1
|
Kashou AW, Frees DM, Kang K, Parks CO, Harralson H, Fischer JT, Rosenbaum PE, Baham M, Sheridan C, Bickart KC. Drivers of resting-state fMRI heterogeneity in traumatic brain injury across injury characteristics and imaging methods: a systematic review and semiquantitative analysis. Front Neurol 2024; 15:1487796. [PMID: 39664747 PMCID: PMC11631856 DOI: 10.3389/fneur.2024.1487796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024] Open
Abstract
Traumatic brain injury (TBI) is common and costly. Although neuroimaging modalities such as resting-state functional MRI (rsfMRI) promise to differentiate injured from healthy brains and prognosticate long-term outcomes, the field suffers from heterogeneous findings. To assess whether this heterogeneity stems from variability in the TBI populations studied or the imaging methods used, and to determine whether a consensus exists in this literature, we performed the first systematic review of studies comparing rsfMRI functional connectivity (FC) in patients with TBI to matched controls for seven canonical brain networks across injury severity, age, chronicity, population type, and various imaging methods. Searching PubMed, Web of Science, Google Scholar, and ScienceDirect, 1,105 manuscripts were identified, 50 fulfilling our criteria. Across these manuscripts, 179 comparisons were reported between a total of 1,397 patients with TBI and 1,179 matched controls. Collapsing across injury characteristics, imaging methods, and networks, there were roughly equal significant to null findings and increased to decreased connectivity differences reported. Whereas most factors did not explain these mixed findings, stratifying across severity and chronicity, separately, showed a trend of increased connectivity at higher severities and greater chronicities of TBI. Among methodological factors, studies were more likely to find connectivity differences when scans were longer than 360 s, custom image processing pipelines were used, and when patients kept their eyes open versus closed during scans. We offer guidelines to address this variability, focusing on aspects of study design and rsfMRI acquisition to move the field toward reproducible results with greater potential for clinical translation.
Collapse
Affiliation(s)
- Alexander W. Kashou
- Department of Radiology, Loma Linda University School of Medicine, Loma Linda, CA, United States
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel M. Frees
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Statistics, Stanford University, Stanford, CA, United States
| | - Kaylee Kang
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Statistics, Stanford University, Stanford, CA, United States
| | - Christian O. Parks
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hunter Harralson
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jesse T. Fischer
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Kinesiology, Occidental College, Los Angeles, CA, United States
| | - Philip E. Rosenbaum
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Michael Baham
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Christopher Sheridan
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kevin C. Bickart
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
2
|
Monroe KS, Schiehser DM, Parr AW, Simmons AN, Hays Weeks CC, Bailey BA, Shahidi B. Biological markers of brain network connectivity and pain sensitivity distinguish low coping from high coping Veterans with persistent post-traumatic headache. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.16.24313761. [PMID: 39371153 PMCID: PMC11451760 DOI: 10.1101/2024.09.16.24313761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Headache is the most common type of pain following mild traumatic brain injury. Roughly half of those with persistent post-traumatic headache (PPTH) also report neck pain which is associated with greater severity and functional impact of headache. This observational cohort study aimed to identify biological phenotypes to help inform mechanism-based approaches in the management of PPTH with and without concomitant neck pain. Thirty-three military Veterans (mean (SD) = 37±16 years, 29 males) with PPTH completed a clinical assessment, quantitative sensory testing, and magnetic resonance imaging of the brain and cervical spine. Multidimensional phenotyping was performed using a Random Forest analysis and Partitioning Around Medoids (PAM) clustering of input features from three biologic domains: 1) resting state functional connectivity (rsFC) of the periaqueductal gray (PAG), 2) quality and size of cervical muscles, and 3) mechanical pain sensitivity and central modulation of pain. Two subgroups were distinguished by biological features that included forehead pressure pain threshold and rsFC between the PAG and selected nodes within the default mode, salience, and sensorimotor networks. Compared to the High Pain Coping group, the Low Pain Coping group exhibited higher pain-related anxiety (p=0.009), higher pain catastrophizing (p=0.004), lower pain self-efficacy (p=0.010), and greater headache-related disability (p=0.012). Findings suggest that greater functional connectivity of pain modulation networks involving the PAG combined with impairments in craniofacial pain sensitivity, but not cervical muscle health, distinguish a clinically important subgroup of individuals with PPTH who are less able to cope with pain and more severely impacted by headache.
