1
|
Zakaria FH, Samhani I, Mustafa MZ, Shafin N. Pathophysiology of Depression: Stingless Bee Honey Promising as an Antidepressant. Molecules 2022; 27:molecules27165091. [PMID: 36014336 PMCID: PMC9416360 DOI: 10.3390/molecules27165091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Depression is a debilitating psychiatric disorder impacting an individual’s quality of life. It is the most prevalent mental illness across all age categories, incurring huge socio-economic impacts. Most depression treatments currently focus on the elevation of neurotransmitters according to the monoamine hypothesis. Conventional treatments include tricyclic antidepressants (TCAs), norepinephrine–dopamine reuptake inhibitors (NDRIs), monoamine oxidase inhibitors (MAOIs), and serotonin reuptake inhibitors (SSRIs). Despite numerous pharmacological strategies utilising conventional drugs, the discovery of alternative medicines from natural products is a must for safer and beneficial brain supplement. About 30% of patients have been reported to show resistance to drug treatments coupled with functional impairment, poor quality of life, and suicidal ideation with a high relapse rate. Hence, there is an urgency for novel discoveries of safer and highly effective depression treatments. Stingless bee honey (SBH) has been proven to contain a high level of antioxidants compared to other types of honey. This is a comprehensive review of the potential use of SBH as a new candidate for antidepressants from the perspective of the monoamine, inflammatory and neurotrophin hypotheses.
Collapse
Affiliation(s)
- Fatin Haniza Zakaria
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu 16150, Malaysia
| | - Ismail Samhani
- Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), Medical Campus, Jalan Sultan Mahmud, Kuala Terengganu 20400, Malaysia
| | - Mohd Zulkifli Mustafa
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu 16150, Malaysia
- Correspondence: (M.Z.M.); (N.S.); Tel.: +609-7673000 (M.Z.M. & N.S.)
| | - Nazlahshaniza Shafin
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu 16150, Malaysia
- Correspondence: (M.Z.M.); (N.S.); Tel.: +609-7673000 (M.Z.M. & N.S.)
| |
Collapse
|
2
|
Adnani L, Han S, Li S, Mattar P, Schuurmans C. Mechanisms of Cortical Differentiation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:223-320. [DOI: 10.1016/bs.ircmb.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
O'Shea KS, McInnis MG. Neurodevelopmental origins of bipolar disorder: iPSC models. Mol Cell Neurosci 2015; 73:63-83. [PMID: 26608002 DOI: 10.1016/j.mcn.2015.11.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/14/2015] [Accepted: 11/18/2015] [Indexed: 12/22/2022] Open
Abstract
Bipolar disorder (BP) is a chronic neuropsychiatric condition characterized by pathological fluctuations in mood from mania to depression. Adoption, twin and family studies have consistently identified a significant hereditary component to BP, yet there is no clear genetic event or consistent neuropathology. BP has been suggested to have a developmental origin, although this hypothesis has been difficult to test since there are no viable neurons or glial cells to analyze, and research has relied largely on postmortem brain, behavioral and imaging studies, or has examined proxy tissues including saliva, olfactory epithelium and blood cells. Neurodevelopmental factors, particularly pathways related to nervous system development, cell migration, extracellular matrix, H3K4 methylation, and calcium signaling have been identified in large gene expression and GWAS studies as altered in BP. Recent advances in stem cell biology, particularly the ability to reprogram adult somatic tissues to a pluripotent state, now make it possible to interrogate these pathways in viable cell models. A number of induced pluripotent stem cell (iPSC) lines from BP patient and healthy control (C) individuals have been derived in several laboratories, and their ability to form cortical neurons examined. Early studies suggest differences in activity, calcium signaling, blocks to neuronal differentiation, and changes in neuronal, and possibly glial, lineage specification. Initial observations suggest that differentiation of BP patient-derived neurons to dorsal telencephalic derivatives may be impaired, possibly due to alterations in WNT, Hedgehog or Nodal pathway signaling. These investigations strongly support a developmental contribution to BP and identify novel pathways, mechanisms and opportunities for improved treatments.
Collapse
Affiliation(s)
- K Sue O'Shea
- Department of Cell and Developmental Biology, University of Michigan, 3051 BSRB, 109 Zina Pitcher PL, Ann Arbor, MI 48109-2200, United States; Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109-5765, United States.
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109-5765, United States
| |
Collapse
|
4
|
Li MD, Wang J, Niu T, Ma JZ, Seneviratne C, Ait-Daoud N, Saadvandi J, Morris R, Weiss D, Campbell J, Haning W, Mawhinney DJ, Weis D, McCann M, Stock C, Kahn R, Iturriaga E, Yu E, Elkashef A, Johnson BA. Transcriptome profiling and pathway analysis of genes expressed differentially in participants with or without a positive response to topiramate treatment for methamphetamine addiction. BMC Med Genomics 2014; 7:65. [PMID: 25495887 PMCID: PMC4279796 DOI: 10.1186/s12920-014-0065-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/19/2014] [Indexed: 01/25/2023] Open
Abstract
Background Developing efficacious medications to treat methamphetamine dependence is a global challenge in public health. Topiramate (TPM) is undergoing evaluation for this indication. The molecular mechanisms underlying its effects are largely unknown. Examining the effects of TPM on genome-wide gene expression in methamphetamine addicts is a clinically and scientifically important component of understanding its therapeutic profile. Methods In this double-blind, placebo-controlled clinical trial, 140 individuals who met the DSM-IV criteria for methamphetamine dependence were randomized to receive either TPM or placebo, of whom 99 consented to participate in our genome-wide expression study. The RNA samples were collected from whole blood for 50 TPM- and 49 placebo-treated participants at three time points: baseline and the ends of weeks 8 and 12. Genome-wide expression profiles and pathways of the two groups were compared for the responders and non-responders at Weeks 8 and 12. To minimize individual variations, expression of all examined genes at Weeks 8 and 12 were normalized to the values at baseline prior to identification of differentially expressed genes and pathways. Results At the single-gene level, we identified 1054, 502, 204, and 404 genes at nominal P values < 0.01 in the responders vs. non-responders at Weeks 8 and 12 for the TPM and placebo groups, respectively. Among them, expression of 159, 38, 2, and 21 genes was still significantly different after Bonferroni corrections for multiple testing. Many of these genes, such as GRINA, PRKACA, PRKCI, SNAP23, and TRAK2, which are involved in glutamate receptor and GABA receptor signaling, are direct targets for TPM. In contrast, no TPM drug targets were identified in the 38 significant genes for the Week 8 placebo group. Pathway analyses based on nominally significant genes revealed 27 enriched pathways shared by the Weeks 8 and 12 TPM groups. These pathways are involved in relevant physiological functions such as neuronal function/synaptic plasticity, signal transduction, cardiovascular function, and inflammation/immune function. Conclusion Topiramate treatment of methamphetamine addicts significantly modulates the expression of genes involved in multiple biological processes underlying addiction behavior and other physiological functions. Electronic supplementary material The online version of this article (doi:10.1186/s12920-014-0065-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming D Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, USA.
