1
|
Zelisko N, Lesyk R, Stoika R. Structure, unique biological properties, and mechanisms of action of transforming growth factor β. Bioorg Chem 2024; 150:107611. [PMID: 38964148 DOI: 10.1016/j.bioorg.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Transforming growth factor β (TGF-β) is a ubiquitous molecule that is extremely conserved structurally and plays a systemic role in human organism. TGF-β is a homodimeric molecule consisting of two subunits joined through a disulphide bond. In mammals, three genes code for TGF-β1, TGF-β2, and TGF-β3 isoforms of this cytokine with a dominating expression of TGF-β1. Virtually, all normal cells contain TGF-β and its specific receptors. Considering the exceptional role of fine balance played by the TGF-β in anumber of physiological and pathological processes in human body, this cytokine may be proposed for use in medicine as an immunosuppressant in transplantology, wound healing and bone repair. TGFb itself is an important target in oncology. Strategies for blocking members of TGF-β signaling pathway as therapeutic targets have been considered. In this review, signalling mechanisms of TGF-β1 action are addressed, and their role in physiology and pathology with main focus on carcinogenesis are described.
Collapse
Affiliation(s)
- Nataliya Zelisko
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
2
|
Chen H, Koul D, Zhang Y, Ghobadi SN, Zhu Y, Hou Q, Chang E, Habte FG, Paulmurugan R, Khan S, Zheng Y, Graeber MB, Herschmann I, Lee KS, Wintermark M. Pulsed focused ultrasound alters the proteomic profile of the tumor microenvironment in a syngeneic mouse model of glioblastoma. J Neurooncol 2024:10.1007/s11060-024-04801-4. [PMID: 39180641 DOI: 10.1007/s11060-024-04801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE Glioblastoma (GBM), a lethal primary adult malignancy, is difficult to treat because of the restrictive nature of the blood-brain barrier (BBB), blood-tumor barrier (BTB), and the immunosuppressive tumor microenvironment (TME). Since pulsed focused ultrasound (pFUS) is currently used to improve therapeutic deliveries across these barriers, this study aims to characterize the impact of pFUS on the TME proteomics upon opening the BBB and BTB. METHODS We utilized MRI-guided, pFUS with ultrasound contrast microbubbles (termed 'pFUS' herein) to selectively and transiently open the BBB and BTB investigating proteomic modifications in the TME. Utilizing an orthotopically-allografted mouse GL26 GBM model (Ccr2RFP/wt - Cx3cr1GFP/wt), pFUS's effect on glioma proteomics was evaluated using a Luminex 48-plex assay. RESULTS pFUS treated tumors exhibited increases in pro-inflammatory cytokines, chemokines, and trophic factors (CCTFs). Proteomic changes in tumors tend to peak at 24 h after single pFUS session (1x), with levels then plateauing or declining over the subsequent 24 h. Tumors receiving three pFUS sessions (3x) showed elevated CCTFs levels peaking as early as 6 h after the third session. CONCLUSIONS pFUS together with microbubbles induces a sterile inflammatory response in the TME of a mouse GBM tumor. Moreover, this proinflammatory shift can be sustained and perhaps primed for more rapid responses upon multiple sessions of pFUS. These findings raise the intriguing potential that pFUS-induced BBB and BTB opening may not only be effective in facilitating the therapeutic agent delivery, but also be harnessed to modify the TME to assist immunotherapies in overcoming immune evasion in GBM.
Collapse
Affiliation(s)
- Hui Chen
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1482, Houston, TX, 77030, USA
| | - Dimpy Koul
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1482, Houston, TX, 77030, USA
| | - Yanrong Zhang
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA, USA
| | - Sara Natasha Ghobadi
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA, USA
| | - Yayu Zhu
- Salpointe Catholic High School, Tucson, AZ, USA
| | - Qingyi Hou
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA, USA
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program, Stanford University, Stanford, CA, USA
| | - Frezghi G Habte
- Department of Radiology, Molecular Imaging Program, Stanford University, Stanford, CA, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program, Stanford University, Stanford, CA, USA
| | - Sabbir Khan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuqi Zheng
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Manuel B Graeber
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
- University of Sydney Association of Professors (USAP), University of Sydney, Camperdown, NSW, 2006, Australia
| | - Iris Herschmann
- The Human Immune Monitoring Center (HIMC), Stanford University, Stanford, CA, USA
| | - Kevin S Lee
- Departments of Neuroscience and Neurosurgery, Center for Brain Immunology and Glia, School of Medicine, University of Virginia, 409 Lane Road, MR4 Building, PO Box 801392, Charlottesville, VA, 22903, USA.
| | - Max Wintermark
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1482, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Rolfe NW, Dadario NB, Canoll P, Bruce JN. A Review of Therapeutic Agents Given by Convection-Enhanced Delivery for Adult Glioblastoma. Pharmaceuticals (Basel) 2024; 17:973. [PMID: 39204078 PMCID: PMC11357193 DOI: 10.3390/ph17080973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Glioblastoma remains a devastating disease with a bleak prognosis despite continued research and numerous clinical trials. Convection-enhanced delivery offers researchers and clinicians a platform to bypass the blood-brain barrier and administer drugs directly to the brain parenchyma. While not without significant technological challenges, convection-enhanced delivery theoretically allows for a wide range of therapeutic agents to be delivered to the tumoral space while preventing systemic toxicities. This article provides a comprehensive review of the antitumor agents studied in clinical trials of convection-enhanced delivery to treat adult high-grade gliomas. Agents are grouped by classes, and preclinical evidence for these agents is summarized, as is a brief description of their mechanism of action. The strengths and weaknesses of each clinical trial are also outlined. By doing so, the difficulty of untangling the efficacy of a drug from the technological challenges of convection-enhanced delivery is highlighted. Finally, this article provides a focused review of some therapeutics that might stand to benefit from future clinical trials for glioblastoma using convection-enhanced delivery.
Collapse
Affiliation(s)
- Nathaniel W. Rolfe
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, NY 10032, USA;
| | - Nicholas B. Dadario
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, NY 10032, USA;
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, NY 10032, USA;
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, NY 10032, USA;
| |
Collapse
|
4
|
Kreatsoulas D, Damante M, Cua S, Lonser RR. Adjuvant convection-enhanced delivery for the treatment of brain tumors. J Neurooncol 2024; 166:243-255. [PMID: 38261143 PMCID: PMC10834622 DOI: 10.1007/s11060-023-04552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Malignant gliomas are a therapeutic challenge and remain nearly uniformly fatal. While new targeted chemotherapeutic agentsagainst malignant glioma have been developed in vitro, these putative therapeutics have not been translated into successful clinical treatments. The lack of clinical effectiveness can be the result of ineffective biologic strategies, heterogeneous tumor targets and/or the result of poortherapeutic distribution to malignant glioma cells using conventional nervous system delivery modalities (intravascular, cerebrospinal fluid and/orpolymer implantation), and/or ineffective biologic strategies. METHODS The authors performed a review of the literature for the terms "convection enhanced delivery", "glioblastoma", and "glioma". Selectclinical trials were summarized based on their various biological mechanisms and technological innovation, focusing on more recently publisheddata when possible. RESULTS We describe the properties, features and landmark clinical trials associated with convection-enhanced delivery for malignant gliomas.We also discuss future trends that will be vital to CED innovation and improvement. CONCLUSION Efficacy of CED for malignant glioma to date has been mixed, but improvements in technology and therapeutic agents arepromising.
Collapse
Affiliation(s)
- Daniel Kreatsoulas
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, N1019 Doan Hall, 410 W 10Th Avenue, Columbus, OH, 43210, USA.
| | - Mark Damante
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, N1019 Doan Hall, 410 W 10Th Avenue, Columbus, OH, 43210, USA
| | - Santino Cua
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, N1019 Doan Hall, 410 W 10Th Avenue, Columbus, OH, 43210, USA
| | - Russell R Lonser
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, N1019 Doan Hall, 410 W 10Th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
5
|
Trojan A, Lone YC, Briceno I, Trojan J. Anti-Gene IGF-I Vaccines in Cancer Gene Therapy: A Review of a Case of Glioblastoma. Curr Med Chem 2024; 31:1983-2002. [PMID: 38031775 DOI: 10.2174/0109298673237968231106095141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE Vaccines for the deadliest brain tumor - glioblastoma (GBM) - are generally based on targeting growth factors or their receptors, often using antibodies. The vaccines described in the review were prepared to suppress the principal cancer growth factor - IGF-I, using anti-gene approaches either of antisense (AS) or of triple helix (TH) type. Our objective was to increase the median survival of patients treated with AS and TH cell vaccines. METHODOLOGY The cells were transfected in vitro by both constructed IGF-I AS and IGF-I TH expression episomal vectors; part of these cells was co-cultured with plant phytochemicals, modulating IGF-I expression. Both AS and TH approaches completely suppressed IGF-I expression and induced MHC-1 / B7 immunogenicity related to the IGF-I receptor signal. RESULTS This immunogenicity proved to be stronger in IGF-I TH than in IGF-I AS-prepared cell vaccines, especially in TH / phytochemical cells. The AS and TH vaccines generated an important TCD8+ and TCD8+CD11b- immune response in treated GBM patients and increased the median survival of patients up to 17-18 months, particularly using TH vaccines; in some cases, 2- and 3-year survival was reported. These clinical results were compared with those obtained in therapies targeting other growth factors. CONCLUSION The anti-gene IGF-I vaccines continue to be applied in current GBM personalized medicine. Technical improvements in the preparation of AS and TH vaccines to increase MHC-1 and B7 immunogenicity have, in parallel, allowed to increase in the median survival of patients.
