1
|
Zhou Y, Xu T, Zhou Y, Han W, Wu Z, Yang C, Chen X. A review focuses on a neglected and controversial component of SCI: myelin debris. Front Immunol 2024; 15:1436031. [PMID: 39650659 PMCID: PMC11621000 DOI: 10.3389/fimmu.2024.1436031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/22/2024] [Indexed: 12/11/2024] Open
Abstract
Myelin sheath, as the multilayer dense structure enclosing axons in humans and other higher organisms, may rupture due to various injury factors after spinal cord injury, thus producing myelin debris. The myelin debris contains a variety of myelin-associated inhibitors (MAIs) and lipid, all inhibiting the repair after spinal cord injury. Through summary and analysis, the present authors found that the inhibition of myelin debris can be mainly divided into two categories: firstly, the direct inhibition mediated by MAIs; secondly, the indirect inhibition mediated by lipid such as cholesterol. It is worth noting that phagocytes are required in the latter indirect inhibition, such as professional phagocytes (macrophages et al.) and non-professional phagocytes (astrocytes et al.). Moreover, complement and the immune system also participate in the phagocytosis of myelin debris, working together with phagocytes to aggravate spinal cord injury. In conclusion, this paper focuses on the direct and indirect effects of myelin debris on spinal cord injury, aiming to provide new inspiration and reflection for the basic research of spinal cord injury and the conception of related treatment.
Collapse
Affiliation(s)
- Yuchen Zhou
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Tao Xu
- Medical School of Nantong University, Nantong, China
- Department of Orthopedics, Yancheng Dafeng People's Hospital, Yancheng, China
| | - Yiyan Zhou
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Wei Han
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Zhengchao Wu
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Changwei Yang
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Xiaoqing Chen
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
2
|
Shi Y, Zheng M, Luo Y, Li J, Ouyang F, Zhao Y, Wang J, Ma Z, Meng C, Bi Y, Cheng L, Jing J. Targeting transcription factor pu.1 for improving neurologic outcomes after spinal cord injury. Front Neurosci 2024; 18:1418615. [PMID: 39211434 PMCID: PMC11358095 DOI: 10.3389/fnins.2024.1418615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 09/04/2024] Open
Abstract
Background After spinal cord injury (SCI), lipid metabolism dysregulation at the lesion site exacerbates secondary damage. The transcription factor pu.1 has been implicated as a negative regulator of multiple lipid metabolism-related genes and pathways. However, its role in post-SCI lipid metabolism remains unclear. Methods We employed a mouse model of complete T10 crush SCI. Non-targeted metabolomics and bioinformatics analysis were utilized to investigate lipid metabolism at the lesion site after SCI. Polarized light imaging was used to evaluate the presence of cholesterol crystals. DB1976, a specific inhibitor of pu.1, was administered to examine its impact on local lipid metabolism after SCI. Immunofluorescence staining was performed to assess pu.1 expression and distribution, and to evaluate lipid droplet formation, astrocytic/fibrotic scar development, inflammatory cell infiltration, and tight junctions within the vasculature. Results Non-targeted metabolomics and bioinformatics analyses revealed significant alterations in lipid metabolism components after SCI. Moreover, immunofluorescence staining and polarized light imaging demonstrated substantial BODIPY+ lipid droplet accumulation and persistent cholesterol crystal formation at the lesion site after SCI. Increased pu.1 expression was predominantly observed within macrophages/microglia at the lesion site after SCI. DB1976 treatment significantly mitigated lipid droplet accumulation and cholesterol crystal formation, reduced CD68+ macrophage/microglial infiltration, and attenuated fibrotic scar formation. Moreover, DB1976 treatment promoted the expression of claudin-5 and zonula occludens-1 between vascular endothelial cells and enhanced GFAP+ glial connectivity after SCI. Conclusion Our study reveals a significant correlation between lipid metabolism disturbance post-SCI and transcription factor pu.1 upregulation, specifically in macrophages/microglia at the lesion site. Thus, targeted pu.1 modulation has the potential to yield promising results by substantially diminishing the deposition of lipid metabolism byproducts at the lesion site and fostering a milieu conducive to SCI repair.
Collapse
Affiliation(s)
- Yi Shi
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meige Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Luo
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianjian Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fangru Ouyang
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanzhe Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingwen Wang
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhida Ma
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Congpeng Meng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yihui Bi
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juehua Jing
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Wang X, Cheng Z, Tai W, Shi M, Ayazi M, Liu Y, Sun L, Yu C, Fan Z, Guo B, He X, Sun D, Young W, Ren Y. Targeting foamy macrophages by manipulating ABCA1 expression to facilitate lesion healing in the injured spinal cord. Brain Behav Immun 2024; 119:431-453. [PMID: 38636566 DOI: 10.1016/j.bbi.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024] Open
Abstract
Spinal cord injury (SCI) triggers a complex cascade of events, including myelin loss, neuronal damage, neuroinflammation, and the accumulation of damaged cells and debris at the injury site. Infiltrating bone marrow derived macrophages (BMDMϕ) migrate to the epicenter of the SCI lesion, where they engulf cell debris including abundant myelin debris to become pro-inflammatory foamy macrophages (foamy Mϕ), participate neuroinflammation, and facilitate the progression of SCI. This study aimed to elucidate the cellular and molecular mechanisms underlying the functional changes in foamy Mϕ and their potential implications for SCI. Contusion at T10 level of the spinal cord was induced using a New York University (NYU) impactor (5 g rod from a height of 6.25 mm) in male mice. ABCA1, an ATP-binding cassette transporter expressed by Mϕ, plays a crucial role in lipid efflux from foamy cells. We observed that foamy Mϕ lacking ABCA1 exhibited increased lipid accumulation and a higher presence of lipid-accumulated foamy Mϕ as well as elevated pro-inflammatory response in vitro and in injured spinal cord. We also found that both genetic and pharmacological enhancement of ABCA1 expression accelerated lipid efflux from foamy Mϕ, reduced lipid accumulation and inhibited the pro-inflammatory response of foamy Mϕ, and accelerated clearance of cell debris and necrotic cells, which resulted in functional recovery. Our study highlights the importance of understanding the pathologic role of foamy Mϕ in SCI progression and the potential of ABCA1 as a therapeutic target for modulating the inflammatory response, promoting lipid metabolism, and facilitating functional recovery in SCI.
Collapse
Affiliation(s)
- Xi Wang
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, New Brunswick, NJ 08854, USA; Institute of Neurosciences, Fourth Military Medical University, Xi'an 710032, China; College of Life Sciences and Medicine, Northwest University, Xi'an 710069, China.
| | - Zhijian Cheng
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Wenjiao Tai
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Mingjun Shi
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Maryam Ayazi
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Yang Liu
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Li Sun
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Caiyong Yu
- Institute of Neurosciences, Fourth Military Medical University, Xi'an 710032, China
| | - Zhongmin Fan
- Department of Critical Care Medicine and Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an 710032, China
| | - Bin Guo
- Department of Pathology, Guizhou Medical University, Guiyang 550025, China
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Dongming Sun
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, New Brunswick, NJ 08854, USA
| | - Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, New Brunswick, NJ 08854, USA
| | - Yi Ren
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, New Brunswick, NJ 08854, USA; Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA.
| |
Collapse
|
4
|
Chen B, Schneeberger M. Neuro-Adipokine Crosstalk in Alzheimer's Disease. Int J Mol Sci 2024; 25:5932. [PMID: 38892118 PMCID: PMC11173274 DOI: 10.3390/ijms25115932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The connection between body weight alterations and Alzheimer's disease highlights the intricate relationship between the brain and adipose tissue in the context of neurological disorders. During midlife, weight gain increases the risk of cognitive decline and dementia, whereas in late life, weight gain becomes a protective factor. Despite their substantial impact on metabolism, the role of adipokines in the transition from healthy aging to neurological disorders remains largely unexplored. We aim to investigate how the adipose tissue milieu and the secreted adipokines are involved in the transition between biological and pathological aging, highlighting the bidirectional relationship between the brain and systemic metabolism. Understanding the function of these adipokines will allow us to identify biomarkers for early detection of Alzheimer's disease and uncover novel therapeutic options.