Collapse
Affiliation(s)
- Katrina S Monroe
- School of Physical Therapy, College of Health and Human Services, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| | - Dawn M Schiehser
- VA San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA 92161; Professor, School of Medicine, Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., San Diego, CA 92093, USA
| | - Aaron W Parr
- Joint Doctoral Program in Public Health, San Diego State University/University of California San Diego, 9500 Gilman Dr. MC0863 La Jolla, CA 92093, USA
| | - Alan N Simmons
- University of California San Diego, Research Health Scientist, Center of Excellence in Stress and Mental Health, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Chelsea C Hays Weeks
- University of California San Diego; VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Barbara A Bailey
- Department of Mathematics and Statistics, College of Sciences, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| | - Bahar Shahidi
- Department of Orthopaedic Surgery, University of California San Diego, 9500 Gilman Dr. MC0863 La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Hacker BJ, Imms PE, Dharani AM, Zhu J, Chowdhury NF, Chaudhari NN, Irimia A. Identification and Connectomic Profiling of Concussion Using Bayesian Machine Learning. J Neurotrauma 2024; 41:1883-1900. [PMID: 38482793 PMCID: PMC11564847 DOI: 10.1089/neu.2023.0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024] Open
Abstract
Accurate early diagnosis of concussion is useful to prevent sequelae and improve neurocognitive outcomes. Early after head impact, concussion diagnosis may be doubtful in persons whose neurological, neuroradiological, and/or neurocognitive examinations are equivocal. Such individuals can benefit from novel accurate assessments that complement clinical diagnostics. We introduce a Bayesian machine learning classifier to identify concussion through cortico-cortical connectome mapping from magnetic resonance imaging in persons with quasi-normal cognition and without neuroradiological findings. Classifier features are generated from connectivity matrices specifying the mean fractional anisotropy of white matter connections linking brain structures. Each connection's saliency to classification was quantified by training individual classifier instantiations using a single feature type. The classifier was tested on a discovery sample of 92 healthy controls (HCs; 26 females, age μ ± σ: 39.8 ± 15.5 years) and 471 adult mTBI patients (158 females, age μ ± σ: 38.4 ± 5.9 years). Results were replicated in an independent validation sample of 256 HCs (149 females, age μ ± σ: 55.3 ± 12.1 years) and 126 patients with concussion (46 females, age μ ± σ: 39.0 ± 17.7 years). Classifier accuracy exceeds 99% in both samples, suggesting robust generalizability to new samples. Notably, 13 bilateral cortico-cortical connection pairs predict diagnostic status with accuracy exceeding 99% in both discovery and validation samples. Many such connection pairs are between prefrontal cortex structures, fronto-limbic and fronto-subcortical structures, and occipito-temporal structures in the ventral ("what") visual stream. This and related connectivity form a highly salient network of brain connections that is particularly vulnerable to concussion. Because these connections are important in mediating cognitive control, memory, and attention, our findings explain the high frequency of cognitive disturbances after concussion. Our classifier was trained and validated on concussed participants with cognitive profiles very similar to those of HCs. This suggests that the classifier can complement current diagnostics by providing independent information in clinical contexts where patients have quasi-normal cognition but where concussion diagnosis stands to benefit from additional evidence.
Collapse
Affiliation(s)
- Benjamin J. Hacker
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, Dana and David Dornsife College of Arts and Sciences, University of Southern California, Los Angeles, California, USA
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, Dana and David Dornsife College of Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Phoebe E. Imms
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, Dana and David Dornsife College of Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Ammar M. Dharani
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, Dana and David Dornsife College of Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Jessica Zhu
- Corwin D. Denney Research Center, Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, Dana and David Dornsife College of Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Nahian F. Chowdhury
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, Dana and David Dornsife College of Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Nikhil N. Chaudhari
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, Dana and David Dornsife College of Arts and Sciences, University of Southern California, Los Angeles, California, USA
- Corwin D. Denney Research Center, Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, Dana and David Dornsife College of Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, Dana and David Dornsife College of Arts and Sciences, University of Southern California, Los Angeles, California, USA
- Corwin D. Denney Research Center, Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, Dana and David Dornsife College of Arts and Sciences, University of Southern California, Los Angeles, California, USA
- Department of Quantitative and Computational Biology, Dana and David Dornsife College of Arts and Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Ihara K, Schwedt TJ. Posttraumatic headache is a distinct headache type from migraine. Curr Opin Neurol 2024; 37:264-270. [PMID: 38294020 DOI: 10.1097/wco.0000000000001247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
PURPOSE OF REVIEW Posttraumatic headache (PTH), a headache that develops within 7 days of a causative injury, is one of the most common secondary headaches, mostly attributed to mild traumatic brain injury (mTBI). Because presence of preinjury headache is a risk factor for developing PTH and PTH symptoms often resemble migraine or tension-type headache, the association between PTH and primary headaches has attracted attention from clinicians and scientists. RECENT FINDINGS Recent studies on epidemiological aspects, headache features, risk factors, imaging characteristics, and response to treatment, suggest overlapping features and distinct objective findings in PTH compared to migraine. SUMMARY We argue that PTH is distinct from migraine. Therefore, PTH epidemiology, pathophysiology, diagnosis, treatment, and prognosis should continue to be investigated separately from migraine.
Collapse
Affiliation(s)
- Keiko Ihara
- Japanese Red Cross Ashikaga Hospital, Ashikaga
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Todd J Schwedt
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona, USA
| |
Collapse
|
5
|
Onicas AI, Deighton S, Yeates KO, Bray S, Graff K, Abdeen N, Beauchamp MH, Beaulieu C, Bjornson B, Craig W, Dehaes M, Deschenes S, Doan Q, Freedman SB, Goodyear BG, Gravel J, Lebel C, Ledoux AA, Zemek R, Ware AL. Longitudinal Functional Connectome in Pediatric Concussion: An Advancing Concussion Assessment in Pediatrics Study. J Neurotrauma 2024; 41:587-603. [PMID: 37489293 DOI: 10.1089/neu.2023.0183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Abstract
Advanced magnetic resonance imaging (MRI) techniques indicate that concussion (i.e., mild traumatic brain injury) disrupts brain structure and function in children. However, the functional connectivity of brain regions within global and local networks (i.e., functional connectome) is poorly understood in pediatric concussion. This prospective, longitudinal study addressed this gap using data from the largest neuroimaging study of pediatric concussion to date to study the functional connectome longitudinally after concussion as compared with mild orthopedic injury (OI). Children and adolescents (n = 967) 8-16.99 years with concussion or mild OI were recruited from pediatric emergency departments within 48 h post-injury. Pre-injury and 1-month post-injury symptom ratings were used to classify concussion with or without persistent symptoms based on reliable change. Subjects completed a post-acute (2-33 days) and chronic (3 or 6 months via random assignment) MRI scan. Graph theory metrics were derived from 918 resting-state functional MRI scans in 585 children (386 concussion/199 OI). Linear mixed-effects modeling was performed to assess group differences over time, correcting for multiple comparisons. Relative to OI, the global clustering coefficient was reduced at 3 months post-injury in older children with concussion and in females with concussion and persistent symptoms. Time post-injury and sex moderated group differences in local (regional) network metrics of several brain regions, including degree centrality, efficiency, and clustering coefficient of the angular gyrus, calcarine fissure, cuneus, and inferior occipital, lingual, middle occipital, post-central, and superior occipital gyrus. Relative to OI, degree centrality and nodal efficiency were reduced post-acutely, and nodal efficiency and clustering coefficient were reduced chronically after concussion (i.e., at 3 and 6 months post-injury in females; at 6 months post-injury in males). Functional network alterations were more robust and widespread chronically as opposed to post-acutely after concussion, and varied by sex, age, and symptom recovery at 1-month post-injury. Local network segregation reductions emerged globally (across the whole brain network) in older children and in females with poor recovery chronically after concussion. Reduced functioning between neighboring regions could negatively disrupt specialized information processing. Local network metric alterations were demonstrated in several posterior regions that are involved in vision and attention after concussion relative to OI. This indicates that functioning of superior parietal and occipital regions could be particularly susceptibile to the effects of concussion. Moreover, those regional alterations were especially apparent at later time periods post-injury, emerging after post-concussive symptoms resolved in most and persisted up to 6 months post-injury, and differed by biological sex. This indicates that neurobiological changes continue to occur up to 6 months after pediatric concussion, although changes emerge earlier in females than in males. Changes could reflect neural compensation mechanisms.
