1
|
Valero-Hernandez E, Tremoleda JL, Michael-Titus AT. Omega-3 Fatty Acids and Traumatic Injury in the Adult and Immature Brain. Nutrients 2024; 16:4175. [PMID: 39683568 DOI: 10.3390/nu16234175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Traumatic brain injury (TBI) can lead to substantial disability and health loss. Despite its importance and impact worldwide, no treatment options are currently available to help protect or preserve brain structure and function following injury. In this review, we discuss the potential benefits of using omega-3 polyunsaturated fatty acids (O3 PUFAs) as therapeutic agents in the context of TBI in the paediatric and adult populations. Methods: Preclinical and clinical research reports investigating the effects of O3 PUFA-based interventions on the consequences of TBI were retrieved and reviewed, and the evidence presented and discussed. Results: A range of animal models of TBI, types of injury, and O3 PUFA dosing regimens and administration protocols have been used in different strategies to investigate the effects of O3 PUFAs in TBI. Most evidence comes from preclinical studies, with limited clinical data available thus far. Overall, research indicates that high O3 PUFA levels help lessen the harmful effects of TBI by reducing tissue damage and cell loss, decreasing associated neuroinflammation and the immune response, which in turn moderates the severity of the associated neurological dysfunction. Conclusions: Data from the studies reviewed here indicate that O3 PUFAs could substantially alleviate the impact of traumatic injuries in the central nervous system, protect structure and help restore function in both the immature and adult brains.
Collapse
Affiliation(s)
- Ester Valero-Hernandez
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Jordi L Tremoleda
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Adina T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
2
|
Chevignard M, Câmara-Costa H, Dellatolas G. Predicting and improving outcome in severe pediatric traumatic brain injury. Expert Rev Neurother 2024; 24:963-983. [PMID: 39140714 DOI: 10.1080/14737175.2024.2389921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Severe pediatric traumatic brain injury (spTBI), including abusive head trauma (AHT) in young children, is a major public health problem. Long-term consequences of spTBI include a large variety of physical, neurological, biological, cognitive, behavioral and social deficits and impairments. AREAS COVERED The present narrative review summarizes studies and reviews published from January 2019 to February 2024 on spTBI. Significant papers published before 2019 were also included. The article gives coverage to the causes of spTBI, its epidemiology and fatality rates; disparities, inequalities, and socioeconomic factors; critical care; outcomes; and interventions. EXPERT OPINION There are disparities between countries and according to socio-economic factors regarding causes, treatments and outcomes of spTBI. AHT has an overall poor outcome. Adherence to critical care guidelines is imperfect and the evidence-base of guidelines needs further investigations. Neuroimaging and biomarker predictors of outcomes is a rapidly evolving domain. Long-term cognitive, behavioral and psychosocial difficulties are the most prevalent and disabling. Their investigation should make a clear distinction between objective (clinical examination, cognitive tests, facts) and subjective measures (estimations using patient- and proxy-reported questionnaires), considering possible common source bias in reported difficulties. Family/caregiver-focused interventions, ecological approaches, and use of technology in delivery of interventions are recommended to improve long-term difficulties after spTBI.
