1
|
Phukan H, Sarma A, Rex DAB, Christie SAD, Sabu SK, Hariharan S, Prasad TSK, Madanan MG. Physiological Temperature and Osmotic Changes Drive Dynamic Proteome Alterations in the Leptospiral Outer Membrane and Enhance Protein Export Systems. J Proteome Res 2023; 22:3447-3463. [PMID: 37877620 DOI: 10.1021/acs.jproteome.3c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Leptospirosis, a remerging zoonosis, has no effective vaccine or an unambiguous early diagnostic reagent. Proteins differentially expressed (DE) under pathogenic conditions will be useful candidates for antileptospiral measures. We employed a multipronged approach comprising high-resolution TMT-labeled LC-MS/MS-based proteome analysis coupled with bioinformatics on leptospiral proteins following Triton X-114 subcellular fractionation of leptospires treated under physiological temperature and osmolarity that mimic infection. Although there were significant changes in the DE proteins at the level of the entire cell, there were notable changes in proteins at the subcellular level, particularly on the outer membrane (OM), that show the significance of subcellular proteome analysis. The detergent-enriched proteins, representing outer membrane proteins (OMPs), exhibited a dynamic nature and upregulation under various physiological conditions. It was found that pathogenic proteins showed a higher proportion of upregulation compared to the nonpathogenic proteins in the OM. Further analysis identified 17 virulent proteins exclusively upregulated in the outer membrane during infection that could be useful for vaccine and diagnostic targets. The DE proteins may aid in metabolic adaptation and are enriched in pathways related to signal transduction and antibiotic biosynthesis. Many upregulated proteins belong to protein export systems such as SEC translocase, T2SSs, and T1SSs, indicating their sequential participation in protein transport to the outer leaflet of the OM. Further studies on OM-localized proteins may shed light on the pathogenesis of leptospirosis and serve as the basis for effective countermeasures.
Collapse
Affiliation(s)
- Homen Phukan
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair 744103, Andaman and Nicobar Islands, India
| | - Abhijit Sarma
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair 744103, Andaman and Nicobar Islands, India
| | - Devasahayam Arokia Balaya Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | | | - Sarath Kizhakkemuriyil Sabu
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair 744103, Andaman and Nicobar Islands, India
| | - Suneetha Hariharan
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair 744103, Andaman and Nicobar Islands, India
| | | | | |
Collapse
|
2
|
Sarma A, Gunasekaran D, Phukan H, Baby A, Hariharan S, De AK, Bhattacharya D, Natesan S, Tennyson J, Madanan MG. Leptospiral imelysin (LIC_10713) is secretory, immunogenic and binds to laminin, fibronectin, and collagen IV. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12573-6. [PMID: 37227474 DOI: 10.1007/s00253-023-12573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Leptospirosis is a widespread zoonotic disease caused by pathogenic Leptospira. Early and accurate diagnosis is the prime step in managing the disease. Secretory proteins of Leptospira remain distinguished for diagnosis due to their availability as soluble proteins in the serum and their interaction with the host immune response due to their extracellular presence. This study presents the cloning, expression, purification, and characterization of imelysin or LruB (LIC_10713), a putative leptospiral protein. We report that the localization of imelysin showed its presence in the inner membrane and in the culture supernatant. The imelysin was upregulated under in vitro physiological conditions of infection. The LIC_10713 interacted significantly with laminin, fibronectin, collagen type I, and collagen type IV in a dose-dependent manner. Phylogenetic analysis showed that LIC_10713 is predominately found in the pathogenic species of Leptospira, and the GxHxxE motif of imelysin-like proteins is represented as the amino acid sequence GWHAIE. Also, immunoglobulins in leptospirosis-infected patients recognize recombinant-LIC_10713 with 100% specificity and 90.9% sensitivity. The secretion nature, abundance, upregulation, binding to ECM components, and immunogenicity determine LIC_10713 as an important molecule that can be used as an anti-leptospirosis measure. KEY POINTS: • The imelysin-like protein (LIC_10713) of Leptospira is a secretory protein • The protein LIC_10713 can bind ECM molecules • The LIC_10713 is mainly found in pathogenic leptospires • The anti-LIC_10713 antibody from human serum can detect the r-LIC_10713.
