1
|
Firoozi P, Ghaznavi D, Fekrazad R. The Effect of Photobiomodulation on Periodontal Clinical Status of Patients with Cancer During Chemotherapy: A Randomized Clinical Trial. Photobiomodul Photomed Laser Surg 2025; 43:124-132. [PMID: 39950255 DOI: 10.1089/photob.2024.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Objective: This interventional prospective double-blind randomized study investigated the adjunctive inflammation-modulatory effects of photobiomodulation therapy on the periodontal clinical parameters of patients undergoing chemotherapy. Methods: Twenty diagnosed patients with cancer were enrolled in this split-mouth trial. Patients were randomized to implantation with either SRP alone in one quadrant or with five sessions of adjunctive photobiomodulation using a diode laser (density of energy = 2 J/cm2 | wavelength = 635 nm | power = 50 mW | spot diameter = 4 mm | exposure time = 5 s | continuous mode) on the other quadrant. The gingiva was radiated buccally and lingually. The laser beam was positioned 3 mm vertically away from the gingival surface and at a right angle to it. Before chemotherapy, all participants were given oral hygiene training and received SRP. In the same session, the patient's baseline clinical measures were taken immediately after the beginning of one chemotherapy session, interventions for each side were started and clinical parameters including gingival index (GI), plaque index (PI), clinical attachment level (CAL), and pain/burning sensation after one chemotherapy session were obtained. Results: Regarding GI and PI, both control and test groups showed favorable results compared with baseline. However, the adjunctive photobiomodulation group outperformed the control group in one chemotherapy session regarding both abovementioned indices (p < 0.05). The photobiomodulation+scaling and root planing (SRP) group showed promising results in terms of gingival discomfort reduction and SRP alone was not effective. No significant effect was observed regarding CAL in both groups (p > 0.05). Conclusion: Based on the results of this study, it can be concluded that photobiomodulation promotes gingival health and reduces PI and GI indices. Photobiomodulation also alleviates pain or burning in the gingiva. Accordingly, adjunctive photobiomodulation therapy may be suggested as a supplementary treatment in patients with cancer.
Collapse
Affiliation(s)
- Parsa Firoozi
- Radiation Sciences Research Centre, Laser Research Centre in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
| | - Dara Ghaznavi
- Department of Periodontics, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Fekrazad
- Professor of Radiation Sciences Research Centre, Laser Research Centre in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
2
|
Ferreirar FDS, Martins TNDO, Pappis L, Moura SWD, Machado AK, Pivetta HMF. Cumulative effect of photobiomodulation by blue and red light on tumor cells: in vitro study with mammary adenocarcinoma cells - MCF-7. Lasers Med Sci 2025; 40:119. [PMID: 40014152 DOI: 10.1007/s10103-025-04374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
Although the mechanism of action of photobiomodulation (PBM) on tumor cells is already well described in the literature, its cumulative effect is not. The purpose of this study was to evaluate the cumulative effect of photobiomodulation (PBM) with blue (470 nm) and red (658 nm) light at doses of 6 J/cm² and 19 J/cm², respectively, in mammary adenocarcinoma (MCF-7) tumor cells. The study analyzed how single and sequential exposures to these lights modulated cell viability, proliferation, dsDNA release, nitric oxide (NO) production, and reactive oxygen species (ROS). Experimental analyses were carried out to verify cell viability and proliferation, release of dsDNA into the extracellular environment, production of nitric oxide (NO), and formation of reactive oxygen species (ROS). Exposures caused a reduction in cell viability and/or proliferation and there was no increase in mitosis at any of the wavelengths tested. Blue light promoted a reduction in the production of NO and ROS in all analyses. Red light, in a single irradiation at 6 J/cm², was able to promote an increase in NO rates and two cumulative doses at 19 J/cm² increased the formation of ROS. In this study, PBM with blue and red LED, at doses of 6 J/cm² and 19 J/cm² did not cause an increase in cell proliferation but rather reduced the viability and division capacity of breast adenocarcinoma cells.