Collapse
Affiliation(s)
- Mathilde Chevignard
- Rehabilitation Department for Children with Acquired Neurological Injury, Saint Maurice Hospitals, Saint Maurice, France
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- Sorbonne Université, GRC 24 Handicap Moteur Cognitif et Réadaptation (HaMCRe), AP-HP, Paris, France
| | - Hugo Câmara-Costa
- Rehabilitation Department for Children with Acquired Neurological Injury, Saint Maurice Hospitals, Saint Maurice, France
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- Sorbonne Université, GRC 24 Handicap Moteur Cognitif et Réadaptation (HaMCRe), AP-HP, Paris, France
| | - Georges Dellatolas
- Sorbonne Université, GRC 24 Handicap Moteur Cognitif et Réadaptation (HaMCRe), AP-HP, Paris, France
| |
Collapse
|
3
|
Thomas PA, Bolton SH, Ontiveros F, Mattson WI, Vannatta K, Lo W, Wilde EA, Cunningham WA, Yeates KO, Hoskinson KR. Exploring the link among injury severity, white matter connectivity and psychosocial outcomes in pediatric TBI: a probabilistic tractography approach. Int J Neurosci 2024:1-13. [PMID: 39235059 DOI: 10.1080/00207454.2024.2394777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
AIM We examined associations among injury severity, white matter structural connectivity within functionally defined brain networks and psychosocial/adaptive outcomes in children with traumatic brain injury (TBI). METHOD Participants included 58 youths (39 male) with complicated-mild TBI (cmTBI; n = 12, age = 12.6 ± 2.0), moderate/severe TBI (msTBI; n = 16, age = 11.4 ± 2.9) and a comparison group with orthopedic injury (OI; n = 24, age = 11.7 ± 2.1), at least 1 year post-injury. Participants underwent diffusion tensor imaging and parents rated children's behavioral and adaptive function on the CBCL and ABAS-3, respectively. Probabilistic tractography quantified streamline density. Group differences were analyzed for structural connectivity and behavioral outcomes. RESULTS Groups differed in structural connectivity within regions of the default mode and central executive networks (ps < .05, FDR corrected). The msTBI group displayed decreased connectivity relative to cmTBI and OI, whereas the cmTBI group displayed increased connectivity relative to msTBI and OI. Similar patterns emerged in several behavioral domains. Ordinary least squares path analyses showed that structural connectivity mediated the relationship between injury severity and multiple parent-reported outcomes for msTBI. INTERPRETATION White matter structural connectivity may explain unique variance in long-term psychosocial and adaptive outcome in children with TBI, particularly in cases of moderate-to-severe injury.
Collapse
Affiliation(s)
- Peyton A Thomas
- Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Scout H Bolton
- Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Florencia Ontiveros
- Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Whitney I Mattson
- Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kathryn Vannatta
- Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Section of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Warren Lo
- Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Section of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Keith Owen Yeates
- Department of Psychology and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Child Brain and Mental Health Program, Alberta Children's Hospital Research Institute, Alberta Children's Hospital, Alberta, Canada
| | - Kristen R Hoskinson
- Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Section of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
4
|
Betz AK, Cetin-Karayumak S, Bonke EM, Seitz-Holland J, Zhang F, Pieper S, O'Donnell LJ, Tripodis Y, Rathi Y, Shenton ME, Koerte IK. Executive functioning, behavior, and white matter microstructure in the chronic phase after pediatric mild traumatic brain injury: results from the adolescent brain cognitive development study. Psychol Med 2024; 54:2133-2143. [PMID: 38497117 DOI: 10.1017/s0033291724000229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND Mild traumatic brain injury (mTBI) is common in children. Long-term cognitive and behavioral outcomes as well as underlying structural brain alterations following pediatric mTBI have yet to be determined. In addition, the effect of age-at-injury on long-term outcomes is largely unknown. METHODS Children with a history of mTBI (n = 406; Mage = 10 years, SDage = 0.63 years) who participated in the Adolescent Brain Cognitive Development (ABCD) study were matched (1:2 ratio) with typically developing children (TDC; n = 812) and orthopedic injury (OI) controls (n = 812). Task-based executive functioning, parent-rated executive functioning and emotion-regulation, and self-reported impulsivity were assessed cross-sectionally. Regression models were used to examine the effect of mTBI on these domains. The effect of age-at-injury was assessed by comparing children with their first mTBI at either 0-3, 4-7, or 8-10 years to the respective matched TDC controls. Fractional anisotropy (FA) and mean diffusivity (MD), both MRI-based measures of white matter microstructure, were compared between children with mTBI and controls. RESULTS Children with a history of mTBI displayed higher parent-rated executive dysfunction, higher impulsivity, and poorer self-regulation compared to both control groups. At closer investigation, these differences to TDC were only present in one respective age-at-injury group. No alterations were found in task-based executive functioning or white matter microstructure. CONCLUSIONS Findings suggest that everyday executive function, impulsivity, and emotion-regulation are affected years after pediatric mTBI. Outcomes were specific to the age at which the injury occurred, suggesting that functioning is differently affected by pediatric mTBI during vulnerable periods. Groups did not differ in white matter microstructure.