Collapse
Affiliation(s)
- Bandy Chen
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Marc Schneeberger
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA;
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
5
|
Wu C, Pan Y, Wang L, Liu M, Tu P, Chen S, Shi L, Yan D, Ma Y, Guo Y. Inhibition of HDAC6 promotes microvascular endothelial cells to phagocytize myelin debris and reduces inflammatory response to accelerate the repair of spinal cord injury. CNS Neurosci Ther 2024; 30:e14439. [PMID: 37641882 PMCID: PMC10916453 DOI: 10.1111/cns.14439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/31/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
AIMS To identify an effective strategy for promoting microvascular endothelial cells (MECs) to phagocytize myelin debris and reduce secretion of inflammatory factors following spinal cord injury (SCI). METHODS We established a coculture model of myelin debris and vascular-like structures. The efficiency with which MECs phagocytize myelin debris under different conditions was examined via ELISA, flow cytometry, and immunofluorescence. Tubastatin-A was used to interfere with the coculture model. The anti-inflammatory effects of Tubastatin-A were observed by HE staining, flow cytometry, immunofluorescence, and ELISA. RESULTS MECs phagocytized myelin debris via IgM opsonization, and phagocytosis promoted the secretion of inflammatory factors, whereas IgG-opsonized myelin debris had no effect on inflammatory factors. Application of the HDAC6 inhibitor Tubastatin-A increased the IgG levels and decreased the IgM levels by regulating the proliferation and differentiation of B cells. Tubastatin-A exerted a regulatory effect on the HDAC6-mediated autophagy-lysosome pathway, promoting MECs to phagocytize myelin debris, reducing the secretion of inflammatory factors, and accelerating the repair of SCI. CONCLUSIONS Inhibition of HDAC6 to regulate the immune-inflammatory response and promote MECs to phagocytize myelin debris may represent a novel strategy in the treatment of SCI.
Collapse
Affiliation(s)
- Chengjie Wu
- Department of Traumatology and OrthopedicsAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & OrthopedicsNanjing University of Chinese MedicineNanjingChina
| | - Yalan Pan
- Laboratory of Chinese Medicine Nursing Intervention for Chronic DiseasesNanjing University of Chinese MedicineNanjingChina
| | - Lining Wang
- School of Chinese Medicine, School of Integrated Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Mengmin Liu
- School of Chinese Medicine, School of Integrated Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Pengcheng Tu
- Department of Traumatology and OrthopedicsAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & OrthopedicsNanjing University of Chinese MedicineNanjingChina
| | - Sixian Chen
- School of Chinese Medicine, School of Integrated Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Lei Shi
- School of Chinese Medicine, School of Integrated Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Danqing Yan
- Department of Traumatology and OrthopedicsAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & OrthopedicsNanjing University of Chinese MedicineNanjingChina
| | - Yong Ma
- Department of Traumatology and OrthopedicsAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & OrthopedicsNanjing University of Chinese MedicineNanjingChina
- School of Chinese Medicine, School of Integrated Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Yang Guo
- Department of Traumatology and OrthopedicsAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & OrthopedicsNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
6
|
Shultz RB, Hai N, Zhong Y. Local delivery of AdipoRon from self-assembled microparticles to inhibit myelin lipid uptake and to promote lipid efflux from rat macrophages. J Neural Eng 2024; 21:016028. [PMID: 38359460 DOI: 10.1088/1741-2552/ad29d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
Objective.Abundant lipid-laden macrophages are found at the injury site after spinal cord injury (SCI). These cells have been suggested to be pro-inflammatory and neurotoxic. AdipoRon, an adiponectin receptor agonist, has been shown to promote myelin lipid efflux from mouse macrophage foam cells. While it is an attractive therapeutic strategy, systemic administration of AdipoRon is likely to exert off-target effects. In addition, the pathophysiology after SCI in mice is different from that in humans, whereas rat and human SCI share similar functional and histological outcomes. In this study, we evaluated the effects of AdipoRon on rat macrophage foam cells and developed a drug delivery system capable of providing sustained local release of AdipoRon to the injured spinal cord.Approach.Rat macrophages were treated with myelin debris to generate anin vitromodel of SCI foam cells, and the effects of AdipoRon treatment on myelin uptake and efflux were studied. AdipoRon was then loaded into and released from microparticles made from dextran sulfate and fibrinogen for sustained release.Main results.AdipoRon treatment not only significantly promotes efflux of metabolized myelin lipids, but also inhibits uptake of myelin debris. Myelin debris alone does not appear to be inflammatory, but myelin debris treatment potentiates inflammation when administered along with pro-inflammatory lipopolysaccharide (LPS) and interferon-γ. AdipoRon significantly attenuated myelin lipid-induced potentiation of inflammation. Bioactive AdipoRon can be released in therapeutic doses from microparticles.Significance.These data suggest that AdipoRon is a promising therapeutic capable of reducing lipid accumulation via targeting both myelin lipid uptake and efflux, which potentially addresses chronic inflammation following SCI. Furthermore, we developed microparticle-based drug delivery systems for local delivery of AdipoRon to avoid deleterious side effects. This is the first study to release AdipoRon from drug delivery systems designed to reduce lipid accumulation and inflammation in reactive macrophages after SCI.
Collapse
Affiliation(s)
- Robert B Shultz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, United States of America
| | - Nan Hai
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, United States of America
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, United States of America
| |
Collapse
|
7
|
Ryan CB, Choi JS, Kang B, Herr S, Pereira C, Moraes CT, Al-Ali H, Lee JK. PI3K signaling promotes formation of lipid-laden foamy macrophages at the spinal cord injury site. Neurobiol Dis 2024; 190:106370. [PMID: 38049013 PMCID: PMC10804283 DOI: 10.1016/j.nbd.2023.106370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023] Open
Abstract
After spinal cord injury (SCI), infiltrating macrophages undergo excessive phagocytosis of myelin and cellular debris, forming lipid-laden foamy macrophages. To understand their role in the cellular pathology of SCI, investigation of the foamy macrophage phenotype in vitro revealed a pro-inflammatory profile, increased reactive oxygen species (ROS) production, and mitochondrial dysfunction. Bioinformatic analysis identified PI3K as a regulator of inflammation in foamy macrophages, and inhibition of this pathway decreased their lipid content, inflammatory cytokines, and ROS production. Macrophage-specific inhibition of PI3K using liposomes significantly decreased foamy macrophages at the injury site after a mid-thoracic contusive SCI in mice. RNA sequencing and in vitro analysis of foamy macrophages revealed increased autophagy and decreased phagocytosis after PI3K inhibition as potential mechanisms for reduced lipid accumulation. Together, our data suggest that the formation of pro-inflammatory foamy macrophages after SCI is due to the activation of PI3K signaling, which increases phagocytosis and decreases autophagy.