Collapse
Affiliation(s)
- Adrian I Onicas
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, LU, Italy
- Computer Vision Group, Sano Centre for Computational Medicine, Kraków, Poland. Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephanie Deighton
- Department of Psychology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith Owen Yeates
- Department of Psychology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Signe Bray
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kirk Graff
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nishard Abdeen
- Department of Radiology, University of Ottawa, and Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal and CHU Sainte-Justine Hospital Research Center, Montréal, Quebec, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Bruce Bjornson
- Division of Neurology, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - William Craig
- University of Alberta and Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Mathieu Dehaes
- Department of Radiology, Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal and CHU Sainte-Justine Hospital Research Center, Montréal, Quebec, Canada
| | - Sylvain Deschenes
- Department of Radiology, Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal and CHU Sainte-Justine Hospital Research Center, Montréal, Quebec, Canada
| | - Quynh Doan
- Department of Pediatrics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Stephen B Freedman
- Departments of Pediatric and Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bradley G Goodyear
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jocelyn Gravel
- Department of Department of Pediatric Emergency Medicine, University of Montreal and CHU Sainte-Justine Hospital Research Center, Montréal, Quebec, Canada
| | - Catherine Lebel
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrée-Anne Ledoux
- Department of Cellular and Molecular Medicine, University of Ottawa, and Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, University of Ottawa, and Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Ashley L Ware
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA, and Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
Everson CA, Szabo A, Plyer C, Hammeke TA, Stemper BD, Budde MD. Sleep loss, caffeine, sleep aids and sedation modify brain abnormalities of mild traumatic brain injury. Exp Neurol 2024; 372:114620. [PMID: 38029810 DOI: 10.1016/j.expneurol.2023.114620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Little evidence exists about how mild traumatic brain injury (mTBI) is affected by commonly encountered exposures of sleep loss, sleep aids, and caffeine that might be potential therapeutic opportunities. In addition, while propofol sedation is administered in severe TBI, its potential utility in mild TBI is unclear. Each of these exposures is known to have pronounced effects on cerebral metabolism and blood flow and neurochemistry. We hypothesized that they each interact with cerebral metabolic dynamics post-injury and change the subclinical characteristics of mTBI. MTBI in rats was produced by head rotational acceleration injury that mimics the biomechanics of human mTBI. Three mTBIs spaced 48 h apart were used to increase the likelihood that vulnerabilities induced by repeated mTBI would be manifested without clinically relevant structural damage. After the third mTBI, rats were immediately sleep deprived or administered caffeine or suvorexant (an orexin antagonist and sleep aid) for the next 24 h or administered propofol for 5 h. Resting state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) were performed 24 h after the third mTBI and again after 30 days to determine changes to the brain mTBI phenotype. Multi-modal analyses on brain regions of interest included measures of functional connectivity and regional homogeneity from rs-fMRI, and mean diffusivity (MD) and fractional anisotropy (FA) from DTI. Each intervention changed the mTBI profile of subclinical effects that presumably underlie healing, compensation, damage, and plasticity. Sleep loss during the acute post-injury period resulted in dramatic changes to functional connectivity. Caffeine, propofol sedation and suvorexant were especially noteworthy for differential effects on microstructure in gray and white matter regions after mTBI. The present results indicate that commonplace exposures and short-term sedation alter the subclinical manifestations of repeated mTBI and therefore likely play roles in symptomatology and vulnerability to damage by repeated mTBI.
Collapse
Affiliation(s)
- Carol A Everson
- Department of Medicine (Endocrinology and Molecular Medicine) and Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Aniko Szabo
- Division of Biostatistics, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Cade Plyer
- Neurology Residency Program, Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| | - Thomas A Hammeke
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian D Stemper
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA; Neuroscience Research, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA.
| | - Mathew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
7
|
da Silva Fiorin F, do Espírito Santo CC, Da Silva JT, Chung MK. Inflammation, brain connectivity, and neuromodulation in post-traumatic headache. Brain Behav Immun Health 2024; 35:100723. [PMID: 38292321 PMCID: PMC10827408 DOI: 10.1016/j.bbih.2024.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Post-traumatic headache (PTH) is a debilitating condition that affects individuals with different levels of traumatic brain injury (TBI) severity. The difficulties in developing an effective treatment are related to a lack of understanding the complicated mechanisms and neurobiological changes in brain function after a brain injury. Preclinical studies have indicated that peripheral and central sensitization of the trigeminal nociceptive pathways contributes to PTH. While recent brain imaging studies have uncovered widespread changes in brain functional connectivity following trauma, understanding exactly how these networks contribute to PTH after injury remains unknown. Stimulation of peripheral (trigeminal or vagus) nerves show promising efficacies in PTH experimental animals, likely mediated by influencing TBI-induced pathological plasticity by decreasing neuroinflammation and neuronal apoptosis. Non-invasive brain stimulations, such as transcranial magnetic or direct current stimulations, show analgesia for multiple chronic pain conditions, including PTH. Better mechanistic understanding of analgesia achieved by neuromodulations can define peripheral and central mechanisms involved in the development, the resolution, and the management of PTH.