Collapse
Affiliation(s)
- Anja K Betz
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Suheyla Cetin-Karayumak
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elena M Bonke
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Inga K Koerte
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Cox CS, Notrica DM, Juranek J, Miller JH, Triolo F, Kosmach S, Savitz SI, Adelson PD, Pedroza C, Olson SD, Scott MC, Kumar A, Aertker BM, Caplan HW, Jackson ML, Gill BS, Hetz RA, Lavoie MS, Ewing-Cobbs L. Autologous bone marrow mononuclear cells to treat severe traumatic brain injury in children. Brain 2024; 147:1914-1925. [PMID: 38181433 PMCID: PMC11068104 DOI: 10.1093/brain/awae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/29/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024] Open
Abstract
Autologous bone marrow mononuclear cells (BMMNCs) infused after severe traumatic brain injury have shown promise for treating the injury. We evaluated their impact in children, particularly their hypothesized ability to preserve the blood-brain barrier and diminish neuroinflammation, leading to structural CNS preservation with improved outcomes. We performed a randomized, double-blind, placebo-sham-controlled Bayesian dose-escalation clinical trial at two children's hospitals in Houston, TX and Phoenix, AZ, USA (NCT01851083). Patients 5-17 years of age with severe traumatic brain injury (Glasgow Coma Scale score ≤ 8) were randomized to BMMNC or placebo (3:2). Bone marrow harvest, cell isolation and infusion were completed by 48 h post-injury. A Bayesian continuous reassessment method was used with cohorts of size 3 in the BMMNC group to choose the safest between two doses. Primary end points were quantitative brain volumes using MRI and microstructural integrity of the corpus callosum (diffusivity and oedema measurements) at 6 months and 12 months. Long-term functional outcomes and ventilator days, intracranial pressure monitoring days, intensive care unit days and therapeutic intensity measures were compared between groups. Forty-seven patients were randomized, with 37 completing 1-year follow-up (23 BMMNC, 14 placebo). BMMNC treatment was associated with an almost 3-day (23%) reduction in ventilator days, 1-day (16%) reduction in intracranial pressure monitoring days and 3-day (14%) reduction in intensive care unit (ICU) days. White matter volume at 1 year in the BMMNC group was significantly preserved compared to placebo [decrease of 19 891 versus 40 491, respectively; mean difference of -20 600, 95% confidence interval (CI): -35 868 to -5332; P = 0.01], and the number of corpus callosum streamlines was reduced more in placebo than BMMNC, supporting evidence of preserved corpus callosum connectivity in the treated groups (-431 streamlines placebo versus -37 streamlines BMMNC; mean difference of -394, 95% CI: -803 to 15; P = 0.055), but this did not reach statistical significance due to high variability. We conclude that autologous BMMNC infusion in children within 48 h after severe traumatic brain injury is safe and feasible. Our data show that BMMNC infusion led to: (i) shorter intensive care duration and decreased ICU intensity; (ii) white matter structural preservation; and (iii) enhanced corpus callosum connectivity and improved microstructural metrics.