Collapse
Affiliation(s)
- Abhijit Sarma
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair, 744103, Andaman and Nicobar Islands, India
| | - Dhandapani Gunasekaran
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair, 744103, Andaman and Nicobar Islands, India
| | - Homen Phukan
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair, 744103, Andaman and Nicobar Islands, India
| | - Akhil Baby
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamraj University, Madurai, Tamil Nadu, 625021, India
| | - Suneetha Hariharan
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair, 744103, Andaman and Nicobar Islands, India
| | - Arun Kumar De
- Division of Animal Science, ICAR- Central Island Agricultural Research Institute, Port Blair, 744105, Andaman and Nicobar Islands, India
| | - Debasis Bhattacharya
- Division of Animal Science, ICAR- Central Island Agricultural Research Institute, Port Blair, 744105, Andaman and Nicobar Islands, India
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamraj University, Madurai, Tamil Nadu, 625021, India
| | - Jebasingh Tennyson
- Department of Plant Sciences, School of Biological Sciences, Madurai Kamraj University, Madurai, Tamil Nadu, 625021, India
| | | |
Collapse
|
3
|
Kavela S, Vyas P, CP J, Kushwaha SK, Majumdar SS, Faisal SM. Use of an Integrated Multi-Omics Approach To Identify Molecular Mechanisms and Critical Factors Involved in the Pathogenesis of Leptospira. Microbiol Spectr 2023; 11:e0313522. [PMID: 36853003 PMCID: PMC10100824 DOI: 10.1128/spectrum.03135-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
Leptospirosis, a bacterial zoonosis caused by pathogenic Leptospira spp., is prevalent worldwide and has become a serious threat in recent years. Limited understanding of Leptospira pathogenesis and host response has hampered the development of effective vaccine and diagnostics. Although Leptospira is phagocytosed by innate immune cells, it resists its destruction, and the evading mechanism involved is unclear. In the present study, we used an integrative multi-omics approach to identify the critical molecular factors of Leptospira involved in pathogenesis during interaction with human macrophages. Transcriptomic and proteomic analyses were performed at 24 h postinfection of human macrophages (phorbol-12-myristate-13-acetate differentiated THP-1 cells) with the pathogenic Leptospira interrogans serovar Icterohaemorrhagiae strain RGA (LEPIRGA). Our results identified a total of 1,528 transcripts and 871 proteins that were significantly expressed with an adjusted P value of <0.05. The correlations between the transcriptomic and proteomic data were above average (r = 0.844), suggesting the role of the posttranscriptional processes during host interaction. The conjoint analysis revealed the expression of several virulence-associated proteins such as adhesins, invasins, and secretory and chemotaxis proteins that might be involved in various processes of attachment and invasion and as effectors during pathogenesis in the host. Further, the interaction of bacteria with the host cell (macrophages) was a major factor in the differential expression of these proteins. Finally, eight common differentially expressed RNA-protein pairs, predicted as virulent, outer membrane/extracellular proteins were validated by quantitative PCR. This is the first report using integrated multi-omics approach to identify critical factors involved in Leptospira pathogenesis. Validation of these critical factors may lead to the identification of target antigens for the development of improved diagnostics and vaccines against leptospirosis. IMPORTANCE Leptospirosis is a zoonotic disease of global importance. It is caused by a Gram-negative bacterial spirochete of the genus Leptospira. The current challenge is to detect the infection at early stage for treatment or to develop potent vaccines that can induce cross-protection against various pathogenic serovars. Understanding host-pathogen interactions is important to identify the critical factors involved in pathogenesis and host defense for developing improved vaccines and diagnostics. Utilizing an integrated multi-omics approach, our study provides important insight into the interaction of Leptospira with human macrophages and identifies a few critical factors (such as virulence-associated proteins) involved in pathogenesis. These factors can be exploited for the development of novel tools for the detection, treatment, or prevention of leptospirosis.
Collapse
Affiliation(s)
- Sridhar Kavela
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Pallavi Vyas
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Jusail CP
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sandeep K. Kushwaha
- Bioinformatics Lab, National Institute of Animal Biotechnology, Hyderabad, India
| | - Subeer S. Majumdar
- Gene and Protein Engineering Lab, National Institute of Animal Biotechnology, Hyderabad, India
| | - Syed M. Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
4
|
Applied Proteomics in 'One Health'. Proteomes 2021; 9:proteomes9030031. [PMID: 34208880 PMCID: PMC8293331 DOI: 10.3390/proteomes9030031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
‘One Health’ summarises the idea that human health and animal health are interdependent and bound to the health of ecosystems. The purpose of proteomics methodologies and studies is to determine proteins present in samples of interest and to quantify changes in protein expression during pathological conditions. The objectives of this paper are to review the application of proteomics technologies within the One Health concept and to appraise their role in the elucidation of diseases and situations relevant to One Health. The paper develops in three sections. Proteomics Applications in Zoonotic Infections part discusses proteomics applications in zoonotic infections and explores the use of proteomics for studying pathogenetic pathways, transmission dynamics, diagnostic biomarkers and novel vaccines in prion, viral, bacterial, protozoan and metazoan zoonotic infections. Proteomics Applications in Antibiotic Resistance part discusses proteomics applications in mechanisms of resistance development and discovery of novel treatments for antibiotic resistance. Proteomics Applications in Food Safety part discusses the detection of allergens, exposure of adulteration, identification of pathogens and toxins, study of product traits and characterisation of proteins in food safety. Sensitive analysis of proteins, including low-abundant ones in complex biological samples, will be achieved in the future, thus enabling implementation of targeted proteomics in clinical settings, shedding light on biomarker research and promoting the One Health concept.
Collapse
|
5
|
Schuler EJA, Marconi RT. The Leptospiral General Secretory Protein D (GspD), a secretin, elicits complement-independent bactericidal antibody against diverse Leptospira species and serovars. Vaccine X 2021; 7:100089. [PMID: 33733085 PMCID: PMC7941034 DOI: 10.1016/j.jvacx.2021.100089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 11/21/2022] Open
Abstract
Leptospirosis, the most common zoonotic infection worldwide, is a multi-system disorder affecting the kidney, liver, and lungs. Infections can be asymptomatic, self-limiting or progress to multi-organ system failure and pulmonary hemorrhage. The incidence of canine and human leptospirosis is steadily increasing worldwide. At least sixty-four Leptospira species and several hundred lipopolysaccharide-based serovars have been defined. Preventive vaccines are available for use in veterinary medicine and limited use in humans in some countries. All commercially available vaccines are bacterin formulations that consist of a combination of laboratory cultivated strains of different lipopolysaccharide serotypes. The development of a broadly protective subunit vaccine would represent a significant step forward in efforts to combat leptospirosis in humans, livestock, and companion animals worldwide. Here we investigate the potential of General secretory protein D (GspD; LIC11570), a secretin, to serve as a possible antigen in a multi-valent vaccine formulation. GspD is conserved, expressed in vitro, antigenic during infection and elicits antibody with complement independent bactericidal activity. Importantly, antibody to GspD is bactericidal against diverse Leptospira species of the P1 subclade. Epitope mapping localized the bactericidal epitopes to the N-terminal N0 domain of GspD. The data within support further exploration of GspD as a candidate for inclusion in a next generation multi-protein subunit vaccine.