Collapse
Affiliation(s)
- Fernando da Silva Fiorin
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Program in Neuroscience, Center to Advance Chronic Pain Research, Baltimore, MD, USA
| | - Caroline Cunha do Espírito Santo
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil
| | - Joyce T. Da Silva
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Program in Neuroscience, Center to Advance Chronic Pain Research, Baltimore, MD, USA
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Program in Neuroscience, Center to Advance Chronic Pain Research, Baltimore, MD, USA
| |
Collapse
|
8
|
Ekdahl N, Möller MC, Deboussard CN, Stålnacke BM, Lannsjö M, Nordin LE. Investigating cognitive reserve, symptom resolution and brain connectivity in mild traumatic brain injury. BMC Neurol 2023; 23:450. [PMID: 38124076 PMCID: PMC10731820 DOI: 10.1186/s12883-023-03509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND A proportion of patients with mild traumatic brain injury (mTBI) suffer long-term consequences, and the reasons behind this are still poorly understood. One factor that may affect outcomes is cognitive reserve, which is the brain's ability to maintain cognitive function despite injury. It is often assessed through educational level or premorbid IQ tests. This study aimed to explore whether there were differences in post-concussion symptoms and symptom resolution between patients with mTBI and minor orthopedic injuries one week and three months after injury. Additional aims were to explore the relationship between cognitive reserve and outcome, as well as functional connectivity according to resting state functional magnetic resonance imaging (rs-fMRI). METHOD Fifteen patients with mTBI and 15 controls with minor orthopedic injuries were recruited from the emergency department. Assessments, including Rivermead Post-Concussion Questionnaire (RPQ), neuropsychological testing, and rs-fMRI scans, were conducted on average 7 days (SD = 2) and 122 days (SD = 51) after injury. RESULTS At the first time point, significantly higher rates of post-concussion symptoms (U = 40.0, p = 0.003), state fatigue (U = 56.5, p = 0.014), and fatigability (U = 58.5, p = 0.025) were observed among the mTBI group than among the controls. However, after three months, only the difference in post-concussion symptoms remained significant (U = 27.0, p = 0.003). Improvement in post-concussion symptoms was found to be significantly correlated with cognitive reserve, but only in the mTBI group (Spearman's rho = -0.579, p = .038). Differences in the trajectory of recovery were also observed for fatigability between the two groups (U = 36.5, p = 0.015). Moreover, functional connectivity differences in the frontoparietal network were observed between the groups, and for mTBI patients, functional connectivity differences in an executive control network were observed over time. CONCLUSION The findings of this pilot study suggest that mTBI, compared to minor orthopedic trauma, is associated to both functional connectivity changes in the brain and concussion-related symptoms. While there is improvement in these symptoms over time, a small subgroup with lower cognitive reserve appears to experience more persistent and possibly worsening symptoms over time. This, however, needs to be validated in larger studies. TRIAL REGISTRATION NCT05593172. Retrospectively registered.
Collapse
Affiliation(s)
- Natascha Ekdahl
- Centre for Research and Development, Uppsala University/ County Council of Gävleborg, Gävle, Sweden.
- Department of Clinical Sciences, Karolinska Institutet, Stockholm, Sweden.
| | - Marika C Möller
- Department of Clinical Sciences, Karolinska Institutet, Stockholm, Sweden
- Department of Rehabilitation Medicine, Danderyd University Hospital, Stockholm, Sweden
| | - Catharina Nygren Deboussard
- Department of Clinical Sciences, Karolinska Institutet, Stockholm, Sweden
- Department of Rehabilitation Medicine, Danderyd University Hospital, Stockholm, Sweden
| | - Britt-Marie Stålnacke
- Department of Community Medicine and Rehabilitation, Rehabilitation Medicine, Umeå University, Umeå, Sweden
| | - Marianne Lannsjö
- Centre for Research and Development, Uppsala University/ County Council of Gävleborg, Gävle, Sweden
- Department of Neuroscience, Rehabilitation Medicine, Uppsala University, Uppsala, Sweden
| | - Love Engström Nordin
- Department of Neurobiology, Care Sciences and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Diagnostic Medical Physics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Déry J, Ouellet B, de Guise É, Bussières ÈL, Lamontagne ME. Prognostic factors for persistent symptoms in adults with mild traumatic brain injury: an overview of systematic reviews. Syst Rev 2023; 12:127. [PMID: 37468999 PMCID: PMC10357711 DOI: 10.1186/s13643-023-02284-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Mild traumatic brain injury (mTBI) is an increasing public health problem, because of its persistent symptoms and several functional consequences. Understanding the prognosis of a condition is an important component of clinical decision-making and can help to guide the prevention of persistent symptoms following mTBI. The prognosis of mTBI has stimulated several empirical primary research papers and many systematic reviews leading to the identification of a wide range of factors. We aim to synthesize these factors to get a better understanding of their breadth and scope. METHODS We conducted an overview of systematic reviews. We searched in databases systematic reviews synthesizing evidence about the prognosis of persistent symptoms after mTBI in the adult population. Two reviewers independently screened all references and selected eligible reviews based on eligibility criteria. They extracted relevant information using an extraction grid. They also rated independently the risk of bias using the ROBIS tool. We synthesized evidence into a comprehensive conceptual map to facilitate the understanding of prognostic factors that have an impact on persistent post-concussion symptoms. RESULTS From the 3857 references retrieved in a database search, we included 25 systematic reviews integrating the results of 312 primary articles published between 1957 and 2019. We examined 35 prognostic factors from the systematics reviews. No single prognostic factor demonstrated convincing and conclusive results. However, age, sex, and multiple concussions showed an affirmatory association with persistent post-concussion outcomes in systematic reviews. CONCLUSION We highlighted the need for a comprehensive picture of prognostic factors related to persistent post-concussion symptoms. We believe that these prognostic factors would guide clinical decisions and research related to prevention and intervention regarding persistent post-concussion symptoms. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42020176676.