Collapse
Affiliation(s)
- Charles S Cox
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
- Program in Pediatric Regenerative Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| | - David M Notrica
- Department of Pediatric Surgery, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Jenifer Juranek
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
- Program in Pediatric Regenerative Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| | - Jeffrey H Miller
- Department of Radiology, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Fabio Triolo
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
- Program in Pediatric Regenerative Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| | - Steven Kosmach
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| | - Sean I Savitz
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| | - P David Adelson
- Department of Pediatric Neurosurgery, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Claudia Pedroza
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
- Program in Pediatric Regenerative Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| | - Michael C Scott
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| | - Akshita Kumar
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| | - Benjamin M Aertker
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| | - Henry W Caplan
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| | - Margaret L Jackson
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| | - Brijesh S Gill
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| | - Robert A Hetz
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| | - Michael S Lavoie
- Department of Psychology, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Linda Ewing-Cobbs
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| |
Collapse
|
6
|
De Benedictis A, Rossi-Espagnet MC, de Palma L, Sarubbo S, Marras CE. Structural networking of the developing brain: from maturation to neurosurgical implications. Front Neuroanat 2023; 17:1242757. [PMID: 38099209 PMCID: PMC10719860 DOI: 10.3389/fnana.2023.1242757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Modern neuroscience agrees that neurological processing emerges from the multimodal interaction among multiple cortical and subcortical neuronal hubs, connected at short and long distance by white matter, to form a largely integrated and dynamic network, called the brain "connectome." The final architecture of these circuits results from a complex, continuous, and highly protracted development process of several axonal pathways that constitute the anatomical substrate of neuronal interactions. Awareness of the network organization of the central nervous system is crucial not only to understand the basis of children's neurological development, but also it may be of special interest to improve the quality of neurosurgical treatments of many pediatric diseases. Although there are a flourishing number of neuroimaging studies of the connectome, a comprehensive vision linking this research to neurosurgical practice is still lacking in the current pediatric literature. The goal of this review is to contribute to bridging this gap. In the first part, we summarize the main current knowledge concerning brain network maturation and its involvement in different aspects of normal neurocognitive development as well as in the pathophysiology of specific diseases. The final section is devoted to identifying possible implications of this knowledge in the neurosurgical field, especially in epilepsy and tumor surgery, and to discuss promising perspectives for future investigations.
Collapse
Affiliation(s)
| | | | - Luca de Palma
- Clinical and Experimental Neurology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | | |
Collapse
|
7
|
Keleher F, Lindsey HM, Kerestes R, Amiri H, Asarnow RF, Babikian T, Bartnik-Olson B, Bigler ED, Caeyenberghs K, Esopenko C, Ewing-Cobbs L, Giza CC, Goodrich-Hunsaker NJ, Hodges CB, Hoskinson KR, Irimia A, Königs M, Max JE, Newsome MR, Olsen A, Ryan NP, Schmidt AT, Stein DJ, Suskauer SJ, Ware AL, Wheeler AL, Zielinski BA, Thompson PM, Harding IH, Tate DF, Wilde EA, Dennis EL. Multimodal Analysis of Secondary Cerebellar Alterations After Pediatric Traumatic Brain Injury. JAMA Netw Open 2023; 6:e2343410. [PMID: 37966838 PMCID: PMC10652147 DOI: 10.1001/jamanetworkopen.2023.43410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023] Open
Abstract
Importance Traumatic brain injury (TBI) is known to cause widespread neural disruption in the cerebrum. However, less is known about the association of TBI with cerebellar structure and how such changes may alter executive functioning. Objective To investigate alterations in subregional cerebellum volume and cerebral white matter microstructure after pediatric TBI and examine subsequent changes in executive function. Design, Setting, and Participants This retrospective cohort study combined 12 data sets (collected between 2006 and 2020) from 9 sites in the Enhancing Neuroimaging Genetics Through Meta-Analysis Consortium Pediatric TBI working group in a mega-analysis of cerebellar structure. Participants with TBI or healthy controls (some with orthopedic injury) were recruited from trauma centers, clinics, and institutional trauma registries, some of which were followed longitudinally over a period of 0.7 to 1.9 years. Healthy controls were recruited from the surrounding