Collapse
Affiliation(s)
- Christine B Ryan
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - James S Choi
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - Brian Kang
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - Seth Herr
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - Claudia Pereira
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Hassan Al-Ali
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America; Department of Medicine Katz Division of Nephrology and Hypertension, University of Miami, Miller School of Medicine, Miami, FL, United States of America; Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, United States of America
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America.
| |
Collapse
|
8
|
Paseban T, Alavi MS, Etemad L, Roohbakhsh A. The role of the ATP-Binding Cassette A1 (ABCA1) in neurological disorders: a mechanistic review. Expert Opin Ther Targets 2023; 27:531-552. [PMID: 37428709 DOI: 10.1080/14728222.2023.2235718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/09/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Cholesterol homeostasis is critical for normal brain function. It is tightly controlled by various biological elements. ATP-binding cassette transporter A1 (ABCA1) is a membrane transporter that effluxes cholesterol from cells, particularly astrocytes, into the extracellular space. The recent studies pertaining to ABCA1's role in CNS disorders were included in this study. AREAS COVERED In this comprehensive literature review, preclinical and human studies showed that ABCA1 has a significant role in the following diseases or disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, neuropathy, anxiety, depression, psychosis, epilepsy, stroke, and brain ischemia and trauma. EXPERT OPINION ABCA1 via modulating normal and aberrant brain functions such as apoptosis, phagocytosis, BBB leakage, neuroinflammation, amyloid β efflux, myelination, synaptogenesis, neurite outgrowth, and neurotransmission promotes beneficial effects in aforementioned diseases. ABCA1 is a key molecule in the CNS. By boosting its expression or function, some CNS disorders may be resolved. In preclinical studies, liver X receptor agonists have shown promise in treating CNS disorders via ABCA1 and apoE enhancement.
Collapse
Affiliation(s)
- Tahere Paseban
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Zheng B, He Y, Yin S, Zhu X, Zhao Q, Yang H, Wang Z, Zhu R, Cheng L. Unresolved Excess Accumulation of Myelin-Derived Cholesterol Contributes to Scar Formation after Spinal Cord Injury. RESEARCH (WASHINGTON, D.C.) 2023; 6:0135. [PMID: 37223476 PMCID: PMC10202378 DOI: 10.34133/research.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/13/2023] [Indexed: 05/25/2023]
Abstract
Spinal cord injury triggers complex pathological cascades, resulting in destructive tissue damage and incomplete tissue repair. Scar formation is generally considered a barrier for regeneration in the central nervous system. However, the intrinsic mechanism of scar formation after spinal cord injury has not been fully elucidated. Here, we report that excess cholesterol accumulates in phagocytes and is inefficiently removed from spinal cord lesions in young adult mice. Interestingly, we observed that excessive cholesterol also accumulates in injured peripheral nerves but is subsequently removed by reverse cholesterol transport. Meanwhile, preventing reverse cholesterol transport leads to macrophage accumulation and fibrosis in injured peripheral nerves. Furthermore, the neonatal mouse spinal cord lesions are devoid of myelin-derived lipids and can heal without excess cholesterol accumulation. We found that transplantation of myelin into neonatal lesions disrupts healing with excessive cholesterol accumulation, persistent macrophage activation, and fibrosis. Myelin internalization suppresses macrophage apoptosis mediated by CD5L expression, indicating that myelin-derived cholesterol plays a critical role in impaired wound healing. Taken together, our data suggest that the central nervous system lacks an efficient approach for cholesterol clearance, resulting in excessive accumulation of myelin-derived cholesterol, thereby inducing scar formation after injury.
Collapse
Affiliation(s)
- Bolin Zheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
| | - Yijing He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
| | - Shuai Yin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
| | - Xu Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
| | - Qing Zhao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
| | - Huiyi Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Science and Technology,
Tongji University, Shanghai 200092, China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Science and Technology,
Tongji University, Shanghai 200092, China
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
- Clinical Center for Brain and Spinal Cord Research,
Tongji University, Shanghai 200092, China
| |
Collapse
|
10
|
Salmons HI, Gow C, Limberg AK, Bettencourt JW, Carstens MF, Payne AN, Morrey ME, Sanchez-Sotelo J, Berry DJ, Dudakovic A, Abdel MP. The Safety of Adiponectin Receptor Agonist AdipoRon in a Rabbit Model of Arthrofibrosis. Tissue Eng Part C Methods 2023; 29:154-159. [PMID: 36924279 PMCID: PMC10122264 DOI: 10.1089/ten.tec.2023.0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
AdipoRon is an adiponectin receptor 1, 2 (ADIPOR1 and ADIPOR2) agonist with numerous reported physiological benefits in murine models of human disease, including a proposed reduction in fibrosis. However, AdipoRon has never been investigated in rabbits, which provide a robust model for orthopedic conditions. We examined the safety of intravenous (IV) AdipoRon in New Zealand White (NZW) female rabbits surgically stressed by a procedure that mimics human arthrofibrosis. Fifteen female NZW rabbits were prospectively studied using increasing AdipoRon doses based on established literature. AdipoRon was dissolved in dimethyl sulfoxide (DMSO), diluted in normal saline, and administered IV preoperatively and for 5 subsequent days postoperatively. The primary outcome was overall toxicity to rabbits, whereas secondary outcomes were change in rabbit weights and hemodynamics and defining acid-base characteristics of the drug formulation. Two rabbits expired during preoperative drug administration at 25 mg/kg. Remaining rabbits received preoperative doses of DMSO (vehicle), 2.5, 5, or 10 mg/kg of AdipoRon without complications. On postoperative day 1, one rabbit sustained a tonic-clonic seizure after their second dose of 10 mg/kg AdipoRon. The remaining 12 rabbits (4 in each group) received six serial doses of vehicle, 2.5, or 5 mg/kg of AdipoRon without adverse effects. All formulations of AdipoRon were within safe physiological pH ranges (4-5). We are the first to report the use of IV AdipoRon in a surgically stressed rabbit model of orthopedic disease. AdipoRon doses of 5 mg/kg or less appear to be well-tolerated in female NZW rabbits. Impact statement We provided the first in vivo toxicity assessment and dose optimization of a new antifibrotic experimental medication, AdipoRon, in a surgically stressed rabbit model of knee arthrofibrosis.
