1
|
Gorenjak M, Gole B, Goričan L, Jezernik G, Prosenc Zmrzljak U, Pernat C, Skok P, Potočnik U. Single-Cell Transcriptomic and Targeted Genomic Profiling Adjusted for Inflammation and Therapy Bias Reveal CRTAM and PLCB1 as Novel Hub Genes for Anti-Tumor Necrosis Factor Alpha Therapy Response in Crohn's Disease. Pharmaceutics 2024; 16:835. [PMID: 38931955 PMCID: PMC11207411 DOI: 10.3390/pharmaceutics16060835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The lack of reliable biomarkers in response to anti-TNFα biologicals hinders personalized therapy for Crohn's disease (CD) patients. The motivation behind our study is to shift the paradigm of anti-TNFα biomarker discovery toward specific immune cell sub-populations using single-cell RNA sequencing and an innovative approach designed to uncover PBMCs gene expression signals, which may be masked due to the treatment or ongoing inflammation; Methods: The single-cell RNA sequencing was performed on PBMC samples from CD patients either naïve to biological therapy, in remission while on adalimumab, or while on ustekinumab but previously non-responsive to adalimumab. Sieves for stringent downstream gene selection consisted of gene ontology and independent cohort genomic profiling. Replication and meta-analyses were performed using publicly available raw RNA sequencing files of sorted immune cells and an association analysis summary. Machine learning, Mendelian randomization, and oligogenic risk score methods were deployed to validate DEGs highly relevant to anti-TNFα therapy response; Results: This study found PLCB1 in CD4+ T cells and CRTAM in double-negative T cells, which met the stringent statistical thresholds throughout the analyses. An additional assessment proved causal inference of both genes in response to anti-TNFα therapy; Conclusions: This study, jointly with an innovative design, uncovered novel candidate genes in the anti-TNFα response landscape of CD, potentially obscured by therapy or inflammation.
Collapse
Affiliation(s)
- Mario Gorenjak
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (B.G.); (L.G.); (G.J.); (U.P.)
| | - Boris Gole
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (B.G.); (L.G.); (G.J.); (U.P.)
| | - Larisa Goričan
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (B.G.); (L.G.); (G.J.); (U.P.)
| | - Gregor Jezernik
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (B.G.); (L.G.); (G.J.); (U.P.)
| | | | - Cvetka Pernat
- Department of Gastroenterology, Division of Internal Medicine, Maribor University Medical Centre, Ljubljanska ulica 5, SI-2000 Maribor, Slovenia; (C.P.); (P.S.)
| | - Pavel Skok
- Department of Gastroenterology, Division of Internal Medicine, Maribor University Medical Centre, Ljubljanska ulica 5, SI-2000 Maribor, Slovenia; (C.P.); (P.S.)
| | - Uroš Potočnik
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (B.G.); (L.G.); (G.J.); (U.P.)
- Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty for Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| |
Collapse
|
2
|
Vieujean S, Louis E. Precision medicine and drug optimization in adult inflammatory bowel disease patients. Therap Adv Gastroenterol 2023; 16:17562848231173331. [PMID: 37197397 PMCID: PMC10184262 DOI: 10.1177/17562848231173331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/16/2023] [Indexed: 05/19/2023] Open
Abstract
Inflammatory bowel diseases (IBD) encompass two main entities including ulcerative colitis and Crohn's disease. Although having a common global pathophysiological mechanism, IBD patients are characterized by a significant interindividual heterogeneity and may differ by their disease type, disease locations, disease behaviours, disease manifestations, disease course as well as treatment needs. Indeed, although the therapeutic armamentarium for these diseases has expanded rapidly in recent years, a proportion of patients remains with a suboptimal response to medical treatment due to primary non-response, secondary loss of response or intolerance to currently available drugs. Identifying, prior to treatment initiation, which patients are likely to respond to a specific drug would improve the disease management, avoid unnecessary side effects and reduce the healthcare expenses. Precision medicine classifies individuals into subpopulations according to clinical and molecular characteristics with the objective to tailor preventative and therapeutic interventions to the characteristics of each patient. Interventions would thus be performed only on those who will benefit, sparing side effects and expense for those who will not. This review aims to summarize clinical factors, biomarkers (genetic, transcriptomic, proteomic, metabolic, radiomic or from the microbiota) and tools that could predict disease progression to guide towards a step-up or top-down strategy. Predictive factors of response or non-response to treatment will then be reviewed, followed by a discussion about the optimal dose of drug required for patients. The time at which these treatments should be administered (or rather can be stopped in case of a deep remission or in the aftermath of a surgery) will also be addressed. IBD remain biologically complex, with multifactorial etiopathology, clinical heterogeneity as well as temporal and therapeutic variabilities, which makes precision medicine especially challenging in this area. Although applied for many years in oncology, it remains an unmet medical need in IBD.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, Liège, Belgium
| | | |
Collapse
|
3
|
