1
|
Zhu Y, Cai H, Fang S, Shen H, Yan Z, Wang D, Qi N, Li J, Lv M, Lin X, Hu J, Song Y, Chen X, Yin L, Zhang J, Liao S, Sun M. Unraveling the pathogenic potential of the Pentatrichomonas hominis PHGD strain: impact on IPEC-J2 cell growth, adhesion, and gene expression. Parasite 2024; 31:18. [PMID: 38530211 DOI: 10.1051/parasite/2024014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Pentatrichomonas hominis, a flagellated parasitic protozoan, predominantly infects the mammalian digestive tract, often causing symptoms such as abdominal pain and diarrhea. However, studies investigating its pathogenicity are limited, and the mechanisms underlying P. hominis-induced diarrhea remain unclear. Establishing an in vitro cell model for P. hominis infection is imperative. This study investigated the interaction between P. hominis and IPEC-J2 cells and its impact on parasite growth, adhesion, morphology, and cell viability. Co-cultivation of P. hominis with IPEC-J2 cells resulted in exponential growth of the parasite, with peak densities reaching approximately 4.8 × 105 cells/mL and 1.2 × 106 cells/mL at 48 h for initial inoculation concentrations of 104 cells/mL and 105 cells/mL, respectively. The adhesion rate of P. hominis to IPEC-J2 cells reached a maximum of 93.82% and 86.57% at 24 h for initial inoculation concentrations of 104 cells/mL and 105 cells/mL, respectively. Morphological changes in IPEC-J2 cells co-cultivated with P. hominis were observed, manifesting as elongated and irregular shapes. The viability of IPEC-J2 cells exhibited a decreasing trend with increasing P. hominis concentration and co-cultivation time. Additionally, the mRNA expression levels of IL-6, IL-8, and TNF-α were upregulated, whereas those of CAT and CuZn-SOD were downregulated. These findings provide quantitative evidence that P. hominis can promote its growth by adhering to IPEC-J2 cells, inducing morphological changes, reducing cell viability, and triggering inflammatory responses. Further in vivo studies are warranted to confirm these results and enhance our understanding of P. hominis infection.
Collapse
Affiliation(s)
- Yibin Zhu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haiming Cai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Siyun Fang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, Guangdong 527400, China
| | - Hanqin Shen
- Guangdong Jingjie Inspection and Testing Co., Ltd., Xinxing, Guangdong 527400, China
| | - Zhuanqiang Yan
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, Guangdong 527400, China
| | - Dingai Wang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, Guangdong 527400, China
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Minna Lv
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xuhui Lin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junjing Hu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yongle Song
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiangjie Chen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Lijun Yin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianfei Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
2
|
Záhonová K, Füssy Z, Stairs CW, Leger MM, Tachezy J, Čepička I, Roger AJ, Hampl V. Comparative analysis of mitochondrion-related organelles in anaerobic amoebozoans. Microb Genom 2023; 9. [PMID: 37994879 DOI: 10.1099/mgen.0.001143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Abstract
Archamoebae comprises free-living or endobiotic amoebiform protists that inhabit anaerobic or microaerophilic environments and possess mitochondrion-related organelles (MROs) adapted to function anaerobically. We compared in silico reconstructed MRO proteomes of eight species (six genera) and found that the common ancestor of Archamoebae possessed very few typical components of the protein translocation machinery, electron transport chain and tricarboxylic acid cycle. On the other hand, it contained a sulphate activation pathway and bacterial iron-sulphur (Fe-S) assembly system of MIS-type. The metabolic capacity of the MROs, however, varies markedly within this clade. The glycine cleavage system is widely conserved among Archamoebae, except in Entamoeba, probably owing to its role in catabolic function or one-carbon metabolism. MRO-based pyruvate metabolism was dispensed within subgroups Entamoebidae and Rhizomastixidae, whereas sulphate activation could have been lost in isolated cases of Rhizomastix libera, Mastigamoeba abducta and Endolimax sp. The MIS (Fe-S) assembly system was duplicated in the common ancestor of Mastigamoebidae and Pelomyxidae, and one of the copies took over Fe-S assembly in their MRO. In Entamoebidae and Rhizomastixidae, we hypothesize that Fe-S cluster assembly in both compartments may be facilitated by dual localization of the single system. We could not find evidence for changes in metabolic functions of the MRO in response to changes in habitat; it appears that such environmental drivers do not strongly affect MRO reduction in this group of eukaryotes.