Collapse
Affiliation(s)
- EJA. Schuler
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 E Clay St., Richmond, VA 23298, USA
| | - RT. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 E Clay St., Richmond, VA 23298, USA
| |
Collapse
|
6
|
Llanos Salinas SP, Castillo Sánchez LO, Castañeda Miranda G, Rodríguez Reyes EA, Ordoñez López L, Mena Bañuelos R, Alcaraz Sosa LE, Núñez Carrera MG, José Manuel RO, Carmona Gasca CA, Matsunaga J, Haake DA, Candanosa Aranda IE, de la Peña-Moctezuma A. GspD, The Type II Secretion System Secretin of Leptospira, Protects Hamsters against Lethal Infection with a Virulent L. interrogans Isolate. Vaccines (Basel) 2020; 8:vaccines8040759. [PMID: 33327369 PMCID: PMC7768463 DOI: 10.3390/vaccines8040759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/28/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
The wide variety of pathogenic Leptospira serovars and the weak protection offered by the available vaccines encourage the search for protective immunogens against leptospirosis. We found that the secretin GspD of the type II secretion system (T2S) of Leptospira interrogans serovar Canicola was highly conserved amongst pathogenic serovars and was expressed in vivo during infection, as shown by immunohistochemistry. Convalescent sera of hamsters, dogs, and cows showed the presence of IgG antibodies, recognizing a recombinant version of this protein expressed in Escherichia coli (rGspDLC) in Western blot assays. In a pilot vaccination study, a group of eight hamsters was immunized on days zero and 14 with 50 µg of rGspDLC mixed with Freund’s incomplete adjuvant (FIA). On day 28 of the study, 1,000 LD50 (Lethal Dose 50%) of a virulent strain of Leptospira interrogans serovar Canicola (LOCaS46) were inoculated by an intraoral submucosal route (IOSM). Seventy-five percent protection against disease (p = 0.017573, Fisher’s exact test) and 50% protection against infection were observed in this group of vaccinated hamsters. In contrast, 85% of non-vaccinated hamsters died six to nine days after the challenge. These results suggest the potential usefulness of the T2S secretin GspD of Leptospira as a protective recombinant vaccine against leptospirosis.
Collapse
Affiliation(s)
- Samantha Paulina Llanos Salinas
- Teaching, Research and Extension Center for Animal Production in High Plateau, School of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Queretaro 76795, Mexico; (S.P.L.S.); (G.C.M.); (I.E.C.A.)
| | - Luz Olivia Castillo Sánchez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Tepic 63155, Mexico; (L.O.C.S.); (C.A.C.G.)
| | - Giselle Castañeda Miranda
- Teaching, Research and Extension Center for Animal Production in High Plateau, School of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Queretaro 76795, Mexico; (S.P.L.S.); (G.C.M.); (I.E.C.A.)
| | | | - Liliana Ordoñez López
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico; (L.O.L.); (R.M.B.); (R.O.J.M.)
| | - Rodrigo Mena Bañuelos
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico; (L.O.L.); (R.M.B.); (R.O.J.M.)
| | - Luz Elena Alcaraz Sosa
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Tlalpan 14387, Mexico;
| | - María Guadalupe Núñez Carrera
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Centro Histórico 72000, Mexico;
| | - Ramírez Ortega José Manuel
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico; (L.O.L.); (R.M.B.); (R.O.J.M.)
| | - Carlos Alfredo Carmona Gasca
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Tepic 63155, Mexico; (L.O.C.S.); (C.A.C.G.)
| | - James Matsunaga
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (J.M.); (D.A.H.)
| | - David A. Haake
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (J.M.); (D.A.H.)
| | - Irma Eugenia Candanosa Aranda
- Teaching, Research and Extension Center for Animal Production in High Plateau, School of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Queretaro 76795, Mexico; (S.P.L.S.); (G.C.M.); (I.E.C.A.)
| | - Alejandro de la Peña-Moctezuma
- Teaching, Research and Extension Center for Animal Production in High Plateau, School of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Queretaro 76795, Mexico; (S.P.L.S.); (G.C.M.); (I.E.C.A.)
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico; (L.O.L.); (R.M.B.); (R.O.J.M.)
- Correspondence: ; Tel.:+52-414-291-8100
| |
Collapse
|
7
|
Özdemir V. "One Nature": A New Vocabulary and Frame for Governance Innovation in Post-COVID-19 Planetary Health. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:645-648. [PMID: 32986539 DOI: 10.1089/omi.2020.0169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Health futures are not preordained, nor are they entirely predictable by extrapolation from the past. This is particularly relevant in an era of unprecedented uncertainties converging from the COVID-19 pandemic, multiple zoonotic outbreaks for the past two decades, and the climate crisis currently unfolding. Moreover, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services cautioned in 2019 that around one million animal and plant species are threatened with extinction. Human existence and medical innovations are closely intertwined with preservation and sustainability of biodiversity. COVID-19 is a "dry run" for future ecological crises in the 21st century. We need new frames and ways of conceptualizing planetary health, biodiversity futures, and their principled governance post-COVID-19. In this article, I propose "One Nature" as a critically informed planetary health governance frame, and outline its key conceptual pillars. One Nature aims to transcend the socially constructed binaries between humans versus nature, humans versus nonhuman animals or inanimate objects in nature, among other false binaries, and thus, envisions nature as an overlapping, interdependent, and co-constitutive continuum among life forms and ecosystems. One Nature also recognizes animal sentience and agency of nonhuman animals. In doing so, the One Nature governance frame places a firm emphasis on the internal levers of social change and the human values essential to cultivate collective action to curb unchecked extraction of nature that placed human societies in harm's way for future health crises. One Nature is a governance frame and reflexive value system that can be transformative to correct the astigmatism we have long suffered, from the ways in which we have conceived, enacted on, and extracted the natural systems over the centuries. All in all, One Nature supports planetary health and biodiversity through a new vocabulary and post-anthropocentric critical governance lens, and shall help formulate progressive policies to prevent zoonotic outbreaks and future ecological crises.