community. Data analysis occurred from October to December 2022. Exposure Accidental mild complicated-severe TBI (msTBI) for those in the TBI group. Some controls received a diagnosis of orthopedic injury. Main Outcomes and Measures Volume of 18 cerebellar lobules and vermal regions were estimated from 3-dimensional T1-weighted magnetic resonance imaging (MRI) scans. White matter organization in 28 regions of interest was assessed with diffusion tensor MRI. Executive function was measured by parent-reported scores from the Behavior Rating Inventory of Executive Functioning. Results A total of 598 children and adolescents (mean [SD] age, 14.05 [3.06] years; range, 5.45-19.70 years; 386 male participants [64.5%]; 212 female participants [35.5%]) were included in the study, with 314 participants in the msTBI group, and 284 participants in the non-TBI group (133 healthy individuals and 151 orthopedically injured individuals). Significantly smaller total cerebellum volume (d = -0.37; 95% CI, -0.52 to -0.22; P < .001) and subregional cerebellum volumes (eg, corpus medullare; d = -0.43; 95% CI, -0.58 to -0.28; P < .001) were observed in the msTBI group. These alterations were primarily seen in participants in the chronic phase (ie, >6 months postinjury) of injury (total cerebellar volume, d = -0.55; 95% CI, -0.75 to -0.35; P < .001). Smaller cerebellum volumes were associated with higher scores on the Behavior Rating Inventory of Executive Functioning Global Executive Composite score (β = -208.9 mm3; 95% CI, -319.0 to -98.0 mm3; P = .008) and Metacognition Index score (β = -202.5 mm3; 95% CI, -319.0 to -85.0 mm3; P = .02). In a subset of 185 participants with longitudinal data, younger msTBI participants exhibited cerebellum volume reductions (β = 0.0052 mm3; 95% CI, 0.0013 to 0.0090 mm3; P = .01), and older participants slower growth rates. Poorer white matter organization in the first months postinjury was associated with decreases in cerebellum volume over time (β=0.52 mm3; 95% CI, 0.19 to 0.84 mm3; P = .005). Conclusions and Relevance In this cohort study of pediatric msTBI, our results demonstrated robust cerebellar volume alterations associated with pediatric TBI, localized to the posterior lobe. Furthermore, longitudinal cerebellum changes were associated with baseline diffusion tensor MRI metrics, suggesting secondary cerebellar atrophy. These results provide further understanding of secondary injury mechanisms and may point to new opportunities for intervention.
Collapse
Affiliation(s)
- Finian Keleher
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
| | - Hannah M. Lindsey
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Rebecca Kerestes
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Houshang Amiri
- Institute of Neuropharmacology, Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Robert F. Asarnow
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Brain Research Institute, University of California, Los Angeles
- Department of Psychology, University of California, Los Angeles
| | - Talin Babikian
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Steve Tisch BrainSPORT Program, University of California, Los Angeles
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, California
| | - Erin D. Bigler
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
- Department of Psychology, Brigham Young University, Provo, Utah
- Neuroscience Center, Brigham Young University, Provo, Utah
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Carrie Esopenko
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Linda Ewing-Cobbs
- Children’s Learning Institute, Department of Pediatrics, University of Texas Health Science Center at Houston
| | - Christopher C. Giza
- Steve Tisch BrainSPORT Program, University of California, Los Angeles
- Division of Neurology, Department of Pediatrics, Mattel Children’s Hospital University of California, Los Angeles
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles
| | - Naomi J. Goodrich-Hunsaker
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Psychology, Brigham Young University, Provo, Utah
| | - Cooper B. Hodges
- Department of Psychology, Brigham Young University, Provo, Utah
- School of Social and Behavioral Sciences, Andrews University, Berrien Springs, Michigan
| | - Kristen R. Hoskinson
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles
| | - Marsh Königs
- Emma Neuroscience Group, Emma Children’s Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Jeffrey E. Max
- Department of Psychiatry, University of California, San Diego, La Jolla
- Department of Psychiatry, Rady Children’s Hospital, San Diego, California
| | - Mary R. Newsome
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
| | - Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Rehabilitation, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- NorHEAD-Norwegian Centre for Headache Research, Trondheim, Norway
| | - Nicholas P. Ryan
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
- Department of Clinical Sciences, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Adam T. Schmidt
- Department of Psychological Sciences, Texas Tech University, Lubbock
| | - Dan J. Stein
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Cape Town University, Cape Town, South Africa
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Neuroscience Institute, Cape Town University, Cape Town, South Africa