Collapse
Affiliation(s)
- Annabelle Trojan
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- Faculty of Medicine, University of Cartagena, PO Box: 130014 Cartagena de Indias, Colombia
| | - Yu-Chun Lone
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- CEDEA / ICGT - Center of Oncological Diseases Diagnosis, PO Box: 110231 Bogota, Colombia
| | - Ignacio Briceno
- Faculty of Medicine, University of La Sabana, PO Box: 250008 Chia, Colombia
| | - Jerzy Trojan
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- CEDEA / ICGT - Center of Oncological Diseases Diagnosis, PO Box: 110231 Bogota, Colombia
- National Academy of Medicine - ANM, PO Box: 75272 Paris, France
| |
Collapse
|
6
|
Ge R, Huang GM. Targeting transforming growth factor beta signaling in metastatic osteosarcoma. J Bone Oncol 2023; 43:100513. [PMID: 38021074 PMCID: PMC10666000 DOI: 10.1016/j.jbo.2023.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Osteosarcoma is a rare type of bone cancer, and half of the cases affect children and adolescents younger than 20 years of age. Despite intensive efforts to improve both chemotherapeutics and surgical management, the clinical outcome for metastatic osteosarcoma remains poor. Transforming growth factor β (TGF-β) is one of the most abundant growth factors in bones. The TGF-β signaling pathway has complex and contradictory roles in the pathogenesis of human cancers. TGF-β is primarily a tumor suppressor that inhibits proliferation and induces apoptosis of premalignant epithelial cells. In the later stages of cancer progression, however, TGF-β functions as a metastasis promoter by promoting tumor growth, inducing epithelial-mesenchymal transition (EMT), blocking antitumor immune responses, increasing tumor-associated fibrosis, and enhancing angiogenesis. In contrast with the dual effects of TGF-β on carcinoma (epithelial origin) progression, TGF-β seems to mainly have a pro-tumoral effect on sarcomas including osteosarcoma (mesenchymal origin). Many drugs that target TGF-β signaling have been developed: neutralizing antibodies that prevent TGF-β binding to receptor complexes; ligand trap employing recombinant Fc-fusion proteins containing the soluble ectodomain of either type II (TβRII) or the type III receptor ((TβRIII), preventing TGF-β from binding to its receptors; antisense nucleotides that reduce TGF-β expression at the transcriptional/translational level; small molecule inhibitors of serine/threonine kinases of the type I receptor (TβRI) preventing downstream signaling; and vaccines that contain cell lines transfected with TβRII antisense genes, or target furin convertase, resulting in reduced TGF-β signaling. TGF-β antagonists have been shown to have effects on osteosarcoma in vitro and in vivo. One of the small molecule TβRI inhibitors, Vactosertib, is currently undergoing a phase 1/2 clinical trial to evaluate its effect on osteosarcoma. Several phase 1/2/3 clinical trials have shown TGF-β antagonists are safe and well tolerated. For instance, Luspatercept, a TGF-β ligand trap, has been approved by the FDA for the treatment of anemia associated with myeloid dysplastic syndrome (MDS) with ring sideroblasts/mutated SF3B1 with acceptable safety. Clinical trials evaluating the long-term safety of Luspatercept are in process.
Collapse
Affiliation(s)
- Rongrong Ge
- Hillman Cancer Center at Central Pennsylvania, University of Pittsburg Medical Center, Harrisburg, PA, 17109, USA
| | - Gavin M. Huang
- Harrisburg Academy School, 10 Erford Rd, Wormleysburg, PA, 17043, USA
| |
Collapse
|
7
|
Heimberger AB, Tripathi S, Platanias LC. Targeting Cytokines and Their Pathways for the Treatment of Cancer. Cancers (Basel) 2023; 15:5224. [PMID: 37958397 PMCID: PMC10649760 DOI: 10.3390/cancers15215224] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
This Special Issue focuses on the evolving role of immune modulatory cytokines, from their initial use as monotherapeutic recombinant proteins to their more contemporaneous use as modifiers for adoptive cellular immunotherapy [...].
Collapse
Affiliation(s)
- Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Chicago, IL 60611, USA;
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA;
| | - Shashwat Tripathi
- Department of Neurological Surgery, Feinberg School of Medicine, Chicago, IL 60611, USA;
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA;
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA;
- Division of Hematology Oncology, Department of Medicine, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Yuan J, Jia J, Wu T, Du Z, Chen Q, Zhang J, Wu Z, Yuan Z, Zhao X, Liu J, Guo J, Cheng X. Long intergenic non-coding RNA DIO3OS promotes osteosarcoma metastasis via activation of the TGF-β signaling pathway: a potential diagnostic and immunotherapeutic target for osteosarcoma. Cancer Cell Int 2023; 23:215. [PMID: 37752544 PMCID: PMC10521498 DOI: 10.1186/s12935-023-03076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND The aim of this study was to determine the underlying potential mechanisms and function of DIO3OS, a lincRNA in osteosarcoma and clarify that DIO3OS can be used as a potential diagnostic biomarker and immunotherapeutic target. METHODS The expression matrix data and clinical information were obtained from XENA platform of UCSC and GEO database as the test cohorts. The external validation cohort was collected from our hospital. Bioinformatics analysis was used to annotate the biological function of DIO3OS. Immune infiltration and immune checkpoint analysis were applied to evaluate whether DIO3OS can be used as an immunotherapeutic target. ROC curves and AUC were established to assess the diagnostic value of DIO3OS for differentiating patients from other subtypes sarcoma. The expression analysis was detected by qRT-PCR, western blot, and immunohistochemical. Wound healing assay and Transwell assay were applied to determine the migration and invasion function of DIO3OS in osteosarcoma cell lines. The tail vein injection osteosarcoma cells metastases model was used in this research. RESULTS High expression of DIO3OS was identified as a risk lincRNA for predicting overall survival of osteosarcoma in test cohort. The outcomes of experiments in vitro and in vivo showed that low expression of DIO3OS limited osteosarcoma tumor metastasis with inhibiting TGF-β signaling pathway. Immune checkpoint genes (CD200 and TNFRSF25) expressions were inhibited in the low DIO3OS expression group. The DIO3OS expression can be applied to reliably distinguish osteosarcoma from lipomatous neoplasms, myomatous neoplasms, nerve sheath tumors, and synovial-like neoplasms. This result was further validated in the validation cohort. CONCLUSIONS In conclusion, our outcomes indicated that DIO3OS is a potential diagnostic and prognostic biomarker of osteosarcoma, emphasizing its potential as a target of immunotherapy to improve the treatment of osteosarcoma through TGF-β signaling pathway. TRIAL REGISTRATION NUMBER The present retrospectively study was approved by the Ethics Committee of The Second Affiliated Hospital of Nanchang University [Review (2020) No. (115)].
Collapse
Affiliation(s)
- Jinghong Yuan
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 1 Minde Road, Donghu, Nanchang, 330006, Jiangxi, People's Republic of China
- Institute of Orthopaedics of Jiangxi Province, Nanchang, Jiangxi, China
- Institute of Minimally Invasive Orthopaedics of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Jingyu Jia
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 1 Minde Road, Donghu, Nanchang, 330006, Jiangxi, People's Republic of China
- Institute of Orthopaedics of Jiangxi Province, Nanchang, Jiangxi, China
- Institute of Minimally Invasive Orthopaedics of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Tianlong Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 1 Minde Road, Donghu, Nanchang, 330006, Jiangxi, People's Republic of China
- Institute of Orthopaedics of Jiangxi Province, Nanchang, Jiangxi, China
- Institute of Minimally Invasive Orthopaedics of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Zhi Du
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 1 Minde Road, Donghu, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Qi Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 1 Minde Road, Donghu, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jian Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 1 Minde Road, Donghu, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhiwen Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 1 Minde Road, Donghu, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhao Yuan
- Clinical Research Center, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaokun Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 1 Minde Road, Donghu, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jiahao Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 1 Minde Road, Donghu, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jia Guo
- Department of Orthopaedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Xigao Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 1 Minde Road, Donghu, Nanchang, 330006, Jiangxi, People's Republic of China.
- Institute of Orthopaedics of Jiangxi Province, Nanchang, Jiangxi, China.
- Institute of Minimally Invasive Orthopaedics of Nanchang University, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
9
|
Ali S, Rehman MU, Yatoo AM, Arafah A, Khan A, Rashid S, Majid S, Ali A, Ali MN. TGF-β signaling pathway: Therapeutic targeting and potential for anti-cancer immunity. Eur J Pharmacol 2023; 947:175678. [PMID: 36990262 DOI: 10.1016/j.ejphar.2023.175678] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Transforming growth factor-β (TGFβ) is a pleiotropic secretory cytokine exhibiting both cancer-inhibitory and promoting properties. It transmits its signals via Suppressor of Mother against Decapentaplegic (SMAD) and non-SMAD pathways and regulates cell proliferation, differentiation, invasion, migration, and apoptosis. In non-cancer and early-stage cancer cells, TGFβ signaling suppresses cancer progression via inducing apoptosis, cell cycle arrest, or anti-proliferation, and promoting cell differentiation. On the other hand, TGFβ may also act as an oncogene in advanced stages of tumors, wherein it develops immune-suppressive tumor microenvironments and induces the proliferation of cancer cells, invasion, angiogenesis, tumorigenesis, and metastasis. Higher TGFβ expression leads to the instigation and development of cancer. Therefore, suppressing TGFβ signals may present a potential treatment option for inhibiting tumorigenesis and metastasis. Different inhibitory molecules, including ligand traps, anti-sense oligo-nucleotides, small molecule receptor-kinase inhibitors, small molecule inhibitors, and vaccines, have been developed and clinically trialed for blocking the TGFβ signaling pathway. These molecules are not pro-oncogenic response-specific but block all signaling effects induced by TGFβ. Nonetheless, targeting the activation of TGFβ signaling with maximized specificity and minimized toxicity can enhance the efficacy of therapeutic approaches against this signaling pathway. The molecules that are used to target TGFβ are non-cytotoxic to cancer cells but designed to curtail the over-activation of invasion and metastasis driving TGFβ signaling in stromal and cancer cells. Here, we discussed the critical role of TGFβ in tumorigenesis, and metastasis, as well as the outcome and the promising achievement of TGFβ inhibitory molecules in the treatment of cancer.
Collapse
|
10
|
Sun Y, Zhang C, Fang Q, Zhang W, Liu W. Abnormal signal pathways and tumor heterogeneity in osteosarcoma. J Transl Med 2023; 21:99. [PMID: 36759884 PMCID: PMC9912612 DOI: 10.1186/s12967-023-03961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most frequent and aggressive primary malignant sarcoma among adolescents and chemotherapy has not substantially progressed for decades. New insights into OS development and therapeutic strategies are urgently needed. METHODS We analyzed integrated single-cell transcriptomes, bulk RNA-seq, and microarray data from Gene Expression Omnibus (GEO) datasets. We also used Weighted Gene Co-expression Network Analysis (WGCNA), Gene set enrichment analysis (GSEA), and Gene set variation analysis (GSVA), along with Simple ClinVar and Enrichr web servers. RESULTS The findings of integrated single-cell analysis showed that OS arises from imperfect osteogenesis during development. Novel abnormalities comprised deficient TGFβ and P53 signal pathways, and cell cycle pathway activation, and a potentially new driver mutation in the interferon induced transmembrane protein 5 (IFITM5) that might function as a pathogenic factor in OS. Osteosarcoma is characterized by oncocyte heterogeneity, especially in immunogenic and adipocyte-like subtypes that respectively promote and hamper OS treatment. Etoposide is a promising chemotherapeutic that provides palliation by affecting the subtype of OS and correcting the abnormal pathways. CONCLUSION Various abnormal signal pathways play indispensable roles in OS development. We explored the heterogeneity and underlying mechanisms of OS and generated findings that will assist with OS assessment and selecting optimal therapies.
