microscopy to quantitate vascular branch density and fraction volume. We compared the findings in 41 male brain donors, age at death 31-89 years, mean age 64 years, including 12 donors with low CTE (McKee stage I-II), 13 with high CTE (McKee stage III-IV) to 16 age- and sex-matched non-CTE controls (7 with RHI exposure and 9 with no RHI exposure). The density of vessel branches in the gray matter sulcus was significantly greater in CTE cases than in controls. The ratios of sulcus versus gyrus vessel branch density and fraction volume were also greater in CTE than in controls and significantly above one for the CTE group. Hyperphosphorylated tau pathology density correlated with gray matter sulcus fraction volume. These findings point towards increased vascular coverage and branching in the dorsolateral frontal cortex (DLF) sulci in CTE, that correlates with p-tau pathology.
Collapse
Affiliation(s)
- Grace Rosen
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, USA
| | - Daniel Kirsch
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Sarah Horowitz
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, USA
| | - Jonathan D Cherry
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Raymond Nicks
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Hunter Kelley
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Madeline Uretsky
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Kevin Dell'Aquila
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Rebecca Mathias
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Kerry A Cormier
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, USA
| | - Caroline A Kubilus
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, USA
| | - Thor D Stein
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Victor E Alvarez
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Ann C McKee
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, USA
| | - Bertrand R Huber
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA.
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA.
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA.
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, USA.
| |
Collapse
|
4
|
Obenaus A, Rodriguez-Grande B, Lee JB, Dubois CJ, Fournier ML, Cador M, Caille S, Badaut J. A single mild juvenile TBI in male mice leads to regional brain tissue abnormalities at 12 months of age that correlate with cognitive impairment at the middle age. Acta Neuropathol Commun 2023; 11:32. [PMID: 36859364 PMCID: PMC9976423 DOI: 10.1186/s40478-023-01515-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/12/2023] [Indexed: 03/03/2023] Open
Abstract
Traumatic brain injury (TBI) has the highest incidence amongst the pediatric population and its mild severity represents the most frequent cases. Moderate and severe injuries as well as repetitive mild TBI result in lasting morbidity. However, whether a single mild TBI sustained during childhood can produce long-lasting modifications within the brain is still debated. We aimed to assess the consequences of a single juvenile mild TBI (jmTBI) at 12 months post-injury in a mouse model. Non-invasive diffusion tensor imaging (DTI) revealed significant microstructural alterations in the hippocampus and the in the substantia innominata/nucleus basalis (SI/NB), structures known to be involved in spatial learning and memory. DTI changes paralled neuronal loss, increased astrocytic AQP4 and microglial activation in the hippocampus. In contrast, decreased astrocytic AQP4 expression and microglia activation were observed in SI/NB. Spatial learning and memory were impaired and correlated with alterations in DTI-derived derived fractional ansiotropy (FA) and axial diffusivity (AD). This study found that a single juvenile mild TBI leads to significant region-specific DTI microstructural alterations, distant from the site of impact, that correlated with cognitive discriminative novel object testing and spatial memory impairments at 12 months after a single concussive injury. Our findings suggest that exposure to jmTBI leads to a chronic abnormality, which confirms the need for continued monitoring of symptoms and the development of long-term treatment strategies to intervene in children with concussions.
Collapse
Affiliation(s)
- Andre Obenaus
- Department of Pediatrics, University of California, Irvine, CA, USA
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | - Jeong Bin Lee
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Christophe J Dubois
- CNRS UMR 5536 RMSB, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | | | - Martine Cador
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France
| | - Stéphanie Caille
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France
| | - Jerome Badaut
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France.