Collapse
Affiliation(s)
- Fabiana Dos Santos Ferreirar
- Physiotherapy and Rehabilitation Department, Post-Graduate Programme in Functional Rehabilitation, Federal University of Santa Maria, 55 Rubem Martin Berta Street, Santa Maria, RS, 97105-350, Brazil.
| | - Thaís Nogueira de Oliveira Martins
- Physiotherapy and Rehabilitation Department, Post-Graduate Programme in Functional Rehabilitation, Federal University of Santa Maria, 55 Rubem Martin Berta Street, Santa Maria, RS, 97105-350, Brazil
| | - Lauren Pappis
- Pharmaceutical Science Graduate Program,, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Laboratory of Cellular Culture and Genetics, Franciscan University, Santa Maria, RS, Brazil
| | | | - Alencar Kolinski Machado
- Laboratory of Cellular Culture and Genetics, Franciscan University, Santa Maria, RS, Brazil
- Nanosciences Graduate Program, Franciscan University, Santa Maria, RS, Brazil
| | - Hedioneia Maria Foletto Pivetta
- Physiotherapy and Rehabilitation Department, Post-Graduate Programme in Functional Rehabilitation, Federal University of Santa Maria, 55 Rubem Martin Berta Street, Santa Maria, RS, 97105-350, Brazil
| |
Collapse
|
3
|
Woo K, Kim YS, Abueva C, Woo SH. Reprogramming Macrophage Phenotypes With Photobiomodulation for Improved Inflammation Control in ENT Organ Tissues. Clin Exp Otorhinolaryngol 2025; 18:1-13. [PMID: 39700888 PMCID: PMC11917203 DOI: 10.21053/ceo.2024.00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024] Open
Abstract
Photobiomodulation (PBM), a noninvasive phototherapy that utilizes wavelengths between red and near-infrared light, has emerged as a promising approach for controlling inflammation by modulating macrophage polarization. This review investigates the therapeutic potential of PBM in treating ENT-specific inflammatory conditions, such as chronic rhinosinusitis and otitis media, focusing on its effects on macrophage phenotypes and evidence from preclinical studies. By promoting mitochondrial activity, increasing adenosine triphosphate production, and modulating reactive oxygen species, PBM has been shown to shift macrophages from a pro-inflammatory to an anti-inflammatory phenotype. Studies have demonstrated that PBM enhances tissue repair, reduces inflammatory markers, and promotes wound healing. Moreover, PBM facilitates the polarization of M2 macrophages, a crucial factor in resolving mucosal inflammation in the nasal, pharyngeal, and middle ear cavities, as well as restoring tissue homeostasis. The anti-inflammatory effects of PBM are attributed to its ability to influence several molecular mechanisms involved in inflammation regulation, particularly in ENT organ tissues, where recurrent inflammation can lead to chronic conditions such as otitis media or sinusitis. Furthermore, this review compares PBM to competing methods for reprogramming macrophages and treating inflammation, highlighting its advantages of minimal toxicity, simplicity, and precision in controlling ENT immune responses.
Collapse
Affiliation(s)
- Ken Woo
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yeon Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | | | - Seung Hoon Woo
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
4
|
Trajano LADSN, Siqueira PB, Pinheiro D, Farias TG, Santos MSD, Pires BRB, Fonseca ADSD, Mencalha AL. Effects of photobiomodulation in mitochondrial quantity, biogenesis and mitophagy-associated genes in breast cancer cells. Lasers Med Sci 2025; 40:38. [PMID: 39849271 DOI: 10.1007/s10103-025-04287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 01/05/2025] [Indexed: 01/25/2025]
Abstract
In this article, we aim to evaluate the effects of photobiomodulation on mitochondria quantity, biogenesis, and mitophagy-associated genes in breast cancer (BC) cells. Both models were irradiated with a low-power infrared laser (880 nm, 150 mW) and amber LED (617 nm, 1500 mW), alone or simultaneously. We evaluated the mRNA expression of PINK1 and PGC-1α genes, and the mitochondrial number was assessed based on the ratio of mitochondrial DNA/genomic DNA (mtDNA/gDNA). No significant difference was observed in the mtDNA/gDNA ratio comparing the low-power infrared laser (LPIL) and LED-irradiated groups to their control counterparts. Similarly, no difference was observed in the mRNA levels of PINK1 and PGC-1α of the irradiated group with an LPIL and LED alone or in combination. In conclusion, PBM with LPIL and LED did not alter the mtDNA/gDNA ratio nor modulate the mRNA levels of the genes related to mitophagy and biogenesis in BC cells.