Collapse
Affiliation(s)
- Yifeng Sun
- grid.452422.70000 0004 0604 7301Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, 250014 Shandong People’s Republic of China ,grid.410712.10000 0004 0473 882XDepartment of Surgery, Ulm University Hospital, Ulm University, Ulm, Germany
| | - Chunming Zhang
- grid.452422.70000 0004 0604 7301Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, 250014 Shandong People’s Republic of China
| | - Qiongxuan Fang
- grid.11135.370000 0001 2256 9319MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Wenqiang Zhang
- grid.452422.70000 0004 0604 7301Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, 250014 Shandong People’s Republic of China
| | - Wei Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
11
|
Sperring CP, Argenziano MG, Savage WM, Teasley DE, Upadhyayula PS, Winans NJ, Canoll P, Bruce JN. Convection-enhanced delivery of immunomodulatory therapy for high-grade glioma. Neurooncol Adv 2023; 5:vdad044. [PMID: 37215957 PMCID: PMC10195574 DOI: 10.1093/noajnl/vdad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The prognosis for glioblastoma has remained poor despite multimodal standard of care treatment, including temozolomide, radiation, and surgical resection. Further, the addition of immunotherapies, while promising in a number of other solid tumors, has overwhelmingly failed in the treatment of gliomas, in part due to the immunosuppressive microenvironment and poor drug penetrance to the brain. Local delivery of immunomodulatory therapies circumvents some of these challenges and has led to long-term remission in select patients. Many of these approaches utilize convection-enhanced delivery (CED) for immunological drug delivery, allowing high doses to be delivered directly to the brain parenchyma, avoiding systemic toxicity. Here, we review the literature encompassing immunotherapies delivered via CED-from preclinical model systems to clinical trials-and explore how their unique combination elicits an antitumor response by the immune system, decreases toxicity, and improves survival among select high-grade glioma patients.
Collapse
Affiliation(s)
- Colin P Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - William M Savage
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Damian E Teasley
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Nathan J Winans
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
12
|
Chan MKK, Chan ELY, Ji ZZ, Chan ASW, Li C, Leung KT, To KF, Tang PMK. Transforming growth factor-β signaling: from tumor microenvironment to anticancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:316-343. [PMID: 37205317 PMCID: PMC10185444 DOI: 10.37349/etat.2023.00137] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/09/2023] [Indexed: 05/21/2023] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is an important pathway for promoting the pathogenesis of inflammatory diseases, including cancer. The roles of TGF-β signaling are heterogeneous and versatile in cancer development and progression, both anticancer and protumoral actions are reported. Interestingly, increasing evidence suggests that TGF-β enhances disease progression and drug resistance via immune-modulatory actions in the tumor microenvironment (TME) of solid tumors. A better understanding of its regulatory mechanisms in the TME at the molecular level can facilitate the development of precision medicine to block the protumoral actions of TGF-β in the TME. Here, the latest information about the regulatory mechanisms and translational research of TGF-β signaling in the TME for therapeutic development had been summarized.
Collapse
Affiliation(s)
- Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Emily Lok-Yiu Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zoey Zeyuan Ji
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
- Correspondence: Patrick Ming-Kuen Tang, Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
13
|
Dai X, Thompson EW, Ostrikov K(K. Receptor-Mediated Redox Imbalance: An Emerging Clinical Avenue against Aggressive Cancers. Biomolecules 2022; 12:biom12121880. [PMID: 36551308 PMCID: PMC9775490 DOI: 10.3390/biom12121880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer cells are more vulnerable to abnormal redox fluctuations due to their imbalanced antioxidant system, where cell surface receptors sense stress and trigger intracellular signal relay. As canonical targets of many targeted therapies, cell receptors sensitize the cells to specific drugs. On the other hand, cell target mutations are commonly associated with drug resistance. Thus, exploring effective therapeutics targeting diverse cell receptors may open new clinical avenues against aggressive cancers. This paper uses focused case studies to reveal the intrinsic relationship between the cell receptors of different categories and the primary cancer hallmarks that are associated with the responses to external or internal redox perturbations. Cold atmospheric plasma (CAP) is examined as a promising redox modulation medium and highly selective anti-cancer therapeutic modality featuring dynamically varying receptor targets and minimized drug resistance against aggressive cancers.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Erik W. Thompson
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Kostya (Ken) Ostrikov
- School of Chemistry, Physics and Center for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
14
|
Roles of TGF- β in cancer hallmarks and emerging onco-therapeutic design. Expert Rev Mol Med 2022; 24:e42. [PMID: 36345661 DOI: 10.1017/erm.2022.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transforming growth factor-beta (TGF-β) is a double-edged sword in cancer treatment because of its pivotal yet complex and roles played during cancer initiation/development. Current anti-cancer strategies involving TGF-β largely view TGF-β as an onco-therapeutic target that not only substantially hinders its full utilisation for cancer control, but also considerably restricts innovations in this field. Thereby, how to take advantages of therapeutically favourable properties of TGF-β for cancer management represents an interesting and less investigated problem. Here, by categorising cancer hallmarks into four critical transition events and one enabling characteristic controlling cancer initiation and progression, and delineating TGF-β complexities according to these cancer traits, we identify the suppressive role of TGF-β in tumour initiation and early-stage progression and its promotive functionalities in cancer metastasis as well as other cancer hallmarks. We also propose the feasibility and possible scenarios of combining cold atmospheric plasma (CAP) with onco-therapeutics utilising TGF-β for cancer control given the intrinsic properties of CAP against cancer hallmarks.
Collapse
|
15
|
Devan AR, Pavithran K, Nair B, Murali M, Nath LR. Deciphering the role of transforming growth factor-beta 1 as a diagnostic-prognostic-therapeutic candidate against hepatocellular carcinoma. World J Gastroenterol 2022; 28:5250-5264. [PMID: 36185626 PMCID: PMC9521521 DOI: 10.3748/wjg.v28.i36.5250] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/30/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-beta (TGF-β) is a multifunctional cytokine that performs a dual role as a tumor suppressor and tumor promoter during cancer progression. Among different ligands of the TGF-β family, TGF-β1 modulates most of its biological outcomes. Despite the abundant expression of TGF-β1 in the liver, steatosis to hepatocellular carcinoma (HCC) progression triggers elevated TGF-β1 levels, contributing to poor prognosis and survival. Additionally, elevated TGF-β1 levels in the tumor microenvironment create an immunosuppressive stage via various mechanisms. TGF-β1 has a prime role as a diagnostic and prognostic biomarker in HCC. Moreover, TGF-β1 is widely studied as a therapeutic target either as monotherapy or combined with immune checkpoint inhibitors. This review provides clinical relevance and up-to-date information regarding the potential of TGF-β1 in diagnosis, prognosis, and therapy against HCC.
Collapse
Affiliation(s)
- Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | - Keechilat Pavithran
- Department of Medical Oncology and Hematology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | - Maneesha Murali
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| |
Collapse
|
16
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
17
|
Ang GCK, Gupta A, Surana U, Yap SXL, Taneja R. Potential Therapeutics Targeting Upstream Regulators and Interactors of EHMT1/2. Cancers (Basel) 2022; 14:2855. [PMID: 35740522 PMCID: PMC9221123 DOI: 10.3390/cancers14122855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Euchromatin histone lysine methyltransferases (EHMTs) are epigenetic regulators responsible for silencing gene transcription by catalyzing H3K9 dimethylation. Dysregulation of EHMT1/2 has been reported in multiple cancers and is associated with poor clinical outcomes. Although substantial insights have been gleaned into the downstream targets and pathways regulated by EHMT1/2, few studies have uncovered mechanisms responsible for their dysregulated expression. Moreover, EHMT1/2 interacting partners, which can influence their function and, therefore, the expression of target genes, have not been extensively explored. As none of the currently available EHMT inhibitors have made it past clinical trials, understanding upstream regulators and EHMT protein complexes may provide unique insights into novel therapeutic avenues in EHMT-overexpressing cancers. Here, we review our current understanding of the regulators and interacting partners of EHMTs. We also discuss available therapeutic drugs that target the upstream regulators and binding partners of EHMTs and could potentially modulate EHMT function in cancer progression.
Collapse
Affiliation(s)
- Gareth Chin Khye Ang
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Amogh Gupta
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| | - Uttam Surana
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Shirlyn Xue Ling Yap
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Reshma Taneja
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| |
Collapse
|
18
|
Winograd E, Germano I, Wen P, Olson JJ, Ormond DR. Congress of Neurological Surgeons systematic review and evidence-based guidelines update on the role of targeted therapies and immunotherapies in the management of progressive glioblastoma. J Neurooncol 2022; 158:265-321. [PMID: 34694567 PMCID: PMC8543777 DOI: 10.1007/s11060-021-03876-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022]
Abstract
The following questions and recommendations are pertinent to the following: TARGET POPULATION: These recommendations apply to adults with progressive GBM who have undergone standard primary treatment with surgery and/or chemoradiation. QUESTION 1: In adults with progressive glioblastoma is the use of bevacizumab as monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION Level III: Treatment with bevacizumab is suggested in the treatment of progressive GBM, as it provides improved disease control compared to historical controls as measured by best imaging response and progression free survival at 6 months, while not providing evidence for improvement in overall survival. QUESTION 2: In adults with progressive glioblastoma is the use of bevacizumab as combination therapy with cytotoxic agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION Level III: There is insufficient evidence to show benefit or harm of bevacizumab in combination with cytotoxic therapies in progressive glioblastoma due to a lack of evidence supporting a clearly defined benefit without significant toxicity. QUESTION 3: In adults with progressive glioblastoma is the use of bevacizumab as a combination therapy with targeted agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 4: In adults with progressive glioblastoma is the use of targeted agents as monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 5: In adults with progressive glioblastoma is the use of targeted agents in combination with cytotoxic therapies superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 6: In adults with progressive glioblastoma is the use of immunotherapy monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 7: In adults with progressive glioblastoma is the use of immunotherapy in combination with targeted agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 8: In adults with progressive glioblastoma is the use of immunotherapy in combination with bevacizumab superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question.
Collapse
Affiliation(s)
- Evan Winograd
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Isabelle Germano
- Department of Neurosurgery, The Mount Sinai Hospital, New York, NY, USA
| | - Patrick Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12631 E. 17th Ave., Mail Stop C307, Aurora, CO, 80045, USA.
| |
Collapse
|
19
|
Wang J, Xu Z, Wang Z, Du G, Lun L. TGF-beta signaling in cancer radiotherapy. Cytokine 2021; 148:155709. [PMID: 34597918 DOI: 10.1016/j.cyto.2021.155709] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022]
Abstract
Transforming growth factor beta (TGF-β) plays key roles in regulating cellular proliferation and maintaining tissue homeostasis. TGF-β exerts tumor-suppressive effects in the early stages of carcinogenesis, but it also plays tumor-promoting roles in established tumors. Additionally, it plays a critical role in cancer radiotherapy. TGF-β expression or activation increases in irradiated tissues, and studies have shown that TGF-β plays dual roles in cancer radiosensitivity and is involved in ionizing radiation-induced fibrosis in different tumor microenvironments (TMEs). Furthermore, TGF-β promotes radioresistance by inducing the epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs) and cancer-associated fibroblasts (CAFs), suppresses the immune system and facilitates cancer resistance. In particular, the links between TGF-β and the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) axis play a critical role in cancer therapeutic resistance. Growing evidence has shown that TGF-β acts as a radiation protection agent, leading to heightened interest in using TGF-β as a therapeutic target. The future of anti-TGF-β signaling therapy for numerous diseases appears bright, and the outlook for the use of TGF-β inhibitors in cancer radiotherapy as TME-targeting agents is promising.