Collapse
Affiliation(s)
- Julien Déry
- School of Rehabilitation Sciences, Université Laval, Pavillon Ferdinand-Vandry, local 2475, 1050, avenue de la Médecine, Québec, QC, G1V 0A6, Canada
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale (Cirris), 525, boul. Wilfrid-Hamel, Québec, QC, G1M 2S8, Canada
| | - Béatrice Ouellet
- School of Rehabilitation Sciences, Université Laval, Pavillon Ferdinand-Vandry, local 2475, 1050, avenue de la Médecine, Québec, QC, G1V 0A6, Canada
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale (Cirris), 525, boul. Wilfrid-Hamel, Québec, QC, G1M 2S8, Canada
| | - Élaine de Guise
- Department of Psychology, Université de Montréal, Montréal, Canada
- Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Canada
- Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR), Montréal, Canada
| | - Ève-Line Bussières
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale (Cirris), 525, boul. Wilfrid-Hamel, Québec, QC, G1M 2S8, Canada
- Department of Psychology, Université du Québec à Trois-Rivières, 3007 Michel-Sarrazin, 3600 rue Sainte-Marguerite, Trois-Rivières, QC, G9A 5H7, Canada
| | - Marie-Eve Lamontagne
- School of Rehabilitation Sciences, Université Laval, Pavillon Ferdinand-Vandry, local 2475, 1050, avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale (Cirris), 525, boul. Wilfrid-Hamel, Québec, QC, G1M 2S8, Canada.
| |
Collapse
|
10
|
Branco P, Bosak N, Bielefeld J, Cong O, Granovsky Y, Kahn I, Yarnitsky D, Apkarian AV. Structural brain connectivity predicts early acute pain after mild traumatic brain injury. Pain 2023; 164:1312-1320. [PMID: 36355048 DOI: 10.1097/j.pain.0000000000002818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022]
Abstract
ABSTRACT Mild traumatic brain injury (mTBI), is a leading cause of disability worldwide, with acute pain manifesting as one of its most debilitating symptoms. Understanding acute postinjury pain is important because it is a strong predictor of long-term outcomes. In this study, we imaged the brains of 157 patients with mTBI, following a motorized vehicle collision. We extracted white matter structural connectivity networks and used a machine learning approach to predict acute pain. Stronger white matter tracts within the sensorimotor, thalamiccortical, and default-mode systems predicted 20% of the variance in pain severity within 72 hours of the injury. This result generalized in 2 independent groups: 39 mTBI patients and 13 mTBI patients without whiplash symptoms. White matter measures collected at 6 months after the collision still predicted mTBI pain at that timepoint (n = 36). These white matter connections were associated with 2 nociceptive psychophysical outcomes tested at a remote body site-namely, conditioned pain modulation and magnitude of suprathreshold pain-and with pain sensitivity questionnaire scores. Our findings demonstrate a stable white matter network, the properties of which determine an important amount of pain experienced after acute injury, pinpointing a circuitry engaged in the transformation and amplification of nociceptive inputs to pain perception.
Collapse
Affiliation(s)
- Paulo Branco
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Noam Bosak
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Jannis Bielefeld
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Olivia Cong
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yelena Granovsky
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Itamar Kahn
- Department of Neuroscience and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - David Yarnitsky
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - A Vania Apkarian
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
11
|
Marbil MG, Ware AL, Galarneau JM, Minich NM, Hershey AD, Orr SL, Defta DM, Taylor HG, Bigler ED, Cohen DM, Mihalov LK, Bacevice A, Bangert BA, Yeates KO. Longitudinal trajectories of posttraumatic headache after pediatric mild traumatic brain injury. Cephalalgia 2023; 43:3331024231161740. [PMID: 37177818 DOI: 10.1177/03331024231161740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
OBJECTIVE This prospective, longitudinal cohort study examined the trajectory, classification, and features of posttraumatic headache after pediatric mild traumatic brain injury. METHODS Children (N = 213; ages 8.00 to 16.99 years) were recruited from two pediatric emergency departments <24 hours of sustaining a mild traumatic brain injury or mild orthopedic injury. At 10 days, three months, and six months postinjury, parents completed a standardized questionnaire that was used to classify premorbid and posttraumatic headache as migraine, tension-type headache, or not otherwise classified. Multilevel mixed effects models were used to examine posttraumatic headache rate, severity, frequency, and duration in relation to group, time postinjury, and premorbid headache, controlling for age, sex, and site. RESULTS PTH risk was greater after mild traumatic brain injury than mild orthopedic injury at 10 days (odds ratio = 197.41, p < .001) and three months postinjury (odds ratio = 3.50, p = .030), especially in children without premorbid headache. Posttraumatic headache was more frequent after mild traumatic brain injury than mild orthopedic injury, β (95% confidence interval) = 0.80 (0.05, 1.55). Groups did not differ in other examined headache features and classification any time postinjury. CONCLUSIONS Posttraumatic headache risk increases after mild traumatic brain injury relative to mild orthopedic injury for approximately three months postinjury, but is not clearly associated with a distinct phenotype.