- CNRS UMR 5536 RMSB, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
| |
Collapse
|
5
|
McDonald SJ, Shultz SR, Agoston DV. The Known Unknowns: An Overview of the State of Blood-Based Protein Biomarkers of Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:2652-2666. [PMID: 33906422 DOI: 10.1089/neu.2021.0011] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Blood-based protein biomarkers have revolutionized several fields of medicine by enabling molecular level diagnosis, as well as monitoring disease progression and treatment efficacy. Traumatic brain injury (TBI) so far has benefitted only moderately from using protein biomarkers to improve injury outcome. Because of its complexity and dynamic nature, TBI, especially its most prevalent mild form (mild TBI; mTBI), presents unique challenges toward protein biomarker discovery and validation given that blood is frequently obtained and processed outside of the clinical laboratory (e.g., athletic fields, battlefield) under variable conditions. As it stands, the field of mTBI blood biomarkers faces a number of outstanding questions. Do elevated blood levels of currently used biomarkers-ubiquitin carboxy-terminal hydrolase L1, glial fibrillary acidic protein, neurofilament light chain, and tau/p-tau-truly mirror the extent of parenchymal damage? Do these different proteins represent distinct injury mechanisms? Is the blood-brain barrier a "brick wall"? What is the relationship between intra- versus extracranial values? Does prolonged elevation of blood levels reflect de novo release or extended protein half-lives? Does biological sex affect the pathobiological responses after mTBI and thus blood levels of protein biomarkers? At the practical level, it is unknown how pre-analytical variables-sample collection, preparation, handling, and stability-affect the quality and reliability of biomarker data. The ever-increasing sensitivity of assay systems and lack of quality control of samples, combined with the almost complete reliance on antibody-based assay platforms, represent important unsolved issues given that false-negative results can lead to false clinical decision making and adverse outcomes. This article serves as a commentary on the state of mTBI biomarkers and the landscape of significant challenges. We highlight and discusses several biological and methodological "known unknowns" and close with some practical recommendations.
Collapse
Affiliation(s)
- Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Zamani A, Ryan NP, Wright DK, Caeyenberghs K, Semple BD. The Impact of Traumatic Injury to the Immature Human Brain: A Scoping Review with Insights from Advanced Structural Neuroimaging. J Neurotrauma 2021; 37:724-738. [PMID: 32037951 DOI: 10.1089/neu.2019.6895] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury (TBI) during critical periods of early-life brain development can affect the normal formation of brain networks responsible for a range of complex social behaviors. Because of the protracted nature of brain and behavioral development, deficits in cognitive and socioaffective behaviors may not become evident until late adolescence and early adulthood, when such skills are expected to reach maturity. In addition, multiple pre- and post-injury factors can interact with the effects of early brain insult to influence long-term outcomes. In recent years, with advancements in magnetic-resonance-based neuroimaging techniques and analysis, studies of the pediatric population have revealed a link between neurobehavioral deficits, such as social dysfunction, with white matter damage. In this review, in which we focus on contributions from Australian researchers to the field, we have highlighted pioneering longitudinal studies in pediatric TBI, in relation to social deficits specifically. We also discuss the use of advanced neuroimaging and novel behavioral assays in animal models of TBI in the immature brain. Together, this research aims to understand the relationship between injury consequences and ongoing brain development after pediatric TBI, which promises to improve prediction of the behavioral deficits that emerge in the years subsequent to early-life injury.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Nicholas P Ryan
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria, Australia.,Brain & Mind Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Mancini M, Karakuzu A, Cohen-Adad J, Cercignani M, Nichols TE, Stikov N. An interactive meta-analysis of MRI biomarkers of myelin. eLife 2020; 9:e61523. [PMID: 33084576 PMCID: PMC7647401 DOI: 10.7554/elife.61523] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Several MRI measures have been proposed as in vivo biomarkers of myelin, each with applications ranging from plasticity to pathology. Despite the availability of these myelin-sensitive modalities, specificity and sensitivity have been a matter of discussion. Debate about which MRI measure is the most suitable for quantifying myelin is still ongoing. In this study, we performed a systematic review of published quantitative validation studies to clarify how different these measures are when compared to the underlying histology. We analyzed the results from 43 studies applying meta-analysis tools, controlling for study sample size and using interactive visualization (https://neurolibre.github.io/myelin-meta-analysis). We report the overall estimates and the prediction intervals for the coefficient of determination and find that MT and relaxometry-based measures exhibit the highest correlations with myelin content. We also show which measures are, and which measures are not statistically different regarding their relationship with histology.