Collapse
Affiliation(s)
- Juan Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266061, Shandong, China
| | - Zhonghang Xu
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Zhe Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266061, Shandong, China
| | - Guoqiang Du
- Department of Otolaryngology Head and Neck Surgery, Qingdao Municipal Hospital (Group), Qingdao 266071, Shandong, China.
| | - Limin Lun
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266061, Shandong, China.
| |
Collapse
|
20
|
Convection Enhanced Delivery in the Setting of High-Grade Gliomas. Pharmaceutics 2021; 13:pharmaceutics13040561. [PMID: 33921157 PMCID: PMC8071501 DOI: 10.3390/pharmaceutics13040561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Development of effective treatments for high-grade glioma (HGG) is hampered by (1) the blood–brain barrier (BBB), (2) an infiltrative growth pattern, (3) rapid development of therapeutic resistance, and, in many cases, (4) dose-limiting toxicity due to systemic exposure. Convection-enhanced delivery (CED) has the potential to significantly limit systemic toxicity and increase therapeutic index by directly delivering homogenous drug concentrations to the site of disease. In this review, we present clinical experiences and preclinical developments of CED in the setting of high-grade gliomas.
Collapse
|
21
|
Xiong H, Veedu RN, Diermeier SD. Recent Advances in Oligonucleotide Therapeutics in Oncology. Int J Mol Sci 2021; 22:3295. [PMID: 33804856 PMCID: PMC8036554 DOI: 10.3390/ijms22073295] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Conventional therapies, including surgery, radiation, and chemotherapy have achieved increased survival rates for many types of cancer over the past decades. However, cancer recurrence and/or metastasis to distant organs remain major challenges, resulting in a large, unmet clinical need. Oligonucleotide therapeutics, which include antisense oligonucleotides, small interfering RNAs, and aptamers, show promising clinical outcomes for disease indications such as Duchenne muscular dystrophy, familial amyloid neuropathies, and macular degeneration. While no approved oligonucleotide drug currently exists for any type of cancer, results obtained in preclinical studies and clinical trials are encouraging. Here, we provide an overview of recent developments in the field of oligonucleotide therapeutics in oncology, review current clinical trials, and discuss associated challenges.
Collapse
Affiliation(s)
- Haoyu Xiong
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia;
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
22
|
Martins Cavaco AC, Dâmaso S, Casimiro S, Costa L. Collagen biology making inroads into prognosis and treatment of cancer progression and metastasis. Cancer Metastasis Rev 2021; 39:603-623. [PMID: 32447477 DOI: 10.1007/s10555-020-09888-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progression through dissemination to tumor-surrounding tissues and metastasis development is a hallmark of cancer that requires continuous cell-to-cell interactions and tissue remodeling. In fact, metastization can be regarded as a tissue disease orchestrated by cancer cells, leading to neoplastic colonization of new organs. Collagen is a major component of the extracellular matrix (ECM), and increasing evidence suggests that it has an important role in cancer progression and metastasis. Desmoplasia and collagen biomarkers have been associated with relapse and death in cancer patients. Despite the increasing interest in ECM and in the desmoplastic process in tumor microenvironment as prognostic factors and therapeutic targets in cancer, further research is required for a better understanding of these aspects of cancer biology. In this review, published evidence correlating collagen with cancer prognosis is retrieved and analyzed, and the role of collagen and its fragments in cancer pathophysiology is discussed.
Collapse
Affiliation(s)
- Ana C Martins Cavaco
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Sara Dâmaso
- Serviço de Oncologia, Hospital de Santa Maria-CHULN, 1649-028, Lisboa, Portugal
| | - Sandra Casimiro
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Luís Costa
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal.
- Serviço de Oncologia, Hospital de Santa Maria-CHULN, 1649-028, Lisboa, Portugal.
| |
Collapse
|
23
|
Huang CY, Chung CL, Hu TH, Chen JJ, Liu PF, Chen CL. Recent progress in TGF-β inhibitors for cancer therapy. Biomed Pharmacother 2020; 134:111046. [PMID: 33341049 DOI: 10.1016/j.biopha.2020.111046] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/18/2023] Open
Abstract
Transforming growth factor-β (TGF-β) is a multifunctional cytokine that is involved in proliferation, metastasis, and many other important processes in malignancy. Inhibitors targeting TGF-β have been considered by pharmaceutical companies for cancer therapy, and some of them are in clinical trial now. Unfortunately, several of these programs have recently been relinquished, and most companies that remain in the contest are progressing slowly and cautiously. This review summarizes the TGF-β signal transduction pathway, its roles in oncogenesis and fibrotic diseases, and advancements in antibodies and small-molecule inhibitors of TGF-β.
Collapse
Affiliation(s)
- Cheng-Yi Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC; Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan, ROC
| | - Chih-Ling Chung
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
| | - Tsung-Hui Hu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, ROC
| | - Jih-Jung Chen
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan, ROC; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan ROC
| | - Chun-Lin Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan ROC; Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan ROC.
| |
Collapse
|
24
|
D'Souza LC, Mishra S, Chakraborty A, Shekher A, Sharma A, Gupta SC. Oxidative Stress and Cancer Development: Are Noncoding RNAs the Missing Links? Antioxid Redox Signal 2020; 33:1209-1229. [PMID: 31891666 DOI: 10.1089/ars.2019.7987] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Significance: It is now clear that genetic changes underlie the basis of cancer, and alterations in functions of multiple genes are responsible for the process of tumorigenesis. Besides the classical genes that are usually implicated in cancer, the role of noncoding RNAs (ncRNAs) and reactive oxygen species (ROS) as independent entitites has also been investigated. Recent Advances: The microRNAs and long noncoding RNAs (lncRNAs), two main classes of ncRNAs, are known to regulate many aspects of tumor development. ROS, generated during oxidative stress and pathological conditions, are known to regulate every step of tumor development. Conversely, oxidative stress and ROS producing agents can suppress tumor development. The malignant cells normally produce high levels of ROS compared with normal cells. The interaction between ROS and ncRNAs regulates the expression of multiple genes and pathways implicated in cancer, suggesting a unique mechanistic relationship among ncRNA-ROS-cancer. The mechanistic relationship has been reported in hepatocellular carcinoma, glioma, and malignancies of blood, breast, colorectum, esophagus, kidney, lung, mouth, ovary, pancreas, prostate, and stomach. The ncRNA-ROS regulate several cancer-related cell signaling pathways, namely, protein kinase B (AKT), epidermal growth factor receptor (EGFR), forkhead box O3 (FOXO3), kelch-like ECH-associated protein 1 (Keap1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), p53, phosphatase and tensin homologue (PTEN), and wingless-related integration site (Wnt)/glycogen synthase kinase-3 beta (GSK3β). Critical Issues: To date, most of the reports about ncRNA-oxidative stress-carcinogenesis relationships are based on cell lines. The mechanistic basis for this relationship has not been completely elucidated. Future Directions: Attempts should be made to explore the association of lncRNAs with ROS. The significance of the ncRNA-oxidative stress-carcinogenesis interplay should also be explored through studies in animal models.
Collapse
Affiliation(s)
- Leonard Clinton D'Souza
- Division of Environmental Health and Toxicology, Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Shruti Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Anusmita Shekher
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anurag Sharma
- Division of Environmental Health and Toxicology, Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
25
|
Hager S, Fittler FJ, Wagner E, Bros M. Nucleic Acid-Based Approaches for Tumor Therapy. Cells 2020; 9:E2061. [PMID: 32917034 PMCID: PMC7564019 DOI: 10.3390/cells9092061] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Within the last decade, the introduction of checkpoint inhibitors proposed to boost the patients' anti-tumor immune response has proven the efficacy of immunotherapeutic approaches for tumor therapy. Furthermore, especially in the context of the development of biocompatible, cell type targeting nano-carriers, nucleic acid-based drugs aimed to initiate and to enhance anti-tumor responses have come of age. This review intends to provide a comprehensive overview of the current state of the therapeutic use of nucleic acids for cancer treatment on various levels, comprising (i) mRNA and DNA-based vaccines to be expressed by antigen presenting cells evoking sustained anti-tumor T cell responses, (ii) molecular adjuvants, (iii) strategies to inhibit/reprogram tumor-induced regulatory immune cells e.g., by RNA interference (RNAi), (iv) genetically tailored T cells and natural killer cells to directly recognize tumor antigens, and (v) killing of tumor cells, and reprograming of constituents of the tumor microenvironment by gene transfer and RNAi. Aside from further improvements of individual nucleic acid-based drugs, the major perspective for successful cancer therapy will be combination treatments employing conventional regimens as well as immunotherapeutics like checkpoint inhibitors and nucleic acid-based drugs, each acting on several levels to adequately counter-act tumor immune evasion.
Collapse
Affiliation(s)
- Simone Hager
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | | | - Ernst Wagner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany;
| |
Collapse
|
26
|
Birch JL, Coull BJ, Spender LC, Watt C, Willison A, Syed N, Chalmers AJ, Hossain-Ibrahim MK, Inman GJ. Multifaceted transforming growth factor-beta (TGFβ) signalling in glioblastoma. Cell Signal 2020; 72:109638. [PMID: 32320860 DOI: 10.1016/j.cellsig.2020.109638] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GBM) is an aggressive and devastating primary brain cancer which responds very poorly to treatment. The average survival time of patients is only 14-15 months from diagnosis so there is a clear and unmet need for the development of novel targeted therapies to improve patient outcomes. The multifunctional cytokine TGFβ plays fundamental roles in development, adult tissue homeostasis, tissue wound repair and immune responses. Dysfunction of TGFβ signalling has been implicated in both the development and progression of many tumour types including GBM, thereby potentially providing an actionable target for its treatment. This review will examine TGFβ signalling mechanisms and their role in the development and progression of GBM. The targeting of TGFβ signalling using a variety of approaches including the TGFβ binding protein Decorin will be highlighted as attractive therapeutic strategies.