| | - Ju Wang
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, USA.
| | - Tianhua Niu
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, USA.
| | - Jennie Z Ma
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, USA.
| | | | - Nassima Ait-Daoud
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, USA.
| | | | - Rana Morris
- Information Management Consultants, Reston, USA.
| | - David Weiss
- Department of Veterans Affairs Cooperative Studies Program Coordination Center, Perry Point, USA.
| | - Jan Campbell
- Department of Psychiatry, University of Missouri, Kansas City, USA.
| | | | | | - Denis Weis
- Lutheran Hospital Office of Research, Des Moines, USA.
| | | | - Christopher Stock
- Department of Veterans Affairs, Salt Lake City Health Care System, Salt Lake City, USA.
| | - Roberta Kahn
- Division of Pharmacotherapies and Medical Consequences of Drug Abuse, NIDA, Bethesda, USA.
| | - Erin Iturriaga
- Division of Pharmacotherapies and Medical Consequences of Drug Abuse, NIDA, Bethesda, USA.
| | - Elmer Yu
- Veterans Administration Medical Center, Philadelphia, USA.
| | - Ahmed Elkashef
- Division of Pharmacotherapies and Medical Consequences of Drug Abuse, NIDA, Bethesda, USA.
| | | |
Collapse
|
5
|
Soumier A, Sibille E. Opposing effects of acute versus chronic blockade of frontal cortex somatostatin-positive inhibitory neurons on behavioral emotionality in mice. Neuropsychopharmacology 2014; 39:2252-62. [PMID: 24690741 PMCID: PMC4104344 DOI: 10.1038/npp.2014.76] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 12/13/2022]
Abstract
Reduced expression of somatostatin (SST) is reported across chronic brain conditions including major depression and normal aging. SST is a signaling neuropeptide and marker of gamma-amino butyric acid (GABA) neurons, which specifically inhibit pyramidal neuron dendrites. Studies in auditory cortex suggest that chronic reduction in dendritic inhibition induces compensatory homeostatic adaptations that oppose the effects of acute inhibition. Whether such mechanisms occur in frontal cortex (FC) and affect behavioral outcome is not known. Here, we used two complementary viral vector strategies to examine the effects of acute vs chronic inhibition of SST-positive neurons on behavioral emotionality in adult mice. SST-IRES-Cre mice were injected in FC (prelimbic/precingulate) with CRE-dependent adeno-associated viral (AAV) vector encoding the engineered Gi/o-coupled human muscarinic M4 designer receptor exclusively activated by a designer drug (DREADD-hM4Di) or a control reporter (AAV-DIO-mCherry) for acute or chronic cellular inhibition. A separate cohort was injected with CRE-dependent AAV vectors expressing diphtheria toxin (DTA) to selectively ablate FC SST neurons. Mice were assessed for anxiety- and depressive-like behaviors (defined as emotionality). Results indicate that acute inhibition of FC SST neurons increased behavioral emotionality, whereas chronic inhibition decreased behavioral emotionality. Furthermore, ablation of FC SST neurons also decreased behavioral emotionality under baseline condition and after chronic stress. Together, our results reveal opposite effects of acute and chronic inhibition of FC SST neurons on behavioral emotionality and suggest the recruitment of homeostatic plasticity mechanisms that have implications for understanding the neurobiology of chronic brain conditions affecting dendritic-targeting inhibitory neurons.
Collapse
Affiliation(s)
- Amelie Soumier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Etienne Sibille
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Psychiatry/Center for Neuroscience, University of Pittsburgh, Bridgeside Point II, suite 231, 450 Technology Drive, Pittsburgh, PA 15219, USA, E-mail:
| |
Collapse
|
6
|
Wilkinson G, Dennis D, Schuurmans C. Proneural genes in neocortical development. Neuroscience 2013; 253:256-73. [PMID: 23999125 DOI: 10.1016/j.neuroscience.2013.08.029] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/16/2013] [Accepted: 08/18/2013] [Indexed: 02/01/2023]
Abstract
Neurons, astrocytes and oligodendrocytes arise from CNS progenitor cells at defined times and locations during development, with transcription factors serving as key determinants of these different neural cell fates. An emerging theme is that the transcription factors that specify CNS cell fates function in a context-dependent manner, regulated by post-translational modifications and epigenetic alterations that partition the genome (and hence target genes) into active or silent domains. Here we profile the critical roles of the proneural genes, which encode basic-helix-loop-helix (bHLH) transcription factors, in specifying neural cell identities in the developing neocortex. In particular, we focus on the proneural genes Neurogenin 1 (Neurog1), Neurog2 and Achaete scute-like 1 (Ascl1), which are each expressed in a distinct fashion in the progenitor cell pools that give rise to all of the neuronal and glial cell types of the mature neocortex. Notably, while the basic functions of these proneural genes have been elucidated, it is becoming increasingly evident that tight regulatory controls dictate when, where and how they function. Current efforts to better understand how proneural gene function is regulated will not only improve our understanding of neocortical development, but are also critical to the future development of regenerative therapies for the treatment of neuronal degeneration or disease.
Collapse
Affiliation(s)
- G Wilkinson
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
7
|
Ghanemi A. Targeting G protein coupled receptor-related pathways as emerging molecular therapies. Saudi Pharm J 2013; 23:115-29. [PMID: 25972730 PMCID: PMC4420995 DOI: 10.1016/j.jsps.2013.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022] Open
Abstract
G protein coupled receptors (GPCRs) represent the most important targets in modern pharmacology because of the different functions they mediate, especially within brain and peripheral nervous system, and also because of their functional and stereochemical properties. In this paper, we illustrate, via a variety of examples, novel advances about the GPCR-related molecules that have been shown to play diverse roles in GPCR pathways and in pathophysiological phenomena. We have exemplified how those GPCRs’ pathways are, or might constitute, potential targets for different drugs either to stimulate, modify, regulate or inhibit the cellular mechanisms that are hypothesized to govern some pathologic, physiologic, biologic and cellular or molecular aspects both in vivo and in vitro. Therefore, influencing such pathways will, undoubtedly, lead to different therapeutical applications based on the related pharmacological implications. Furthermore, such new properties can be applied in different fields. In addition to offering fruitful directions for future researches, we hope the reviewed data, together with the elements found within the cited references, will inspire clinicians and researchers devoted to the studies on GPCR’s properties.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
8
|
Nguyen M, Yang E, Neelkantan N, Mikhaylova A, Arnold R, Poudel MK, Stewart AM, Kalueff AV. Developing 'integrative' zebrafish models of behavioral and metabolic disorders. Behav Brain Res 2013; 256:172-87. [PMID: 23948218 DOI: 10.1016/j.bbr.2013.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 07/31/2013] [Accepted: 08/03/2013] [Indexed: 02/09/2023]
Abstract
Recently, the pathophysiological overlap between metabolic and mental disorders has received increased recognition. Zebrafish (Danio rerio) are rapidly becoming a popular model organism for translational biomedical research due to their genetic tractability, low cost, quick reproductive cycle, and ease of behavioral, pharmacological or genetic manipulation. High homology to mammalian physiology and the availability of well-developed assays also make the zebrafish an attractive organism for studying human disorders. Zebrafish neurobehavioral and endocrine phenotypes show promise for the use of zebrafish in studies of stress, obesity and related behavioral and metabolic disorders. Here, we discuss the parallels between zebrafish and other model species in stress and obesity physiology, as well as outline the available zebrafish models of weight gain, metabolic deficits, feeding, stress, anxiety and related behavioral disorders. Overall, zebrafish demonstrate a strong potential for modeling human behavioral and metabolic disorders, and their comorbidity.