Collapse
Affiliation(s)
- Kristína Záhonová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Life Science Research Centre, Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Zoltán Füssy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Courtney W Stairs
- Centre for Comparative Genomics and Evolutionary Bioinformatics, and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Present address: Microbiology Research Group, Department of Biology, Lund University, Lund, Sweden
| | - Michelle M Leger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Present address: Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| |
Collapse
|
3
|
Reduced mitochondria provide an essential function for the cytosolic methionine cycle. Curr Biol 2022; 32:5057-5068.e5. [PMID: 36347252 PMCID: PMC9746703 DOI: 10.1016/j.cub.2022.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
The loss of mitochondria in oxymonad protists has been associated with the redirection of the essential Fe-S cluster assembly to the cytosol. Yet as our knowledge of diverse free-living protists broadens, the list of functions of their mitochondrial-related organelles (MROs) expands. We revealed another such function in the closest oxymonad relative, Paratrimastix pyriformis, after we solved the proteome of its MRO with high accuracy, using localization of organelle proteins by isotope tagging (LOPIT). The newly assigned enzymes connect to the glycine cleavage system (GCS) and produce folate derivatives with one-carbon units and formate. These are likely to be used by the cytosolic methionine cycle involved in S-adenosyl methionine recycling. The data provide consistency with the presence of the GCS in MROs of free-living species and its absence in most endobionts, which typically lose the methionine cycle and, in the case of oxymonads, the mitochondria.
Collapse
|
4
|
Özdemir V. "One Nature": A New Vocabulary and Frame for Governance Innovation in Post-COVID-19 Planetary Health. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:645-648. [PMID: 32986539 DOI: 10.1089/omi.2020.0169] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Health futures are not preordained, nor are they entirely predictable by extrapolation from the past. This is particularly relevant in an era of unprecedented uncertainties converging from the COVID-19 pandemic, multiple zoonotic outbreaks for the past two decades, and the climate crisis currently unfolding. Moreover, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services cautioned in 2019 that around one million animal and plant species are threatened with extinction. Human existence and medical innovations are closely intertwined with preservation and sustainability of biodiversity. COVID-19 is a "dry run" for future ecological crises in the 21st century. We need new frames and ways of conceptualizing planetary health, biodiversity futures, and their principled governance post-COVID-19. In this article, I propose "One Nature" as a critically informed planetary health governance frame, and outline its key conceptual pillars. One Nature aims to transcend the socially constructed binaries between humans versus nature, humans versus nonhuman animals or inanimate objects in nature, among other false binaries, and thus, envisions nature as an overlapping, interdependent, and co-constitutive continuum among life forms and ecosystems. One Nature also recognizes animal sentience and agency of nonhuman animals. In doing so, the One Nature governance frame places a firm emphasis on the internal levers of social change and the human values essential to cultivate collective action to curb unchecked extraction of nature that placed human societies in harm's way for future health crises. One Nature is a governance frame and reflexive value system that can be transformative to correct the astigmatism we have long suffered, from the ways in which we have conceived, enacted on, and extracted the natural systems over the centuries. All in all, One Nature supports planetary health and biodiversity through a new vocabulary and post-anthropocentric critical governance lens, and shall help formulate progressive policies to prevent zoonotic outbreaks and future ecological crises.