| | - Stacy J. Suskauer
- Kennedy Krieger Institute, Baltimore, Maryland
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashley L. Ware
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
- Department of Psychology, Georgia State University, Atlanta
| | - Anne L. Wheeler
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Physiology Department, University of Toronto, Toronto, Ontario, Canada
| | - Brandon A. Zielinski
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
- Department of Pediatrics, University of Florida, Gainesville
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City
- Department of Neurology, University of Florida, Gainesville
| | - Paul M. Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey
- Department of Neurology, University of Southern California, Los Angeles
- Department of Pediatrics, University of Southern California, Los Angeles
- Department of Psychiatry, University of Southern California, Los Angeles
- Department of Radiology, University of Southern California, Los Angeles
- Department of Engineering, University of Southern California, Los Angeles
- Department of Ophthalmology, University of Southern California, Los Angeles
| | - Ian H. Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - David F. Tate
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Psychology, Brigham Young University, Provo, Utah
| | - Elisabeth A. Wilde
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
| | - Emily L. Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
8
|
Chen Z, Wang P, Cheng H, Wang N, Wu M, Wang Z, Wang Z, Dong W, Guan D, Wang L, Zhao R. Adolescent traumatic brain injury leads to incremental neural impairment in middle-aged mice: role of persistent oxidative stress and neuroinflammation. Front Neurosci 2023; 17:1292014. [PMID: 37965213 PMCID: PMC10642192 DOI: 10.3389/fnins.2023.1292014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Background Traumatic brain injury (TBI) increases the risk of mental disorders and neurodegenerative diseases in the chronic phase. However, there is limited neuropathological or molecular data on the long-term neural dysfunction and its potential mechanism following adolescent TBI. Methods A total of 160 male mice aged 8 weeks were used to mimic moderate TBI by controlled cortical impact. At 1, 3, 6 and 12 months post-injury (mpi), different neurological functions were evaluated by elevated plus maze, forced swimming test, sucrose preference test and Morris water maze. The levels of oxidative stress, antioxidant response, reactive astrocytes and microglia, and expression of inflammatory cytokines were subsequently assessed in the ipsilateral hippocampus, followed by neuronal apoptosis detection. Additionally, the morphological complexity of hippocampal astrocytes was evaluated by Sholl analysis. Results The adolescent mice exhibited persistent and incremental deficits in memory and anxiety-like behavior after TBI, which were sharply exacerbated at 12 mpi. Depression-like behaviors were observed in TBI mice at 6 mpi and 12 mpi. Compared with the age-matched control mice, apoptotic neurons were observed in the ipsilateral hippocampus during the chronic phase of TBI, which were accompanied by enhanced oxidative stress, and expression of inflammatory cytokines (IL-1β and TNF-α). Moreover, the reactive astrogliosis and microgliosis in the ipsilateral hippocampus were observed in the late phase of TBI, especially at 12 mpi. Conclusion Adolescent TBI leads to incremental cognitive dysfunction, and depression- and anxiety-like behaviors in middle-aged mice. The chronic persistent neuroinflammation and oxidative stress account for the neuronal loss and neural dysfunction in the ipsilateral hippocampus. Our results provide evidence for the pathogenesis of chronic neural damage following TBI and shed new light on the treatment of TBI-induced late-phase neurological dysfunction.
Collapse
Affiliation(s)
- Ziyuan Chen
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Pengfei Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Hao Cheng
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Ning Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Mingzhe Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Ziwei Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Zhi Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Wenwen Dong
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Dawei Guan
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Linlin Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Rui Zhao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, China
| |
Collapse
|
9
|