Collapse
Affiliation(s)
- Michael Nguyen
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA; Thomas Jefferson High School for Science and Technology, 6560 Braddock Road, Alexandria, VA 22312, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Frey BN, Andreazza AC, Houenou J, Jamain S, Goldstein BI, Frye MA, Leboyer M, Berk M, Malhi GS, Lopez-Jaramillo C, Taylor VH, Dodd S, Frangou S, Hall GB, Fernandes BS, Kauer-Sant'Anna M, Yatham LN, Kapczinski F, Young LT. Biomarkers in bipolar disorder: a positional paper from the International Society for Bipolar Disorders Biomarkers Task Force. Aust N Z J Psychiatry 2013; 47:321-32. [PMID: 23411094 DOI: 10.1177/0004867413478217] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the etiology of bipolar disorder remains uncertain, multiple studies examining neuroimaging, peripheral markers and genetics have provided important insights into the pathophysiologic processes underlying bipolar disorder. Neuroimaging studies have consistently demonstrated loss of gray matter, as well as altered activation of subcortical, anterior temporal and ventral prefrontal regions in response to emotional stimuli in bipolar disorder. Genetics studies have identified several potential candidate genes associated with increased risk for developing bipolar disorder that involve circadian rhythm, neuronal development and calcium metabolism. Notably, several groups have found decreased levels of neurotrophic factors and increased pro-inflammatory cytokines and oxidative stress markers. Together these findings provide the background for the identification of potential biomarkers for vulnerability, disease expression and to help understand the course of illness and treatment response. In other areas of medicine, validated biomarkers now inform clinical decision-making. Although the findings reviewed herein hold promise, further research involving large collaborative studies is needed to validate these potential biomarkers prior to employing them for clinical purposes. Therefore, in this positional paper from the ISBD-BIONET (biomarkers network from the International Society for Bipolar Disorders), we will discuss our view of biomarkers for these three areas: neuroimaging, peripheral measurements and genetics; and conclude the paper with our position for the next steps in the search for biomarkers for bipolar disorder.
Collapse
Affiliation(s)
- Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhurov V, Stead JDH, Merali Z, Palkovits M, Faludi G, Schild-Poulter C, Anisman H, Poulter MO. Molecular pathway reconstruction and analysis of disturbed gene expression in depressed individuals who died by suicide. PLoS One 2012; 7:e47581. [PMID: 23110080 PMCID: PMC3478292 DOI: 10.1371/journal.pone.0047581] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/17/2012] [Indexed: 12/22/2022] Open
Abstract
Molecular mechanisms behind the etiology and pathophysiology of major depressive disorder and suicide remain largely unknown. Recent molecular studies of expression of serotonin, GABA and CRH receptors in various brain regions have demonstrated that molecular factors may contribute to the development of depressive disorder and suicide behaviour. Here, we used microarray analysis to examine the expression of genes in brain tissue (frontopolar cortex) of individuals who had been diagnosed with major depressive disorder and died by suicide, and those who had died suddenly without a history of depression. We analyzed the list of differentially expressed genes using pathway analysis, which is an assumption-free approach to analyze microarray data. Our analysis revealed that the differentially expressed genes formed functional networks that were implicated in cell to cell signaling related to synapse maturation, neuronal growth and neuronal complexity. We further validated these data by randomly choosing (100 times) similarly sized gene lists and subjecting these lists to the same analyses. Random gene lists did not provide highly connected gene networks like those generated by the differentially expressed list derived from our samples. We also found through correlational analysis that the gene expression of control participants was more highly coordinated than in the MDD/suicide group. These data suggest that among depressed individuals who died by suicide, wide ranging perturbations of gene expression exist that are critical for normal synaptic connectively, morphology and cell to cell communication.
Collapse
Affiliation(s)
- Vladimir Zhurov
- Molecular Brain Research Group, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - John D. H. Stead
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Zul Merali
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
- Departments of Psychology, Psychiatry and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Miklos Palkovits
- Laboratory for Neuromorphology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Gabor Faludi
- Semmelweis University Hospital, Budapest, Hungary
| | - Caroline Schild-Poulter
- Molecular Brain Research Group, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Hymie Anisman
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Michael O. Poulter
- Molecular Brain Research Group, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
11
|
Anisman H, Merali Z, Poulter M. Gamma-Aminobutyric Acid Involvement in Depressive Illness. THE NEUROBIOLOGICAL BASIS OF SUICIDE 2012. [DOI: 10.1201/b12215-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Jacobson-Pick S, Richter-Levin G. Short- and long-term effects of juvenile stressor exposure on the expression of GABAA receptor subunits in rats. Stress 2012; 15:416-24. [PMID: 22044189 DOI: 10.3109/10253890.2011.634036] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During the juvenile period rodents are particularly sensitive to stressors. Aversive events encountered during this period may have enduring effects that are not evident among animals initially stressed as adults. Interestingly, experiencing stressor during juvenile period was found to elicit a biphasic behavioral pattern over the course of development. During the juvenile period, the expression of several GABAA receptor subunits is subject to elevated plasticity, rendering the GABAergic system sensitive to stressors. In the present investigation, animals were exposed to a juvenile variable stressor regimen (JUV-S) at 27-29 postnatal days (PND): 27 PND-acute swim stress (10 min), 28 PND-elevated platform stress (3 sessions×30 min each), and 29 PND-restraint (2 h). One hour following the last exposure to stressor or in adulthood (60 PND), anxiety-related behaviors were assessed in a 5-min elevated plus maze test. The western blotting technique was used to evaluate whether the juvenile stress induced behavioral pattern will be accompanied by respective changes in GABAA α1, α2, and α3 protein expression in male rats. Our findings further established that juvenile stressor elicits hyper-reactivity when rats were tested as juveniles, whereas rats exhibited reduced activity and increased anxiety when tested as adults. Additionally, the effects of juvenile stressor on α1, α2, and α3 were more pronounced among juvenile stressed rats that were challenged as adults compared with rats that were only challenged as juveniles. Interestingly, the stress-induced modulation of the subunits was particularly evident in the amygdala, a brain region closely associated with anxiety. Thus, age- and region-specific alterations of the α subunits may contribute to the age-specific behavioral alterations observed following juvenile stress exposure.