Collapse
Affiliation(s)
- Larissa Alexsandra da Silva Neto Trajano
- Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil.
- Pró-Reitoria de Pesquisa e pós-graduação, Mestrado Profissional em Ciências Aplicadas em Saúde, Universidade de Vassouras, Avenida Expedicionário Oswaldo de Almeida Ramos, 280, Vassouras, Rio de Janeiro, 27700000, Brazil.
| | - Priscyanne Barreto Siqueira
- Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Daphne Pinheiro
- Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Thayssa Gomes Farias
- Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Márcia Soares Dos Santos
- Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Bruno Ricardo Barreto Pires
- Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
- Departamento de Ciências Fisiológicas, Instituto Biomédico, niversidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, 20211040, Rio de Janeiro, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| |
Collapse
|
5
|
Nobile JS, Heguedusch D, Carvalho GL, Silva DFT, Cecatto RB, Marcos RL, Nunes FD, Rodrigues MFSD. Effect of nutritional stress and serum starvation on the optical absorbance of normal and malignant epithelial cell lines. Lasers Med Sci 2025; 40:30. [PMID: 39847164 DOI: 10.1007/s10103-024-04254-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025]
Abstract
This brief report aimed to investigate the optical absorbance spectra of normal, dysplastic, and malignant epithelial cell lines under normal and nutritional stress conditions. HaCAT (keratinocyte), DOK (oral dysplastic), and oral squamous cell carcinoma (OSCC) cell lines (CA1, Luc4, SCC9) were evaluated regarding their optical absorbance after culture with 0-10% fetal bovine serum. Absorbance measurements indicated that HaCAT under serum starvation exhibited higher absorbance at blue (430 nm) and near-infrared (906 nm) wavelengths. DOK showed absorption at 440 nm and 945 nm. OSCC cells showed absorption peaks at blue (400-428 nm) and near-infrared. These findings highlight the importance of tailoring PBM parameters to individual needs to achieve optimal absorption and effectiveness. Moreover, the higher absorption peaks in the blue region support further studies to elucidate the potential use of blue light in oral dysplastic lesions and OSCC.
Collapse
Affiliation(s)
- Juliana Stephan Nobile
- Post Graduate Program in Medicine-Biophotonics, Nove de Julho University / UNINOVE, São Paulo, Brazil
| | - Daniele Heguedusch
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School od Dentistry, University of São Paulo, São Paulo, Brazil
| | - Giovanna Lopes Carvalho
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School od Dentistry, University of São Paulo, São Paulo, Brazil
| | | | - Rebeca Boltes Cecatto
- Post Graduate Program in Medicine-Biophotonics, Nove de Julho University / UNINOVE, São Paulo, Brazil
| | - Rodrigo Labat Marcos
- Post Graduate Program in Medicine-Biophotonics, Nove de Julho University / UNINOVE, São Paulo, Brazil
| | - Fabio Daumas Nunes
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School od Dentistry, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
6
|
Rao D, Dsouza CN, Prabhu SS, Kumar P, Prabhu V. Photobiomodulation therapy for mitigating severity of radiodermatitis in cancer patients undergoing radiotherapy: a scoping review. Support Care Cancer 2024; 32:750. [PMID: 39467916 PMCID: PMC11519231 DOI: 10.1007/s00520-024-08944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE Radiodermatitis (RD) is an adverse effect of radiation therapy. RD can negatively impact quality of life and can also hinder treatment in cancer patients. Photobiomodulation therapy (PBMT) has the potential to treat RD at the cellular level, and it is more promising compared to other therapy alternatives. This review aims to examine the effectiveness of PBMT for the treatment and management of RD in cancer patients undergoing radiation therapy. METHODS The methodology followed for the review was based on the framework proposed by Arksey and O'Malley, and the extensions by Levac et al. This involved a literature search in Scopus, PubMed, Embase, and Cochrane without any time limit, for original articles on the basis of the inclusion criteria, i.e., studies focusing on the effectiveness of PBMT on RD in cancer patients undergoing radiation therapy as an anticancer treatment. The review has been reported on the basis of the PRISMA-ScR checklist. RESULTS A total of 14 studies were reviewed, of which only 2 (14.28%) studies reported no significant effect of PBMT on RD; the remaining studies reported positive outcomes (85.71%) with no adverse effects. Among studies with positive outcomes, PBMT has been shown to be beneficial in reducing the severity of RD. Furthermore, PBMT application has been studied as a preventive measure (35.71%), treatment and management (50%), and for both the prevention and cure of RD (14.29%). CONCLUSION Overall, PBMT can be considered a reliable and effective treatment modality for reducing the severity of RD. However detailed studies related to the long-term effects of PBMT, its effect on pain intensity and quality of life (QoL) will aid in better assessment of the technique. More clinical trials with a broader sample size could also aid in fine-tuning the efficacy of PBMT treatment modalities.