Collapse
Affiliation(s)
- Matteo Mancini
- Department of Neuroscience, Brighton and Sussex Medical School, University of SussexBrightonUnited Kingdom
- NeuroPoly Lab, Polytechnique MontrealMontrealCanada
- CUBRIC, Cardiff UniversityCardiffUnited Kingdom
| | | | - Julien Cohen-Adad
- NeuroPoly Lab, Polytechnique MontrealMontrealCanada
- Functional Neuroimaging Unit, CRIUGM, Université de MontréalMontrealCanada
| | - Mara Cercignani
- Department of Neuroscience, Brighton and Sussex Medical School, University of SussexBrightonUnited Kingdom
- Neuroimaging Laboratory, Fondazione Santa LuciaRomeItaly
| | - Thomas E Nichols
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of OxfordOxfordUnited Kingdom
- Big Data Institute, University of OxfordOxfordUnited Kingdom
| | - Nikola Stikov
- NeuroPoly Lab, Polytechnique MontrealMontrealCanada
- Montreal Heart Institute, Université de MontréalMontrealCanada
| |
Collapse
|
8
|
Zlokovic BV, Gottesman RF, Bernstein KE, Seshadri S, McKee A, Snyder H, Greenberg SM, Yaffe K, Schaffer CB, Yuan C, Hughes TM, Daemen MJ, Williamson JD, González HM, Schneider J, Wellington CL, Katusic ZS, Stoeckel L, Koenig JI, Corriveau RA, Fine L, Galis ZS, Reis J, Wright JD, Chen J. Vascular contributions to cognitive impairment and dementia (VCID): A report from the 2018 National Heart, Lung, and Blood Institute and National Institute of Neurological Disorders and Stroke Workshop. Alzheimers Dement 2020; 16:1714-1733. [PMID: 33030307 DOI: 10.1002/alz.12157] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) are characterized by the aging neurovascular unit being confronted with and failing to cope with biological insults due to systemic and cerebral vascular disease, proteinopathy including Alzheimer's biology, metabolic disease, or immune response, resulting in cognitive decline. This report summarizes the discussion and recommendations from a working group convened by the National Heart, Lung, and Blood Institute and the National Institute of Neurological Disorders and Stroke to evaluate the state of the field in VCID research, identify research priorities, and foster collaborations. As discussed in this report, advances in understanding the biological mechanisms of VCID across the wide spectrum of pathologies, chronic systemic comorbidities, and other risk factors may lead to potential prevention and new treatment strategies to decrease the burden of dementia. Better understanding of the social determinants of health that affect risks for both vascular disease and VCID could provide insight into strategies to reduce racial and ethnic disparities in VCID.
Collapse
Affiliation(s)
| | | | | | - Sudha Seshadri
- University of Texas Health Science Center, San Antonio and Boston University, San Antonio, Texas, USA
| | - Ann McKee
- VA Boston Healthcare System and Boston University, Boston, Massachusetts, USA
| | | | - Steven M Greenberg
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kristine Yaffe
- University of California, San Francisco, San Francisco, California, USA
| | | | - Chun Yuan
- University of Washington, Seattle, Washington, USA
| | - Timothy M Hughes
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mat J Daemen
- Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | - Luke Stoeckel
- National Institute on Aging, Bethesda, Maryland, USA
| | - James I Koenig
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Roderick A Corriveau
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Lawrence Fine
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Zorina S Galis
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Jared Reis
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | | | - Jue Chen
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Early Brain Injury and Adaptive Functioning in Middle Childhood: The Mediating Role of Pragmatic Language. J Int Neuropsychol Soc 2020; 26:835-850. [PMID: 32336311 DOI: 10.1017/s1355617720000399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Traumatic brain injuries (TBIs) often adversely affect adaptive functioning (AF). However, the cognitive mechanisms by which AF is disrupted are not well understood in young children who sustain TBI. This study examined pragmatic language (PL) and executive functioning (EF) as potential mechanisms for AF disruption in children with early, predominantly mild-complicated, TBI. METHOD The sample consisted of 76 children between the ages of 6 and 10 years old who sustained a TBI (n = 36) or orthopedic injury (OI; n = 40) before 6 years of age and at least 1 year prior to testing (M = 4.86 years, SD = 1.59). Children's performance on a PL and an expressive vocabulary task (which served as a control task), and parent report of child's EF and AF were examined at two time points 1 year apart (i.e., at age 8 and at age 9 years). RESULTS Injury type (TBI vs. OI) significantly predicted child's social and conceptual, but not practical, AF. Results indicated that PL, and not expressive vocabulary or EF at time 1, mediated the relationship between injury type and both social and conceptual AF at time 2. CONCLUSIONS A TBI during early childhood appears to subtly, but uniquely, disrupt complex language skills (i.e., PL), which in turn may disrupt subsequent social and conceptual AF in middle childhood. Additional longitudinal research that examines different aspects of PL and adaptive outcomes into adolescence is warranted.