Collapse
Affiliation(s)
- Vural Özdemir
- OMICS: A Journal of Integrative Biology, New Rochelle, New York, USA
| |
Collapse
|
8
|
Xu S, Hou X, Sun L, Zhang J, Ji X, Wang X, Li H, Li Z. An immunoproteomic approach to identify antigenic proteins in Nocardia farcinica IFM 10152. Microb Pathog 2019; 137:103705. [PMID: 31487535 DOI: 10.1016/j.micpath.2019.103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/22/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023]
Abstract
Nocardia farcinica is the etiological agent of nocardiosis, leading to serious pulmonary or systemic infections. To uncover virulence factors and early diagnostic markers, secreted proteins of N. farcinica IFM 10152 were analyzed using an immunoproteome-based approach. A total of 5 proteins were identified by matrix-assisted laser desorption (MALDI-TOF-MS). Bioinformatic analyses showed that the identified proteins were involved in defense against the host innate immune system and required for pathogenesis. All proteins were expressed in E. coli and antigenicity was analyzed with Western blot. To our knowledge, these proteins with antigenicity were identified for the first time in N. farcinica and they may help elucidate the pathogenesis underlying Nocardia and provide potential future diagnostic markers.
Collapse
Affiliation(s)
- Shuai Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuexin Hou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lina Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jingshan Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xingzhao Ji
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuebing Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Heqiao Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhenjun Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
9
|
Denise R, Abby SS, Rocha EPC. Diversification of the type IV filament superfamily into machines for adhesion, protein secretion, DNA uptake, and motility. PLoS Biol 2019; 17:e3000390. [PMID: 31323028 PMCID: PMC6668835 DOI: 10.1371/journal.pbio.3000390] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/31/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
Processes of molecular innovation require tinkering and shifting in the function of existing genes. How this occurs in terms of molecular evolution at long evolutionary scales remains poorly understood. Here, we analyse the natural history of a vast group of membrane-associated molecular systems in Bacteria and Archaea-the type IV filament (TFF) superfamily-that diversified in systems involved in flagellar or twitching motility, adhesion, protein secretion, and DNA uptake. The phylogeny of the thousands of detected systems suggests they may have been present in the last universal common ancestor. From there, two lineages-a bacterial and an archaeal-diversified by multiple gene duplications, gene fissions and deletions, and accretion of novel components. Surprisingly, we find that the 'tight adherence' (Tad) systems originated from the interkingdom transfer from Archaea to Bacteria of a system resembling the 'EppA-dependent' (Epd) pilus and were associated with the acquisition of a secretin. The phylogeny and content of ancestral systems suggest that initial bacterial pili were engaged in cell motility and/or DNA uptake. In contrast, specialised protein secretion systems arose several times independently and much later in natural history. The functional diversification of the TFF superfamily was accompanied by genetic rearrangements with implications for genetic regulation and horizontal gene transfer: systems encoded in fewer loci were more frequently exchanged between taxa. This may have contributed to their rapid evolution and spread across Bacteria and Archaea. Hence, the evolutionary history of the superfamily reveals an impressive catalogue of molecular evolution mechanisms that resulted in remarkable functional innovation and specialisation from a relatively small set of components.
Collapse
Affiliation(s)
- Rémi Denise
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Sophie S. Abby
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Eduardo P. C. Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
| |
Collapse
|
10
|
vWA proteins of Leptospira interrogans induce hemorrhage in leptospirosis by competitive inhibition of vWF/GPIb-mediated platelet aggregation. EBioMedicine 2018; 37:428-441. [PMID: 30337247 PMCID: PMC6284457 DOI: 10.1016/j.ebiom.2018.10.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUD Leptospira interrogans is the major causative agent of leptospirosis, a worldwide zoonotic disease. Hemorrhage is a typical pathological feature of leptospirosis. Binding of von Willebrand factor (vWF) to platelet glycoprotein-Ibα (GPIbα) is a crucial step in initiation of platelet aggregation. The products of L. interrogans vwa-I and vwa-II genes contain vWF-A domains, but their ability to induce hemorrhage has not been determined. METHODS Human (Hu)-platelet- and Hu-GPIbα-binding abilities of the recombinant proteins expressed by L. interrogans strain Lai vwa-I and vwa-II genes (rLep-vWA-I and rLep-vWA-II) were detected by flowcytometry, surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). Hu-platelet aggregation and its signaling kinases and active components were detected by lumiaggregometry, Western analysis, spectrophotometry and confocal microscopy. Hu-GPIbα-binding sites in rLep-vWA-I and rLep-vWA-II were identified by SPR/ITC measurements. FINDINGS Both rLep-vWA-I and rLep-vWA-II were able to bind to Hu-platelets and inhibit rHu-vWF/ristocetin-induced Hu-platelet aggregation, but Hu-GPIbα-IgG, rLep-vWA-I-IgG and rLep-vWA-II-IgG blocked this binding or inhibition. SPR and ITC revealed a tight interaction between Hu-GPIbα and rLep-vWA-I/rLep-vWA-II with KD values of 3.87 × 10-7-8.65 × 10-8 M. Hu-GPIbα-binding of rL-vWA-I/rL-vWA-II neither activated the PI3K/AKT-ERK and PLC/PKC kinases nor affected the NO, cGMP, ADP, Ca2+ and TXA2 levels in Hu-platelets. G13/R36/G47 in Lep-vWA-I and G76/Q126 in Lep-vWA-II were confirmed as the Hu-GPIbα-binding sites. Injection of rLep-vWA-I or rLep-vWA-II in mice resulted in diffuse pulmonary and focal renal hemorrhage but this hemorrhage was blocked by rLep-vWA-I-IgG or rLep-vWA-II-IgG. INTERPRETATION The products of L. interrogans vwa-I and vwa-II genes induce hemorrhage by competitive inhibition of vWF-mediated Hu-platelet aggregation.