Collapse
Affiliation(s)
- Devika Rao
- Photoceutics and Regeneration Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Cliva Neha Dsouza
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Smitha S Prabhu
- Department of Dermatology, Venereology and Leprosy, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Praveen Kumar
- Photoceutics and Regeneration Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Vijendra Prabhu
- Photoceutics and Regeneration Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
7
|
Luitel B, Duggisani T, Luitel A, LaRocco J. Reviewing the efficiency of photobiomodulation therapy in oncological treatment. Front Oncol 2024; 14:1447653. [PMID: 39439950 PMCID: PMC11493773 DOI: 10.3389/fonc.2024.1447653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
The aim of the present systematic review is to evaluate the effects of different photobiomodulation therapy (PBMT) approaches in oncological treatment practices. The review follows the PRISMA guidelines. Specifically, the review is composed of laser PBMT and LED PBMT. A total of 23 studies were included, 14 investigating laser PBMT and 9 examining LED PBMT. In vitro studies demonstrated laser PBMT's potential to induce apoptosis and cytotoxicity in various cancer cell lines while enhancing sensitivity to chemotherapeutics and natural compounds. However, some studies highlighted divergent effects between in vitro (promoted proliferation) and in vivo xenograft models (slowed tumor growth) for certain laser wavelengths. LED PBMT studies showed blue light inhibited melanoma and pancreatic cancer cell growth, potentially via ROS generation, while red light raised concerns about enhancing oral cancer invasiveness. Both modalities mitigated treatment side effects like oral mucositis, xerostomia, peripheral neuropathy, and improved quality of life. While promising, the outcomes varied based on light parameters, cancer type, and experimental setting, necessitating further optimization of PBMT protocols through well-designed studies to establish long-term safety and efficacy across clinical scenarios.
Collapse
Affiliation(s)
- Bibhus Luitel
- The Ohio State University, Columbus, OH, United States
| | | | - Anuj Luitel
- The Ohio State University, Columbus, OH, United States
| | - John LaRocco
- Psychiatry and Behavioral Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
8
|
Kang M, Lee Y, Lee Y, Kim E, Jo J, Shin H, Choi J, Oh J, Yoon H, Kang HW. Wavelength-dependent photobiomodulation (PBM) for proliferation and angiogenesis of melanoma tumor in vitro and in vivo. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112990. [PMID: 39032372 DOI: 10.1016/j.jphotobiol.2024.112990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Photobiomodulation (PBM) has widely been used to effectively treat complications associated with cancer treatment, including oral mucositis, radiation dermatitis, and surgical wounds. However, the safety of PBM against cancer still needs to be validated as the effects of PBM on cancer cells and their mechanisms are unclear. The current study investigated the wavelength-dependent PBM effects by examining four different laser wavelengths (405, 532, 635, and 808 nm) on B16F10 melanoma tumor cells. In vitro tests showed that PBM with 808 nm promoted both proliferation and migration of B16F10 cells. In vivo results demonstrated that PBM with 808 nm significantly increased the relative tumor volume and promoted angiogenesis with overexpression of VEGF and HIF-1α. In addition, PBM induced the phosphorylation of factors closely related to cancer cell proliferation and tumor growth and upregulated the related gene expression. The current result showed that compared to the other wavelengths, 808 nm yielded a significant tumor-stimulating effect the malignant melanoma cancer. Further studies will investigate the in-depth molecular mechanism of PBM on tumor stimulation in order to warrant the safety of PBM for clinical cancer treatment.