Collapse
Affiliation(s)
- Vural Özdemir
- OMICS: A Journal of Integrative Biology, New Rochelle, New York, USA
| |
Collapse
|
5
|
Asrani P, Hasan GM, Sohal SS, Hassan MI. Molecular Basis of Pathogenesis of Coronaviruses: A Comparative Genomics Approach to Planetary Health to Prevent Zoonotic Outbreaks in the 21st Century. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:634-644. [PMID: 32940573 DOI: 10.1089/omi.2020.0131] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the first quarter of the 21st century, we are already facing the third emergence of a coronavirus outbreak, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the coronavirus disease 2019 (COVID-19) pandemic. Comparative genomics can inform a deeper understanding of the pathogenesis of COVID-19. Previous strains of coronavirus, SARS-CoV, and Middle-East respiratory syndrome-coronavirus (MERS-CoV), have been known to cause acute lung injuries in humans. SARS-CoV-2 shares genetic similarity with SARS-CoV with some modification in the S protein leading to their enhanced binding affinity toward the angiotensin-converting enzyme 2 (ACE2) receptors of human lung cells. This expert review examines the features of all three coronaviruses through a conceptual lens of comparative genomics. In particular, the life cycle of SARS-CoV-2 that enables its survival within the host is highlighted. Susceptibility of humans to coronavirus outbreaks in the 21st century calls for comparisons of the transmission history, hosts, reservoirs, and fatality rates of these viruses so that evidence-based and effective planetary health interventions can be devised to prevent future zoonotic outbreaks. Comparative genomics offers new insights on putative and novel viral targets with an eye to both therapeutic innovation and prevention. We conclude the expert review by (1) articulating the lessons learned so far, whereas the research is still being actively sought after in the field, and (2) the challenges and prospects in deciphering the linkages among multiomics biological variability and COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Purva Asrani
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
Benoit SL, Maier RJ, Sawers RG, Greening C. Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists. Microbiol Mol Biol Rev 2020; 84:e00092-19. [PMID: 31996394 PMCID: PMC7167206 DOI: 10.1128/mmbr.00092-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathogenic microorganisms use various mechanisms to conserve energy in host tissues and environmental reservoirs. One widespread but often overlooked means of energy conservation is through the consumption or production of molecular hydrogen (H2). Here, we comprehensively review the distribution, biochemistry, and physiology of H2 metabolism in pathogens. Over 200 pathogens and pathobionts carry genes for hydrogenases, the enzymes responsible for H2 oxidation and/or production. Furthermore, at least 46 of these species have been experimentally shown to consume or produce H2 Several major human pathogens use the large amounts of H2 produced by colonic microbiota as an energy source for aerobic or anaerobic respiration. This process has been shown to be critical for growth and virulence of the gastrointestinal bacteria Salmonella enterica serovar Typhimurium, Campylobacter jejuni, Campylobacter concisus, and Helicobacter pylori (including carcinogenic strains). H2 oxidation is generally a facultative trait controlled by central regulators in response to energy and oxidant availability. Other bacterial and protist pathogens produce H2 as a diffusible end product of fermentation processes. These include facultative anaerobes such as Escherichia coli, S Typhimurium, and Giardia intestinalis, which persist by fermentation when limited for respiratory electron acceptors, as well as obligate anaerobes, such as Clostridium perfringens, Clostridioides difficile, and Trichomonas vaginalis, that produce large amounts of H2 during growth. Overall, there is a rich literature on hydrogenases in growth, survival, and virulence in some pathogens. However, we lack a detailed understanding of H2 metabolism in most pathogens, especially obligately anaerobic bacteria, as well as a holistic understanding of gastrointestinal H2 transactions overall. Based on these findings, we also evaluate H2 metabolism as a possible target for drug development or other therapies.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - R Gary Sawers
- Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
7
|