Collapse
Affiliation(s)
- Harold I. Salmons
- Department of Orthopedic Surgery and Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher Gow
- Department of Comparative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Afton K. Limberg
- Department of Orthopedic Surgery and Mayo Clinic, Rochester, Minnesota, USA
| | | | - Mason F. Carstens
- Department of Orthopedic Surgery and Mayo Clinic, Rochester, Minnesota, USA
| | - Ashley N. Payne
- Department of Orthopedic Surgery and Mayo Clinic, Rochester, Minnesota, USA
| | - Mark E. Morrey
- Department of Orthopedic Surgery and Mayo Clinic, Rochester, Minnesota, USA
| | | | - Daniel J. Berry
- Department of Orthopedic Surgery and Mayo Clinic, Rochester, Minnesota, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery and Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery and Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Poppell M, Hammel G, Ren Y. Immune Regulatory Functions of Macrophages and Microglia in Central Nervous System Diseases. Int J Mol Sci 2023; 24:5925. [PMID: 36982999 PMCID: PMC10059890 DOI: 10.3390/ijms24065925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Macrophages can be characterized as a very multifunctional cell type with a spectrum of phenotypes and functions being observed spatially and temporally in various disease states. Ample studies have now demonstrated a possible causal link between macrophage activation and the development of autoimmune disorders. How these cells may be contributing to the adaptive immune response and potentially perpetuating the progression of neurodegenerative diseases and neural injuries is not fully understood. Within this review, we hope to illustrate the role that macrophages and microglia play as initiators of adaptive immune response in various CNS diseases by offering evidence of: (1) the types of immune responses and the processes of antigen presentation in each disease, (2) receptors involved in macrophage/microglial phagocytosis of disease-related cell debris or molecules, and, finally, (3) the implications of macrophages/microglia on the pathogenesis of the diseases.
Collapse
Affiliation(s)
| | | | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
12
|
Li C, Xiong W, Wan B, Kong G, Wang S, Wang Y, Fan J. Role of peripheral immune cells in spinal cord injury. Cell Mol Life Sci 2023; 80:2. [PMID: 36478290 PMCID: PMC9729325 DOI: 10.1007/s00018-022-04644-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Secondary spinal cord injury is caused by an inflammatory response cascade, and the process is irreversible. The immune system, as a mediator of inflammation, plays an important role in spinal cord injury. The spinal cord retains its immune privilege in a physiological state. Hence, elucidating the mechanisms by which peripheral immune cells are recruited to the lesion site and function after spinal cord injury is meaningful for the exploration of clinical therapeutic targets. In this review, we provide an overview of the multifaceted roles of peripheral immune cells in spinal cord injury.
Collapse
Affiliation(s)
- Cong Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wu Xiong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bowen Wan
- Department of Orthopaedics, Subei People's Hospital of Jiangsu, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Guang Kong
- Nanjing Medical University, Nanjing, 210029, China
| | - Siming Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yingying Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
13
|
AdipoRon Inhibits Neuroinflammation Induced by Deep Hypothermic Circulatory Arrest Involving the AMPK/NF-κB Pathway in Rats. Pharmaceutics 2022; 14:pharmaceutics14112467. [PMID: 36432657 PMCID: PMC9698032 DOI: 10.3390/pharmaceutics14112467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Deep hypothermic circulatory arrest (DHCA) can induce systemic inflammatory response syndrome, including neuroinflammation. Finding suitable compounds is necessary for attenuating neuroinflammation and avoiding cerebral complications following DHCA. In the present study, we established DHCA rat models and monitored the vital signs during the surgical process. After surgery, we found significantly increased proinflammatory cytokines (IL-6, IL-1β, and TNF-α) in DHCA rats. Quantitative proteomics analysis was performed for exploring the differentially expressed proteins in hippocampus of DHCA rats and the data showed the adiponectin receptor 1 protein was upregulated. More importantly, administration of AdipoRon, a small-molecule adiponectin receptor agonist, could improve the basic vital signs and attenuate the increased IL-6, IL-1β, and TNF-α in DHCA rats. Furthermore, AdipoRon inhibits the activation of microglia (M1 state) and promotes their transition to an anti-inflammatory state, via promoting the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), and downregulating nuclear factor kappa B (NF-κB) in DHCA rats. Consistently, we used LPS-treated BV2 cells to mimic the neuroinflammatory condition and found that AdipoRon dose-dependently decreased cytokines, along with increased phosphorylation of AMPK and downregulated NF-κB. In conclusion, our present data supported that AdipoRon inhibited DHCA-induced neuroinflammation via activating the hippocampal AMPK/NF-κB pathway.
Collapse
|
14
|
Pang Y, Liu X, Wang X, Shi X, Ma L, Zhang Y, Zhou T, Zhao C, Zhang X, Fan B, Hao J, Li W, Zhao X, Zhang R, Zhou S, Kong X, Feng S, Yao X. Edaravone Modulates Neuronal GPX4/ACSL4/5-LOX to Promote Recovery After Spinal Cord Injury. Front Cell Dev Biol 2022; 10:849854. [PMID: 35903552 PMCID: PMC9318422 DOI: 10.3389/fcell.2022.849854] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/24/2022] [Indexed: 01/20/2023] Open
Abstract
The FDA-approved drug edaravone has a neuroprotective effect on spinal cord injury (SCI) and many other central nervous system diseases. However, its molecular mechanism remains unclear. Since edaravone is a lipid peroxidation scavenger, we hypothesize that edaravone exerts its neuroprotective effect by inhibiting ferroptosis in SCI. Edaravone treatment after SCI upregulates glutathione peroxidase 4 (GPX4) and system Xc-light chain (xCT), which are anti-ferroptosis proteins. It downregulates pro-ferroptosis proteins Acyl-CoA synthetase long-chain family member 4 (ACSL4) and 5-lipoxygenase (5-LOX). The most significant changes in edaravone treatment occur in the acute phase, two days post injury. Edaravone modulates neuronal GPX4/ACSL4/5-LOX in the spinal segment below the lesion, which is critical for maintaining locomotion. Moreover, the GPX4/ACSL4/5-LOX in motor neuron is also modulated by edaravone in the spinal cord. Therefore, secondary injury below the lesion site is reversed by edaravone via ferroptosis inhibition. The cytokine array revealed that edaravone upregulated some anti-inflammatory cytokines such as IL-10, IL-13, and adiponectin. Edaravone reduced microgliosis and astrogliosis, indicating reduced neuroinflammation. Edaravone has a long-term effect on neuronal survival, spinal cord tissue sparing, and motor function recovery. In summary, we revealed a novel mechanism of edaravone in inhibiting neuronal ferroptosis in SCI. This mechanism may be generalizable to other neurological diseases.