Meng S, Cao H, Huang Y, Shi Z, Li J, Wang Y, Zhang Y, Chen S, Shi H, Gao Y. ASK1-K716R reduces neuroinflammation and white matter injury via preserving blood-brain barrier integrity after traumatic brain injury. J Neuroinflammation 2023; 20:244. [PMID: 37875988 PMCID: PMC10594934 DOI: 10.1186/s12974-023-02923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a significant worldwide public health concern that necessitates attention. Apoptosis signal-regulating kinase 1 (ASK1), a key player in various central nervous system (CNS) diseases, has garnered interest for its potential neuroprotective effects against ischemic stroke and epilepsy when deleted. Nonetheless, the specific impact of ASK1 on TBI and its underlying mechanisms remain elusive. Notably, mutation of ATP-binding sites, such as lysine residues, can lead to catalytic inactivation of ASK1. To address these knowledge gaps, we generated transgenic mice harboring a site-specific mutant ASK1 Map3k5-e (K716R), enabling us to assess its effects and elucidate potential underlying mechanisms following TBI. METHODS We employed the CRIPR/Cas9 system to generate a transgenic mouse model carrying the ASK1-K716R mutation, aming to investigate the functional implications of this specific mutant. The controlled cortical impact method was utilized to induce TBI. Expression and distribution of ASK1 were detected through Western blotting and immunofluorescence staining, respectively. The ASK1 kinase activity after TBI was detected by a specific ASK1 kinase activity kit. Cerebral microvessels were isolated by gradient centrifugation using dextran. Immunofluorescence staining was performed to evaluate blood-brain barrier (BBB) damage. BBB ultrastructure was visualized using transmission electron microscopy, while the expression levels of endothelial tight junction proteins and ASK1 signaling pathway proteins was detected by Western blotting. To investigate TBI-induced neuroinflammation, we conducted immunofluorescence staining, quantitative real-time polymerase chain reaction (qRT-PCR) and flow cytometry analyses. Additionally, immunofluorescence staining and electrophysiological compound action potentials were conducted to evaluate gray and white matter injury. Finally, sensorimotor function and cognitive function were assessed by a battery of behavioral tests. RESULTS The activity of ASK1-K716R was significantly decreased following TBI. Western blotting confirmed that ASK1-K716R effectively inhibited the phosphorylation of ASK1, JNKs, and p38 in response to TBI. Additionally, ASK1-K716R demonstrated a protective function in maintaining BBB integrity by suppressing ASK1/JNKs activity in endothelial cells, thereby reducing the degradation of tight junction proteins following TBI. Besides, ASK1-K716R effectively suppressed the infiltration of peripheral immune cells into the brain parenchyma, decreased the number of proinflammatory-like microglia/macrophages, increased the number of anti-inflammatory-like microglia/macrophages, and downregulated expression of several proinflammatory factors. Furthermore, ASK1-K716R attenuated white matter injury and improved the nerve conduction function of both myelinated and unmyelinated fibers after TBI. Finally, our findings demonstrated that ASK1-K716R exhibited favorable long-term functional and histological outcomes in the aftermath of TBI. CONCLUSION ASK1-K716R preserves BBB integrity by inhibiting ASK1/JNKs pathway in endothelial cells, consequently reducing the degradation of tight junction proteins. Additionally, it alleviates early neuroinflammation by inhibiting the infiltration of peripheral immune cells into the brain parenchyma and modulating the polarization of microglia/macrophages. These beneficial effects of ASK1-K716R subsequently result in a reduction in white matter injury and promote the long-term recovery of neurological function following TBI.
Collapse
Affiliation(s)
- Shan Meng
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Hui Cao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yichen Huang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ziyu Shi
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jiaying Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yana Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yue Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shuning Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Hong Shi
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Implications of DTI in mild traumatic brain injury for detecting neurological recovery and predicting long-term behavioural outcome in paediatric and young population-a systematic review. Childs Nerv Syst 2021; 37:2475-2486. [PMID: 34128118 DOI: 10.1007/s00381-021-05240-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE This systematic review was done with the aim to answer these three questions: 1) Is there any change in diffusion metrics in MRI-DTI sequences after mild traumatic brain injury in paediatric and young population?, 2) Is there any correlation of these changes in diffusion metrics with severity of post concussion symptoms?, 3) Is the change in diffusion metrics predictive of neurocognitive function or neurological recovery? MATERIAL AND METHODS Eligibility criteria- Mild TBI patients upto 22 years of age, MRI- DTI sequence done post injury, Outcome measurement with follow up at least for onemonth and articles published in English language only. Data sources- PubMed, EMBASE, CINAHL, Scopus and Cochrane RESULTS: Some studies show increased FA and some studies show decrease FA and few showed no change in white matter microstructure in mTBI patients and this depends on the duration of injury. Prediction of PCSs severity on the basis of changes in white matter microstructure showed inconsistent results. Radiological recovery in contrast to clinical recovery, is often delayed ranging from 6 months to 2-3 years. But change in diffusion metrics after mTBI is not definite predictive of neurocognitive outcomes. CONCLUSION Large, properly designed, multicentric studies with appropriate extracranial or orthopedic control and long follow up are needed to establish the use of DTIin mTBI for predicting behavioral outcome.
Collapse
|