Identification of Novel Loci Involved in Adalimumab Response in Crohn’s Disease Patients Using Integration of Genome Profiling and Isoform-Level Immune-Cell Deconvoluted Transcriptome Profiling of Colon Tissue. Pharmaceutics 2022; 14:pharmaceutics14091893. [PMID: 36145641 PMCID: PMC9500628 DOI: 10.3390/pharmaceutics14091893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Crohn’s disease is a consequence of dysregulated inflammatory response to the host’s microbiota. Although anti-TNF treatment improves the quality of the patient’s life, a large proportion of patients lose response to the treatment. The past decade of research has led to a continuum of studies showcasing the heterogeneity of anti-TNF response; thus, the aim of the present study was to dissect transcriptome-wide findings to transcript isoform specific levels and combine the analyses with refined information of immune cell landscapes in colon tissue, and subsequently select promising candidates using gene ontology and genomic integration. We enrolled Slovenian Crohn’s disease patients who were naïve with respect to adalimumab treatment. We performed colon tissue RNA sequencing and peripheral blood mononuclear cell DNA genotyping with a subsequent contemporary integrative approach to combine immune cell deconvoluted isoform transcript specific transcriptome analysis, gene ontology layering and genomic data. We identified nine genes (MACF1, CTSE, HDLBP, HSPA9, HLA-DMB, TAP2, LGMN, ANAPC11, ACP5) with 15 transcripts and 16 variants involved in the adalimumab response. Our study identified loci, some of which were previously shown to contribute to inflammatory bowel disease susceptibility, as novel loci involved in adalimumab response in Crohn’s disease patients.
Collapse
|
4
|
Changotra H, Kaur S, Yadav SS, Gupta GL, Parkash J, Duseja A. ATG5: A central autophagy regulator implicated in various human diseases. Cell Biochem Funct 2022; 40:650-667. [PMID: 36062813 DOI: 10.1002/cbf.3740] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Autophagy, an intracellular conserved degradative process, plays a central role in the renewal/recycling of a cell to maintain the homeostasis of nutrients and energy within the cell. ATG5, a key component of autophagy, regulates the formation of the autophagosome, a hallmark of autophagy. ATG5 binds with ATG12 and ATG16L1 resulting in E3 like ligase complex, which is necessary for autophagosome expansion. Available data suggest that ATG5 is indispensable for autophagy and has an imperative role in several essential biological processes. Moreover, ATG5 has also been demonstrated to possess autophagy-independent functions that magnify its significance and therapeutic potential. ATG5 interacts with various molecules for the execution of different processes implicated during physiological and pathological conditions. Furthermore, ATG5 genetic variants are associated with various ailments. This review discusses various autophagy-dependent and autophagy-independent roles of ATG5, highlights its various deleterious genetic variants reported until now, and various studies supporting it as a potential drug target.
Collapse
Affiliation(s)
- Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sargeet Kaur
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Suresh Singh Yadav
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Girdhari Lal Gupta
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM'S NMIMS, Shirpur, Maharashtra, India
| | - Jyoti Parkash
- Department of Zoology, School of Biological Sciences, Central University Punjab, Ghudda, Bathinda, Punjab, India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
5
|
Ibeagha-Awemu EM, Bissonnette N, Do DN, Dudemaine PL, Wang M, Facciuolo A, Griebel P. Regionally Distinct Immune and Metabolic Transcriptional Responses in the Bovine Small Intestine and Draining Lymph Nodes During a Subclinical Mycobacterium avium subsp. paratuberculosis Infection. Front Immunol 2022; 12:760931. [PMID: 34975852 PMCID: PMC8714790 DOI: 10.3389/fimmu.2021.760931] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative infectious agent of Johne’s disease (JD), an incurable granulomatous enteritis affecting domestic livestock and other ruminants around the world. Chronic MAP infections usually begin in calves with MAP uptake by Peyer’s patches (PP) located in the jejunum (JE) and ileum (IL). Determining host responses at these intestinal sites can provide a more complete understanding of how MAP manipulates the local microenvironment to support its long-term survival. We selected naturally infected (MAPinf, n=4) and naive (MAPneg, n=3) cows and transcriptionally profiled the JE and IL regions of the small intestine and draining mesenteric lymph nodes (LN). Differentially expressed (DE) genes associated with MAP infection were identified in the IL (585), JE (218), jejunum lymph node (JELN) (205), and ileum lymph node (ILLN) (117). Three DE genes (CD14, LOC616364 and ENSBTAG00000027033) were common to all MAPinf versus MAPneg tissues. Functional enrichment analysis revealed immune/disease related biological processes gene ontology (GO) terms and pathways predominated in IL tissue, indicative of an activated immune response state. Enriched GO terms and pathways in JE revealed a distinct set of host responses from those detected in IL. Regional differences were also identified between the mesenteric LNs draining each intestinal site. More down-regulated genes (52%) and fewer immune/disease pathways (n=5) were found in the ILLN compared to a higher number of up-regulated DE genes (56%) and enriched immune/disease pathways (n=13) in the JELN. Immunohistochemical staining validated myeloid cell transcriptional changes with increased CD172-positive myeloid cells in IL and JE tissues and draining LNs of MAPinf versus MAPneg cows. Several genes, GO terms, and pathways related to metabolism were significantly DE in IL and JE, but to a lesser extent (comparatively fewer enriched metabolic GO terms and pathways) in JELN suggesting distinct regional metabolic changes in IL compared to JE and JELN in response to MAP infection. These unique tissue- and regional-specific differences provides novel insight into the dichotomy in host responses to MAP infection that occur throughout the small intestine and mesenteric LN of chronically MAP infected cows.