Collapse
Affiliation(s)
| | - Barry J Coull
- Division of Cellular and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Lindsay C Spender
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Courtney Watt
- Division of Cellular and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Alice Willison
- Division of Cellular and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Nelofer Syed
- The John Fulcher Molecular Neuro-Oncology Laboratory, Division of Brain Sciences, Imperial College London, London, UK
| | | | - M Kismet Hossain-Ibrahim
- Division of Cellular and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK; Department of Neurosurgery, Ninewells Hospital and Medical School, NHS Tayside, Dundee, UK
| | - Gareth J Inman
- CRUK Beatson Institute, Glasgow, UK; Division of Cellular and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
27
|
Ciardiello D, Elez E, Tabernero J, Seoane J. Clinical development of therapies targeting TGFβ: current knowledge and future perspectives. Ann Oncol 2020; 31:1336-1349. [PMID: 32710930 DOI: 10.1016/j.annonc.2020.07.009] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 07/14/2020] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor beta (TGFβ) is a pleiotropic cytokine that plays a key role in both physiologic and pathologic conditions, including cancer. Importantly, TGFβ can exhibit both tumor-suppressive and oncogenic functions. In normal epithelial cells TGFβ acts as an antiproliferative and differentiating factor, whereas in advanced tumors TGFβ can act as an oncogenic factor by creating an immune-suppressive tumor microenvironment, and inducing cancer cell proliferation, angiogenesis, invasion, tumor progression, and metastatic spread. A wealth of preclinical findings have demonstrated that targeting TGFβ is a promising means of exerting antitumor activity. Based on this rationale, several classes of TGFβ inhibitors have been developed and tested in clinical trials, namely, monoclonal, neutralizing, and bifunctional antibodies; antisense oligonucleotides; TGFβ-related vaccines; and receptor kinase inhibitors. It is now >15 years since the first clinical trial testing an anti-TGFβ agent was engaged. Despite the promising preclinical studies, translation of the basic understanding of the TGFβ oncogenic response into the clinical setting has been slow and challenging. Here, we review the conclusions and status of all the completed and ongoing clinical trials that test compounds that inhibit the TGFβ pathway, and discuss the challenges that have arisen during their clinical development. With none of the TGFβ inhibitors evaluated in clinical trials approved for cancer therapy, clinical development for TGFβ blockade therapy is primarily oriented toward TGFβ inhibitor combinations. Immune checkpoint inhibitors are considered candidates, albeit with efficacy anticipated to be restricted to specific populations. In this context, we describe current efforts in the search for biomarkers for selecting the appropriate cancer patients who are likely to benefit from anti-TGFβ therapies. The knowledge accumulated during the last 15 years of clinical research in the context of the TGFβ pathway is crucial to design better, innovative, and more successful trials.
Collapse
Affiliation(s)
- D Ciardiello
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Department of Medicina di Precisione, Università degli studi della Campania, Luigi Vanvitelli, Naples, Italy
| | - E Elez
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - J Tabernero
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; CIBERONC, Barcelona, Spain
| | - J Seoane
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; CIBERONC, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
28
|
Parichatikanond W, Luangmonkong T, Mangmool S, Kurose H. Therapeutic Targets for the Treatment of Cardiac Fibrosis and Cancer: Focusing on TGF-β Signaling. Front Cardiovasc Med 2020; 7:34. [PMID: 32211422 PMCID: PMC7075814 DOI: 10.3389/fcvm.2020.00034] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a common mediator of cancer progression and fibrosis. Fibrosis can be a significant pathology in multiple organs, including the heart. In this review, we explain how inhibitors of TGF-β signaling can work as antifibrotic therapy. After cardiac injury, profibrotic mediators such as TGF-β, angiotensin II, and endothelin-1 simultaneously activate cardiac fibroblasts, resulting in fibroblast proliferation and migration, deposition of extracellular matrix proteins, and myofibroblast differentiation, which ultimately lead to the development of cardiac fibrosis. The consequences of fibrosis include a wide range of cardiac disorders, including contractile dysfunction, distortion of the cardiac structure, cardiac remodeling, and heart failure. Among various molecular contributors, TGF-β and its signaling pathways which play a major role in carcinogenesis are considered master fibrotic mediators. In fact, recently the inhibition of TGF-β signaling pathways using small molecule inhibitors, antibodies, and gene deletion has shown that the progression of several cancer types was suppressed. Therefore, inhibitors of TGF-β signaling are promising targets for the treatment of tissue fibrosis and cancers. In this review, we discuss the molecular mechanisms of TGF-β in the pathogenesis of cardiac fibrosis and cancer. We will review recent in vitro and in vivo evidence regarding antifibrotic and anticancer actions of TGF-β inhibitors. In addition, we also present available clinical data on therapy based on inhibiting TGF-β signaling for the treatment of cancers and cardiac fibrosis.
Collapse
Affiliation(s)
| | - Theerut Luangmonkong
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
29
|
Kaminska B, Cyranowski S. Recent Advances in Understanding Mechanisms of TGF Beta Signaling and Its Role in Glioma Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:179-201. [PMID: 32034714 DOI: 10.1007/978-3-030-30651-9_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transforming growth factor beta (TGF-β) signaling is involved in the regulation of proliferation, differentiation and survival/or apoptosis of many cells, including glioma cells. TGF-β acts via specific receptors activating multiple intracellular pathways resulting in phosphorylation of receptor-regulated Smad2/3 proteins that associate with the common mediator, Smad4. Such complex translocates to the nucleus, binds to DNA and regulates transcription of many genes. Furthermore, TGF-β-activated kinase-1 (TAK1) is a component of TGF-β signaling and activates mitogen-activated protein kinase (MAPK) cascades. Negative regulation of TGF-β/Smad signaling may occur through the inhibitory Smad6/7. While genetic alterations in genes related to TGF-β signaling are relatively rare in gliomas, the altered expression of those genes is a frequent event. The increased expression of TGF-β1-3 correlates with a degree of malignancy of human gliomas. TGF-β may contribute to tumor pathogenesis in many ways: by direct support of tumor growth, by maintaining self-renewal of glioma initiating stem cells and inhibiting anti-tumor immunity. Glioma initiating cells are dedifferentiated cells that retain many stem cell-like properties, play a role in tumor initiation and contribute to its recurrence. TGF-β1,2 stimulate expression of the vascular endothelial growth factor as well as the plasminogen activator inhibitor and some metalloproteinases that are involved in vascular remodeling, angiogenesis and degradation of the extracellular matrix. Inhibitors of TGF-β signaling reduce viability and invasion of gliomas in animal models and show a great promise as novel, potential anti-tumor therapeutics.
Collapse
Affiliation(s)
- Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland. .,Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland.
| | - Salwador Cyranowski
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
30
|
Uckun FM, Qazi S, Hwang L, Trieu VN. Recurrent or Refractory High-Grade Gliomas Treated by Convection-Enhanced Delivery of a TGFβ 2-Targeting RNA Therapeutic: A Post-Hoc Analysis with Long-Term Follow-Up. Cancers (Basel) 2019; 11:cancers11121892. [PMID: 31795071 PMCID: PMC6966490 DOI: 10.3390/cancers11121892] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 01/06/2023] Open
Abstract
Background. OT101 is a first-in-class RNA therapeutic designed to abrogate the immunosuppressive actions of transforming growth factor beta 2 (TGFβ2). Here, we report our post-hoc analysis of the single-agent activity of OT101 in adult patients with recurrent and/or refractory (R/R) high-grade gliomas. Methods. In a Phase 2 clinical trial (ClinicalTrials.gov, NCT00431561), OT101 was administered to 89 R/R high-grade glioma (HGG) (anaplastic astrocytoma/AA: 27; glioblastoma multiforme/GBM: 62) patients with an intratumoral catheter using a convection enhanced delivery (CED) system. Seventy-seven patients (efficacy population; GBM: 51; AA: 26) received at least the intended minimum number of four OT101 treatment cycles. Response determinations were based on central review of magnetic resonance imaging (MRI) scans according to the McDonald criteria. Standard statistical methods were applied for the analysis of data. Findings. Nineteen patients had a complete response (CR) or partial response (PR) following a slow but robust size reduction of their target lesions (median time for 90% reduction of the baseline tumor volume = 11.7 months, range: 4.9-57.7 months). The mean log reduction of the tumor volume was 2.2 ± 0.4 (median = 1.4: range: 0.4-4.5) logs. In addition, seven patients had a stable disease (SD) lasting ≥6 months. For the combined group of 26 AA/GBM patients with favorable responses, the median progression-free survival (PFS) of 1109 days and overall survival (OS) of 1280 days were significantly better than the median PFS (p < 0.00001) and OS (p < 0.00001) of the non-responders among the 89 patients or the 77-patient efficacy population. Conclusion. Intratumorally administered OT101 exhibits clinically meaningful single-agent activity and induces durable CR/PR/SD in R/R HGG patients.
Collapse
Affiliation(s)
- Fatih M. Uckun
- Immuno-Oncology Program, Oncotelic Inc., Agoura Hills, CA 91301, USA; (S.Q.); (L.H.); (V.N.T.)
- Department of Immuno-Oncology, Ares Pharmaceuticals, St. Paul, MN 55110, USA
- Correspondence:
| | - Sanjive Qazi
- Immuno-Oncology Program, Oncotelic Inc., Agoura Hills, CA 91301, USA; (S.Q.); (L.H.); (V.N.T.)
- Department of Immuno-Oncology, Ares Pharmaceuticals, St. Paul, MN 55110, USA
- Department of Biology, Bioinformatics Program, Gustavus Adolphus College, St. Peter, MN 56082, USA
| | - Larn Hwang
- Immuno-Oncology Program, Oncotelic Inc., Agoura Hills, CA 91301, USA; (S.Q.); (L.H.); (V.N.T.)
| | - Vuong N. Trieu
- Immuno-Oncology Program, Oncotelic Inc., Agoura Hills, CA 91301, USA; (S.Q.); (L.H.); (V.N.T.)
| |
Collapse
|
31
|
Papachristodoulou A, Silginer M, Weller M, Schneider H, Hasenbach K, Janicot M, Roth P. Therapeutic Targeting of TGFβ Ligands in Glioblastoma Using Novel Antisense Oligonucleotides Reduces the Growth of Experimental Gliomas. Clin Cancer Res 2019; 25:7189-7201. [PMID: 31530630 DOI: 10.1158/1078-0432.ccr-17-3024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 07/26/2019] [Accepted: 09/13/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Transforming growth factor (TGF)-β is expressed at high levels by glioma cells and contributes to the malignant phenotype of glioblastoma. However, its therapeutic targeting remains challenging. Here, we examined an alternative therapeutic approach of TGFβ inhibition using two novel phosphorothioate-locked nucleic acid (LNA)-modified antisense oligonucleotide gapmers, ISTH1047 and ISTH0047, which specifically target TGFβ1 and TGFβ2. EXPERIMENTAL DESIGN We characterized the effects of ISTH1047 and ISTH0047 on TGFβ1/2 expression, downstream signaling and growth of human LN-308, LN-229, and ZH-161 cells as well as murine SMA-560 glioma cells in vitro. Furthermore, we assessed their target inhibition and effects on survival in orthotopic xenogeneic and syngeneic rodent glioma models in vivo. RESULTS Both antisense oligonucleotides specifically silenced their corresponding target and abrogated SMAD2 phosphorylation in several glioma cell lines. Moreover, inhibition of TGFβ1 or TGFβ2 expression by ISTH1047 or ISTH0047 reduced the migration and invasiveness of LN-308 and SMA-560 glioma cells. Systemic antisense oligonucleotide administration to glioma-bearing mice suppressed TGFβ1 or TGFβ2 mRNA expression as well as the expression of the downstream target PAI-1 in orthotopic gliomas. Glioma-bearing mice had significantly prolonged survival upon systemic treatment with ISTH1047 or ISTH0047, which was associated with a reduction of intratumoral SMAD2 phosphorylation and, in a fully immunocompetent model, with increased immune cell infiltration. CONCLUSIONS Targeting TGFβ expression with the novel LNA antisense oligonucleotides ISTH1047 or ISTH0047 results in strong antiglioma activity in vitro and in vivo, which may represent a promising approach to be examined in human patients with glioma.