Collapse
|
13
|
Molecular adaptation to chronic antidepressant treatment: evidence for a more rapid response to the novel α₂-adrenoceptor antagonist/5-HT-noradrenaline reuptake inhibitor (SNRI), S35966, compared to the SNRI, venlafaxine. Int J Neuropsychopharmacol 2012; 15:617-29. [PMID: 21733241 DOI: 10.1017/s1461145711000733] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Evidence of early changes in neural plasticity may aid the prediction of rapid-onset antidepressant drugs. Here we compared the dual α₂-adrenoceptor antagonist/5-HT-noradrenaline reuptake inhibitor (SNRI), S35966, to the SNRI, venlafaxine, with regards to their effect on rat brain expression of a panel of neural plasticity-related genes: Arc, BDNF, and VGLUT1, as well as Homer1a and Shank1B (not studied previously). Abundance of mRNA was determined by in-situ hybridization in cortical and hippocampal regions 2 h and 16 h following drug administration for 14, 7 and 1 d. After 14 d, both S35966 and venlafaxine increased mRNA of all genes, including Homer1a and Shank1B, and effects were similarly time- and region-dependent. After 7 d, S35966 elevated Arc, Shank1B and BDNF mRNA, whereas venlafaxine increased Shank1B mRNA only. Finally, after 1 d (acute administration), S35966 increased Arc and Homer1a mRNA whereas venlafaxine had no effect on any gene examined. In summary, a 14-d course of treatment with S35966 or venlafaxine induced similar region- and time-dependent increases in expression of neural plasticity-related genes including Shank1B and Homer1a. Some genes responded earlier to S35966, suggesting that drugs with combined α₂-adrenoceptor antagonist/SNRI properties may elicit more rapid changes in markers of neural plasticity than a SNRI alone.
Collapse
|
14
|
Sequeira A, Morgan L, Walsh DM, Cartagena PM, Choudary P, Li J, Schatzberg AF, Watson SJ, Akil H, Myers RM, Jones EG, Bunney WE, Vawter MP. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide. PLoS One 2012; 7:e35367. [PMID: 22558144 PMCID: PMC3340369 DOI: 10.1371/journal.pone.0035367] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 03/15/2012] [Indexed: 12/23/2022] Open
Abstract
Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0) in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides), the anterior cingulate cortex (ACC: 6NS, 9S) and the nucleus accumbens (NAcc: 8NS, 13S). ANCOVA was used to control for age, gender, pH and RNA degradation, with P≤0.01 and fold change±1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A) and three were down-regulated in the NAcc (MT1F, MT1G, MT1H). Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.
Collapse
Affiliation(s)
- Adolfo Sequeira
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fiori LM, Turecki G. Broadening our horizons: Gene expression profiling to help better understand the neurobiology of suicide and depression. Neurobiol Dis 2012; 45:14-22. [DOI: 10.1016/j.nbd.2010.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/02/2010] [Accepted: 11/09/2010] [Indexed: 12/15/2022] Open
|
16
|
Andrus BM, Blizinsky K, Vedell PT, Dennis K, Shukla PK, Schaffer DJ, Radulovic J, Churchill GA, Redei EE. Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Mol Psychiatry 2012; 17:49-61. [PMID: 21079605 PMCID: PMC3117129 DOI: 10.1038/mp.2010.119] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 10/05/2010] [Accepted: 10/11/2010] [Indexed: 12/24/2022]
Abstract
The etiology of depression is still poorly understood, but two major causative hypotheses have been put forth: the monoamine deficiency and the stress hypotheses of depression. We evaluate these hypotheses using animal models of endogenous depression and chronic stress. The endogenously depressed rat and its control strain were developed by bidirectional selective breeding from the Wistar-Kyoto (WKY) rat, an accepted model of major depressive disorder (MDD). The WKY More Immobile (WMI) substrain shows high immobility/despair-like behavior in the forced swim test (FST), while the control substrain, WKY Less Immobile (WLI), shows no depressive behavior in the FST. Chronic stress responses were investigated by using Brown Norway, Fischer 344, Lewis and WKY, genetically and behaviorally distinct strains of rats. Animals were either not stressed (NS) or exposed to chronic restraint stress (CRS). Genome-wide microarray analyses identified differentially expressed genes in hippocampi and amygdalae of the endogenous depression and the chronic stress models. No significant difference was observed in the expression of monoaminergic transmission-related genes in either model. Furthermore, very few genes showed overlapping changes in the WMI vs WLI and CRS vs NS comparisons, strongly suggesting divergence between endogenous depressive behavior- and chronic stress-related molecular mechanisms. Taken together, these results posit that although chronic stress may induce depressive behavior, its molecular underpinnings differ from those of endogenous depression in animals and possibly in humans, suggesting the need for different treatments. The identification of novel endogenous depression-related and chronic stress response genes suggests that unexplored molecular mechanisms could be targeted for the development of novel therapeutic agents.
Collapse
Affiliation(s)
- B M Andrus
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - K Blizinsky
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - P T Vedell
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - K Dennis
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - P K Shukla
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - D J Schaffer
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - J Radulovic
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - E E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
17
|
Expression profiling in neuropsychiatric disorders: emphasis on glutamate receptors in bipolar disorder. Pharmacol Biochem Behav 2011; 100:705-11. [PMID: 22005598 DOI: 10.1016/j.pbb.2011.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 09/20/2011] [Accepted: 09/30/2011] [Indexed: 02/08/2023]
Abstract
Functional genomics and proteomics approaches are being employed to evaluate gene and encoded protein expression changes with the tacit goal to find novel targets for drug discovery. Genome-wide association studies (GWAS) have attempted to identify valid candidate genes through single nucleotide polymorphism (SNP) analysis. Furthermore, microarray analysis of gene expression in brain regions and discrete cell populations has enabled the simultaneous quantitative assessment of relevant genes. The ability to associate gene expression changes with neuropsychiatric disorders, including bipolar disorder (BP), and their response to therapeutic drugs provides a novel means for pharmacotherapeutic interventions. This review summarizes gene and pathway targets that have been identified in GWAS studies and expression profiling of human postmortem brain in BP, with an emphasis on glutamate receptors (GluRs). Although functional genomic assessment of BP is in its infancy, results to date point towards a dysregulation of GluRs that bear some similarity to schizophrenia (SZ), although the pattern is complex, and likely to be more complementary than overlapping. The importance of single population expression profiling of specific neurons and intrinsic circuits is emphasized, as this approach provides informative gene expression profile data that may be underappreciated in regional studies with admixed neuronal and non-neuronal cell types.