Collapse
|
11
|
Nascimento Filho EG, Vieira ML, Teixeira AF, Santos JC, Fernandes LGV, Passalia FJ, Daroz BB, Rossini A, Kochi LT, Cavenague MF, Pimenta DC, Nascimento ALTO. Proteomics as a tool to understand Leptospira physiology and virulence: Recent advances, challenges and clinical implications. J Proteomics 2018; 180:80-87. [PMID: 29501847 DOI: 10.1016/j.jprot.2018.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Edson G Nascimento Filho
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Monica L Vieira
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Aline F Teixeira
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Jademilson C Santos
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Luis G V Fernandes
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Felipe J Passalia
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil; Programa de Pos-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Brenda B Daroz
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil; Programa de Pos-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Amanda Rossini
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil; Programa de Pos-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leandro T Kochi
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil; Programa de Pos-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Maria F Cavenague
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil; Programa de Pos-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniel C Pimenta
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil.
| |
Collapse
|
12
|
Nally JE, Grassmann AA, Planchon S, Sergeant K, Renaut J, Seshu J, McBride AJ, Caimano MJ. Pathogenic Leptospires Modulate Protein Expression and Post-translational Modifications in Response to Mammalian Host Signals. Front Cell Infect Microbiol 2017; 7:362. [PMID: 28848720 PMCID: PMC5553009 DOI: 10.3389/fcimb.2017.00362] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Pathogenic species of Leptospira cause leptospirosis, a bacterial zoonotic disease with a global distribution affecting over one million people annually. Reservoir hosts of leptospirosis, including rodents, dogs, and cattle, exhibit little to no signs of disease but shed large numbers of organisms in their urine. Transmission occurs when mucosal surfaces or abraded skin come into contact with infected urine or urine-contaminated water or soil. Whilst little is known about how Leptospira adapt to and persist within a reservoir host, in vitro studies suggest that leptospires alter their transcriptomic and proteomic profiles in response to environmental signals encountered during mammalian infection. We applied the dialysis membrane chamber (DMC) peritoneal implant model to compare the whole cell proteome of in vivo derived leptospires with that of leptospires cultivated in vitro at 30°C and 37°C by 2-dimensional difference in-gel electrophoresis (2-D DIGE). Of 1,735 protein spots aligned across 9 2-D DIGE gels, 202 protein spots were differentially expressed (p < 0.05, fold change >1.25 or < −1.25) across all three conditions. Differentially expressed proteins were excised for identification by mass spectrometry. Data are available via ProteomeXchange with identifier PXD006995. The greatest differences were detected when DMC-cultivated leptospires were compared with IV30- or IV37-cultivated leptospires, including the increased expression of multiple isoforms of Loa22, a known virulence factor. Unexpectedly, 20 protein isoforms of LipL32 and 7 isoforms of LipL41 were uniformly identified by DIGE as differentially expressed, suggesting that unique post-translational modifications (PTMs) are operative in response to mammalian host conditions. To test this hypothesis, a rat model of persistent renal colonization was used to isolate leptospires directly from the urine of experimentally infected rats. Comparison of urinary derived leptospires to IV30 leptospires by 2-D immunoblotting confirmed that modification of proteins with trimethyllysine and acetyllysine occurs to a different degree in response to mammalian host signals encountered during persistent renal colonization. These results provide novel insights into differential protein and PTMs present in response to mammalian host signals which can be used to further define the unique equilibrium that exists between pathogenic leptospires and their reservoir host of infection.
Collapse
Affiliation(s)
- Jarlath E Nally
- Infectious Bacterial Diseases Research, National Animal Disease Center, United States Department of Agriculture, Agricultural Research ServiceAmes, IA, United States
| | - Andre A Grassmann
- Biotechnology Unit, Technological Development Center, Federal University of PelotasPelotas, Brazil.,Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, University of Connecticut Health CenterFarmington, CT, United States
| | - Sébastien Planchon
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyBelvaux, Luxembourg
| | - Kjell Sergeant
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyBelvaux, Luxembourg
| | - Jenny Renaut
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyBelvaux, Luxembourg
| | - Janakiram Seshu
- Department of Biology, University of Texas San AntoniaSan Antonia, TX, United States
| | - Alan J McBride
- Biotechnology Unit, Technological Development Center, Federal University of PelotasPelotas, Brazil.,Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Ministry of HealthSalvador, Brazil
| | - Melissa J Caimano
- Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, University of Connecticut Health CenterFarmington, CT, United States
| |
Collapse
|
13
|
Abstract
Type II secretion (T2S) is one means by which Gram-negative pathogens secrete proteins into the extracellular milieu and/or host organisms. Based upon recent genome sequencing, it is clear that T2S is largely restricted to the Proteobacteria, occurring in many, but not all, genera in the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria classes. Prominent human and/or animal pathogens that express a T2S system(s) include Acinetobacter baumannii, Burkholderia pseudomallei, Chlamydia trachomatis, Escherichia coli, Klebsiella pneumoniae, Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Vibrio cholerae, and Yersinia enterocolitica T2S-expressing plant pathogens include Dickeya dadantii, Erwinia amylovora, Pectobacterium carotovorum, Ralstonia solanacearum, Xanthomonas campestris, Xanthomonas oryzae, and Xylella fastidiosa T2S also occurs in nonpathogenic bacteria, facilitating symbioses, among other things. The output of a T2S system can range from only one to dozens of secreted proteins, encompassing a diverse array of toxins, degradative enzymes, and other effectors, including novel proteins. Pathogenic processes mediated by T2S include the death of host cells, degradation of tissue, suppression of innate immunity, adherence to host surfaces, biofilm formation, invasion into and growth within host cells, nutrient assimilation, and alterations in host ion flux. The reach of T2S is perhaps best illustrated by those bacteria that clearly use it for both environmental survival and virulence; e.g., L. pneumophila employs T2S for infection of amoebae, growth within lung cells, dampening of cytokines, and tissue destruction. This minireview provides an update on the types of bacteria that have T2S, the kinds of proteins that are secreted via T2S, and how T2S substrates promote infection.