Collapse
Affiliation(s)
- Myungji Kang
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine-Integrated Biomedical Technology, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Yeachan Lee
- Center for Advanced Models for Translational Sciences and Therapeutics and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuri Lee
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Eunjung Kim
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Jihye Jo
- Research Center for Marine-Integrated Biomedical Technology, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare and Digital Healthcare Research Center, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Hwarang Shin
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine-Integrated Biomedical Technology, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare and Digital Healthcare Research Center, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Hongsup Yoon
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea.
| | - Hyun Wook Kang
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine-Integrated Biomedical Technology, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare and Digital Healthcare Research Center, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
9
|
Kalampouka I, Mould RR, Botchway SW, Mackenzie AM, Nunn AV, Thomas EL, Bell JD. Selective induction of senescence in cancer cells through near-infrared light treatment via mitochondrial modulation. JOURNAL OF BIOPHOTONICS 2024; 17:e202400046. [PMID: 39155124 DOI: 10.1002/jbio.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 08/20/2024]
Abstract
Photobiomodulation, utilising non-ionising light in the visible and near-infrared (NIR) spectrum, has been suggested as a potential method for enhancing tissue repair, reducing inflammation and possibly mitigating cancer-therapy-associated side effects. NIR light is suggested to be absorbed intracellularly, mainly by chromophores within the mitochondria. This study examines the impact of 734 nm NIR light on cellular senescence. Cancer (MCF7 and A549) and non-cancer (MCF10A and IMR-90) cell populations were subjected to 63 mJ/cm2 NIR-light exposure for 6 days. Senescence levels were quantified by measuring active senescence-associated beta-galactosidase. Exposure to NIR light significantly increases senescence levels in cancer (10.0%-203.2%) but not in non-cancer cells (p > 0.05). Changes in senescence were associated with significant modulation of mitochondrial homeostasis, including increased levels of reactive oxygen species (p < 0.05) and mitochondrial membrane potential (p < 0.05) post-NIR-light treatment. These results suggest that NIR light modulates cellular chemistry, arresting the proliferation of cancer cells via senescence induction while sparing non-cancer cells.
Collapse
Affiliation(s)
- I Kalampouka
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - R R Mould
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - S W Botchway
- Research Complex at Harwell & Central Laser Facility, Rutherford Appleton Laboratory, Didcot, UK
| | - A M Mackenzie
- Research Complex at Harwell & Central Laser Facility, Rutherford Appleton Laboratory, Didcot, UK
| | - A V Nunn
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
- The Guy Foundation - The Guy Foundation Family Trust, Beaminster, UK
| | - E L Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - J D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| |
Collapse
|
10
|
Seo KJ, Yoon JH, Chung BY, Lee HK, Park WS, Chae HS. Effects of photobiomodulation on colon cancer cell line HT29 according to mitochondria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112966. [PMID: 38970968 DOI: 10.1016/j.jphotobiol.2024.112966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND/AIM Although photobiomodulation therapy (PBMt) is available to alleviate post-operative side effects of malignant diseases, its application is still controversial due to some potential of cancer recurrence and occurrence of a secondary malignancy. We investigated effect of PBMt on mitochondrial function in HT29 colon cancer cells. METHODS HT29 cell proliferation was determined with MTT assay after PBMt. Immunofluorescent