Collapse
|
18
|
O'Neil RT, Emeson RB. Quantitative analysis of 5HT(2C) receptor RNA editing patterns in psychiatric disorders. Neurobiol Dis 2011; 45:8-13. [PMID: 21914481 DOI: 10.1016/j.nbd.2011.08.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/19/2011] [Accepted: 08/26/2011] [Indexed: 02/06/2023] Open
Abstract
Initially identified as an RNA modification in the anticodon loop of tRNAs from animal, plant and eubacterial origin, the deamination of adenosine-to-inosine by RNA editing has become increasingly recognized as an important RNA processing event to generate diversity in both the transcriptome and proteome and is essential for modulating the activity of numerous proteins critical for nervous system function. Here, we focus on the editing of transcripts encoding the 2C-subtype of serotonin receptor (5HT(2C)) to generate multiple receptor isoforms that differ in G-protein coupling efficacy and constitutive activity. 5HT(2C) receptors have been implicated in the regulation of anxiety, components of the stress response, and are thought to play a role in compulsive behavioral disorders, depression and drug addiction. A number of studies have been conducted to assess whether 5HT(2C) editing is altered in individuals suffering from psychiatric disorders, yet the results from these studies have been inconsistent, and thus inconclusive. This review provides a discussion of the challenges involved with characterizing 5HT(2C) editing patterns in human postmortem tissue samples and how differences in quantitative methodology have contributed to the observed inconsistencies between multiple laboratories. Additionally, we discuss new high-throughput sequencing tools, which provide an opportunity to overcome previous methodological challenges, and permit reliable systematic analyses of RNA editing in control and pathologic disease states.
Collapse
Affiliation(s)
- Richard T O'Neil
- Center for Molecular Neuroscience, Molecular Physiology & Biophysics and Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, USA
| | | |
Collapse
|
19
|
Relationship between genetic variation in the glutaminase gene GLS1 and brain glutamine/glutamate ratio measured in vivo. Biol Psychiatry 2011; 70:169-74. [PMID: 21457947 PMCID: PMC3125415 DOI: 10.1016/j.biopsych.2011.01.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 01/27/2011] [Accepted: 01/28/2011] [Indexed: 12/18/2022]
Abstract
BACKGROUND Abnormalities in glutamatergic neurotransmission are implicated in several psychiatric disorders, but in vivo neurochemical studies of the glutamate (Glu) system have been hampered by a lack of adequate probes. By contrast, glutamine (Gln) and Glu can be quantified separately in proton magnetic resonance spectroscopy studies in vivo. Accumulating evidence suggests that the Gln/Glu ratio is a putative index of glutamatergic neurotransmission but interpretation of changes in the Gln/Glu ratio depends on the conditions of the system, including ammonia levels. METHODS Here, we explored whether variation in GLS1 (the gene encoding the brain isoform of glutaminase, which catalyzes Gln-to-Glu conversion) is associated with Gln/Glu measured in vivo in two brain regions (anterior cingulate cortex, parieto-occipital cortex). RESULTS A specific haplotype of four single nucleotide polymorphisms within GLS1 was significantly associated with Gln/Glu in the parieto-occipital cortex in an magnetic resonance spectroscopy-genetics dataset optimized for Gln/Glu detection (n = 42). This finding was replicated in a second magnetic resonance spectroscopy dataset that was optimized for γ-aminobutyric acid detection where Gln and Glu measurements could still be extracted (n = 40). CONCLUSIONS These findings suggest that genetic variation in a key component of glutamatergic machinery is associated with a putative in vivo index of glutamatergic neurotransmission. Thus, GLS1 genotype might provide insight into normal brain function and into the pathophysiology of many psychiatric conditions where glutamatergic neurotransmission has been implicated. It might also serve as a biomarker for predicting response to existing and novel therapeutic interventions in psychiatry that target glutamatergic neurotransmission.
Collapse
|
20
|
Glatt SJ, Cohen OS, Faraone SV, Tsuang MT. Dysfunctional gene splicing as a potential contributor to neuropsychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:382-92. [PMID: 21438146 PMCID: PMC3082621 DOI: 10.1002/ajmg.b.31181] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 02/18/2011] [Indexed: 12/31/2022]
Abstract
Alternative pre-mRNA splicing is a major mechanism by which the proteomic diversity of eukaryotic genomes is amplified. Much akin to neuropsychiatric disorders themselves, alternative splicing events can be influenced by genetic, developmental, and environmental factors. Here, we review the evidence that abnormalities of splicing may contribute to the liability toward these disorders. First, we introduce the phenomenon of alternative splicing and describe the processes involved in its regulation. We then review the evidence for specific splicing abnormalities in a wide range of neuropsychiatric disorders, including psychotic disorders (schizophrenia), affective disorders (bipolar disorder and major depressive disorder), suicide, substance abuse disorders (cocaine abuse and alcoholism), and neurodevelopmental disorders (autism). Next, we provide a theoretical reworking of the concept of "gene-focused" epidemiologic and neurobiologic investigations. Lastly, we suggest potentially fruitful lines for future research that should illuminate the nature, extent, causes, and consequences of alternative splicing abnormalities in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Stephen J. Glatt
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab); Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; Medical Genetics Research Center; SUNY Upstate Medical University; Syracuse, NY 13210; U.S.A,To whom correspondence should be addressed: SUNY Upstate Medical University, 750 East Adams Street, Weiskotten Hall, Room 3283, Syracuse, NY 13210, U.S.A., , Facsimile: (315) 464-7744, Telephone: (315) 464-7742
| | - Ori S. Cohen
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab); Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; Medical Genetics Research Center; SUNY Upstate Medical University; Syracuse, NY 13210; U.S.A
| | - Stephen V. Faraone
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab); Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; Medical Genetics Research Center; SUNY Upstate Medical University; Syracuse, NY 13210; U.S.A
| | - Ming T. Tsuang
- Center for Behavioral Genomics; Department of Psychiatry; Institute of Genomic Medicine; University of California, San Diego; 9500 Gilman Drive; La Jolla, CA 92039; U.S.A, Veterans Affairs San Diego Healthcare System; 3350 La Jolla Village Drive; San Diego, CA 92161; U.S.A, Harvard Institute of Psychiatric Epidemiology and Genetics; Harvard Departments of Epidemiology and Psychiatry; 25 Shattuck Street; Boston, MA 02115; U.S.A
| |
Collapse
|
21
|
Choi KH, Higgs BW, Wendland JR, Song J, McMahon FJ, Webster MJ. Gene expression and genetic variation data implicate PCLO in bipolar disorder. Biol Psychiatry 2011; 69:353-9. [PMID: 21185011 PMCID: PMC3278480 DOI: 10.1016/j.biopsych.2010.09.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 09/09/2010] [Accepted: 09/28/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND Genetic variation may contribute to differential gene expression in the brain of individuals with psychiatric disorders. To test this hypothesis, we identified genes that were differentially expressed in individuals with bipolar disorder, along with nearby single nucleotide polymorphisms (SNPs) that were associated with expression of the same genes. We then tested these SNPs for association with bipolar disorder in large case-control samples. METHODS We used the Stanley Genomics Database to extract gene expression and SNP microarray data from individuals with bipolar disorder (n = 40) and unaffected controls (n = 43). We identified 367 genes that were differentially expressed in the prefrontal cortex of cases vs. controls (fold change > 1.3 and FDR q-value < .05) and 45 nearby SNPs that were associated with expression of those same genes (FDR q-value < .05). We tested these SNPs for association with bipolar disorder in a meta-analysis of genome-wide association studies (GWAS) including 4,936 cases and 6,654 healthy controls. RESULTS We identified 45 SNPs that were associated with expression of differentially expressed genes, including HBS1L (15 SNPs), HLA-DPB1 (15 SNPs), AMFR (8 SNPs), PCLO (2 SNPs) and WDR41 (2 SNPs). Of these, one SNP (rs13438494), in an intron of the piccolo (PCLO) gene, was significantly associated with bipolar disorder (FDR adjusted p < .05) in the meta-analysis of GWAS. CONCLUSIONS These results support the previous findings implicating PCLO in mood disorders and demonstrate the utility of combining gene expression and genetic variation data to improve our understanding of the genetic contribution to bipolar disorder.