Collapse
Affiliation(s)
- Eveline M Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Duy N Do
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Pier-Luc Dudemaine
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Mengqi Wang
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Antonio Facciuolo
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Philip Griebel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada.,School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Salvador-Martín S, Melgarejo-Ortuño A, López-Fernández LA. Biomarkers for Optimization and Personalization of Anti-TNFs in Pediatric Inflammatory Bowel Disease. Pharmaceutics 2021; 13:pharmaceutics13111786. [PMID: 34834201 PMCID: PMC8617733 DOI: 10.3390/pharmaceutics13111786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
The use of biological drugs has improved outcomes in pediatric inflammatory bowel disease (IBD). Prediction of the response to biological drugs would be extremely useful in IBD, and even more so in children, who are still growing physically and psychologically. Specific clinical, biochemical, and genetic parameters are considered predictive of response to biological drugs, although few studies have been carried out in children with IBD. In this review, we present current evidence on biological treatments used in pediatric IBD and the available biomarkers of response. We examine demographics, clinical characteristics, biomarkers (genetic, genomic, and cellular), and microbiota.
Collapse
Affiliation(s)
- Sara Salvador-Martín
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (S.S.-M.); (A.M.-O.)
| | - Alejandra Melgarejo-Ortuño
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (S.S.-M.); (A.M.-O.)
| | - Luis A. López-Fernández
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (S.S.-M.); (A.M.-O.)
- Spanish Clinical Research Network (SCReN), 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
7
|
Wang F, He Q, Gao Z, Redington AN. Atg5 knockdown induces age-dependent cardiomyopathy which can be rescued by repeated remote ischemic conditioning. Basic Res Cardiol 2021; 116:47. [PMID: 34319513 PMCID: PMC8316897 DOI: 10.1007/s00395-021-00888-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/15/2021] [Indexed: 01/02/2023]
Abstract
Altered autophagy is implicated in several human cardiovascular diseases. Remote ischemic conditioning (RIC) is cardioprotective in multiple cardiovascular injury models and modifies autophagy signaling, but its effect in cardiomyopathy induced by gene manipulation has not been reported. To investigate the cardiac effects of chronically reduced autophagy as a result of Atg5 knockdown and assess whether RIC can rescue the phenotype. Atg5 knockdown was induced with tamoxifen for 14 days in cardiac-specific conditional Atg5 flox mice. Autophagy proteins and cardiac function were evaluated by Western blot and echocardiography, respectively. RIC was induced by cyclical hindlimb ischemia and reperfusion using a tourniquet. RIC or sham procedure was performed daily during tamoxifen induction and, in separate experiments, chronically 3 times per week for 8 weeks. Cardiac responses were assessed by end of the study. Cardiac-specific knockdown of Atg5 reduced protein levels by 70% and was associated with a significant increase in mTOR, a reduction of LC3-II and increased upstream autophagy proteins including LC3-I, P62, and Beclin. The changes in biochemical markers were associated with development of an age-related cardiomyopathy during the 17-month follow-up indicated by increased heart weight body weight ratio, progressive decline in cardiac function, and premature death. RIC increased cardiac ATG5 and rescued some of the Atg5 knockdown-induced cardiomyopathy phenotype and associated morphological remodeling. We conclude that cardiac-specific Atg5 knockdown leads to the development of age-related cardiomyopathy. RIC reverses the molecular and structural phenotype when administered both acutely and chronically.