Collapse
|
10
|
Müller HP, Roselli F, Rasche V, Kassubek J. Diffusion Tensor Imaging-Based Studies at the Group-Level Applied to Animal Models of Neurodegenerative Diseases. Front Neurosci 2020; 14:734. [PMID: 32982659 PMCID: PMC7487414 DOI: 10.3389/fnins.2020.00734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
The understanding of human and non-human microstructural brain alterations in the course of neurodegenerative diseases has substantially improved by the non-invasive magnetic resonance imaging (MRI) technique of diffusion tensor imaging (DTI). Animal models (including disease or knockout models) allow for a variety of experimental manipulations, which are not applicable to humans. Thus, the DTI approach provides a promising tool for cross-species cross-sectional and longitudinal investigations of the neurobiological targets and mechanisms of neurodegeneration. This overview with a systematic review focuses on the principles of DTI analysis as used in studies at the group level in living preclinical models of neurodegeneration. The translational aspect from in-vivo animal models toward (clinical) applications in humans is covered as well as the DTI-based research of the non-human brains' microstructure, the methodological aspects in data processing and analysis, and data interpretation at different abstraction levels. The aim of integrating DTI in multiparametric or multimodal imaging protocols will allow the interrogation of DTI data in terms of directional flow of information and may identify the microstructural underpinnings of neurodegeneration-related patterns.
Collapse
Affiliation(s)
| | - Francesco Roselli
- Department of Neurology, University of Ulm, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal MRI, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
11
|
Wu Y, Wu H, Guo X, Pluimer B, Zhao Z. Blood-Brain Barrier Dysfunction in Mild Traumatic Brain Injury: Evidence From Preclinical Murine Models. Front Physiol 2020; 11:1030. [PMID: 32973558 PMCID: PMC7472692 DOI: 10.3389/fphys.2020.01030] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Mild traumatic brain injury (mTBI) represents more than 80% of total TBI cases and is a robust environmental risk factor for neurodegenerative diseases including Alzheimer’s disease (AD). Besides direct neuronal injury and neuroinflammation, blood–brain barrier (BBB) dysfunction is also a hallmark event of the pathological cascades after mTBI. However, the vascular link between BBB impairment caused by mTBI and subsequent neurodegeneration remains undefined. In this review, we focus on the preclinical evidence from murine models of BBB dysfunction in mTBI and provide potential mechanistic links between BBB disruption and the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yingxi Wu
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Haijian Wu
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinying Guo
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brock Pluimer
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zhen Zhao
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Bhatt D, Hazari A, Yamakawa GR, Salberg S, Sgro M, Shultz SR, Mychasiuk R. Investigating the cumulative effects of Δ9-tetrahydrocannabinol and repetitive mild traumatic brain injury on adolescent rats. Brain Commun 2020; 2:fcaa042. [PMID: 32954298 PMCID: PMC7425386 DOI: 10.1093/braincomms/fcaa042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
The prevalence of mild traumatic brain injury is highest amongst the adolescent population and can lead to complications including neuroinflammation and excitotoxicity. Also pervasive in adolescents is recreational cannabis use. Δ9-Tetrahydrocannabinol, the main psychoactive component of cannabis, is known to have anti-inflammatory properties and serves as a neuroprotective agent against excitotoxicity. Thus, we investigated the effects of Δ9-tetrahydrocannabinol on recovery when administered either prior to or following repeated mild brain injuries. Male and female Sprague-Dawley rats were randomly assigned to receive Δ9-tetrahydrocannabinol or vehicle either prior to or following the repeated injuries. Rats were then tested on a behavioural test battery designed to measure post-concussive symptomology. The hippocampus, nucleus accumbens and prefrontal cortex were extracted from all animals to examine mRNA expression changes (Bdnf, Cnr1, Comt, GR, Iba-1 and Vegf-2R). We hypothesized that, in both experiments, Δ9-tetrahydrocannabinol administration would provide neuroprotection against mild injury outcomes and confer therapeutic benefit. Δ9-Tetrahydrocannabinol administration following repeated mild traumatic brain injury was beneficial to three of the six behavioural outcomes affected by injury (reducing anxiety and depressive-like behaviours while also mitigating injury-induced deficits in short-term working memory). Δ9-Tetrahydrocannabinol administration following injury also showed beneficial effects on the expression of Cnr1, Comt and Vegf-2R in the hippocampus, nucleus accumbens and prefrontal cortex. There were no notable benefits of Δ9-tetrahydrocannabinol when administered prior to injury, suggesting that Δ9-tetrahydrocannabinol may have potential therapeutic benefit on post-concussive symptomology when administered post-injury, but not pre-injury.