staining was performed to determine mitochondrial biogenesis and reactive oxygen species (ROS). Mitochondrial membrane potential was measured with Mitotracker. Western blotting was executed to determine expression of fission, fusion, UCP2, and cyclin B1 and D1 proteins. In vivo study was performed by subcutaneously inoculating cancer cells into nude mice and immunohistochemistry was done to determine expression of FIS1, MFN2, UCP2, and p-AKT. RESULTS The proliferation and migration of HT29 cells reached maximum with PBMt (670 nm, light emitting diode, LED) at 2.0 J/cm2 compared to control (P < 0.05) with more expression of cyclin B1 and cyclin D1 (P < 0.05). Immunofluorescent staining showed that ROS and mitochondrial membrane potential were enhanced after PBMt compared to control. ATP synthesis of mitochondria was also higher in the PBMt group than in the control (P < 0.05). Expression levels of fission and fusion proteins were significantly increased in the PBMt group than in the control (P < 0.05). Electron microscopy revealed that the percentage of mitochondria showing fission was not significantly different between the two groups. Oncometabolites including D-2-hydoxyglutamate in the supernatant of cell culture were higher in the PBMt group than in the control with increased UCP2 expression (P < 0.05). Both tumor size and weight of xenograft in nude mice model were bigger and heavier in the PBMt group than in the control (P < 0.05). Immunohistologically, mitochondrial biogenesis proteins UCP2 and p-AKT in xenograft of nude mice were expressed more in the PBMt group than in the control (P < 0.05). CONCLUSIONS Treatment with PBM using red light LED may induce proliferation and progression of HT29 cancer cells by increasing mitochondrial activity and fission.
Collapse
Affiliation(s)
- Kyung Jin Seo
- Department of Pathology, Uijongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bom Yee Chung
- Department of Internal Medicine, Uijongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hae Kyung Lee
- Department of Laboratory Medicine, Uijongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Hiun Suk Chae
- Department of Internal Medicine, Uijongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Sinaei M, Sekhavat S, Zafari J, Moradzadegan A. The Effect of Photobiomodulation on the Conditioned Media of 3T3-L1 Cells in the Treatment of Breast Cancer. J Lasers Med Sci 2024; 15:e22. [PMID: 39188928 PMCID: PMC11345795 DOI: 10.34172/jlms.2024.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/05/2024] [Indexed: 08/28/2024]
Abstract
Introduction: Breast cancer ranks among the most prevalent malignancies, and its prompt diagnosis significantly amplifies the prospects of successful treatment. Approximately one in seven women will experience a breast cancer diagnosis in their lifetime. Stromal cells and their secreted factors exert various effects on tumor growth, impacting proliferation, invasion, and metastasis. Research has emphasized the significant impact of proteins secreted by adipose tissue on breast cancer proliferation, surpassing the influence of factors released by other cell types. Yet, the specific transcription factors and cofactors involved in adipokine expression in the tumor microenvironment remain enigmatic. Methods: In this study, adipocyte cells were cultured and exposed to 980 nm and 650 nm Photobiomodulation. The MDA-MD-231 cells (triple negative cancer cell line) were cultured with a conditioned medium from laser-treated cells. The real-time assay was employed to analyze the gene expression level changes involved in apoptosis. Results: Results showed that the irradiated conditioned medium at 980 nm and 650 nm caused a reduction in cell viability of cancer cells. Conversely, the conditioned medium from the irradiated cells triggered an increase in the expression of Caspase 3, Caspase 9, and BAX2 genes, alongside a decrease in BCL2 gene expression. Conclusion: The findings highlighted the potential of the laser-treated conditioned medium to induce apoptosis pathways in cancer cells, demonstrating a promising avenue for further research in utilizing low-level laser therapy in breast cancer treatment.