Collapse
Affiliation(s)
- Fangfei Wang
- The Heart Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Quan He
- The Heart Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Zhiqian Gao
- The Heart Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Andrew N Redington
- The Heart Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| |
Collapse
|
8
|
Omics data integration identifies ELOVL7 and MMD gene regions as novel loci for adalimumab response in patients with Crohn's disease. Sci Rep 2021; 11:5449. [PMID: 33750834 PMCID: PMC7970911 DOI: 10.1038/s41598-021-84909-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Response to anti-TNF therapy is of pivotal importance in patients with Crohn’s disease (CD). Here we integrated our and previously reported PBMC derived transcriptomic and genomic data for identification of biomarkers for discrimination between responders and non-responders to anti-TNF therapy. CD patients, who were naïve with respect to the treatment with biologicals, were enrolled in the study. DNA and RNA were extracted from peripheral blood mononuclear cells. RNA-seq was performed using BGISEQ-500. Genotyping was performed using Infinium Global Screening Array. Association regressions were carried out with 12 week response to adalimumab as an outcome variable. RNA-seq analysis confirmed 7 out of 65 previously suggested genes involved in anti-TNF response. Subsequently, analysis of single nucleotide variants in regions of confirmed genes identified 5 variants near MMD and two in ELOVL7 intronic regions associated with treatment response to anti-TNF. Functional analysis has shown that rs1465352, rs4422035 and rs78620886 are listed at H3K9ac_Pro histone modification epigenetic mark. The present study confirmed MMD and ELOVL7 involvement in anti-TNF response and revealed that the regulation of MMD and ELOVL7 gene regions in ADA response may be a part of a complex interplay extending from genetic to epigenetic and to transcriptomic level.
Collapse
|
9
|
Tamargo-Gómez I, Fernández ÁF, Mariño G. Pathogenic Single Nucleotide Polymorphisms on Autophagy-Related Genes. Int J Mol Sci 2020; 21:ijms21218196. [PMID: 33147747 PMCID: PMC7672651 DOI: 10.3390/ijms21218196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, the study of single nucleotide polymorphisms (SNPs) has gained increasing importance in biomedical research, as they can either be at the molecular origin of a determined disorder or directly affect the efficiency of a given treatment. In this regard, sequence variations in genes involved in pro-survival cellular pathways are commonly associated with pathologies, as the alteration of these routes compromises cellular homeostasis. This is the case of autophagy, an evolutionarily conserved pathway that counteracts extracellular and intracellular stressors by mediating the turnover of cytosolic components through lysosomal degradation. Accordingly, autophagy dysregulation has been extensively described in a wide range of human pathologies, including cancer, neurodegeneration, or inflammatory alterations. Thus, it is not surprising that pathogenic gene variants in genes encoding crucial effectors of the autophagosome/lysosome axis are increasingly being identified. In this review, we present a comprehensive list of clinically relevant SNPs in autophagy-related genes, highlighting the scope and relevance of autophagy alterations in human disease.
Collapse
Affiliation(s)
- Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Álvaro F. Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
- Correspondence: (Á.F.F.); (G.M.); Tel.: +34-985652416 (G.M.)
| | - Guillermo Mariño
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
- Correspondence: (Á.F.F.); (G.M.); Tel.: +34-985652416 (G.M.)
| |
Collapse
|
10
|
Genetic Predictors of Long-term Response to Antitumor Necrosis Factor Agents in Pediatric Inflammatory Bowel Disease. J Pediatr Gastroenterol Nutr 2020; 71:508-515. [PMID: 32773718 DOI: 10.1097/mpg.0000000000002840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Inflammatory bowel disease (IBD) is more complex in children and they will have to live with the disease for much longer. For this reason, it is necessary to optimize treatment. The polymorphisms associated with the response to anti-tumor necrosis factor (TNF) drugs in adults with IBD have not been analyzed in children. The aim of the study was to identify genetic variants associated with the long-term response to anti-TNF drugs in children with IBD. METHODS An observational, longitudinal, ambispective cohort's study was conducted. We recruited 209 anti-TNF-treated children diagnosed with IBD and genotyped 21 polymorphisms previously studied in adults with Crohn disease (CD) using real-time PCR. The association between single-nucleotide polymorphisms (SNPs) and time-to-failure was analyzed using the log-rank test. RESULTS After multivariate analysis, 3 SNPs in IL10, IL17A and IL6 were significantly associated with response to anti-TNF treatment among patients diagnosed with CD (rs1800872-HR, 4.749 (95% confidence interval [CI] 1.156-19.517), P value < 0.05; rs2275913-HR, 0.320 [95% CI 0.111-0.920], P value < 0.05; and rs10499563-HR, 0.210 [95% CI 0.047-0.947], P value 0.05, respectively). None of these SNPs were associated with response to infliximab in adults diagnosed with CD. Among patients diagnosed with ulcerative colitis (UC), 1 SNP in LY96 was significantly associated with response to anti-TNF treatment (rs-11465996-HR, 10.220 [95% CI 1.849-56.504] P value < 0.05). CONCLUSIONS Genotyping of these DNA variants before starting treatment may help to identify children who are long-term responders to anti-TNF drugs, and thus tailor treatment of pediatric IBD.