Collapse
Affiliation(s)
- Mica Gabrielle Marbil
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Ashley L Ware
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | | | - Nori Mercuri Minich
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
- Rainbow Babies & Children's Hospital, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Andrew D Hershey
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Serena L Orr
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dana M Defta
- Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - H Gerry Taylor
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Erin D Bigler
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Daniel M Cohen
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Division of Emergency Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Leslie K Mihalov
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Ann Bacevice
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Barbara A Bangert
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Li MJ, Huang SH, Huang CX, Liu J. Morphometric changes in the cortex following acute mild traumatic brain injury. Neural Regen Res 2022; 17:587-593. [PMID: 34380898 PMCID: PMC8504398 DOI: 10.4103/1673-5374.320995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Morphometric changes in cortical thickness (CT), cortical surface area (CSA), and cortical volume (CV) can reflect pathological changes after acute mild traumatic brain injury (mTBI). Most previous studies focused on changes in CT, CSA, and CV in subacute or chronic mTBI, and few studies have examined changes in CT, CSA, and CV in acute mTBI. Furthermore, acute mTBI patients typically show transient cognitive impairment, and few studies have reported on the relationship between cerebral morphological changes and cognitive function in patients with mTBI. This prospective cohort study included 30 patients with acute mTBI (15 males, 15 females, mean age 33.7 years) and 27 matched healthy controls (12 males, 15 females, mean age 37.7 years) who were recruited from the Second Xiangya Hospital of Central South University between September and December 2019. High-resolution T1-weighted images were acquired within 7 days after the onset of mTBI. The results of analyses using FreeSurfer software revealed significantly increased CSA and CV in the right lateral occipital gyrus of acute-stage mTBI patients compared with healthy controls, but no significant changes in CT. The acute-stage mTBI patients also showed reduced executive function and processing speed indicated by a lower score in the Digital Symbol Substitution Test, and reduced cognitive ability indicated by a longer time to complete the Trail Making Test-B. Both increased CSA and CV in the right lateral occipital gyrus were negatively correlated with performance in the Trail Making Test part A. These findings suggest that cognitive deficits and cortical alterations in CSA and CV can be detected in the acute stage of mTBI, and that increased CSA and CV in the right lateral occipital gyrus may be a compensatory mechanism for cognitive dysfunction in acute-stage mTBI patients. This study was approved by the Ethics Committee of the Second Xiangya Hospital of Central South University, China (approval No. 086) on February 9, 2019.
Collapse
Affiliation(s)
- Meng-Jun Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Si-Hong Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Chu-Xin Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
13
|
Barlow KM. Post-traumatic headache: An unmet medical need. Headache 2021; 61:1465-1466. [PMID: 34928511 DOI: 10.1111/head.14241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Karen M Barlow
- Acquired Brain Injury in Children Research Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| |
Collapse
|
14
|
Morelli N, Johnson NF, Kaiser K, Andreatta RD, Heebner NR, Hoch MC. Resting state functional connectivity responses post-mild traumatic brain injury: a systematic review. Brain Inj 2021; 35:1326-1337. [PMID: 34487458 DOI: 10.1080/02699052.2021.1972339] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mild traumatic brain injuries (mTBI) are associated with functional network connectivity alterations throughout recovery. Yet, little is known about the adaptive or maladaptive nature of post-mTBI connectivity and which networks are predisposed to altered function and adaptation. The objective of this review was to determine functional connectivity changes post-mTBI and to determine the adaptive or maladaptive nature of connectivity through direct comparisons of connectivity and behavioral data. Literature was systematically searched and appraised for methodological quality. A total of 16 articles were included for review. There was conflicting evidence of post-mTBI connectivity responses as decreased connectivity was noted in 4 articles, 6 articles reported increased connectivity, 5 reported a mixture of increased and decreased connectivity, while 1 found no differences in connectivity. Supporting evidence for adaptive post-mTBI increases in connectivity were found, particularly in the frontoparietal, cerebellar, and default mode networks. Although initial results are promising, continued longitudinal research that systematically controls for confounding variables and that standardizes methodologies is warranted to adequately understand the neurophysiological recovery trajectory of mTBI.
Collapse
Affiliation(s)
- Nathan Morelli
- Department of Physical Therapy, High Point University, High Point, North Carolina, USA
| | - Nathan F Johnson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Kimberly Kaiser
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Richard D Andreatta
- Rehabilitation Sciences Doctoral Program, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Nicholas R Heebner
- Sports Medicine Research Institute, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew C Hoch
- Sports Medicine Research Institute, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
15
|
Singman E. From Provider to Advocate: The Complexities of Traumatic Brain Injury Prompt the Evolution of Provider Engagement. J Clin Med 2021; 10:jcm10122598. [PMID: 34204619 PMCID: PMC8231255 DOI: 10.3390/jcm10122598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Treating a patient with traumatic brain injury requires an interdisciplinary approach because of the pervasive, profound and protean manifestations of this condition. In this review, key aspects of the medical history and review of systems will be described in order to highlight how the role of any provider must evolve to become a better patient advocate. Although this review is written from the vantage point of a vision care provider, it is hoped that patients, caregivers and providers will recognize the need for a team approach.