Collapse
|
22
|
Abstract
Pharmacogenomic studies of antidepressant treatment-emergent suicidal events in depressed patients report associations with polymorphisms in genes involved in transcription (CREB1), neuroprotection (BDNF and NTRK2), glutamatergic and noradrenergic neurotransmission (GRIA3, GRIK2 and ADRA2A), the stress and inflammatory responses (FKBP5 and IL28RA), and the synthesis of glycoproteins (PAPLN). Nearly all of the reported events in these studies were modest one-time increases in suicidal ideation. In 3231 unique subjects across six studies, 424 (13.1%) patients showed increases in suicidal ideation, eight (0.25%) attempted suicide and four (0.12%) completed suicide. Systems related to most of these genes have also been implicated in studies of suicidal behavior irrespective of treatment. Future pharmacogenomic studies should target events that are clinically significant, related clinical phenotypes of response and medication side effects, and biological pathways that are involved in these outcomes in order to improve treatment approaches.
Collapse
Affiliation(s)
- David Brent
- Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Room 315 Bellefield Towers, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
23
|
Spijker S, Van Zanten JS, De Jong S, Penninx BWJH, van Dyck R, Zitman FG, Smit JH, Ylstra B, Smit AB, Hoogendijk WJG. Stimulated gene expression profiles as a blood marker of major depressive disorder. Biol Psychiatry 2010; 68:179-86. [PMID: 20471630 DOI: 10.1016/j.biopsych.2010.03.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 03/01/2010] [Accepted: 03/03/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a moderately heritable disorder with a high lifetime prevalence. At present, laboratory blood tests to support MDD diagnosis are not available. METHODS We used a classifier approach on blood gene expression profiles of a unique set of unmedicated subjects (MDD patients and control subjects) to select genes with expression predictive for disease status. To reveal blood gene expression changes related to major depressive disorder-disease, we applied a powerful ex vivo stimulus to the blood: incubation with lipopolysaccharide (LPS; 10 ng/mL blood). RESULTS Based on LPS-stimulated blood gene expression using whole-genome microarrays (primary cohort; 21 MDD patients, 21 healthy control subjects), we identified a set of genes (CAPRIN1, CLEC4A, KRT23, MLC1, PLSCR1, PROK2, ZBTB16) that serves as a molecular signature of MDD. These findings were validated using an independent quantitative polymerase chain reaction method (primary cohort, p = .007). The difference between depressive patients and control subjects was confirmed (p = .019) in a replication cohort of 13 MDD patients and 14 control subjects. The MDD signature score comprised expression levels of seven genes could discriminate depressive patients from control subjects with sensitivity of 76.9% and specificity of 71.8%. CONCLUSIONS We have shown for the first time that molecular analysis of stimulated blood cells can be used as an endophenotype for MDD diagnosis, which is a milestone in establishing biomarkers for neuropsychiatric disorders with moderate heritability in general. Our results may provide a new entry point for following and predicting treatment outcome, as well as prediction of severity and recurrence of major depressive disorder.
Collapse
Affiliation(s)
- Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Despite strong evidence for a role of biological factors in the etiology and pathology of suicide, the study of traditional neurotransmitter systems has been able to explain only a small proportion of the neurobiology of what is now recognized as a complex genetic trait. The use of microarrays to simultaneously examine the expression levels of thousands of gene transcripts has vastly expanded our capacity to detect the involvement of additional genes and pathways in suicidality, and has opened many new avenues for the discovery of the biological underpinnings of suicide completion. This review examines microarray studies which have been used to identify genes displaying altered expression in suicide completers, and highlights some of the important methodological considerations and metabolic pathways which have emerged from these analyses.
Collapse
|
25
|
Lagus M, Gass N, Saharinen J, Saarela J, Porkka-Heiskanen T, Paunio T. Gene expression patterns in a rodent model for depression. Eur J Neurosci 2010; 31:1465-73. [DOI: 10.1111/j.1460-9568.2010.07166.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Poulter MO, Du L, Zhurov V, Palkovits M, Faludi G, Merali Z, Anisman H. Altered Organization of GABA(A) Receptor mRNA Expression in the Depressed Suicide Brain. Front Mol Neurosci 2010; 3:3. [PMID: 20407580 PMCID: PMC2854532 DOI: 10.3389/neuro.02.003.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 01/24/2010] [Indexed: 11/16/2022] Open
Abstract
Inter-relationships ordinarily exist between mRNA expression of GABAA subunits in the frontopolar cortex (FPC) of individuals that had died suddenly from causes other than suicide. However, these correlations were largely absent in persons that had died by suicide. In the present investigation, these findings were extended by examining GABAA receptor expression patterns (of controls and depressed individuals that died by suicide) in the orbital frontal cortex (OFC), hippocampus, amygdala. locus coeruleus (LC) and paraventricular nucleus (PVN), all of which have been implicated in either depression, anxiety or stress responsivity. Using QPCR analysis, we found that in controls the inter-relations between GABAA subunits varied across brain regions, being high in the hippocampus and amygdala, intermediate in the LC, and low in the OFC and PVN. The GABAA subunit inter-relations were markedly different in persons that died by suicide, being reduced in hippocampus and amygdala, stable in the LC, but more coordinated in the OFC and to some extent in the PVN. It seems that altered brain region-specific inhibitory signaling, stemming from altered GABAA subunit coordination, are associated with depression/suicide. Although, it is unknown whether GABAA subunit re-organization was specifically tied to depression, suicide, or the accompanying distress, these data show that the coordinated expression of this transcriptome does vary depending on brain region and is plastic.
Collapse
Affiliation(s)
- Michael O Poulter
- Molecular Brain Research Group, Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Analysis of gene expression in two large schizophrenia cohorts identifies multiple changes associated with nerve terminal function. Mol Psychiatry 2009; 14:1083-94. [PMID: 19255580 DOI: 10.1038/mp.2009.18] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a severe psychiatric disorder with a world-wide prevalence of 1%. The pathophysiology of the illness is not understood, but is thought to have a strong genetic component with some environmental influences on aetiology. To gain further insight into disease mechanism, we used microarray technology to determine the expression of over 30 000 mRNA transcripts in post-mortem tissue from a brain region associated with the pathophysiology of the disease (Brodmann area 10: anterior prefrontal cortex) in 28 schizophrenic and 23 control patients. We then compared our study (Charing Cross Hospital prospective collection) with that of an independent prefrontal cortex dataset from the Harvard Brain Bank. We report the first direct comparison between two independent studies. A total of 51 gene expression changes have been identified that are common between the schizophrenia cohorts, and 49 show the same direction of disease-associated regulation. In particular, changes were observed in gene sets associated with synaptic vesicle recycling, transmitter release and cytoskeletal dynamics. This strongly suggests multiple, small but synergistic changes in gene expression that affect nerve terminal function.