Collapse
|
11
|
Gisbert JP, Chaparro M. Predictors of Primary Response to Biologic Treatment [Anti-TNF, Vedolizumab, and Ustekinumab] in Patients With Inflammatory Bowel Disease: From Basic Science to Clinical Practice. J Crohns Colitis 2020; 14:694-709. [PMID: 31777929 DOI: 10.1093/ecco-jcc/jjz195] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Inflammatory bowel diseases [IBD]-ulcerative colitis and Crohn's disease-are commonly treated with biologic drugs. However, only approximately two-thirds of patients have an initial response to these therapies. Personalised medicine has the potential to optimise efficacy, decrease the risk of adverse drug events, and reduce costs by establishing the most suitable therapy for a selected patient. AIM The present study reviews the potential predictors of short-term primary response to biologic treatment, including not only anti-tumour necrosis factor [TNF] agents [such as infliximab, adalimumab, certolizumab, and golimumab] but also vedolizumab and ustekinumab. METHODS We performed a systematic bibliographical search to identify studies investigating predictive factors of response to biologic therapy. RESULTS For anti-TNF agents, most of the evaluated factors have not demonstrated usefulness, and many others are still controversial. Thus, only a few factors may have a potential role in the prediction of the response, including disease behaviour/phenotype, disease severity, C-reactive protein, albumin, cytokine expression in serum, previous anti-TNF therapy, some proteomic markers, and some colorectal mucosa markers. For vedolizumab, the availability of useful predictive markers seems to be even lower, with only some factors showing a limited value, such as the expression of α4β7 integrin in blood, the faecal microbiota, some proteomic markers, and some colorectal mucosa markers. Finally, in the case of ustekinumab, no predictive factor has been reported yet to be helpful in clinical practice. CONCLUSION In summary, currently no single marker fulfils all criteria for being an appropriate prognostic indicator of response to any biologic treatment in IBD.
Collapse
Affiliation(s)
- Javier P Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa [IIS-IP], Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Madrid, Spain
| | - María Chaparro
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa [IIS-IP], Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Madrid, Spain
| |
Collapse
|
12
|
Laufer VA, Tiwari HK, Reynolds RJ, Danila MI, Wang J, Edberg JC, Kimberly RP, Kottyan LC, Harley JB, Mikuls TR, Gregersen PK, Absher DM, Langefeld CD, Arnett DK, Bridges SL. Genetic influences on susceptibility to rheumatoid arthritis in African-Americans. Hum Mol Genet 2020; 28:858-874. [PMID: 30423114 DOI: 10.1093/hmg/ddy395] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
Large meta-analyses of rheumatoid arthritis (RA) susceptibility in European (EUR) and East Asian (EAS) populations have identified >100 RA risk loci, but genome-wide studies of RA in African-Americans (AAs) are absent. To address this disparity, we performed an analysis of 916 AA RA patients and 1392 controls and aggregated our data with genotyping data from >100 000 EUR and Asian RA patients and controls. We identified two novel risk loci that appear to be specific to AAs: GPC5 and RBFOX1 (PAA < 5 × 10-9). Most RA risk loci are shared across different ethnicities, but among discordant loci, we observed strong enrichment of variants having large effect sizes. We found strong evidence of effect concordance for only 3 of the 21 largest effect index variants in EURs. We used the trans-ethnic fine-mapping algorithm PAINTOR3 to prioritize risk variants in >90 RA risk loci. Addition of AA data to those of EUR and EAS descent enabled identification of seven novel high-confidence candidate pathogenic variants (defined by posterior probability > 0.8). In summary, our trans-ethnic analyses are the first to include AAs, identified several new RA risk loci and point to candidate pathogenic variants that may underlie this common autoimmune disease. These findings may lead to better ways to diagnose or stratify treatment approaches in RA.
Collapse
Affiliation(s)
- Vincent A Laufer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard J Reynolds
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Maria I Danila
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jelai Wang
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey C Edberg
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert P Kimberly
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leah C Kottyan
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John B Harley
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,United States Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Ted R Mikuls
- VA Nebraska-Western Iowa Health Care System and the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA
| | - Devin M Absher
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Donna K Arnett
- University of Kentucky College of Public Health, Lexington, KY, USA
| | - S Louis Bridges
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
Gole B, Potočnik U. Pre-Treatment Biomarkers of Anti-Tumour Necrosis Factor Therapy Response in Crohn's Disease-A Systematic Review and Gene Ontology Analysis. Cells 2019; 8:cells8060515. [PMID: 31141991 PMCID: PMC6628089 DOI: 10.3390/cells8060515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/15/2022] Open
Abstract
The most prominent treatment for the serious cases of Crohn’s disease (CD) are biological tumour necrosis factor (TNF) inhibitors. Unfortunately, therapy nonresponse is still a serious issue in ~1/3 of CD patients. Accurate prediction of responsiveness prior to therapy start would therefore be of great value. Clinical predictors have, however, proved insufficient. Here, we integrate genomic and expression data on potential pre-treatment biomarkers of anti-TNF nonresponse. We show that there is almost no overlap between genomic (annotated with tissue-specific expression quantitative trait loci data) and transcription (RNA and protein data) biomarkers. Furthermore, using interaction networks we demonstrate there is little direct interaction between the proposed biomarkers, though a majority do have common interactors connecting them into networks. Our gene ontology analysis shows that these networks have roles in apoptotic signalling, response to oxidative stress and inflammation pathways. We conclude that a more systematic approach with genome-wide search of genomic and expression biomarkers in the same patients is needed in future studies.