Collapse
Affiliation(s)
- Yilin Pang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinjie Liu
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
| | - Xu Wang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuelian Shi
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Cardiovascular Diseases, Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lei Ma
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
| | - Tiangang Zhou
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
| | - Chenxi Zhao
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Cardiovascular Diseases, Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Baoyou Fan
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
| | - Jian Hao
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenxiang Li
- Orthopedic Research Center of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoqing Zhao
- Orthopedic Research Center of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rong Zhang
- Orthopedic Research Center of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Jiangsu, China
| | - Xiaohong Kong
- Orthopedic Research Center of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shiqing Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
- Orthopedic Research Center of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xue Yao
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
- Orthopedic Research Center of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Xue Yao,
| |
Collapse
|
15
|
Myelin and non-myelin debris contribute to foamy macrophage formation after spinal cord injury. Neurobiol Dis 2022; 163:105608. [PMID: 34979258 PMCID: PMC8783370 DOI: 10.1016/j.nbd.2021.105608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 02/03/2023] Open
Abstract
Tissue damage after spinal cord injury (SCI) elicits a robust inflammatory cascade that fails to resolve in a timely manner, resulting in impaired wound healing and cellular regeneration. This inflammatory response is partly mediated by infiltrating immune cells, including macrophages. As professional phagocytes, macrophages initially play an important role in debris clearance at the injury site, which would be necessary for proper tissue regeneration. After SCI, most macrophages become filled with lipid droplets due to excessive uptake of lipid debris, assuming a "foamy" phenotype that is associated with a proinflammatory state. Myelin has been assumed to be the main source of lipid that induces foamy macrophage formation after injury given its abundance in the spinal cord. This assumption has led to the widespread use of purified myelin treatment to model foamy macrophage formation in vitro. However, the assumption that myelin is necessary for foamy macrophage formation remains untested. To this end, we developed a novel foamy macrophage assay utilizing total spinal cord homogenate to include all sources of lipid present at the injury site. Using the myelin basic protein knockout (MBP KO, i.e., Shiverer) mice that lack myelin, we investigated lipid accumulation in foamy macrophages. Primary macrophages treated with myelin-deficient spinal cord homogenate still formed large lipid droplets typically observed in foamy macrophages, although to a lesser degree than cells treated with normal homogenate. Similarly, MBP KO mice subjected to contusive spinal cord injury also formed foamy macrophages that exhibited reduced lipid content and associated with improved histological outcomes and reduced immune cell infiltration. Therefore, the absence of myelin does not preclude foamy macrophage formation, indicating that myelin is not the only major source of lipid that contributes this pathology, even though myelin may alter certain aspects of its inflammatory profile.
Collapse
|
16
|
Decreased Adiponectin Levels Are a Risk Factor for Cognitive Decline in Spinal Cord Injury. DISEASE MARKERS 2022; 2022:5389162. [PMID: 35082930 PMCID: PMC8786530 DOI: 10.1155/2022/5389162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022]
Abstract
Objective Spinal cord injury (SCI) has become popular in recent years, and cognitive decline is a common complication. Adiponectin is a common protein hormone involved in the course of many diseases, but its relationship with SCI has not yet been elucidated. The purpose of our prospective study is to explore whether adiponectin can be used as a biomarker of cognitive decline in SCI. Methods A total of 64 healthy volunteers and 92 patients with acute SCI were recruited by us. Serum adiponectin levels, demographic data (age and gender), lifestyle (smoking and drinking), medical history (diabetes and hypertension), and clinical baseline data (low-density lipoprotein, high-density lipoprotein, and fasting blood glucose) were recorded. Three months after enrollment, we used the Montreal Cognitive Assessment (MoCA) to evaluate cognitive function. Based on a quarter of the serum adiponectin levels, SCI patients were divided into 4 groups, and the differences in their MoCA scores were compared. In addition, we used multivariate linear regression to predict the risk factors of the MoCA score. Results The serum adiponectin level (6.1 ± 1.1 μg/ml) of SCI patients was significantly lower than that of the healthy control group (6.7 ± 0.9 μg/ml), and there was a significant difference between the two (p < 0.001). The group with higher serum adiponectin levels after 3 months of spinal cord injury had higher MoCA scores. Multivariate regression analysis showed that serum adiponectin level is a protective factor for cognitive function after SCI (β = 0.210, p = 0.043). Conclusions Serum adiponectin levels can be used as an independent predictor of cognitive function in patients with acute SCI.
Collapse
|
17
|
Ding Y, Zhang D, Wang S, Zhang X, Yang J. Hematogenous Macrophages: A New Therapeutic Target for Spinal Cord Injury. Front Cell Dev Biol 2021; 9:767888. [PMID: 34901013 PMCID: PMC8653770 DOI: 10.3389/fcell.2021.767888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating disease leading to loss of sensory and motor functions, whose pathological process includes mechanical primary injury and secondary injury. Macrophages play an important role in SCI pathology. According to its origin, it can be divided into resident microglia and peripheral monocyte-derived macrophages (hematogenous Mφ). And it can also be divided into M1-type macrophages and M2-type macrophages on the basis of its functional characteristics. Hematogenous macrophages may contribute to the SCI process through infiltrating, scar forming, phagocytizing debris, and inducing inflammatory response. Although some of the activities of hematogenous macrophages are shown to be beneficial, the role of hematogenous macrophages in SCI remains controversial. In this review, following a brief introduction of hematogenous macrophages, we mainly focus on the function and the controversial role of hematogenous macrophages in SCI, and we propose that hematogenous macrophages may be a new therapeutic target for SCI.
Collapse
Affiliation(s)
- Yuanzhe Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Di Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, China
| | - Sheng Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, China.,Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, China
| | - Jingquan Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, China
| |
Collapse
|
18
|
Sheng X, Zhao J, Li M, Xu Y, Zhou Y, Xu J, He R, Lu H, Wu T, Duan C, Cao Y, Hu J. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Accelerate Functional Recovery After Spinal Cord Injury by Promoting the Phagocytosis of Macrophages to Clean Myelin Debris. Front Cell Dev Biol 2021; 9:772205. [PMID: 34820385 PMCID: PMC8606563 DOI: 10.3389/fcell.2021.772205] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/11/2021] [Indexed: 01/18/2023] Open
Abstract
Macrophage phagocytosis contributes predominantly to processing central nervous system (CNS) debris and further facilitates neurological function restoration after CNS injury. The aims of this study were to evaluate the effect of bone marrow mesenchymal stem cells (BMSC)-derived exosomes (BMSC-Exos) on the phagocytic capability of macrophages to clear myelin debris and to investigate the underlying molecular mechanism during the spinal cord injury (SCI) process. This work reveals that monocyte-derived macrophages (MDMs) infiltrating into the SCI site could efficiently engulf myelin debris and process phagocytic material. However, the phagocytic ability of macrophages to clear tissue debris is compromised after SCI. The administration of BMSC-Exos as an approach for SCI treatment could rescue macrophage normal function by improving the phagocytic capability of myelin debris internalization, which is beneficial for SCI repair, as evidenced by better axon regrowth and increased hindlimb locomotor functional recovery in a rodent model. Examination of macrophage treatment with BMSC-Exos revealed that BMSC-Exos could promote the capacity of macrophages to phagocytose myelin debris in vitro and could create a regenerative microenvironment for axon regrowth. In addition, we confirmed that BMSC-Exo treatment resulted in improved phagocytosis of engulfed myelin debris by promoting the expression of macrophage receptor with collagenous structure (MARCO) in macrophages. The inhibition of MARCO with PolyG (a MARCO antagonist) impaired the effect of BMSC-Exos on the phagocytic capacity of macrophages and resulted in compromised myelin clearance at the lesion site, leading to further tissue damage and impaired functional healing after SCI. In conclusion, these data indicated that targeting the phagocytic ability of macrophages may have therapeutic potential for the improvement in functional healing after SCI. The administration of BMSC-Exos as a cell-free immune therapy strategy has wide application prospects for SCI treatment.