Lappan R, Classon C, Kumar S, Singh OP, de Almeida RV, Chakravarty J, Kumari P, Kansal S, Sundar S, Blackwell JM. Meta-taxonomic analysis of prokaryotic and eukaryotic gut flora in stool samples from visceral leishmaniasis cases and endemic controls in Bihar State India. PLoS Negl Trop Dis 2019; 13:e0007444. [PMID: 31490933 PMCID: PMC6750594 DOI: 10.1371/journal.pntd.0007444] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/18/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Visceral leishmaniasis (VL) caused by Leishmania donovani remains of public health concern in rural India. Those at risk of VL are also at risk of other neglected tropical diseases (NTDs) including soil transmitted helminths. Intestinal helminths are potent regulators of host immune responses sometimes mediated through cross-talk with gut microbiota. We evaluate a meta-taxonomic approach to determine the composition of prokaryotic and eukaryotic gut microflora using amplicon-based sequencing of 16S ribosomal RNA (16S rRNA) and 18S rRNA gene regions. The most abundant bacterial taxa identified in faecal samples from Bihar State India were Prevotella (37.1%), Faecalibacterium (11.3%), Escherichia-Shigella (9.1%), Alloprevotella (4.5%), Bacteroides (4.1%), Ruminococcaceae UCG-002 (1.6%), and Bifidobacterium (1.5%). Eukaryotic taxa identified (excluding plant genera) included Blastocystis (57.9%; Order: Stramenopiles), Dientamoeba (12.1%; Family: Tritrichomonadea), Pentatrichomonas (10.1%; Family: Trichomonodea), Entamoeba (3.5%; Family: Entamoebida), Ascaridida (0.8%; Family: Chromodorea; concordant with Ascaris by microscopy), Rhabditida (0.8%; Family: Chromodorea; concordant with Strongyloides), and Cyclophyllidea (0.2%; Order: Eucestoda; concordant with Hymenolepis). Overall alpha (Shannon's, Faith's and Pielou's indices) and beta (Bray-Curtis dissimilarity statistic; weighted UniFrac distances) diversity of taxa did not differ significantly by age, sex, geographic subdistrict, or VL case (N = 23) versus endemic control (EC; N = 23) status. However, taxon-specific associations occurred: (i) Ruminococcaceae UCG- 014 and Gastranaerophilales_uncultured bacterium were enriched in EC compared to VL cases; (ii) Pentatrichomonas was more abundant in VL cases than in EC, whereas the reverse occurred for Entamoeba. Across the cohort, high Escherichia-Shigella was associated with reduced bacterial diversity, while high Blastocystis was associated with high bacterial diversity and low Escherichia-Shigella. Individuals with high Blastocystis had low Bacteroidaceae and high Clostridiales vadin BB60 whereas the reverse held true for low Blastocystis. This scoping study provides useful baseline data upon which to develop a broader analysis of pathogenic enteric microflora and their influence on gut microbial health and NTDs generally.
Collapse
Affiliation(s)
- Rachael Lappan
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Cajsa Classon
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Shashi Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Om Prakash Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ricardo V. de Almeida
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Jaya Chakravarty
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Poonam Kumari
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sangeeta Kansal
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jenefer M. Blackwell
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Adadey SM, Awandare G, Amedofu GK, Wonkam A. Public Health Burden of Hearing Impairment and the Promise of Genomics and Environmental Research: A Case Study in Ghana, Africa. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:638-646. [PMID: 29140768 DOI: 10.1089/omi.2017.0145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hearing impairment (HI) is one of the most disabling conditions of major global health burden that contributes adversely to the social and economic development of a country, if not managed properly. A proper assessment of the nationwide burden and etiology of HI is instrumental in the prevention, treatment, and management of the condition. This article sought to perform an expert review of HI in Ghana to determine the present knowledge of its burden and possible causes of the condition. A literature search was conducted in PubMed using the following keywords: "hearing loss" OR "hearing impairment" OR "deafness" AND "Ghana." The literature was scanned until July 20, 2017, with specific inclusion of targeted landmark and background articles on HI. From the search, 18 of out 5869 articles were selected and considered for the review. The results of the search indicated that there were no extensive studies to determine the national burden of HI in Ghana. However, the few studies assessed suggested that the disease is either acquired or inherited. The burden of acquired HI was higher in adults than children, women than men, and people working in a noisy environment. Regarding the genetic cause, specific founder mutations in GJB2 gene (R143W, L79P, V178A, R184Q, A197S, I203K, and L214P) was the only identified genetic cause of HI in Ghana, but the other HI genes were not investigated. There has been some modest effort to study HI in Ghana, but comprehensive studies on the genetic and environmental etiologies (using the "multi-OMICS" approaches), classification, and burden of HI on Ghana are needed.