Collapse
Affiliation(s)
- Dhyey Bhatt
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ali Hazari
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Glenn R Yamakawa
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sabrina Salberg
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Marissa Sgro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Richelle Mychasiuk
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
13
|
Eyolfson E, Yamakawa GR, Griep Y, Collins R, Carr T, Wang M, Lohman AW, Mychasiuk R. Examining the Progressive Behavior and Neuropathological Outcomes Associated with Chronic Repetitive Mild Traumatic Brain Injury in Rats. Cereb Cortex Commun 2020; 1:tgaa002. [PMID: 34296084 PMCID: PMC8152839 DOI: 10.1093/texcom/tgaa002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
While the physical and behavioral symptomologies associated with a single mild traumatic brain injury (mTBI) are typically transient, repetitive mTBIs (RmTBI) have been associated with persisting neurological deficits. Therefore, this study examined the progressive changes in behavior and the neuropathological outcomes associated with chronic RmTBI through adolescence and adulthood in male and female Sprague Dawley rats. Rats experienced 2 mTBIs/week for 15 weeks and were periodically tested for changes in motor behavior, cognitive function, emotional disturbances, and aggression. Brain tissue was examined for neuropathological changes in ventricle size and presentation of Iba1 and GFAP. We did not see progressively worse behavioral impairments with the accumulation of injuries or time, but did find evidence for neurological and functional change (motor disturbance, reduced exploration, reduced aggression, alteration in depressive-like behavior, deficits in short-term working memory). Neuropathological assessment of RmTBI animals identified an increase in ventricle size, prolonged changes in GFAP, and sex differences in Iba1, in the corpus callosum, thalamus, and medial prefrontal cortex. Telomere length reduced exponentially as the injury load increased. Overall, chronic RmTBI did not result in accumulating behavioral impairment, and there is a need to further investigate progressive behavioral changes associated with repeated injuries in adolescence and young adulthood.
Collapse
Affiliation(s)
- Eric Eyolfson
- Department of Psychology, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Psychology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Yannick Griep
- Department of Psychology, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Psychology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Division of Epidemiology, Stress Research Institute, Stockholm University, 106 91 Stockholm, Sweden
- Behavioral Science Institute, Radbound University, 9104, 6500 HE, Nijmegen, The Netherlands
| | - Reid Collins
- Department of Psychology, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Psychology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Thomas Carr
- Department of Cell Biology and Anatomy, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Melinda Wang
- Department of Psychology, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Psychology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Alexander W Lohman
- Department of Cell Biology and Anatomy, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Richelle Mychasiuk
- Department of Psychology, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Psychology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| |
Collapse
|
14
|
Relative Head Impact Exposure and Brain White Matter Alterations After a Single Season of Competitive Football: A Pilot Comparison of Youth Versus High School Football. Clin J Sport Med 2019; 29:442-450. [PMID: 31688173 DOI: 10.1097/jsm.0000000000000753] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Youth athletes are believed to be more susceptible to white matter (WM) degradation resulting from head impact exposure relative to high school (HS) athletes; this hypothesis has not been objectively tested. The purpose of this study was to determine preseason to postseason changes in WM integrity from repetitive head impacts for youth football (YFB) players compared with HS football players during a competitive football season. DESIGN Prospective cohort. SETTING One season of YFB (grades 7 and 8) and varsity HS football (grades 10-12). PATIENTS OR OTHER PARTICIPANTS Twelve YFB (13.08 ± 0.64 years) and 21 HS (17.5 ± 0.78 years) athletes. INTERVENTIONS Participants completed 2 magnetic resonance imaging sessions: preseason and postseason. Head impact exposure was recorded during practice and games using a helmet-mounted accelerometer. MAIN OUTCOME MEASURES Tract-based spatial statistics were used to evaluate group differences in preseason to postseason changes in diffusion tensor imaging, including fractional anisotropy and mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). RESULTS The HS group exhibited significant preseason to postseason reductions in MD, AD, and RD (P < 0.05, corrected) in widespread WM areas. Significant WM reductions for the YFB group were only observed for AD (P < 0.05, corrected), but was more limited in extent compared with HS. CONCLUSIONS Significant preseason to postseason AD reduction was found in both YFB and HS groups after one season of competitive play. Our results did not confirm recent speculation that younger children are more susceptible to the deleterious effects of repetitive head impacts compared with their older counterparts.