Collapse
|
14
|
Zeng L, Wang D, Hu N, Zhu Q, Chen K, Dong K, Zhang Y, Yao Y, Guo X, Chang YF, Zhu Y. A Novel Pan-Genome Reverse Vaccinology Approach Employing a Negative-Selection Strategy for Screening Surface-Exposed Antigens against leptospirosis. Front Microbiol 2017; 8:396. [PMID: 28352257 PMCID: PMC5348505 DOI: 10.3389/fmicb.2017.00396] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 02/27/2017] [Indexed: 01/18/2023] Open
Abstract
Reverse vaccinology (RV) has been widely used for screening of surface-exposed proteins (PSEs) of important pathogens, including outer membrane proteins (OMPs), and extracellular proteins (ECPs) as potential vaccine candidates. In this study, we applied a novel RV negative strategy and a pan-genome analysis for screening of PSEs from 17 L. interrogans strains covering 11 predominately epidemic serovars and 17 multilocus typing (MLST) sequence types (STs) worldwide. Our results showed, for instance, out of a total of 633 predicted PSEs in strain 56601, 92.8% were OMPs or ECPs (588/633). Among the 17 strains, 190 core PSEs, 913 dispensable PSEs and 861 unique PSEs were identified. Of the 190 PSEs, 121 were further predicted to be highly antigenic and thus may serve as potential vaccine candidates against leptospirosis. With the exception of LipL45, OmpL1, and LigB, the majority of the 121 PSEs were newly identified antigens. For example, hypothetical proteins BatC, LipL71, and the OmpA family proteins sharing many common features, such as surface-exposed localization, universal conservation, and eliciting strong antibody responses in patients, are regarded as the most promising vaccine antigens. Additionally, a wide array of potential virulence factors among the predicted PSEs including TonB-dependent receptor, sphingomyelinase 2, leucine-rich repeat protein, and 4 neighboring hypothetical proteins were identified as potential antigenicity, and deserve further investigation. Our results can contribute to the prediction of suitable antigens as potential vaccine candidates against leptospirosis and also provide further insights into mechanisms of leptospiral pathogenicity. In addition, our novel negative-screening strategy combined with pan-genome analysis can be a routine RV method applied to numerous other pathogens.
Collapse
Affiliation(s)
- LingBing Zeng
- Department of Laboratory Medicine, the First Affiliated Hospital of NanChang UniversityNanchang, China; Department of Medical Microbiology and Immunology, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Dongliang Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology Beijing, China
| | - NiYa Hu
- Department of Laboratory Medicine, the First Affiliated Hospital of NanChang University Nanchang, China
| | - Qing Zhu
- Department of Laboratory Medicine, the First Affiliated Hospital of NanChang University Nanchang, China
| | - Kaishen Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of NanChang University Nanchang, China
| | - Ke Dong
- Department of Medical Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Yan Zhang
- Department of Medical Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - YuFeng Yao
- Deparment of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - XiaoKui Guo
- Department of Medical Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University Ithaca, NY, USA
| | - YongZhang Zhu
- Department of Medical Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine Shanghai, China
| |
Collapse
|
15
|
Bastos PAD, da Costa JP, Vitorino R. A glimpse into the modulation of post-translational modifications of human-colonizing bacteria. J Proteomics 2016; 152:254-275. [PMID: 27888141 DOI: 10.1016/j.jprot.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/22/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022]
Abstract
Protein post-translational modifications (PTMs) are a key bacterial feature that holds the capability to modulate protein function and responses to environmental cues. Until recently, their role in the regulation of prokaryotic systems has been largely neglected. However, the latest developments in mass spectrometry-based proteomics have allowed an unparalleled identification and quantification of proteins and peptides that undergo PTMs in bacteria, including in species which directly or indirectly affect human health. Herein, we address this issue by carrying out the largest and most comprehensive global pooling and comparison of PTM peptides and proteins from bacterial species performed to date. Data was collected from 91 studies relating to PTM bacterial peptides or proteins identified by mass spectrometry-based methods. The present analysis revealed that there was a considerable overlap between PTMs across species, especially between acetylation and other PTMs, particularly succinylation. Phylogenetically closer species may present more overlapping phosphoproteomes, but environmental triggers also contribute to this proximity. PTMs among bacteria were found to be extremely versatile and diverse, meaning that the same protein may undergo a wide variety of different modifications across several species, but it could also suffer different modifications within the same species.