Collapse
Affiliation(s)
- Boris Gole
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia.
| | - Uroš Potočnik
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia.
- Laboratory for Biochemistry, Molecular biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| |
Collapse
|
14
|
Li N, Fan X, Wang X, Deng H, Zhang K, Zhang X, Han Q, Lv Y, Liu Z. Autophagy-Related 5 Gene rs510432 Polymorphism Is Associated with Hepatocellular Carcinoma in Patients with Chronic Hepatitis B Virus Infection. Immunol Invest 2019; 48:378-391. [PMID: 30907204 DOI: 10.1080/08820139.2019.1567532] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Despite the identification of autophagy-related protein 5 (ATG5) as a molecule involved in the activated autophagy machinery during hepatitis B virus (HBV) infection and hepatocarcinogenesis, the consequences of ATG5 mutation carriage for patients with chronic HBV infection remain unclear. This study examined the association of ATG5 polymorphisms with HBV-related diseases including hepatocellular carcinoma (HCC). PATIENTS AND METHODS Two functionally relevant polymorphisms ATG5 rs573775 and rs510432 were genotyped by ligase detection reaction-polymerase chain reaction in 403 patients with chronic HBV infection (171 chronic hepatitis, 119 cirrhosis and 113 HCC) and 196 healthy controls. Univariate and multivariate logistic regression was performed to evaluate factors associated with HCC. RESULTS The rs573775 genotype and allele frequencies had no significant differences between patients with different clinical diseases. However, HCC patients had significantly higher frequency of rs510432 genotype AA (odds ratio [OR] 2.185, 95% confidence interval [CI] 1.042-4.581, P = 0.037, P value by Bonferroni correction [Pc] = 0.074) and allele A (OR 1.435, 95% CI 1.023-2.013, Pc = 0.036) than chronic hepatitis patients. In multivariate analyses, rs510432 allele A-containing genotypes (AA+GA) were independently associated with cirrhosis in comparison to chronic hepatitis (OR 1.927, 95%CI 1.011-3.017, P = 0.032). The rs510432 genotypes AA+GA were also independently associated with HCC in comparison to chronic hepatitis (OR 2.583, 95% CI 1.025-3.911, P = 0.006) or chronic HBV infection without HCC (OR 2.632, 95% CI 1.067-3.482, P = 0.032). CONCLUSION These results indicate that rs510432 genotypes AA+GA are associated with disease progression and HCC risk in chronic HBV infection, providing novel evidence for a role of ATG5 in the pathogenesis of HBV-related HCC. ABBREVIATIONS HBV: hepatitis B virus; HCC hepatocellular carcinoma; TNFSF10: tumor necrosis factor superfamily member 10; ATG5: autophagy-related protein 5; DNA: deoxyribonucleic acid; LDR-PCR: ligase detection reactions-polymerase chain reaction; PCR: polymerase chain reaction; SLE: systemic lupus erythematosus; BD: Behçet's disease; IL-10: interlukin-10; LPS: lipopolysaccharide; PBMC: peripheral blood mononuclear cells; CWP: coal workers' pneumoconiosis; TNF-α: tumor necrosis factor-α.
Collapse
Affiliation(s)
- Na Li
- a Department of Infectious Diseases , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China
| | - Xiude Fan
- a Department of Infectious Diseases , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China
| | - Xiaoyun Wang
- a Department of Infectious Diseases , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China
| | - Huan Deng
- a Department of Infectious Diseases , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China
| | - Kun Zhang
- a Department of Infectious Diseases , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China
| | - Xiaoge Zhang
- a Department of Infectious Diseases , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China
| | - Qunying Han
- a Department of Infectious Diseases , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China
| | - Yi Lv
- b Department of Hepatobiliary Surgery , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China.,c Institute of Advanced Surgical Technology and Engineering , Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China
| | - Zhengwen Liu
- a Department of Infectious Diseases , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China.,c Institute of Advanced Surgical Technology and Engineering , Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China
| |
Collapse
|
15
|
Stevens TW, Matheeuwsen M, Lönnkvist MH, Parker CE, Wildenberg ME, Gecse KB, D'Haens GR. Systematic review: predictive biomarkers of therapeutic response in inflammatory bowel disease-personalised medicine in its infancy. Aliment Pharmacol Ther 2018; 48:1213-1231. [PMID: 30378142 DOI: 10.1111/apt.15033] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/19/2018] [Accepted: 09/29/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterised by substantial heterogeneity in treatment response. With an expanding number of therapeutic agents, identifying optimal treatment at the patient level remains a major challenge. AIM To systematically review the available literature on predictive biomarkers of therapeutic response in IBD. METHODS An electronic literature search was performed on 30 January 2018 using MEDLINE, EMBASE and the Cochrane Library. Retrospective, prospective, uncontrolled and controlled studies reporting on biomarkers predicting therapeutic response in paediatric and adult IBD populations were eligible for inclusion. The methodological quality of the included studies was assessed using the QUIPS tool. Due to anticipated heterogeneity and limited data, a qualitative, rather than quantitative, assessment was planned. RESULTS Of the 10 638 citations identified, 92 articles met the inclusion criteria. Several potential DNA, mRNA and protein markers were evaluated as predictive biomarkers. Most studies focused on predicting response to anti-TNF agents. Substantial between-study heterogeneity was identified with respect to both the biomarkers studied and the definition of response. None of the included studies received a low risk of bias rating for all six domains. Currently, none of the biomarkers is sufficiently predictive for clinical use. CONCLUSIONS The search for predictive biomarkers is still in its infancy and current evidence is limited. Future research efforts should take into account the high patient heterogeneity within prospective trials with objective response assessment. Predictive models will most likely comprise a combination of several molecular markers from integrated omics-levels and clinical characteristics.