Collapse
Affiliation(s)
- Alexandros Papachristodoulou
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Manuela Silginer
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Hannah Schneider
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | | | | | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Shi M, Sanche L. Convection-Enhanced Delivery in Malignant Gliomas: A Review of Toxicity and Efficacy. JOURNAL OF ONCOLOGY 2019; 2019:9342796. [PMID: 31428153 PMCID: PMC6679879 DOI: 10.1155/2019/9342796] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/06/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
Abstract
Malignant gliomas are undifferentiated or anaplastic gliomas. They remain incurable with a multitude of modalities, including surgery, radiation, chemotherapy, and alternating electric field therapy. Convection-enhanced delivery (CED) is a local treatment that can bypass the blood-brain barrier and increase the tumor uptake of therapeutic agents, while decreasing exposure to healthy tissues. Considering the multiple choices of drugs with different antitumor mechanisms, the supra-additive effect of concomitant radiation and chemotherapy, CED appears as a promising modality for the treatment of brain tumors. In this review, the CED-related toxicities are summarized and classified into immediate, early, and late side effects based on the time of onset, and local and systemic toxicities based on the location of toxicity. The efficacies of CED of various therapeutic agents including targeted antitumor agents, chemotherapeutic agents, radioisotopes, and immunomodulators are covered. The phase III trial PRECISE compares CED of IL13-PE38QQR, an interleukin-13 conjugated to Pseudomonas aeruginosa exotoxin A, to Gliadel® Wafer, a polymer loaded with carmustine. However, in this case, CED had no significant median survival improvement (11.3 months vs. 10 months) in patients with recurrent glioblastomas. In phase II studies, CED of recombinant poliovirus (PVSRIPO) had an overall survival of 21% vs. 14% for the control group at 24 months, and 21% vs. 4% at 36 months. CED of Tf-diphtheria toxin had a response rate of 35% in recurrent malignant gliomas patients. On the other hand, the TGF-β2 inhibitor Trabedersen, HSV-1-tk ganciclovir, and radioisotope 131I-chTNT-1/B mAb had a limited response rate. With this treatment, patients who received CED of the chemotherapeutic agent paclitaxel and immunomodulator, oligodeoxynucleotides containing CpG motifs (CpG-ODN), experienced intolerable toxicity. Toward the end of this article, an ideal CED treatment procedure is proposed and the methods for quality assurance of the CED procedure are discussed.
Collapse
Affiliation(s)
- Minghan Shi
- Department of Radiation Oncology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
33
|
Wang B, Chen H, Zhang Y. Involvement of GASL1 in postoperative distant recurrence of gastric adenocarcinoma after gastrectomy distal resection and the possible mechanism. J Cell Biochem 2019; 120:11454-11461. [PMID: 30854698 DOI: 10.1002/jcb.28423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 01/24/2023]
Abstract
As a cancer-related long noncoding RNA, functionality of GASL1 has only been characterized in liver cancer. Our study aimed to investigate the possible involvement of GASL1 in postoperative recurrence of gastric adenocarcinoma. A total of 112 gastric adenocarcinoma patients with a tumor located in the distal third who received gastrectomy distal resection in The Second Hospital of Dalian Medical University from January 2012 to January 2015 were included in this study. Patients were followed up for 3 years. Another 56 healthy people were also included to serve as a control group. Blood was extracted from each subject on the day of discharge, on the day of diagnosis of recurrence or at the end of follow-up. The GASL1 expression vector was transfected into gastric adenocarcinoma cell lines. It was observed that plasma levels of GASL1 were significantly lower, while plasma levels of transforming growth factor-β1 (TGF-β1) were significantly higher in patients than in healthy controls on the day of discharge. Patients with distant recurrence showed significantly lower plasma levels of GASL1 and significantly higher plasma levels of TGF-β1 compared with patients with local recurrence and patients without recurrence. During follow-up, plasma levels of GASL1 and TGF-β1 were negatively correlated in patients with distant recurrence but not in other groups of patients. GASL1 overexpression inhibited, while TGF-β1 treatment promoted cell migration and invasion. Overexpression of GASL1 led to downregulated and GASL1 knockdown led to upregulated TGF-β1. However, TGF-β1 showed no significant effects on GASL1 expression. We conclude that GASL1 may participate in the distant recurrence of gastric adenocarcinoma through the interactions with TGF-β1.
Collapse
Affiliation(s)
- Bing Wang
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Huawei Chen
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yang Zhang
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
34
|
Eser Ocak P, Ocak U, Tang J, Zhang JH. The role of caveolin-1 in tumors of the brain - functional and clinical implications. Cell Oncol (Dordr) 2019; 42:423-447. [PMID: 30993541 DOI: 10.1007/s13402-019-00447-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Caveolin-1 (cav-1) is the major structural protein of caveolae, the flask-shaped invaginations of the plasma membrane mainly involved in cell signaling. Today, cav-1 is believed to play a role in a variety of disease processes including cancer, owing to the variations of its expression in association with tumor progression, invasive behavior, metastasis and therapy resistance. Since first detected in the brain, a number of studies has particularly focused on the role of cav-1 in the various steps of brain tumorigenesis. In this review, we discuss the different roles of cav-1 and its contributions to the molecular mechanisms underlying the pathobiology and natural behavior of brain tumors including glial, non-glial and metastatic subtypes. These contributions could be attributed to its co-localization with important players in tumorigenesis within the lipid-enriched domains of the plasma membrane. In that regard, the ability of cav-1 to interact with various cell signaling molecules as well as the impact of caveolae depletion on important pathways acting in brain tumor pathogenesis are noteworthy. We also discuss conversant causes hampering the treatment of malignant glial tumors such as limited transport of chemotherapeutics across the blood tumor barrier and resistance to chemoradiotherapy, by focusing on the molecular fundamentals involving cav-1 participation. CONCLUSIONS Cav-1 has the potential to pivot the molecular basis underlying the pathobiology of brain tumors, particularly the malignant glial subtype. In addition, the regulatory effect of cav-1-dependent and caveola-mediated transcellular transport on the permeability of the blood tumor barrier could be of benefit to overcome the restricted transport across brain barriers when applying chemotherapeutics. The association of cav-1 with tumors of the brain other than malignant gliomas deserves to be underlined, as well given the evidence suggesting its potential in predicting tumor grade and recurrence rates together with determining patient prognosis in oligodendrogliomas, ependymomas, meningiomas, vestibular schwannomas and brain metastases.
Collapse
Affiliation(s)
- Pinar Eser Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. .,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. .,Department of Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. .,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
35
|
Krichevsky AM, Uhlmann EJ. Oligonucleotide Therapeutics as a New Class of Drugs for Malignant Brain Tumors: Targeting mRNAs, Regulatory RNAs, Mutations, Combinations, and Beyond. Neurotherapeutics 2019; 16:319-347. [PMID: 30644073 PMCID: PMC6554258 DOI: 10.1007/s13311-018-00702-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Malignant brain tumors are rapidly progressive and often fatal owing to resistance to therapies and based on their complex biology, heterogeneity, and isolation from systemic circulation. Glioblastoma is the most common and most aggressive primary brain tumor, has high mortality, and affects both children and adults. Despite significant advances in understanding the pathology, multiple clinical trials employing various treatment strategies have failed. With much expanded knowledge of the GBM genome, epigenome, and transcriptome, the field of neuro-oncology is getting closer to achieve breakthrough-targeted molecular therapies. Current developments of oligonucleotide chemistries for CNS applications make this new class of drugs very attractive for targeting molecular pathways dysregulated in brain tumors and are anticipated to vastly expand the spectrum of currently targetable molecules. In this chapter, we will overview the molecular landscape of malignant gliomas and explore the most prominent molecular targets (mRNAs, miRNAs, lncRNAs, and genomic mutations) that provide opportunities for the development of oligonucleotide therapeutics for this class of neurologic diseases. Because malignant brain tumors focally disrupt the blood-brain barrier, this class of diseases might be also more susceptible to systemic treatments with oligonucleotides than other neurologic disorders and, thus, present an entry point for the oligonucleotide therapeutics to the CNS. Nevertheless, delivery of oligonucleotides remains a crucial part of the treatment strategy. Finally, synthetic gRNAs guiding CRISPR-Cas9 editing technologies have a tremendous potential to further expand the applications of oligonucleotide therapeutics and take them beyond RNA targeting.
Collapse
Affiliation(s)
- Anna M Krichevsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Initiative for RNA Medicine, Boston, Massachusetts, 02115, USA.
| | - Erik J Uhlmann
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Initiative for RNA Medicine, Boston, Massachusetts, 02115, USA
| |
Collapse
|
36
|
Khoshakhlagh M, Soleimani A, Binabaj MM, Avan A, Ferns GA, Khazaei M, Hassanian SM. Therapeutic potential of pharmacological TGF-β signaling pathway inhibitors in the pathogenesis of breast cancer. Biochem Pharmacol 2019; 164:17-22. [PMID: 30905655 DOI: 10.1016/j.bcp.2019.03.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/20/2019] [Indexed: 01/01/2023]
Abstract
The TGF-β signaling pathway plays an important role in cancer cell proliferation, growth, inflammation, angiogenesis, and metastasis. The role of TGF-β signaling in the pathogenesis of breast cancer is complex. TGF-β acts as a tumor suppressor in the early stages of disease, and as a tumor promoter in its later stages. Over-activation of the TGF-β signaling pathway and over-expression of the TGF-β receptors are frequently found in breast tumors. Suppression of TGF-β pathway using biological or pharmacological inhibitors is a potentially novel therapeutic approach for breast cancer treatment. This review summarizes the regulatory role of TGF-β signaling in the pathogenesis of breast cancer for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
- Mahdieh Khoshakhlagh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Moradi Binabaj
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
37
|
Löffek S. Transforming of the Tumor Microenvironment: Implications for TGF- β Inhibition in the Context of Immune-Checkpoint Therapy. JOURNAL OF ONCOLOGY 2018; 2018:9732939. [PMID: 30631358 PMCID: PMC6304495 DOI: 10.1155/2018/9732939] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
Significant breakthroughs have been achieved in the fields of oncogenic signaling inhibition and particularly immune-checkpoint blockade has triggered substantial enthusiasm during the last decade. Antibody-mediated blockade of negative immune-checkpoint molecules (e.g., PD-1/PD-L1, CTLA-4) has been shown to achieve profound responses in several of solid cancers. Unfortunately, these responses only occur in a subset of patients or, after initial therapy response, these tumors eventually relapse. Thus, elucidating the determinants of intrinsic or therapy-induced resistance is the key to improve outcomes and developing new treatment strategies. Several cytokines and growth factors are involved in the tight regulation of either antitumor immunity or immunosuppressive tumor-promoting inflammation within the tumor microenvironment (TME), of which transforming growth factor beta (TGF-β) is of particular importance. This review will therefore summarize the recent progress that has been made in the understanding of how TGF-β blockade may have the capacity to enhance efficacy of immune-checkpoint therapy which presents a rational strategy to sustain the antitumor inflammatory response to improve response rates in tumor patients. Finally, I will conclude with a comprehensive summary of clinical trials in which TGF-β blockade revealed therapeutic benefit for patients by counteracting tumor relapses.