Collapse
Affiliation(s)
- Paulo André Dias Bastos
- Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal; Department of Chemistry, University of Aveiro, Portugal
| | | | - Rui Vitorino
- Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
16
|
Secretome, surfome and immunome: emerging approaches for the discovery of new vaccine candidates against bacterial infections. World J Microbiol Biotechnol 2016; 32:155. [DOI: 10.1007/s11274-016-2107-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
|
17
|
Identification of protein secretion systems in bacterial genomes. Sci Rep 2016; 6:23080. [PMID: 26979785 PMCID: PMC4793230 DOI: 10.1038/srep23080] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/24/2016] [Indexed: 01/08/2023] Open
Abstract
Bacteria with two cell membranes (diderms) have evolved complex systems for protein secretion. These systems were extensively studied in some model bacteria, but the characterisation of their diversity has lagged behind due to lack of standard annotation tools. We built online and standalone computational tools to accurately predict protein secretion systems and related appendages in bacteria with LPS-containing outer membranes. They consist of models describing the systems’ components and genetic organization to be used with MacSyFinder to search for T1SS-T6SS, T9SS, flagella, Type IV pili and Tad pili. We identified ~10,000 candidate systems in bacterial genomes, where T1SS and T5SS were by far the most abundant and widespread. All these data are made available in a public database. The recently described T6SSiii and T9SS were restricted to Bacteroidetes, and T6SSii to Francisella. The T2SS, T3SS, and T4SS were frequently encoded in single-copy in one locus, whereas most T1SS were encoded in two loci. The secretion systems of diderm Firmicutes were similar to those found in other diderms. Novel systems may remain to be discovered, since some clades of environmental bacteria lacked all known protein secretion systems. Our models can be fully customized, which should facilitate the identification of novel systems.
Collapse
|
18
|
Martins-Pinheiro M, Schons-Fonseca L, da Silva JB, Domingos RH, Momo LHS, Simões ACQ, Ho PL, da Costa RMA. Genomic survey and expression analysis of DNA repair genes in the genus Leptospira. Mol Genet Genomics 2015; 291:703-22. [PMID: 26527082 DOI: 10.1007/s00438-015-1135-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
Leptospirosis is an emerging zoonosis with important economic and public health consequences and is caused by pathogenic leptospires. The genus Leptospira belongs to the order Spirochaetales and comprises saprophytic (L. biflexa), pathogenic (L. interrogans) and host-dependent (L. borgpetersenii) members. Here, we present an in silico search for DNA repair pathways in Leptospira spp. The relevance of such DNA repair pathways was assessed through the identification of mRNA levels of some genes during infection in animal model and after exposition to spleen cells. The search was performed by comparison of available Leptospira spp. genomes in public databases with known DNA repair-related genes. Leptospires exhibit some distinct and unexpected characteristics, for instance the existence of a redundant mechanism for repairing a chemically diverse spectrum of alkylated nucleobases, a new mutS-like gene and a new shorter version of uvrD. Leptospira spp. shares some characteristics from Gram-positive, as the presence of PcrA, two RecQ paralogs and two SSB proteins; the latter is considered a feature shared by naturally competent bacteria. We did not find a significant reduction in the number of DNA repair-related genes in both pathogenic and host-dependent species. Pathogenic leptospires were enriched for genes dedicated to base excision repair and non-homologous end joining. Their evolutionary history reveals a remarkable importance of lateral gene transfer events for the evolution of the genus. Up-regulation of specific DNA repair genes, including components of SOS regulon, during infection in animal model validates the critical role of DNA repair mechanisms for the complex interplay between host/pathogen.
Collapse
Affiliation(s)
- Marinalva Martins-Pinheiro
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-900, Brazil.,Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Luciane Schons-Fonseca
- Centro de Biotecnologia, Instituto Butantan, São Paulo, 05503-900, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Josefa B da Silva
- Centro de Biotecnologia, Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Renan H Domingos
- Centro de Biotecnologia, Instituto Butantan, São Paulo, 05503-900, Brazil
| | | | - Ana Carolina Quirino Simões
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, Santo André, 09210-170, Brazil
| | - Paulo Lee Ho
- Centro de Biotecnologia, Instituto Butantan, São Paulo, 05503-900, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Renata M A da Costa
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210-170, Brazil.
| |
Collapse
|
19
|
Eshghi A, Pappalardo E, Hester S, Thomas B, Pretre G, Picardeau M. Pathogenic Leptospira interrogans exoproteins are primarily involved in heterotrophic processes. Infect Immun 2015; 83:3061-73. [PMID: 25987703 PMCID: PMC4496612 DOI: 10.1128/iai.00427-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022] Open
Abstract
Leptospirosis is a life-threatening and emerging zoonotic disease with a worldwide annual occurrence of more than 1 million cases. Leptospirosis is caused by spirochetes belonging to the genus Leptospira. The mechanisms of disease manifestation in the host remain elusive, and the roles of leptospiral exoproteins in these processes have yet to be determined. Our aim in this study was to assess the composition and quantity of exoproteins of pathogenic Leptospira interrogans and to construe how these proteins contribute to disease pathogenesis. Label-free quantitative mass spectrometry of proteins obtained from Leptospira spirochetes cultured in vitro under conditions mimicking infection identified 325 exoproteins. The majority of these proteins are conserved in the nonpathogenic species Leptospira biflexa, and proteins involved in metabolism and energy-generating functions were overrepresented and displayed the highest relative abundance in culture supernatants. Conversely, proteins of unknown function, which represent the majority of pathogen-specific proteins (presumably involved in virulence mechanisms), were underrepresented. Characterization of various L. interrogans exoprotein mutants in the animal infection model revealed host mortality rates similar to those of hosts infected with wild-type L. interrogans. Collectively, these results indicate that pathogenic Leptospira exoproteins primarily function in heterotrophic processes (the processes by which organisms utilize organic substances as nutrient sources) to maintain the saprophytic lifestyle rather than the virulence of the bacteria. The underrepresentation of proteins homologous to known virulence factors, such as toxins and effectors in the exoproteome, also suggests that disease manifesting from Leptospira infection is likely caused by a combination of the primary and potentially moonlight functioning of exoproteins.