Collapse
Affiliation(s)
- Toer W Stevens
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mijntje Matheeuwsen
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria H Lönnkvist
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Manon E Wildenberg
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Amsterdam, The Netherlands
| | - Krisztina B Gecse
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Geert R D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Ye X, Zhou XJ, Zhang H. Exploring the Role of Autophagy-Related Gene 5 ( ATG5) Yields Important Insights Into Autophagy in Autoimmune/Autoinflammatory Diseases. Front Immunol 2018; 9:2334. [PMID: 30386331 PMCID: PMC6199349 DOI: 10.3389/fimmu.2018.02334] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a highly conserved process that degrades certain intracellular contents in both physiological and pathological conditions. Autophagy-related proteins (ATG) are key players in this pathway, among which ATG5 is indispensable in both canonical and non-canonical autophagy. Recent studies demonstrate that ATG5 modulates the immune system and crosstalks with apoptosis. However, our knowledge of the pathogenesis and regulatory mechanisms of autophagy in various immune related diseases is lacking. Thus, a deeper understanding of ATG5's role in the autophagy mechanism may shed light on the link between autophagy and the immune response, and lead to the development of new therapies for autoimmune diseases and autoinflammatory diseases. In this focused review, we discuss the latest insights into the role of ATG5 in autoimmunity. Although these studies are at a relatively early stage, ATG5 may eventually come to be regarded as a “guardian of immune integrity.” Notably, accumulating evidence indicates that other ATG genes may have similar functions.
Collapse
Affiliation(s)
- Xin Ye
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
17
|
Kennedy AE, Laamanen CA, Ross MS, Vohra R, Boreham DR, Scott JA, Ross GM. Nerve growth factor inhibitor with novel-binding domain demonstrates nanomolar efficacy in both cell-based and cell-free assay systems. Pharmacol Res Perspect 2018; 5. [PMID: 28971611 PMCID: PMC5625151 DOI: 10.1002/prp2.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/30/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022] Open
Abstract
Nerve growth factor (NGF), a member of the neurotrophin family, is known to regulate the development and survival of a select population of neurons through the binding and activation of the TrkA receptor. Elevated levels of NGF have been associated with painful pathologies such as diabetic neuropathy and fibromyalgia. However, completely inhibiting the NGF signal could hold significant side effects, such as those observed in a genetic condition called congenital insensitivity to pain and anhidrosis (CIPA). Previous methods of screening for NGF‐inhibitors used labeling techniques which have the potential to alter molecular interactions. SPR spectroscopy and NGF‐dependent cellular assays were utilized to identify a novel NGF‐inhibitor, BVNP‐0197 (IC50 = 90 nmol/L), the first NGF‐inhibitor described with a high nanomolar NGF inhibition efficiency. The present study utilizes molecular modeling flexible docking to identify a novel binding domain in the loop II/IV cleft of NGF.
Collapse
Affiliation(s)
- Allison E Kennedy
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada.,Laurentian University, Biomolecular Sciences Program, Sudbury, Ontario, Canada
| | - Corey A Laamanen
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada.,Laurentian University, Bharti School of Engineering, Sudbury, Ontario, Canada
| | - Mitchell S Ross
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Rahul Vohra
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada.,Sussex Research Laboratories Inc., Ottawa, Ontario, Canada
| | | | - John A Scott
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada.,Laurentian University, Bharti School of Engineering, Sudbury, Ontario, Canada
| | - Gregory M Ross
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
18
|
Autophagy-independent increase of ATG5 expression in T cells of multiple sclerosis patients. J Neuroimmunol 2018; 319:100-105. [PMID: 29548704 DOI: 10.1016/j.jneuroim.2018.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 12/16/2022]
Abstract
Autophagy, a process of controlled self-digestion which regulates cell homeostasis, is involved in innate and adaptive immunity. We investigated the expression of autophagy genes and autophagic activity in distinct lymphocyte populations in treatment-naive MS patients. The mRNA and protein levels of autophagy-related (ATG)5, required for autophagosome formation, were increased in CD4+ and CD4- T cells, but not B cells of MS patients compared to control subjects. The expression of other investigated autophagy genes, as well as the autophagic activity, did not significantly differ between the two groups. ATG5 mRNA levels in CD4+ T cells from MS patients were positively correlated with those of the proinflammatory cytokine tumor necrosis factor. These data suggest that autophagy-independent increase in ATG5 expression might be associated with the proinflammatory capacity of T cells in multiple sclerosis.