Collapse
Affiliation(s)
- Samuel Mawuli Adadey
- 1 West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana , Accra, Ghana
| | - Gordon Awandare
- 1 West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana , Accra, Ghana
| | | | - Ambroise Wonkam
- 3 Division of Human Genetics, Department of Medicine, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| |
Collapse
|
9
|
Arunima A, Yelamanchi SD, Padhi C, Jaiswal S, Ryan D, Gupta B, Sathe G, Advani J, Gowda H, Prasad TSK, Suar M. "Omics" of Food-Borne Gastroenteritis: Global Proteomic and Mutagenic Analysis of Salmonella enterica Serovar Enteritidis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:571-583. [PMID: 29049011 DOI: 10.1089/omi.2017.0112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Salmonella Enteritidis causes food-borne gastroenteritis by the two type three secretion systems (TTSS). TTSS-1 mediates invasion through intestinal lining, and TTSS-2 facilitates phagocytic survival. The pathogens' ability to infect effectively under TTSS-1-deficient background in host's phagocytes is poorly understood. Therefore, pathobiological understanding of TTSS-1-defective nontyphoidal Salmonellosis is highly important. We performed a comparative global proteomic analysis of the isogenic TTSS-1 mutant of Salmonella Enteritidis (M1511) and its wild-type isolate P125109. Our results showed 43 proteins were differentially expressed. Functional annotation further revealed that differentially expressed proteins belong to pathogenesis, tRNA and ncRNA metabolic processes. Three proteins, tryptophan subunit alpha chain, citrate lyase subunit alpha, and hypothetical protein 3202, were selected for in vitro analysis based on their functional annotations. Deletion mutants generated for the above proteins in the M1511 strain showed reduced intracellular survival inside macrophages in vitro. In sum, this study provides mass spectrometry-based evidence for seven hypothetical proteins, which will be subject of future investigations. Our study identifies proteins influencing virulence of Salmonella in the host. The study complements and further strengthens previously published research on proteins involved in enteropathogenesis of Salmonella and extends their role in noninvasive Salmonellosis.
Collapse
Affiliation(s)
| | - Soujanya D Yelamanchi
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India .,2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | | | | | - Daniel Ryan
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Bhawna Gupta
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Gajanan Sathe
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - Jayshree Advani
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - Harsha Gowda
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India .,2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - T S Keshava Prasad
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - Mrutyunjay Suar
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India
| |
Collapse
|
10
|
Jadhav M, Nayak M, Kumar S, Venkatesh A, Patel SK, Kumar V, Sharma S, Samanta B, Deb S, Karak A, Verma S, Talukdar A, Kochar SK, Mansukhani P, Gandhi M, Srivastava S. Clinical Proteomics and Cytokine Profiling for Dengue Fever Disease Severity Biomarkers. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:665-677. [PMID: 29091011 DOI: 10.1089/omi.2017.0135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dengue fever (DF) is a major global health burden with a pathophysiology that is still incompletely understood. Biomarkers that predict and explain susceptibility to DF and its progression to its more severe hemorrhagic form are much needed. DF is endemic in tropical and subtropical regions of the world, with a rapidly increasing incidence of disease severity. We conducted a clinical biomarker discovery study using both a case-control and longitudinal study design. Plasma proteome alterations in patients with DF (n = 12) and dengue hemorrhagic fever (DHF, n = 24) were analyzed in comparison to healthy controls (HCs, n = 16), using the isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomics methodology (false discovery rate of 1%, ≥2 peptides). Several proteins such as the alpha-2 macroglobulin, angiotensinogen, apolipoprotein B-100, serotransferrin, and ceruloplasmin were upregulated (fold change >1.2) in all DHF cases, and downregulated in DF (fold change <0.83), compared with HCs. Plasma cytokine profiling (8 DF, 8 DHF, and 8 HC) on two consecutive time points, at day 0 (day of admission) and days 5-7, found significant elevation in IL-1RA, IL-7, TNF-α, MCP1-MCAF, and MIP-1β levels, but only in the DHF cases, which is the severe disease, and not in DF, compared with HCs (p < 0.05). These new observations on changes in the plasma proteome and cytokine profiles in patients with dengue infection identify several putative molecular leads for future biomarker development and precision medicine in relation to forecasting DF disease severity.