Collapse
Affiliation(s)
- Xiaolong Sheng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinyun Zhao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Miao Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, Hunan Children's Hospital, Changsha, China
| | - Yan Xu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhou
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Pain, Institute of Pain Medicine, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rundong He
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Cao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Lindfors S, Polianskyte-Prause Z, Bouslama R, Lehtonen E, Mannerla M, Nisen H, Tienari J, Salmenkari H, Forsgård R, Mirtti T, Lehto M, Groop PH, Lehtonen S. Adiponectin receptor agonist AdipoRon ameliorates renal inflammation in diet-induced obese mice and endotoxin-treated human glomeruli ex vivo. Diabetologia 2021; 64:1866-1879. [PMID: 33987714 PMCID: PMC8245393 DOI: 10.1007/s00125-021-05473-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/01/2021] [Indexed: 11/10/2022]
Abstract
AIMS/HYPOTHESIS Chronic low-grade inflammation with local upregulation of proinflammatory molecules plays a role in the progression of obesity-related renal injury. Reduced serum concentration of anti-inflammatory adiponectin may promote chronic inflammation. Here, we investigated the potential anti-inflammatory and renoprotective effects and mechanisms of action of AdipoRon, an adiponectin receptor agonist. METHODS Wild-type DBA/2J mice were fed with high-fat diet (HFD) supplemented or not with AdipoRon to model obesity-induced metabolic endotoxaemia and chronic low-grade inflammation and we assessed changes in the glomerular morphology and expression of proinflammatory markers. We also treated human glomeruli ex vivo and human podocytes in vitro with AdipoRon and bacterial lipopolysaccharide (LPS), an endotoxin upregulated in obesity and diabetes, and analysed the secretion of inflammatory cytokines, activation of inflammatory signal transduction pathways, apoptosis and migration. RESULTS In HFD-fed mice, AdipoRon attenuated renal inflammation, as demonstrated by reduced expression of glomerular activated NF-κB p65 subunit (NF-κB-p65) (70%, p < 0.001), TNFα (48%, p < 0.01), IL-1β (51%, p < 0.001) and TGFβ (46%, p < 0.001), renal IL-6 and IL-4 (21% and 20%, p < 0.05), and lowered glomerular F4/80-positive macrophage infiltration (31%, p < 0.001). In addition, AdipoRon ameliorated HFD-induced glomerular hypertrophy (12%, p < 0.001), fibronectin accumulation (50%, p < 0.01) and podocyte loss (12%, p < 0.001), and reduced podocyte foot process effacement (15%, p < 0.001) and thickening of the glomerular basement membrane (18%, p < 0.001). In cultured podocytes, AdipoRon attenuated the LPS-induced activation of the central inflammatory signalling pathways NF-κB-p65, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38-MAPK) (30%, 36% and 22%, respectively, p < 0.001), reduced the secretion of TNFα (32%, p < 0.01), and protected against podocyte apoptosis and migration. In human glomeruli ex vivo, AdipoRon reduced the LPS-induced secretion of inflammatory cytokines IL-1β, IL-18, IL-6 and IL-10. CONCLUSIONS/INTERPRETATION AdipoRon attenuated the renal expression of proinflammatory cytokines in HFD-fed mice and LPS-stimulated human glomeruli, which apparently contributed to the amelioration of glomerular inflammation and injury. Mechanistically, based on assays on cultured podocytes, AdipoRon reduced LPS-induced activation of the NF-κB-p65, JNK and p38-MAPK pathways, thereby impelling the decrease in apoptosis, migration and secretion of TNFα. We conclude that the activation of the adiponectin receptor by AdipoRon is a potent strategy to attenuate endotoxaemia-associated renal inflammation.
Collapse
Affiliation(s)
- Sonja Lindfors
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Zydrune Polianskyte-Prause
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rim Bouslama
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eero Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Miia Mannerla
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harry Nisen
- Abdominal Center, Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jukka Tienari
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanne Salmenkari
- Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Richard Forsgård
- Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuomas Mirtti
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Markku Lehto
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Per-Henrik Groop
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sanna Lehtonen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Pathology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
20
|
Bhat IA, Kabeer SW, Reza MI, Mir RH, Dar MO. AdipoRon: A Novel Insulin Sensitizer in Various Complications and the Underlying Mechanisms: A Review. Curr Mol Pharmacol 2021; 13:94-107. [PMID: 31642417 DOI: 10.2174/1874467212666191022102800] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AdipoRon is the first synthetic analog of endogenous adiponectin, an adipose tissue-derived hormone. AdipoRon possesses pharmacological properties similar to adiponectin and its ability to bind and activate the adipoR1 and adipoR2 receptors makes it a suitable candidate for the treatment of a multitude of disorders. OBJECTIVE In the present review, an attempt was made to compile and discuss the efficacy of adipoRon against various disorders. RESULTS AdipoRon is a drug that acts not only in metabolic diseases but in other conditions unrelated to energy metabolism. It is well- reported that adipoRon exhibits strong anti-obesity, anti-diabetic, anticancer, anti-depressant, anti-ischemic, anti-hypertrophic properties and also improves conditions like post-traumatic stress disorder, anxiety, and systemic sclerosis. CONCLUSION A lot is known about its effects in experimental systems, but the translation of this knowledge to the clinic requires studies which, for many of the potential target conditions, have yet to be carried out. The beneficial effects of AdipoRon in novel clinical conditions will suggest an underlying pathophysiological role of adiponectin and its receptors in previously unsuspected settings.
Collapse
Affiliation(s)
- Ishfaq Ahmad Bhat
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar (Mohali), Punjab-160062, India
| | - Shaheen Wasil Kabeer
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar (Mohali), Punjab-160062, India
| | - Mohammad Irshad Reza
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar (Mohali), Punjab-160062, India
| | - Reyaz Hassan Mir
- Department of Pharmaceutical Sciences, Faculty of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, J&K, India
| | - Muhammad Ovais Dar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| |
Collapse
|
21
|
Zhang Y, Al Mamun A, Yuan Y, Lu Q, Xiong J, Yang S, Wu C, Wu Y, Wang J. Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review). Mol Med Rep 2021; 23:417. [PMID: 33846780 PMCID: PMC8025476 DOI: 10.3892/mmr.2021.12056] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is one of the most debilitating of all the traumatic conditions that afflict individuals. For a number of years, extensive studies have been conducted to clarify the molecular mechanisms of SCI. Experimental and clinical studies have indicated that two phases, primary damage and secondary damage, are involved in SCI. The initial mechanical damage is caused by local impairment of the spinal cord. In addition, the fundamental mechanisms are associated with hyperflexion, hyperextension, axial loading and rotation. By contrast, secondary injury mechanisms are led by systemic and cellular factors, which may also be initiated by the primary injury. Although significant advances in supportive care have improved clinical outcomes in recent years, a number of studies continue to explore specific pharmacological therapies to minimize SCI. The present review summarized some important pathophysiologic mechanisms that are involved in SCI and focused on several pharmacological and non‑pharmacological therapies, which have either been previously investigated or have a potential in the management of this debilitating injury in the near future.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Abdullah Al Mamun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yuan Yuan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Qi Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jun Xiong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Shulin Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China
| | - Chengbiao Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jian Wang
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
22
|
Uddin MS, Rahman MM, Sufian MA, Jeandet P, Ashraf GM, Bin-Jumah MN, Mousa SA, Abdel-Daim MM, Akhtar MF, Saleem A, Amran MS. Exploring the New Horizon of AdipoQ in Obesity-Related Alzheimer's Dementia. Front Physiol 2021; 11:567678. [PMID: 33584324 PMCID: PMC7873563 DOI: 10.3389/fphys.2020.567678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, which causes abnormalities in learning, thinking, memory, as well as behavior. Generally, symptoms of AD develop gradually and aggravate over time, and consequently severely interfere with daily activities. Furthermore, obesity is one of the common risk factors for dementia. Dysregulation of adipokine and adipocyte dysfunction are assumed to be accountable for the high risk of obesity in people that develop many related disorders such as AD. Moreover, it has been observed that the dysfunction of adipose is connected with changes in brain metabolism, brain atrophy, cognitive decline, impaired mood, neuroinflammation, impaired insulin signaling, and neuronal dysfunction in people with obesity. Conversely, the pathological mechanisms, as well as the molecular players which are involved in this association, have been unclear until now. In this article, we discuss the impact of adiponectin (AdipoQ) on obesity-related Alzheimer's dementia.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md. Motiar Rahman
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Mohammad Abu Sufian
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, Reims Cedex, France
| | - Ghulam Md. Ashraf
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, New York, NY, United States
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW To review new evidence on links between poststroke dementia and inflammation. RECENT FINDINGS Although there are still no treatments for poststroke dementia, recent evidence has improved our understanding that stroke increases the risk of incident dementia and worsens cognitive trajectory for at least a decade afterwards. Within approximately the first year dementia onset is associated with stroke severity and location, whereas later absolute risk is associated with more traditional dementia risk factors, such as age and imaging findings. The molecular mechanisms that underlie increased risk of incident dementia in stroke survivors remain unproven; however new data in both human and animal studies suggests links between cognitive decline and inflammation. These point to a model where chronic brain inflammation, provoked by inefficient clearance of myelin debris and a prolonged innate and adaptive immune response, causes poststroke dementia. These localized immune events in the brain may themselves be influenced by the peripheral immune state at key times after stroke. SUMMARY This review recaps clinical evidence on poststroke dementia, new mechanistic links between the chronic inflammatory response to stroke and poststroke dementia, and proposes a model of immune-mediated neurodegeneration after stroke.