Collapse
Affiliation(s)
- Stefanie Löffek
- Skin Cancer Unit of the Dermatology Department, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, and the German Cancer Consortium (DKTK), 45147 Essen, Germany
| |
Collapse
|
38
|
Gu S, Feng XH. TGF-β signaling in cancer. Acta Biochim Biophys Sin (Shanghai) 2018; 50:941-949. [PMID: 30165534 DOI: 10.1093/abbs/gmy092] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
Signals from the transforming growth factor-β (TGF-β) superfamily mediate a broad spectrum of cellular processes and are deregulated in many diseases, including cancer. TGF-β signaling has dual roles in tumorigenesis. In the early phase of tumorigenesis, TGF-β has tumor suppressive functions, primarily through cell cycle arrest and apoptosis. However, in the late stage of cancer, TGF-β acts as a driver of tumor progression and metastasis by increasing tumor cell invasiveness and migration and promoting chemo-resistance. Here, we briefly review the mechanisms and functions of TGF-β signaling during tumor progression and discuss the therapeutic potentials of targeting the TGF-β pathway in cancer.
Collapse
Affiliation(s)
- Shuchen Gu
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xin-Hua Feng
- Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
39
|
Golumba-Nagy V, Kuehle J, Hombach AA, Abken H. CD28-ζ CAR T Cells Resist TGF-β Repression through IL-2 Signaling, Which Can Be Mimicked by an Engineered IL-7 Autocrine Loop. Mol Ther 2018; 26:2218-2230. [PMID: 30055872 DOI: 10.1016/j.ymthe.2018.07.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 01/09/2023] Open
Abstract
Adoptive cell therapy with chimeric antigen receptor (CAR)-redirected T cells induced spectacular regressions of leukemia and lymphoma, however, failed so far in the treatment of solid tumors. A cause is thought to be T cell repression through TGF-β, which is massively accumulating in the tumor tissue. Here, we show that T cells with a CD28-ζ CAR, but not with a 4-1BB-ζ CAR, resist TGF-β-mediated repression. Mechanistically, LCK activation and consequently IL-2 release and autocrine IL-2 receptor signaling mediated TGF-β resistance; deleting the LCK-binding motif in the CD28 CAR abolished both IL-2 secretion and TGF-β resistance, while IL-2 add-back restored TGF-β resistance. Other γ-cytokines like IL-7 and IL-15 could replace IL-2 in this context. This is demonstrated by engineering IL-2 deficient CD28ΔLCK-ζ CAR T cells with a hybrid IL-7 receptor to provide IL-2R β chain signaling upon IL-7 binding. Such modified T cells showed improved CAR T cell activity against TGF-β+ tumors. Data draw the concept that an autocrine loop resulting in IL-2R signaling can make CAR T cells more potent in staying active against TGF-β+ solid tumors.
Collapse
Affiliation(s)
- Viktória Golumba-Nagy
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Department I Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Johannes Kuehle
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Department I Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Andreas A Hombach
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Department I Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Hinrich Abken
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Department I Internal Medicine, University Hospital Cologne, Cologne, Germany; Regensburg Center for Interventional Immunology (RCI), University Regensburg, Regensburg, Germany; University Medical Center of Regensburg, Regensburg, Germany.
| |
Collapse
|
40
|
Zewde M, Kiyotani K, Park JH, Fang H, Yap KL, Yew PY, Alachkar H, Kato T, Mai TH, Ikeda Y, Matsuda T, Liu X, Ren L, Deng B, Harada M, Nakamura Y. The era of immunogenomics/immunopharmacogenomics. J Hum Genet 2018; 63:865-875. [PMID: 29785006 DOI: 10.1038/s10038-018-0468-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 11/09/2022]
Abstract
Although germline alterations and somatic mutations in disease cells have been extensively analyzed, molecular changes in immune cells associated with disease conditions have not been characterized in depth. It is clear that our immune system has a critical role in various biological and pathological conditions, such as infectious diseases, autoimmune diseases, drug-induced skin and liver toxicity, food allergy, and rejection of transplanted organs. The recent development of cancer immunotherapies, particularly drugs modulating the immune checkpoint molecules, has clearly demonstrated the importance of host immune cells in cancer treatments. However, the molecular mechanisms by which these new therapies kill tumor cells are still not fully understood. In this regard, we have begun to explore the role of newly developed tools such as next-generation sequencing in the genetic characterization of both cancer cells and host immune cells, a field that is called immunogenomics/ immunopharmacogenomics. This new field has enormous potential to help us better understand changes in our immune system during the course of various disease conditions. Here we report the potential of deep sequencing of T-cell and B-cell receptors in capturing the molecular contribution of the immune system, which we believe plays critical roles in the pathogenesis of various human diseases.
Collapse
Affiliation(s)
- Makda Zewde
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Kazuma Kiyotani
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA.,Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Jae-Hyun Park
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Hua Fang
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Kai Lee Yap
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Poh Yin Yew
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Houda Alachkar
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Taigo Kato
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Tu H Mai
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Yuji Ikeda
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Tatsuo Matsuda
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiao Liu
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Lili Ren
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Boya Deng
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Makiko Harada
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
41
|
D'Cruz OJ, Qazi S, Hwang L, Ng K, Trieu V. Impact of targeting transforming growth factor β-2 with antisense OT-101 on the cytokine and chemokine profile in patients with advanced pancreatic cancer. Onco Targets Ther 2018; 11:2779-2796. [PMID: 29785126 PMCID: PMC5957068 DOI: 10.2147/ott.s161905] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Overexpression of the cytokine – transforming growth factor-beta 2 (TGF-β2) – has been implicated in the malignant progression of pancreatic cancer (PAC). OT-101 (trabedersen) is an antisense oligodeoxynucleotide designed to target the human TGF-β2 mRNA. In a Phase I/II study, OT-101 treatment with subsequent chemotherapy was characterized by outstanding overall survival (OS) in patients with PAC. Objective This study sought to identify 1) co-regulated sets of cyto-/chemokines; 2) potential mechanisms that link TGF-β receptor type 2 receptor inhibition that may result in the induction of a cytokine storm; and 3) predictive biomarkers for OS outcome in OT-101-treated patients with PAC. Materials and methods Plasma levels of 31 cyto-/chemokines were tracked over three cycles of OT-101 therapy (140 mg/m2/day) in 12 PAC patients. Samples were acquired before onset of OT-101 therapy and at eight selected time points during therapy. A mixed ANCOVA model was developed for 19 cyto-/chemokines with median expression >1 following OT-101 therapy. Regression and hierarchical clustering analyses were performed to identify correlated expressions in each patient across cyto-/chemokines or in each cyto-/chemokine across patients. Plasma cyto-/chemokine levels were compared with OS with and without subsequent chemotherapy. Results Three highly correlated subsets of cyto-/chemokines (Cluster 1: EGF, MIP-1α, MIP-1β; Cluster 2: FGF-2, MIG, IP-10, IL-15, IFN-α, IL-12; and Cluster 3: HGF, IL-6, IL-8) were identified following OT-101 therapy. Suppression of TGF-β signaling by OT-101 led to upregulation of IL-8, IL-15, IP-10, and HGF. Protein–protein interaction networks constructed using STRING10 algorithm identified a relationship between IL-8, IL-15, and TGF-β receptor type 2 inhibition. The mixed analysis of covariance model that examined the levels of 19 cyto-/chemokines with OS as the covariate at each of the time points resulted in IL-8 and IL-15 exhibiting a significant association with OS during Cycle 1 of therapy. In the whole-blood culture model, the cytokines with the most pronounced increase after OT-101 treatment were IL-1β, IL-8, and MCP-1. Conclusion No consistent responses in cyto-/chemokine levels were observed due to OT-101 treatment. Levels of IL-8 and IL-15 during Cycle 1 were positively associated with OS across 12 patients with PAC and served as potential biomarkers for treatment outcome following OT-101 therapy.
Collapse
Affiliation(s)
| | - Sanjive Qazi
- Biology Department, Gustavus Adolphus College, Saint Peter, MN, USA
| | - Larn Hwang
- Autotelic Inc, Costa Mesa, CA, USA.,Oncotelic Inc, Agoura Hills, CA, USA
| | - Kevin Ng
- Autotelic Inc, Costa Mesa, CA, USA
| | - Vuong Trieu
- Autotelic Inc, Costa Mesa, CA, USA.,Oncotelic Inc, Agoura Hills, CA, USA
| |
Collapse
|
42
|
Xu X, Zheng L, Yuan Q, Zhen G, Crane JL, Zhou X, Cao X. Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res 2018; 6:2. [PMID: 29423331 PMCID: PMC5802812 DOI: 10.1038/s41413-017-0005-4] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/12/2017] [Accepted: 11/15/2017] [Indexed: 02/05/2023] Open
Abstract
TGF-β 1-3 are unique multi-functional growth factors that are only expressed in mammals, and mainly secreted and stored as a latent complex in the extracellular matrix (ECM). The biological functions of TGF-β in adults can only be delivered after ligand activation, mostly in response to environmental perturbations. Although involved in multiple biological and pathological processes of the human body, the exact roles of TGF-β in maintaining stem cells and tissue homeostasis have not been well-documented until recent advances, which delineate their functions in a given context. Our recent findings, along with data reported by others, have clearly shown that temporal and spatial activation of TGF-β is involved in the recruitment of stem/progenitor cell participation in tissue regeneration/remodeling process, whereas sustained abnormalities in TGF-β ligand activation, regardless of genetic or environmental origin, will inevitably disrupt the normal physiology and lead to pathobiology of major diseases. Modulation of TGF-β signaling with different approaches has proven effective pre-clinically in the treatment of multiple pathologies such as sclerosis/fibrosis, tumor metastasis, osteoarthritis, and immune disorders. Thus, further elucidation of the mechanisms by which TGF-β is activated in different tissues/organs and how targeted cells respond in a context-dependent way can likely be translated with clinical benefits in the management of a broad range of diseases with the involvement of TGF-β.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Gehua Zhen
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Janet L. Crane
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xu Cao
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
43
|
Targeting cellular pathways in glioblastoma multiforme. Signal Transduct Target Ther 2017; 2:17040. [PMID: 29263927 PMCID: PMC5661637 DOI: 10.1038/sigtrans.2017.40] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/31/2017] [Accepted: 06/13/2017] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a debilitating disease that is associated with poor prognosis, short median patient survival and a very limited response to therapies. GBM has a very complex pathogenesis that involves mutations and alterations of several key cellular pathways that are involved in cell proliferation, survival, migration and angiogenesis. Therefore, efforts that are directed toward better understanding of GBM pathogenesis are essential to the development of efficient therapies that provide hope and extent patient survival. In this review, we outline the alterations commonly associated with GBM pathogenesis and summarize therapeutic strategies that are aimed at targeting aberrant cellular pathways in GBM.