Collapse
Affiliation(s)
- Manali Jadhav
- 1 Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Mumbai, India
| | - Monalisha Nayak
- 1 Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Mumbai, India
| | - Swati Kumar
- 1 Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Mumbai, India
| | - Apoorva Venkatesh
- 1 Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Mumbai, India
| | - Sandip K Patel
- 1 Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Mumbai, India
| | - Vipin Kumar
- 1 Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Mumbai, India
| | - Sarthak Sharma
- 1 Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Mumbai, India
| | - Biaus Samanta
- 2 Department of Medicine, Medical College Hospital Kolkata , Kolkata, India
| | - Satarupa Deb
- 2 Department of Medicine, Medical College Hospital Kolkata , Kolkata, India
| | - Avik Karak
- 2 Department of Medicine, Medical College Hospital Kolkata , Kolkata, India
| | - Sumit Verma
- 2 Department of Medicine, Medical College Hospital Kolkata , Kolkata, India
| | - Arunansu Talukdar
- 2 Department of Medicine, Medical College Hospital Kolkata , Kolkata, India
| | - Sanjay K Kochar
- 3 Department of Medicine, Malaria Research Center , S.P. Medical College, Bikaner, India
| | - Preeti Mansukhani
- 4 P.D. Hinduja National Hospital & Medical Research Center , Mumbai, India
| | - Mayuri Gandhi
- 1 Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Mumbai, India
| | - Sanjeeva Srivastava
- 1 Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Mumbai, India
| |
Collapse
|
11
|
FunctionAnnotator, a versatile and efficient web tool for non-model organism annotation. Sci Rep 2017; 7:10430. [PMID: 28874813 PMCID: PMC5585236 DOI: 10.1038/s41598-017-10952-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
Along with the constant improvement in high-throughput sequencing technology, an increasing number of transcriptome sequencing projects are carried out in organisms without decoded genome information and even on environmental biological samples. To study the biological functions of novel transcripts, the very first task is to identify their potential functions. We present a web-based annotation tool, FunctionAnnotator, which offers comprehensive annotations, including GO term assignment, enzyme annotation, domain/motif identification and predictions for subcellular localization. To accelerate the annotation process, we have optimized the computation processes and used parallel computing for all annotation steps. Moreover, FunctionAnnotator is designed to be versatile, and it generates a variety of useful outputs for facilitating other analyses. Here, we demonstrate how FunctionAnnotator can be helpful in annotating non-model organisms. We further illustrate that FunctionAnnotator can estimate the taxonomic composition of environmental samples and assist in the identification of novel proteins by combining RNA-Seq data with proteomics technology. In summary, FunctionAnnotator can efficiently annotate transcriptomes and greatly benefits studies focusing on non-model organisms or metatranscriptomes. FunctionAnnotator, a comprehensive annotation web-service tool, is freely available online at: http://fa.cgu.edu.tw/. This new web-based annotator will shed light on field studies involving organisms without a reference genome.
Collapse
|