Collapse
|
24
|
Wu S, Romero-Ramírez L, Mey J. Retinoic acid increases phagocytosis of myelin by macrophages. J Cell Physiol 2020; 236:3929-3945. [PMID: 33165955 PMCID: PMC7984038 DOI: 10.1002/jcp.30137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/28/2022]
Abstract
Traumatic injuries of the central nervous system (CNS) are followed by the accumulation of cellular debris including proteins and lipids from myelinated fiber tracts. Insufficient phagocytic clearance of myelin debris influences the pathological process because it induces inflammation and blocks axonal regeneration. We investigated whether ligands of nuclear receptor families retinoic acid receptors (RARs), retinoid X receptors, peroxisome proliferator-activated receptors, lipid X receptors, and farnesoid X receptors increase myelin phagocytosis by murine bone marrow-derived macrophages and Raw264.7 cells. Using in vitro assays with 3,3'-dioctadecyloxacarbocyanine perchlorate- and pHrodo-labeled myelin we found that the transcriptional activator all-trans retinoic acid (RA)enhanced endocytosis of myelin involving the induction of tissue transglutaminase-2. The RAR-dependent increase of phagocytosis was not associated with changes in gene expression of receptors FcγR1, FcγR2b, FcγR3, TREM2, DAP12, CR3, or MerTK. The combination of RA and myelin exposure significantly reduced the expression of M1 marker genes inducible nitric oxide synthase and interleukin-1β and increased expression of transmembrane proteins CD36 and ABC-A1, which are involved in lipid transport and metabolism. The present results suggest an additional mechanism for therapeutic applications of RA after CNS trauma. It remains to be studied whether endogenous RA-signaling regulates phagocytosis in vivo.
Collapse
Affiliation(s)
- Siyu Wu
- Laboratorio Regeneración Neuronal e Inmunidad Innata, Hospital Nacional de Parapléjicos, Toledo, Spain.,School of Mental Health and Neuroscience and EURON Graduate School of Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Lorenzo Romero-Ramírez
- Laboratorio Regeneración Neuronal e Inmunidad Innata, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Jörg Mey
- Laboratorio Regeneración Neuronal e Inmunidad Innata, Hospital Nacional de Parapléjicos, Toledo, Spain.,School of Mental Health and Neuroscience and EURON Graduate School of Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
25
|
Zhang Q, Kim JH, Kim Y, Kim W. Lactococcus chungangensis CAU 28 alleviates diet-induced obesity and adipose tissue metabolism in vitro and in mice fed a high-fat diet. J Dairy Sci 2020; 103:9803-9814. [PMID: 32896398 DOI: 10.3168/jds.2020-18681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022]
Abstract
Obesity, which has become a major public health problem, can arise from complex dyslipidemia, insulin resistance, and immune responses, among other mechanisms. Some Lactobacillus strains effectively ameliorate obesity; however, the beneficial effects of Lactococcus spp., which are often used as dairy starters, remain unclear. In the present study, we evaluated the efficacy of Lactococcus chungangensis CAU 28 using the 3T3-L1 cell line and obese mice fed a high-fat diet. Overall, administration of Lc. chungangensis CAU 28 effectively resolved obesity associated with weight gain and lipid accumulation. In differentiated 3T3-L1 cells, Lc. chungangensis CAU 28 treatment significantly diminished the total lipid quantity, inhibited triglyceride formation, and prevented the proliferation of adipogenic transcription factors (fatty acid synthase, adiponectin, peroxisome proliferator-activated receptor-gamma, and CCAAT-enhancer-binding protein-α) associated with lipid accumulation. In the obesity mouse model, wherein the intake of Lc. chungangensis CAU 28 effectively reduced body weight gain, along with fat differentiation and accumulation (white fat; abdominal and subcutaneous). Furthermore, Lc. chungangensis CAU 28 increased serum adiponectin levels, decreased serum leptin levels, and effectively regulated adipokine secretion. It also increased the high-density lipoprotein:cholesterol ratio, reduced total cholesterol and triglyceride levels, reduced the low-density lipoprotein:cholesterol ratio, and affected obesity-regulated inflammatory cytokines IL-6, tumor necrosis factor-α, IFN-γ, and IL-1β. Additionally, Lc. chungangensis CAU 28 was associated with an increase in the CD3+CD4+CD8- phenotype among obese mice. Thus, the administration of Lc. chungangensis CAU 28 induced antiobesity effects, suggesting potential applications of this species as a supplement for obesity mitigation.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Jong-Hwa Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Yena Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea.