Collapse
Affiliation(s)
- Eric Singman
- Wilmer Eye Institute, Johns Hopkins Hospital, 1800 Orleans St, Baltimore, MD 21287, USA
| |
Collapse
|
16
|
Ofoghi Z, Rohr CS, Dewey D, Bray S, Yeates KO, Noel M, Barlow KM. Functional connectivity of the anterior cingulate cortex with pain-related regions in children with post-traumatic headache. CEPHALALGIA REPORTS 2021. [DOI: 10.1177/25158163211009477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Introduction: Post-traumatic headaches (PTH) are common following mild traumatic brain injury (mTBI). There is evidence of altered central pain processing in adult PTH; however, little is known about how children with PTH process pain. The anterior cingulate cortex (ACC) plays a critical role in descending central pain modulation. In this study, we explored whether the functional connectivity (FC) of the ACC is altered in children with PTH. Methods: In this case-control study, we investigated resting-state FC of 5 ACC seeds (caudal, dorsal, rostral, perigenual, and subgenual) in children with PTH ( n = 73) and without PTH ( n = 29) following mTBI, and healthy controls ( n = 27). Post-concussion symptoms were assessed using the Post-Concussion Symptom Inventory and the Child Health Questionnaire. Resting-state functional Magnetic Resonance Imaging (fMRI) data were used to generate maps of ACC FC. Group-level comparisons were performed within a target mask comprised of pain-related regions using FSL Randomise. Results: We found decreased FC between the right perigenual ACC and the left cerebellum, and increased FC between the right subgenual ACC and the left dorsolateral prefrontal cortex in children with PTH compared to healthy controls. The ACC FC in children without PTH following mTBI did not differ from the group with PTH or healthy controls. FC between rostral and perigenual ACC seeds and the cerebellum was increased in children with PTH with pre-injury headaches compared to those with PTH without pre-injury headaches. There was a positive relationship between PTH severity and rostral ACC FC with the bilateral thalamus, right hippocampus and periaqueductal gray. Conclusions: Central pain processing is altered in children with PTH. Pre-existing headaches help to drive this process. Trial registration: The PlayGame Trial was registered in ClinicalTrials.gov database ( ClinicalTrials.gov Identifier: NCT01874847).
Collapse
Affiliation(s)
- Zahra Ofoghi
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christiane S Rohr
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Paediatrics, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Owerko Centre at the Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Signe Bray
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Keith Owen Yeates
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Melanie Noel
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Karen M Barlow
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Paediatrics, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada
- Paediatric Neurology Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Schwedt TJ. Post-traumatic headache due to mild traumatic brain injury: Current knowledge and future directions. Cephalalgia 2020; 41:464-471. [PMID: 33210546 DOI: 10.1177/0333102420970188] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND/OBJECTIVE Post-traumatic headache is one of the most common and persistent symptoms following mild traumatic brain injury. The objective of this narrative review is to provide an update on the diagnostic criteria, clinical presentation, epidemiology, pathophysiology, and treatment of post-traumatic headache, and to identify future research priorities. METHODS This is a narrative review of the literature regarding post-traumatic headache attributed to mild traumatic brain injury. RESULTS Onset of post-traumatic headache within 7 days of injury is the only evidence for a causal relationship between the injury and the headache included in the diagnostic criteria. Post-traumatic headache often resolves within the first few days of onset, whereas it persists for at least 3 months in 30-50%. The majority of insights into post-traumatic headache pathophysiology come from pre-clinical animal studies and human imaging studies, which implicate structural, functional, metabolic, and neuroinflammatory mechanisms for post-traumatic headache. There is a paucity of quality evidence for how to best treat post-traumatic headache. CONCLUSIONS Although meaningful progress has been made in the post-traumatic headache field, priorities for future research are numerous, including the optimization of diagnostic criteria, a greater understanding of post-traumatic headache pathophysiology, identifying mechanisms and predictors for post-traumatic headache persistence, and identifying safe, well-tolerated, effective therapies.
Collapse
|
18
|
Young G. Thirty Complexities and Controversies in Mild Traumatic Brain Injury and Persistent Post-concussion Syndrome: a Roadmap for Research and Practice. PSYCHOLOGICAL INJURY & LAW 2020. [DOI: 10.1007/s12207-020-09395-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Felipe L, Shelton JA. The clinical utility of the cervical vestibular-evoked myogenic potential (cVEMP) in university-level athletes with concussion. Neurol Sci 2020; 42:2803-2809. [PMID: 33161456 DOI: 10.1007/s10072-020-04849-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Concussion is defined as a mild traumatic brain injury that can occur in all sport activities. Cervical vestibular-evoked myogenic potentials (cVEMPs) are accepted to demonstrate the vestibulocollic reflex. MAIN: To evaluate subclinical cervical abnormalities in the vestibulospinal pathway in subjects with concussion history with and without related symptoms via evoked vestibular potential. METHODS Monaurally air conduction cVEMP (500 Hz tone bursts) at intensity of 100 dBnHL and 200 sweeps. All responses were replicated. RESULTS One hundred fifty-four participants were initially tested; however, three (03) participants did not produce usable data (no response) and were eliminated for the dataset cutoff values analysis, being considered just as abnormal response. One hundred fifty-one responses consisted of 45 non-athlete individuals without any history of a concussion or concussion symptoms (normative group), 45 athletes without any history of a concussion or concussion symptoms (control group), 33 athletes with a history of at least one concussion but no concussion symptoms related (history group), and 28 athletes with a history of at least one concussion and concussion symptoms (symptoms group). The history and symptoms groups had statistically higher latency scores than the control and the normative groups. The Index Ratio data and Threshold data did not produce a significant effect for four groups. But, a pattern of abnormal cVEMP was found when comparing those without a history of concussion (0% abnormal response) versus the history group (24%) and symptoms group (32.3%). CONCLUSION The study provides data which supports the positive impact of cVEMP when evaluating athletes and identifying concussion processes.