Collapse
|
15
|
Bodnar CN, Roberts KN, Higgins EK, Bachstetter AD. A Systematic Review of Closed Head Injury Models of Mild Traumatic Brain Injury in Mice and Rats. J Neurotrauma 2019; 36:1683-1706. [PMID: 30661454 PMCID: PMC6555186 DOI: 10.1089/neu.2018.6127] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mild TBI (mTBI) is a significant health concern. Animal models of mTBI are essential for understanding mechanisms, and pathological outcomes, as well as to test therapeutic interventions. A variety of closed head models of mTBI that incorporate different aspects (i.e., biomechanics) of the mTBI have been reported. The aim of the current review was to compile a comprehensive list of the closed head mTBI rodent models, along with the common data elements, and outcomes, with the goal to summarize the current state of the field. Publications were identified from a search of PubMed and Web of Science and screened for eligibility following PRISMA guidelines. Articles were included that were closed head injuries in which the authors classified the injury as mild in rats or mice. Injury model and animal-specific common data elements, as well as behavioral and histological outcomes, were collected and compiled from a total of 402 articles. Our results outline the wide variety of methods used to model mTBI. We also discovered that female rodents and both young and aged animals are under-represented in experimental mTBI studies. Our findings will aid in providing context comparing the injury models and provide a starting point for the selection of the most appropriate model of mTBI to address a specific hypothesis. We believe this review will be a useful starting place for determining what has been done and what knowledge is missing in the field to reduce the burden of mTBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Kelly N. Roberts
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
16
|
Lee JB, Affeldt BM, Gamboa Y, Hamer M, Dunn JF, Pardo AC, Obenaus A. Repeated Pediatric Concussions Evoke Long-Term Oligodendrocyte and White Matter Microstructural Dysregulation Distant from the Injury. Dev Neurosci 2018; 40:358-375. [PMID: 30466074 DOI: 10.1159/000494134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/30/2018] [Indexed: 11/19/2022] Open
Abstract
Concussion or mild traumatic brain injury (mTBI) is often accompanied by long-term behavioral and neuropsychological deficits. Emerging data suggest that these deficits can be exacerbated following repeated injuries. However, despite the overwhelming prevalence of mTBI in children due to falls and sports-related activities, the effects of mTBI on white matter (WM) structure and its development in children have not been extensively examined. Moreover, the effect of repeated mTBI (rmTBI) on developing WM has not yet been studied, despite the possibility of exacerbated outcomes with repeat injuries. To address this knowledge gap, we investigated the long-term effects of single (s)mTBI and rmTBI on the WM in the pediatric brain, focusing on the anterior commissure (AC), a WM structure distant to the injury site, using diffusion tensor imaging (DTI) and immunohistochemistry (IHC). We hypothesized that smTBI and rmTBI to the developing mouse brain would lead to abnormalities in microstructural integrity and impaired oligodendrocyte (OL) development. We used a postnatal day 14 Ascl1-CreER: ccGFP mouse closed head injury (CHI) model with a bilateral repeated injury. We demonstrate that smTBI and rmTBI differentially lead to myelin-related diffusion changes in the WM and to abnormal OL development in the AC, which are accompanied by behavioral deficits 2 months after the initial injury. Our results suggest that mTBIs elicit long-term behavioral alterations and OL-associated WM dysregulation in the developing brain. These findings warrant additional research into the development of WM and OL as key components of pediatric TBI pathology and potential therapeutic targets.
Collapse
Affiliation(s)
- Jeong Bin Lee
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Bethann M Affeldt
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Yaritxa Gamboa
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Mary Hamer
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Jeff F Dunn
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrea C Pardo
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andre Obenaus
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA, .,Department of Pediatrics, University of California Irvine School of Medicine, Irvine, California, USA,
| |
Collapse
|