| |
Collapse
|
26
|
Abstract
BACKGROUND Adiponectin is the most abundant adipokines that plays critical roles in the maintenance of energy homeostasis as well as inflammation regulation. The half-life of adiponectin is very short and the small-molecule adiponectin receptor agonist has been synthesized recently. In the present study, the potential roles of AdipoRon, an adiponectin receptor agonist, in a mouse model of lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced acute hepatitis was explored. METHODS BALB/c mice (n = 144, male) were divided into three sets. In set 1, 32 mice were randomized into four groups: the control group, the AdipoRon group, the LPS/D-Gal group, and the AdipoRon + LPS/D-Gal group. The mice in set 1 were sacrificed after LPS/D-Gal treatment, and the plasma samples were collected for detection of tumor necrosis factor-alpha (TNF-α). In set 2, the 32 mice were also divided into four groups similar to that of set 1. The mice were sacrificed 6 h after LPS/D-Gal injection and plasma samples and liver were collected. In set 3, 80 mice (divided into four groups, n = 20) were used for survival observation. The survival rate, plasma aminotransferases, histopathological damage were measured and compared between these four groups. RESULTS AdipoRon suppressed the elevation of plasma aminotransferases (from 2106.3 ± 781.9 to 286.8 ± 133.1 U/L for alanine aminotransferase, P < 0.01; from 566.5 ± 243.4 to 180.1 ± 153.3 U/L for aspartate aminotransferase, P < 0.01), attenuated histopathological damage and improved the survival rate (from 10% to 60%) in mice with LPS/D-Gal-induced acute hepatitis. Additionally, AdipoRon down-regulated the production of TNF-α (from 328.6 ± 121.2 to 213.4 ± 52.2 pg/mL, P < 0.01), inhibited the activation of caspase-3 (from 2.04-fold to 1.34-fold of the control), caspase-8 (from 2.03-fold to 1.31-fold of the control), and caspase-9 (from 2.14-fold to 1.43-fold of the control), and decreased the level of cleaved caspase-3 (0.28-fold to that of the LPS/D-Gal group). The number of terminal deoxynucleotidyl transferase-mediated nucleotide nick-end labeling-positive apoptotic hepatocytes in LPS/D-Gal-exposed mice also reduced. CONCLUSIONS These data indicated that LPS/D-Gal-induced acute hepatitis was effectively attenuated by the adiponectin receptor agonist AdipoRon, implying that AdipoRon might become a new reagent for treatment of acute hepatitis.
Collapse
|
27
|
Increasing Adiponergic System Activity as a Potential Treatment for Depressive Disorders. Mol Neurobiol 2019; 56:7966-7976. [PMID: 31140056 PMCID: PMC6834732 DOI: 10.1007/s12035-019-01644-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/22/2022]
Abstract
Depression is the most devastating mental disorder and one of the leading contributors to the global medical burden. Current antidepressant prescriptions present drawbacks, including treatment resistance, delayed onset of treatment response, and side effects. The rapid and long-lasting antidepressant effect of ketamine has brought hope to treatment-resistant major depressive disorder patients. However, ketamine has undesirable addictive properties and is a drug of abuse. There is an urgent need, therefore, to develop novel pharmacological interventions that could be as effective as ketamine, but without its side effects. Adiponectin, a pleiotropic adipocyte-secreted hormone, has insulin-sensitizing and neurotrophic properties. It can cross the blood-brain barrier and target multiple brain regions where the adiponectin receptors are detected. Emerging evidence has suggested that adiponectin and the adiponectin receptor agonist, AdipoRon, could promote adult neurogenesis, dendritic and spine remodeling, and synaptic plasticity in the hippocampus, resulting in antidepressant effects in adult mice. By summarizing the most recent clinical and animal studies, this review provides a timely insight on how modulating the adiponergic system in the hippocampus could be a potential therapeutic target for an effective and fast-acting antidepressant response.
Collapse
|
28
|
Milich LM, Ryan CB, Lee JK. The origin, fate, and contribution of macrophages to spinal cord injury pathology. Acta Neuropathol 2019; 137:785-797. [PMID: 30929040 PMCID: PMC6510275 DOI: 10.1007/s00401-019-01992-3] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022]
Abstract
Virtually all phases of spinal cord injury pathogenesis, including inflammation, cell proliferation and differentiation, as well as tissue remodeling, are mediated in part by infiltrating monocyte-derived macrophages. It is now clear that these infiltrating macrophages have distinct functions from resident microglia and are capable of mediating both harmful and beneficial effects after injury. These divergent effects have been largely attributed to environmental cues, such as specific cytokines, that influence the macrophage polarization state. In this review, we also consider the possibility that different macrophage origins, including the spleen, bone marrow, and local self-renewal, may also affect macrophage fate, and ultimately their function that contribute to the complex pathobiology of spinal cord injury.
Collapse
Affiliation(s)
- Lindsay M Milich
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Christine B Ryan
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
29
|
Forny-Germano L, De Felice FG, Vieira MNDN. The Role of Leptin and Adiponectin in Obesity-Associated Cognitive Decline and Alzheimer's Disease. Front Neurosci 2019; 12:1027. [PMID: 30692905 PMCID: PMC6340072 DOI: 10.3389/fnins.2018.01027] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Cross-talk between adipose tissue and central nervous system (CNS) underlies the increased risk of obese people to develop brain diseases such as cognitive and mood disorders. Detailed mechanisms for how peripheral changes caused by adipose tissue accumulation in obesity impact the CNS to cause brain dysfunction are poorly understood. Adipokines are a large group of substances secreted by the white adipose tissue to regulate a wide range of homeostatic processes including, but not limited to, energy metabolism and immunity. Obesity is characterized by a generalized change in the levels of circulating adipokines due to abnormal accumulation and dysfunction of adipose tissue. Altered adipokine levels underlie complications of obesity as well as the increased risk for the development of obesity-related comorbidities such as type 2 diabetes, cardiovascular and neurodegenerative diseases. Here, we review the literature for the role of adipokines as key mediators of the communication between periphery and CNS in health and disease. We will focus on the actions of leptin and adiponectin, two of the most abundant and well studied adipokines, in the brain, with particular emphasis on how altered signaling of these adipokines in obesity may lead to cognitive dysfunction and augmented risk for Alzheimer's disease. A better understanding of adipokine biology in brain disorders may prove of major relevance to diagnostic, prevention and therapy.
Collapse
Affiliation(s)
- Leticia Forny-Germano
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G. De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Centre for Neuroscience Studies, Department of Psychiatry, Queen’s University, Kingston, ON, Canada
| | | |
Collapse
|
30
|
Liu Y, Vu V, Sweeney G. Examining the Potential of Developing and Implementing Use of Adiponectin-Targeted Therapeutics for Metabolic and Cardiovascular Diseases. Front Endocrinol (Lausanne) 2019; 10:842. [PMID: 31920962 PMCID: PMC6918867 DOI: 10.3389/fendo.2019.00842] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiometabolic diseases encompass those affecting the heart and vasculature as well as other metabolic problems, such as insulin resistance, diabetes, and non-alcoholic fatty liver disease. These diseases tend to have common risk factors, one of which is impaired adiponectin action. This may be due to reduced bioavailability of the hormone or resistance to its effects on target tissues. A strong negative correlation between adiponectin levels and cardiometabolic diseases has been well-documented and research shown that adiponectin has cardioprotective, insulin sensitizing and direct beneficial metabolic effects. Thus, therapeutic approaches to enhance adiponectin action are widely considered to be desirable. The complexity of adiponectin structure and function has so far made progress in this area less than ideal. In this article we will review the effects and mechanism of action of adiponectin on cardiometabolic tissues, identify scenarios where enhancing adiponectin action would be of clinical value and finally discuss approaches via which this can be achieved.
Collapse
Affiliation(s)
- Ying Liu
- Metabolic Disease Research Division, iCarbonX Co. Ltd., Shenzhen, China
- *Correspondence: Ying Liu
| | - Vivian Vu
- Department of Biology, York University, Toronto, ON, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
- Gary Sweeney
| |
Collapse
|