Collapse
|
44
|
Abstract
Transforming growth factor-β (TGF-β) regulates cell growth and differentiation, apoptosis, cell motility, extracellular matrix production, angiogenesis, and cellular immunity. It has a paradoxical role in cancer. In the early stages it inhibits cellular transformation and prevents cancer progression. In later stages TGF-β plays a key role in promoting tumor progression through mainly 3 mechanisms: facilitating epithelial to mesenchymal transition, stimulating angiogenesis and inducing immunosuppression. As a result of its opposing tumor promoting and tumor suppressive abilities, TGF-β and its pathway has represented potential opportunities for drug development and several therapies targeting the TGF-β pathway have been identified. This review focuses on identifying the mechanisms through which TGF-β is involved in tumorigenesis and current therapeutics that are under development.
Collapse
Affiliation(s)
- Sulsal Haque
- a Department of Internal Medicine , University of Cincinnati , Cincinnati , OH , USA
| | - John C Morris
- a Department of Internal Medicine , University of Cincinnati , Cincinnati , OH , USA.,b University of Cincinnati Cancer Institute , Cincinnati , OH , USA
| |
Collapse
|
45
|
Overcoming immunosuppression in bone metastases. Crit Rev Oncol Hematol 2017; 117:114-127. [PMID: 28600175 DOI: 10.1016/j.critrevonc.2017.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/30/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022] Open
Abstract
Bone metastases are present in up to 70% of advanced prostate and breast cancers and occur at significant rates in a variety of other cancers. Bone metastases can be associated with significant morbidity. The establishment of bone metastasis activates several immunosuppressive mechanisms. Hence, understanding the tumor-bone microenvironment is crucial to inform the development of novel therapies. This review describes the current standard of care for patients with bone metastatic disease and novel treatment options targeting the microenvironment. Treatments reviewed include immunotherapies, cryoablation, and targeted therapies. Combinatorial treatment strategies including targeted therapies and immunotherapies show promise in pre-clinical and clinical studies to overcome the suppressive environment and improve treatment of bone metastases.
Collapse
|
46
|
Hung AL, Garzon-Muvdi T, Lim M. Biomarkers and Immunotherapeutic Targets in Glioblastoma. World Neurosurg 2017; 102:494-506. [PMID: 28300714 DOI: 10.1016/j.wneu.2017.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022]
Abstract
Glioblastoma (GBM) is an aggressive central nervous system cancer with poor prognosis despite maximal therapy. The recent advent of immunotherapy holds great promise for improving GBM survival and has already made great strides toward changing management strategies. A diverse set of biomarkers have been implicated as immunotherapeutic targets and prognostic indicators in other cancers. Some of the more extensively studied examples include cytokines (IL-4, IL-13, and TGF-β), checkpoint molecules (PD-1, CTLA-4, TIM-3, LAG-3, CD137, GITR, OX40), and growth/angiogenesis proteins (endoglin and EGFR). Emerging theories involving the tumor mutational landscape and microbiome have also been explored in relation to cancer treatment. Although identification of novel biomarkers may improve and help direct treatment of patients with GBM, the next step is to explore the role of biomarkers in precision medicine and selection of specific immunotherapeutic drugs in an individualized manner.
Collapse
Affiliation(s)
- Alice L Hung
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tomas Garzon-Muvdi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
47
|
Loi M, Desideri I, Greto D, Mangoni M, Sottili M, Meattini I, Becherini C, Terziani F, Delli Paoli C, Olmetto E, Bonomo P, Livi L. Radiotherapy in the age of cancer immunology: Current concepts and future developments. Crit Rev Oncol Hematol 2017; 112:1-10. [PMID: 28325250 DOI: 10.1016/j.critrevonc.2017.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/24/2016] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
Major advances in the knowledge of cancer biology and its interactions with tumor immune environment led to the emergence, in the last five years of new immunotherapy-based treatment strategies in cancer patients. At the same time, improvement in radiation technique and progress in radiobiology allowed in the last decade to expand the applications of radiotherapy in a growing number of settings. At present, there are strong theoretical basis to propose immune-enhanced radiation therapy that may represent in the future a new paradigm of treatment, combining the intrinsic power of radiotherapy to elicit a specific, systemic, tumor-directed immune response with modern highly conformal and precise dose delivery, in order to maximize response at the major site of disease and obtain durable disease control. The aim of this review is to describe the principal mechanisms of immune modulation of response to radiation and investigational strategies to harness the potential of radiation-inducible immune response: radiation therapy is expected to be not just a local treatment but the cornerstone of a multimodal strategy that might achieve long-lasting tumor remission at the primary site and systemic efficacy metastatic lesions.
Collapse
Affiliation(s)
- Mauro Loi
- Department of Radiation Oncology, University of Florence, Florence, Italy.
| | - Isacco Desideri
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Daniela Greto
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | - Monica Mangoni
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Mariangela Sottili
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | - Icro Meattini
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | - Carlotta Becherini
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | - Francesca Terziani
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | | | - Emanuela Olmetto
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | - Pierluigi Bonomo
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | - Lorenzo Livi
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
48
|
Foroutan M, Cursons J, Hediyeh-Zadeh S, Thompson EW, Davis MJ. A Transcriptional Program for Detecting TGFβ-Induced EMT in Cancer. Mol Cancer Res 2017; 15:619-631. [PMID: 28119430 DOI: 10.1158/1541-7786.mcr-16-0313] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 11/16/2022]
Abstract
Most cancer deaths are due to metastasis, and epithelial-to-mesenchymal transition (EMT) plays a central role in driving cancer cell metastasis. EMT is induced by different stimuli, leading to different signaling patterns and therapeutic responses. TGFβ is one of the best-studied drivers of EMT, and many drugs are available to target this signaling pathway. A comprehensive bioinformatics approach was employed to derive a signature for TGFβ-induced EMT which can be used to score TGFβ-driven EMT in cells and clinical specimens. Considering this signature in pan-cancer cell and tumor datasets, a number of cell lines (including basal B breast cancer and cancers of the central nervous system) show evidence for TGFβ-driven EMT and carry a low mutational burden across the TGFβ signaling pathway. Furthermore, significant variation is observed in the response of high scoring cell lines to some common cancer drugs. Finally, this signature was applied to pan-cancer data from The Cancer Genome Atlas to identify tumor types with evidence of TGFβ-induced EMT. Tumor types with high scores showed significantly lower survival rates than those with low scores and also carry a lower mutational burden in the TGFβ pathway. The current transcriptomic signature demonstrates reproducible results across independent cell line and cancer datasets and identifies samples with strong mesenchymal phenotypes likely to be driven by TGFβ.Implications: The TGFβ-induced EMT signature may be useful to identify patients with mesenchymal-like tumors who could benefit from targeted therapeutics to inhibit promesenchymal TGFβ signaling and disrupt the metastatic cascade. Mol Cancer Res; 15(5); 619-31. ©2017 AACR.
Collapse
Affiliation(s)
- Momeneh Foroutan
- The University of Melbourne Department of Surgery, St. Vincent's Hospital, Parkville, Victoria, Australia.,Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Joseph Cursons
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Systems Biology Laboratory, Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Soroor Hediyeh-Zadeh
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Erik W Thompson
- The University of Melbourne Department of Surgery, St. Vincent's Hospital, Parkville, Victoria, Australia.,Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia.,Translational Research Institute, Wooloongabba, Queensland, Australia
| | - Melissa J Davis
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. .,Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dentistry and Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
49
|
Ly S, Navaroli DM, Didiot MC, Cardia J, Pandarinathan L, Alterman JF, Fogarty K, Standley C, Lifshitz LM, Bellve KD, Prot M, Echeverria D, Corvera S, Khvorova A. Visualization of self-delivering hydrophobically modified siRNA cellular internalization. Nucleic Acids Res 2017; 45:15-25. [PMID: 27899655 PMCID: PMC5224471 DOI: 10.1093/nar/gkw1005] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 10/07/2016] [Accepted: 10/24/2016] [Indexed: 01/07/2023] Open
Abstract
siRNAs are a new class of therapeutic modalities with promising clinical efficacy that requires modification or formulation for delivery to the tissue and cell of interest. Conjugation of siRNAs to lipophilic groups supports efficient cellular uptake by a mechanism that is not well characterized. Here we study the mechanism of internalization of asymmetric, chemically stabilized, cholesterol-modified siRNAs (sd-rxRNAs®) that efficiently enter cells and tissues without the need for formulation. We demonstrate that uptake is rapid with significant membrane association within minutes of exposure followed by the formation of vesicular structures and internalization. Furthermore, sd-rxRNAs are internalized by a specific class of early endosomes and show preferential association with epidermal growth factor (EGF) but not transferrin (Tf) trafficking pathways as shown by live cell TIRF and structured illumination microscopy (SIM). In fixed cells, we observe ∼25% of sd-rxRNA co-localizing with EGF and <5% with Tf, which is indicative of selective endosomal sorting. Likewise, preferential sd-rxRNA co-localization was demonstrated with EEA1 but not RBSN-containing endosomes, consistent with preferential EGF-like trafficking through EEA1-containing endosomes. sd-rxRNA cellular uptake is a two-step process, with rapid membrane association followed by internalization through a selective, saturable subset of the endocytic process. However, the mechanistic role of EEA1 is not yet known. This method of visualization can be used to better understand the kinetics and mechanisms of hydrophobic siRNA cellular uptake and will assist in further optimization of these types of compounds for therapeutic intervention.
Collapse
Affiliation(s)
- Socheata Ly
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Deanna M Navaroli
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Marie-Cécile Didiot
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | - Julia F Alterman
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Kevin Fogarty
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Clive Standley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Karl D Bellve
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Matthieu Prot
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Dimas Echeverria
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Anastasia Khvorova
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
50
|
Targeting TGF-β Signaling in Cancer. Trends Cancer 2017; 3:56-71. [PMID: 28718426 DOI: 10.1016/j.trecan.2016.11.008] [Citation(s) in RCA: 693] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/18/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023]
Abstract
The transforming growth factor (TGF)-β signaling pathway is deregulated in many diseases, including cancer. In healthy cells and early-stage cancer cells, this pathway has tumor-suppressor functions, including cell-cycle arrest and apoptosis. However, its activation in late-stage cancer can promote tumorigenesis, including metastasis and chemoresistance. The dual function and pleiotropic nature of TGF-β signaling make it a challenging target and imply the need for careful therapeutic dosing of TGF-β drugs and patient selection. We review here the rationale for targeting TGF-β signaling in cancer and summarize the clinical status of pharmacological inhibitors. We discuss the direct effects of TGF-β signaling blockade on tumor and stromal cells, as well as biomarkers that can predict the efficacy of TGF-β inhibitors in cancer patients.
Collapse
|