Collapse
Affiliation(s)
- Azad Eshghi
- Institut Pasteur, Biology of Spirochetes Unit, Paris, France
| | - Elisa Pappalardo
- University of Oxford, Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Svenja Hester
- University of Oxford, Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Benjamin Thomas
- University of Oxford, Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Gabriela Pretre
- Institut Pasteur, Biology of Spirochetes Unit, Paris, France
| | | |
Collapse
|
20
|
Zeng LB, Zhuang XR, Huang LL, Zhang YY, Chen CY, Dong K, Zhang Y, Cui ZL, Ding XL, Chang YF, Guo XK, Zhu YZ. Comparative subproteome analysis of three representative Leptospira interrogans vaccine strains reveals cross-reactive antigens and novel virulence determinants. J Proteomics 2015; 112:27-37. [DOI: 10.1016/j.jprot.2014.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/08/2014] [Accepted: 08/25/2014] [Indexed: 12/26/2022]
|
21
|
Hahn A, Stevanovic M, Brouwer E, Bublak D, Tripp J, Schorge T, Karas M, Schleiff E. Secretome analysis of Anabaena sp. PCC 7120 and the involvement of the TolC-homologue HgdD in protein secretion. Environ Microbiol 2014; 17:767-80. [PMID: 24890022 DOI: 10.1111/1462-2920.12516] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 05/18/2014] [Indexed: 12/01/2022]
Abstract
Secretion of proteins is a central strategy of bacteria to influence and respond to their environment. Until now, there has been very few discoveries regarding the cyanobacterial secrotome or the secretion machineries involved. For a mutant of the outer membrane channel TolC-homologue HgdD of Anabaena sp. PCC 7120, a filamentous and heterocyst-forming cyanobacterium, an altered secretome profile was reported. To define the role of HgdD in protein secretion, we have developed a method to isolate extracellular proteins of Anabaena sp. PCC 7120 wild type and an hgdD loss-of-function mutant. We identified 51 proteins of which the majority is predicted to have an extracellular secretion signal, while few seem to be localized in the periplasmic space. Eight proteins were exclusively identified in the secretome of wild-type cells, which coincides with the distribution of type I secretion signal. We selected three candidates and generated hemagglutinin-tagged fusion proteins which could be exclusively detected in the extracellular protein fraction. However, these proteins are not secreted in the hgdD-mutant background, where they are rapidly degraded. This confirms a direct function of HgdD in protein secretion and points to the existence of a quality control mechanism at least for proteins secreted in an HgdD-dependent pathway.
Collapse
Affiliation(s)
- Alexander Hahn
- Institute of Molecular Biosciences, Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9, Frankfurt/am Main, 60438, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Huang L, Zhu W, He P, Zhang Y, Zhuang X, Zhao G, Guo X, Qin J, Zhu Y. Re-characterization of an extrachromosomal circular plasmid in the pathogenic Leptospira interrogans serovar Lai strain 56601. Acta Biochim Biophys Sin (Shanghai) 2014; 46:605-11. [PMID: 24874103 DOI: 10.1093/abbs/gmu033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In China, Leptospira interrogans serovar Lai strain 56601 (str.56601) is one of main pathogenic strains that cause severe leptospirosis in both human and animals. The genome of this organism was completely sequenced in 2003. However, in 2011, we identified and corrected some assembly errors in the str.56601 genome due to the repeat sequences widely distributed in the Leptospira genome. In this study, we re-analyzed the previously reported mobile, phage-related genomic island in the chromosome and rectified detailed sequence information in both the plasmid and chromosome using various experimental methods. The presence of a separate circular extrachromosomal plasmid was also confirmed, and its location in the genomic region was determined relative to the genomic island reported in L. interrogans serovar Lai by a combination of pulsed-field gel electrophoresis -based and plasmid extraction-based Southern blot analysis. This report confirmed that the separate extrachromosomal circular plasmid is not integrated into the chromosome of L. interrogans str.56601 and markedly improved our understanding of the genomic organization, evolution, and pathogenesis of L. interrogans. In particular, characterization of this extrachromosomal circular plasmid will contribute to the development of genetic manipulation systems in pathogenic Leptospira species.
Collapse
Affiliation(s)
- Lili Huang
- Department of Microbiology and Immunology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Weinan Zhu
- Department of Microbiology and Immunology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Ping He
- Department of Microbiology and Immunology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yan Zhang
- Department of Microbiology and Immunology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xuran Zhuang
- Department of Microbiology and Immunology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Guoping Zhao
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaokui Guo
- Department of Microbiology and Immunology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jinhong Qin
- Department of Microbiology and Immunology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yongzhang Zhu
- Department of Microbiology and Immunology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
23
|
Leptospira interrogans enolase is secreted extracellularly and interacts with plasminogen. PLoS One 2013; 8:e78150. [PMID: 24205133 PMCID: PMC3799732 DOI: 10.1371/journal.pone.0078150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/13/2013] [Indexed: 12/21/2022] Open
Abstract
Leptospira interrogans is the agent for leptospirosis, an important zoonosis in humans and animals across the globe. Surface proteins of invading pathogens, such as L. interrogans, are thought to be responsible for successful microbial persistence in vivo via interaction with specific host components. In particular, a number of invasive infectious agents exploit host proteolytic pathways, such as one involving plasminogen (Pg), which aid in efficient pathogen dissemination within the host. Here we show that L. interrogans serovar Lai binds host Pg and that the leptospiral gene product LA1951, annotated as enolase, is involved in this interaction. Interestingly, unlike in related pathogenic Spirochetes, such as Borrelia burgdorferi, LA1951 is not readily detectable in the L. interrogans outer membrane. We show that the antigen is indeed secreted extracellularly; however, it can reassociate with the pathogen surface, where it displays Pg-binding and measurable enzymatic activity. Hamsters infected with L. interrogans also develop readily detectable antibody responses against enolase. Taken together, our results suggest that the L. interrogans enolase has evolved to play a role in pathogen interaction with host molecules, which may contribute to the pathogenesis of leptospirosis.
Collapse
|