Collapse
Affiliation(s)
- Lilian Felipe
- Department of Speech and Hearing Sciences, Lamar University, PO Box 10076, Beaumont, TX, 77710, USA.
| | | |
Collapse
|
20
|
Irvine KA, Sahbaie P, Ferguson AR, Clark JD. Loss of diffuse noxious inhibitory control after traumatic brain injury in rats: A chronic issue. Exp Neurol 2020; 333:113428. [PMID: 32745472 PMCID: PMC11793995 DOI: 10.1016/j.expneurol.2020.113428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
Abstract
Chronic pain is one of the most challenging and debilitating symptoms to manage after traumatic brain injury (TBI), yet the underlying mechanisms remain elusive. The disruption of normal endogenous pain control mechanisms has been linked to several forms of chronic pain and may play a role in pain after TBI. We hypothesized therefore that dysfunctional descending noradrenergic and serotonergic pain control circuits may contribute to the loss of diffuse noxious inhibitory control (DNIC), a critical endogenous pain control mechanism, weeks to months after TBI. For these studies, the rat lateral fluid percussion model of mild TBI was used along with a DNIC paradigm involving a capsaicin-conditioning stimulus. We observed sustained failure of the DNIC response up to 180-days post injury. We confirmed, that descending α2 adrenoceptor-mediated noradrenergic signaling was critical for endogenous pain inhibition in uninjured rats. However, augmenting descending noradrenergic signaling using reboxetine, a selective noradrenaline reuptake inhibitor, failed to restore DNIC after TBI. Furthermore, blocking serotonin-mediated descending signaling using selective spinal serotonergic fiber depletion with 5, 7-dihydroxytryptamine was also unsuccessful at restoring endogenous pain modulation after TBI. Unexpectedly, increasing descending serotonergic signaling using the selective serotonin reuptake inhibitor escitalopram and the serotonin-norepinephrine reuptake inhibitor duloxetine restored the DNIC response in TBI rats at both 49- and 180- days post injury. Consistent with these observations, spinal serotonergic fiber depletion with 5, 7-dihydroxytryptamine eliminated the effects of escitalopram. Intact α2 adrenoceptor signaling, however, was not required for the serotonin-mediated restoration of DNIC after TBI. These results suggest that TBI causes maladaptation of descending nociceptive signaling mechanisms and changes in the function of both adrenergic and serotonergic circuits. Such changes could predispose those with TBI to chronic pain.
Collapse
Affiliation(s)
- Karen-Amanda Irvine
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA 94304, USA.
| | - Peyman Sahbaie
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA 94304, USA
| | - Adam R Ferguson
- University of California San Francisco, Brain and Spinal Injury Center, Department Neurosurgery, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - J David Clark
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA 94304, USA
| |
Collapse
|
21
|
Abstract
After traumatic brain injury (TBI), a host of symptoms of varying severity and associated functional impairment may occur. One of the most commonly encountered and challenging to treat are the post-traumatic cephalalgias. Post-traumatic cephalalgia (PTC) or headache is often conceptualized as a single entity as currently classified using the ICHD-3. Yet, the terminology applicable to the major primary, non-traumatic, headache disorders such as migraine, tension headache, and cervicogenic headache are often used to specify the specific type of headache the patients experiences seemingly disparate from the unitary definition of post-traumatic headache adopted by ICHD-3. More complex post-traumatic presentations attributable to brain injury as well as other headache conditions are important to consider as well as other causes such as medication overuse headache and medication induced headache. Treatment of any post-traumatic cephalalgia must be optimized by understanding that there may be more than one headache pain generator, that comorbid traumatic problems may contribute to the pain presentation and that pre-existing conditions could impact both symptom complaint, clinical presentation and recovery. Any treatment for PTC must harmonize with ongoing medical and psychosocial aspects of recovery.
Collapse
Affiliation(s)
- Brigid Dwyer
- Department of Neurology, Boston University, Boston, Massachusetts, USA
| | - Nathan Zasler
- Concussion Care Centre of Virginia Ltd. and Tree of Life Services, Inc., Richmond, Virginia, USA.,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Physical Medicine and Rehabilitation, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Posttraumatic headache (PTH) attributed to mild traumatic brain injury is common and debilitating. In up to one-half of those with acute PTH, the PTH becomes persistent (PTH), enduring for longer than 3 months. The high incidence and persistence of PTH necessitate research into PTH pathophysiology and treatment. In this review, recent developments regarding the diagnostic criteria for PTH, the pathophysiology of PTH, and PTH treatment are discussed. RECENT FINDINGS International Classification of Headache Disorders 3 diagnostic criteria for PTH attributed to head trauma require that 'a headache of any type' starts within 7 days of a head injury. PTH is considered 'persistent' when it endures for more than 3 months. Preclinical and human PTH research suggest multiple pathophysiologic mechanisms including genetic influences, neuroinflammation, increased release and inadequate clearance of neuropeptides and neurotransmitters, mast cell degranulation, and brain structural and functional remodeling. Even when it has a phenotype similar to a primary headache, data suggest that PTH is distinct from primary headaches. There is a lack of high-quality evidence for the acute or preventive treatment of PTH. However, results from published studies of conventional headache therapies and newer therapies, such as calcitonin gene-related peptide mAbs and transcranial magnetic stimulation, justify the current and future randomized controlled trials. SUMMARY Evidence points towards a complex pathophysiology for PTH that is at least partially distinct from the primary headaches. Although properly conducted clinical trials of PTH treatment are needed, existing work has provided important data that help to plan these clinical trials. Current and future investigations will help to identify PTH mechanisms, predictors for PTH persistence, therapeutic targets, and evidence-based treatment options.
Collapse
|