Collapse
|
28
|
Poulter MO, Du L, Zhurov V, Merali Z, Anisman H. Plasticity of the GABA(A) receptor subunit cassette in response to stressors in reactive versus resilient mice. Neuroscience 2009; 165:1039-51. [PMID: 19931360 DOI: 10.1016/j.neuroscience.2009.11.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 10/15/2009] [Accepted: 11/10/2009] [Indexed: 12/12/2022]
Abstract
GABA(A) functioning has been implicated in anxiety and depressive disorders. In this regard, we suggested that in addition to analyzing GABA(A) and the subunits that comprise the GABA(A) receptor, it might be profitable to assess the coordinated expression of subunits that comprise the GABA(A) receptor cassette. We demonstrate that certain subunits within stress-sensitive brain regions were higher in stressor reactive BALB/cByJ than in hardy C57BL/6ByJ mice, and that a chronic, intermittent, variable stressor (6 days/week over 7 weeks) differentially influenced subunit expression in these strains. Further, mRNA expression of GABA(A) subunits were highly coordinated (inter-correlated), and markedly altered by stressors, once again varying with brain region. At the central amygdala of BALB/cByJ mice the ordinarily high subunit inter-relations were reduced in acutely stressed mice, and this outcome was exacerbated with a chronic stressor. In C57BL/6ByJ mice subunit inter-relations were lower than in BALB/cByJ mice; the acute stressor increased subunit organization, which returned to control levels with following a chronic stressor. The profile of amygdala subunit inter-relations was recapitulated in a step-down behavioral test; anxiety was increased by acute and chronic stressors in BALB/cByJ mice, but in the C57BL/6ByJ strain the elevated anxiety associated with an acute stressor was not apparent after chronic stressor treatment. The anxiety could be dissociated from apparent anhedonia (reflected by free sucrose consumption) where the preference for sucrose was reduced by an acute stressor, but this outcome was more pronounced following a chronic stressor, especially in BALB/cByJ mice. These findings support the view that analyses involving subunit organization, rather than just differences in absolute levels, may be expedient in assessing GABA(A) functioning in stressor-related psychological disturbances.
Collapse
Affiliation(s)
- M O Poulter
- Molecular Brain (Research Group), Robarts Research Institute, Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
| | | | | | | | | |
Collapse
|
29
|
Ernst C, Dumoulin P, Cabot S, Erickson J, Turecki G. SNAT1 and a family with high rates of suicidal behavior. Neuroscience 2009; 162:415-22. [DOI: 10.1016/j.neuroscience.2009.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/03/2009] [Accepted: 05/06/2009] [Indexed: 10/20/2022]
|
30
|
Narayan S, Head SR, Gilmartin TJ, Dean B, Thomas EA. Evidence for disruption of sphingolipid metabolism in schizophrenia. J Neurosci Res 2009; 87:278-88. [PMID: 18683247 DOI: 10.1002/jnr.21822] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As the field of glycobiology grows, important roles for glycolipids and glycoproteins in neurological disorders are being increasingly appreciated. However, few studies have explored the involvement of these molecules in the pathology of psychiatric illnesses. We investigated molecular differences related to glycobiology in subjects with schizophrenia by analyzing gene expression profiles using a focused glycogene chip, a custom-designed oligonucleotide array containing genes encoding proteins related to glycobiology, including glycosyltransferases, carbohydrate-binding proteins, proteoglycans, and adhesion molecules. We measured expression profiles in prefrontal cortical (BA46) samples from schizophrenic subjects and matched controls. We find differential expression of genes particularly related to glycosphingolipid/sphingolipid metabolism and N- and O-linked glycan biosynthesis in subjects with schizophrenia. Expression decreases of seven genes associated with these pathways, UGT8, SGPP1, GALC, B4GALT6, SPTLC2, ASAH1, and GAL3ST1, were validated by quantitative PCR in schizophrenic subjects with short-term illness. Only one of these genes, SPTLC2, showed differential expression in chronic schizophrenic subjects, although an increase in expression was observed. Covariate analysis showed that the expression of five of these genes was significantly positively correlated with age in schizophrenic, but not control, subjects. These changing patterns of expression could represent an adaptive response to pathology with disease progression or a compensatory effect of antipsychotic medication, although no significant correlations between gene expression levels and drug doses were observed. Disruption of sphingolipid metabolism early in illness could result in widespread downstream effects encompassing diverse pathological deficits already described in schizophrenia, especially those involving myelination and oligodendrocyte function; hence, this system may represent an important link in schizophrenia pathology.
Collapse
Affiliation(s)
- Sujatha Narayan
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
31
|
McGowan PO, Sasaki A, D'Alessio AC, Dymov S, Labonté B, Szyf M, Turecki G, Meaney MJ. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 2009; 12:342-8. [PMID: 19234457 DOI: 10.1038/nn.2270] [Citation(s) in RCA: 2072] [Impact Index Per Article: 138.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 01/09/2009] [Indexed: 01/11/2023]
Abstract
Maternal care influences hypothalamic-pituitary-adrenal (HPA) function in the rat through epigenetic programming of glucocorticoid receptor expression. In humans, childhood abuse alters HPA stress responses and increases the risk of suicide. We examined epigenetic differences in a neuron-specific glucocorticoid receptor (NR3C1) promoter between postmortem hippocampus obtained from suicide victims with a history of childhood abuse and those from either suicide victims with no childhood abuse or controls. We found decreased levels of glucocorticoid receptor mRNA, as well as mRNA transcripts bearing the glucocorticoid receptor 1F splice variant and increased cytosine methylation of an NR3C1 promoter. Patch-methylated NR3C1 promoter constructs that mimicked the methylation state in samples from abused suicide victims showed decreased NGFI-A transcription factor binding and NGFI-A-inducible gene transcription. These findings translate previous results from rat to humans and suggest a common effect of parental care on the epigenetic regulation of hippocampal glucocorticoid receptor expression.
Collapse
Affiliation(s)
- Patrick O McGowan
- Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Montreal, Quebec, H4H 1R3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer's disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to tau, amyloid-beta precursor protein, and amyloid-beta peptides (Abeta), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson's disease (PD) include the ubiquitin-proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14-3-3 protein members, implicating these chaperone proteins and the neurotransmitter pathways they support as possible drug targets. Brains from persons with major depressive disorder reveal decreased expression for genes in glutamate transport and metabolism, neurotrophic signaling (eg, FGF, BDNF and VGF), and MAP kinase pathways. Increases in these pathways in the brains of animals exposed to electroconvulsive shock and antidepressant treatments identify neurotrophic and angiogenic growth factors and second messenger stimulation as therapeutic approaches for the treatment of depression.