Collapse
|
19
|
Yuan J, Han R, Esther A, Wu Q, Yang J, Yan W, Ji X, Liu Y, Li Y, Yao W, Ni C. Polymorphisms in autophagy related genes and the coal workers' pneumoconiosis in a Chinese population. Gene 2017; 632:36-42. [PMID: 28844669 DOI: 10.1016/j.gene.2017.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/24/2017] [Accepted: 08/23/2017] [Indexed: 01/09/2023]
Abstract
Autophagy is an evolutionary conserved intracellular degradation/recycling system that is essential for cellular homeostasis. Dysregulation of this process leads to a number of disorders, including pulmonary fibrosis. However, the genetic association between singe nucleotide polymorphisms of autophagy related genes (ATGs) and the risk of coal workers' pneumoconiosis has not been reported yet. Total of 7 SNPs in ATGs (ATG16, ATG12, ATG5, ATG10) were investigated for their roles in CWP by a case-control study which including 705 CWP patients and 703 control subjects. Genotyping were performed by the Sequenom Mass ARRAY system. Luciferase assays were taken to test the effects of rs26538 C>T on the activity of ATG12 in the promoter. Our data showed that ATG10 rs1864182 GT genotype was associated with a decreased risk of CWP compared with TT genotype (OR=0.42, 95% CI=0.33-0.54, P=0.001). Another 2 SNPs (rs26538, rs510432) were also with the marked decreases in the risk of CWP under recessive models (OR=0.58, 95% CI=0.40-0.83, P=0.002 for rs26538; OR=0.74, 95% CI=0.57-0.97, P=0.040 for rs510432). Luciferase assays in two different cell lines revealed that the rs26538 C>T substitution could reduce the expression of ATG12. Taken together, we identified three SNPs in ATGs, which implicated the development of CWP. Further studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Ruhui Han
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Ayaaba Esther
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Qiuyun Wu
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Jingjin Yang
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Weiwen Yan
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Xiaoming Ji
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yi Liu
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yan Li
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Wenxi Yao
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Chunhui Ni
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
20
|
Zheng Y, Qiu Y, Gunderson JEC, Schulman BA. Production of Human ATG Proteins for Lipidation Assays. Methods Enzymol 2016; 587:97-113. [PMID: 28253979 DOI: 10.1016/bs.mie.2016.09.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Humans express several orthologs of yeast Atg8, in the LC3 and GABARAP families, which play crucial roles in autophagy through their covalent ligation to lipids, typically phosphatidylethanolamine (PE), in a process known as lipidation. Lipidation of LC3 and GABARAP regulates numerous facets of the autophagy process, including regulating expansion of the phagophore membrane, recruiting selected cargoes for degradation, and providing an autophagosome membrane-bound platform mediating dynamic interactions with other regulatory proteins. LC3 and GABARAP are families of related ubiquitin-like proteins (UBLs) (referred to here collectively as LC3/GABARAP), and their lipidation involves a divergent UBL conjugation cascade including ATG7, ATG3, and ATG12~ATG5-ATG16L1 acting as E1, E2, and E3 enzymes, respectively. ATG7 initiates LC3/GABARAP conjugation by catalyzing their C-terminal adenylation and conjugation to the catalytic cysteine of ATG3. Ultimately, the ATG12~ATG5-ATG16L1 complex catalyzes LC3/GABARAP ligation to a primary amino group on PE or other acceptor lipids. This chapter describes methods for expressing and purifying human LC3 or GABARAP, ATG7, ATG3, and the ATG12~ATG5-ATG16L1 complex for in vitro studies of LC3/GABARAP lipidation.
Collapse
Affiliation(s)
- Y Zheng
- St. Jude Children's Research Hospital, Memphis, TN, United States; University of Tennessee Health Science Center, Memphis, TN, United States
| | - Y Qiu
- St. Jude Children's Research Hospital, Memphis, TN, United States
| | - J E C Gunderson
- St. Jude Children's Research Hospital, Memphis, TN, United States; Hendrix College, Conway, AR, United States
| | - B A Schulman
- St. Jude Children's Research Hospital, Memphis, TN, United States; University of Tennessee Health Science Center, Memphis, TN, United States; Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, TN United States.
| |
Collapse
|