Collapse
|
33
|
Molecular profiles of schizophrenia in the CNS at different stages of illness. Brain Res 2008; 1239:235-48. [PMID: 18778695 DOI: 10.1016/j.brainres.2008.08.023] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 08/04/2008] [Indexed: 12/30/2022]
Abstract
Results from clinical and imaging studies provide evidence for changes in schizophrenia with disease progression, however, the underlying molecular differences that may occur at different stages of illness have not been investigated. To test the hypothesis that the molecular basis for schizophrenia changes from early to chronic illness, we profiled genome-wide expression patterns in prefrontal cortex of schizophrenic subjects at different stages of illness, along with their age- and sex-matched controls. Results show that gene expression profiles change dramatically depending on the stage of illness, whereby the greatest number and magnitude of gene expression differences were detected in subjects with short-term illness (<or=4 years from diagnosis). Comprehensive pathways analyses revealed that each defined stage of illness was associated with dysfunction in both distinct, as well as overlapping systems. Short-term illness was particularly associated with disruptions in gene transcription, metal ion binding, RNA processing and vesicle-mediated transport. In contrast, long-term illness was associated with inflammation, stimulus-response and immune functions. We validated expression differences of 12 transcripts associated with these various functions by real-time PCR analysis. While only four genes, SAMSN1, CDC42BPB, DSC2 and PTPRE, were consistently expressed across all groups, there was dysfunction in overlapping systems among all stages, including cellular signal transduction, lipid metabolism and protein localization. Our results demonstrate that the molecular basis for schizophrenia changes from early to chronic stages, providing evidence for a changing nature of schizophrenia with disease progression.
Collapse
|
34
|
Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain. PLoS One 2008; 3:e2085. [PMID: 18461137 PMCID: PMC2330072 DOI: 10.1371/journal.pone.0002085] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 03/20/2008] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Alterations in gene expression in the suicide brain have been reported and for several genes DNA methylation as an epigenetic regulator is thought to play a role. rRNA genes, that encode ribosomal RNA, are the backbone of the protein synthesis machinery and levels of rRNA gene promoter methylation determine rRNA transcription. METHODOLOGY/PRINCIPAL FINDINGS We test here by sodium bisulfite mapping of the rRNA promoter and quantitative real-time PCR of rRNA expression the hypothesis that epigenetic differences in critical loci in the brain are involved in the pathophysiology of suicide. Suicide subjects in this study were selected for a history of early childhood neglect/abuse, which is associated with decreased hippocampal volume and cognitive impairments. rRNA was significantly hypermethylated throughout the promoter and 5' regulatory region in the brain of suicide subjects, consistent with reduced rRNA expression in the hippocampus. This difference in rRNA methylation was not evident in the cerebellum and occurred in the absence of genome-wide changes in methylation, as assessed by nearest neighbor. CONCLUSIONS/SIGNIFICANCE This is the first study to show aberrant regulation of the protein synthesis machinery in the suicide brain. The data implicate the epigenetic modulation of rRNA in the pathophysiology of suicide.
Collapse
|
35
|
Convergence and divergence in the etiology of myelin impairment in psychiatric disorders and drug addiction. Neurochem Res 2008; 33:1940-9. [PMID: 18404371 DOI: 10.1007/s11064-008-9693-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 03/28/2008] [Indexed: 12/30/2022]
Abstract
Impairment of oligodendroglia (OL)-dependent myelination in the central nervous system (CNS) is a remarkable parallel recently identified in major psychiatric disorders and chronic drug abuse. Neuroimaging and neuropathological studies revealed myelin defects and microarray-profiling analysis demonstrated aberrant expression of myelin-related genes in schizophrenia (SZ), bipolar disorder (BD), major depressive disorder (MDD) and cocaine addiction. However, the etiology underlying myelin impairment in these clinically distinct subjects remains elusive. This article reviews myelin impairment in line with dopaminergic dysfunction, a prime neuropathophysiological trait shared in psychiatric disorders and drug abuse, as well as the genetic and epigenetic alterations associated with these diseases. The current findings support the hypothesis that aberrant dopamine (DA) action on OLs is a common pathologic mechanism for myelin impairment in the aforementioned mental morbidities, whereas inherited genetic variations that specifically affect OL development and myelinogenesis may further increase myelin vulnerability in psychiatric disorders. Importantly, OL defect is not only a pathological consequence but also a causative factor for dopaminergic dysfunction. Hence, myelin impairment is a key factor in the pathogenic loop of psychiatric diseases and drug addiction.
Collapse
|
36
|
Abstract
SUMMARY With the availability of whole genome sequence in many species, linkage analysis, positional cloning and microarray are gradually becoming powerful tools for investigating the links between phenotype and genotype or genes. However, in these methods, causative genes underlying a quantitative trait locus, or a disease, are usually located within a large genomic region or a large set of genes. Examining the function of every gene is very time consuming and needs to retrieve and integrate the information from multiple databases or genome resources. PGMapper is a software tool for automatically matching phenotype to genes from a defined genome region or a group of given genes by combining the mapping information from the Ensembl database and gene function information from the OMIM and PubMed databases. PGMapper is currently available for candidate gene search of human, mouse, rat, zebrafish and 12 other species. AVAILABILITY Available online at http://www.genediscovery.org/pgmapper/index.jsp.
Collapse
Affiliation(s)
- Qing Xiong
- Department of Orthopedic Surgery-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
37
|
Manev R, Mrazovac D, Manev H. Possible role for interactions between 5-lipoxygenase (5-LOX) and AMPA GluR1 receptors in depression and in antidepressant therapy. Med Hypotheses 2007; 69:1076-9. [PMID: 17449191 PMCID: PMC2719960 DOI: 10.1016/j.mehy.2007.02.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
Emerging evidence suggests that 5-lipoxygenase (5-LOX) plays a role in central nervous system functioning. It has been shown that 5-LOX metabolic products can decrease the phosphorylation of the glutamate receptor subunit GluR1, and that this effect can be antagonized by 5-LOX inhibitors. Recent concepts about the pathobiological mechanisms of depression and the molecular mechanisms of antidepressant activity postulate a significant role for glutamatergic neurotransmission and the GluR1 receptor. Regulation of GluR1 phosphorylation, i.e., enhancement of this phosphorylation, may be a part of antidepressant activity. On the other hand, reduced GluR1 phosphorylation may be a pathobiological mechanism contributing to depression. Since 5-LOX inhibitors, along with antidepressants share the capacity to increase GluR1 phosphorylation, we hypothesize that they may also have antidepressant properties. Furthermore, we postulate that increased brain 5-LOX expression may lead to decreased GluR1 phosphorylation and favor the development of depression. For example, brain 5-LOX expression is stimulated by stress hormone glucocorticoids, and stress is a known contributing factor in depression.
Collapse
Affiliation(s)
- Radmila Manev
- Department of Psychiatry and the Psychiatric Institute, University of Illinois at Chicago, 1601 West Taylor Street, M/C912, Chicago, IL 60612, USA
| | | | | |
Collapse
|