Collapse
Affiliation(s)
- Maryam Sinaei
- Department of Experimental Sciences, Dezful Branch, Islamic Azad University, Dezful, Iran
| | - Saba Sekhavat
- Department of Experimental Sciences, Dezful Branch, Islamic Azad University, Dezful, Iran
| | - Jaber Zafari
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atousa Moradzadegan
- Department of Experimental Sciences, Dezful Branch, Islamic Azad University, Dezful, Iran
| |
Collapse
|
12
|
Pilar EFS, Brochado FT, Schmidt TR, Leite AC, Deluca AA, Mármora BC, Siebert M, Wagner VP, Martins MD. Modulation of gene expression in skin wound healing by photobiomodulation therapy: A systematic review in vivo studies. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12990. [PMID: 39031566 DOI: 10.1111/phpp.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/21/2024] [Accepted: 07/10/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Wound healing is a multistep process involving coordinated responses of a variety of cell types, cytokines, growth factors, and extracellular matrix (ECM) components leading to the physiological restoration of tissue integrity. Photobiomodulation therapy (PBMT) has been highlighted as an approach to improve the healing process, nonetheless at the molecular level, the effects of PBMT are not entirely understood. AIM To systematically review publications that investigated gene expression after PBMT during in vivo skin repair. METHODS An electronic search was undertaken in Medline Ovid (Wolters Kluwer), PubMed (National Library of Medicine), Web of Science (Thomson Reuters), Scopus (Elsevier), Embase, and LILACS databases. The search strategy was conducted from the terms: low-level light therapy, gene expression, and wound healing and their synonyms. The databases were consulted in December 2023 and no publication year limit was used. RESULTS Eleven studies were included in this review and the expression of 186 genes was evaluated. PBMT modified the expression of several targets genes studied, such as down-regulation of genes related to extracellular matrix proteases (MMP2 and MMP9) and pro-inflammatory cytokines (IL10 and IL6) and up-regulation of DNMT3A and BFGF. CONCLUSION This review demonstrates that PBMT is capable of regulating gene expression during wound healing. Most evidence showed a positive impact of PBMT in regulating genes linked to inflammatory cytokines improving skin wound healing. Yet, the effects of PBMT in genes involved in other mechanisms still need to be better understood.
Collapse
Affiliation(s)
- Emily Ferreira Salles Pilar
- Unit of Laboratorial Research, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Thomé Brochado
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Tuany Rafaeli Schmidt
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda Costa Leite
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexia Antunes Deluca
- Unit of Laboratorial Research, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Belkiss Câmara Mármora
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Siebert
- Unit of Laboratorial Research, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Vivian Petersen Wagner
- Department of Pathology, School of Dentistry, Universidade de São Paulo, São Paulo, Brazil
| | - Manoela Domingues Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
13
|
Oliveira SV, Batista JVF, Gutierres GG, Silva NP, Lino-Dos-Santos-Franco A, Rodrigues MFSD, Cecatto RB. The supportive use of photobiomodulation on salivary glands: a narrative review and meta-analysis. Eur Arch Otorhinolaryngol 2024; 281:2793-2805. [PMID: 38189964 DOI: 10.1007/s00405-023-08425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024]
Abstract
PURPOSE Radiotherapy is one of the main strategies used in the treatment of cancer patients and it can cause early or late xerostomia and/or hyposalivation. Therapeutic management of xerostomia includes oral hygiene, sialogenic agents among others. METHODS This study reviews the use of extra-oral salivary glands photobiomodulation in treating xerostomia and/or hyposalivation after radiotherapy and performs a meta-analysis of this data. RESULTS After a broad search of the literature, eight clinical studies were selected. DISCUSSION In a safe way, the studies found that extra-oral stimulation of the salivary glands has benefits in the hyposalivation and changes in salivary flow resulting from lesions by radiotherapy. A meta-analysis found significant values in pain comparing the pre- and post-treatment moments (MD - 3.02, I2 95%, IC - 5.56; - 0.48) and for stimulated salivary flow at 30 days after the end of radiotherapy (MD 2.90, I2 95%, IC 1.96; 3.84). CONCLUSION The most promising parameters comprise wavelengths between 630 and 830 nm, radiant exposure from 2 to 10 J/cm2, two-to-three times a week, before the radiotherapy damage, and homogeneously in the glands. Therefore, Light-Emitting Diode (LED) stimulation of larger areas than the punctual stimulation of small millimeters of the Low-Level Laser Therapy (LLLT) appears to be promising.
Collapse
Affiliation(s)
- Susyane Vieira Oliveira
- Biophotonics-Medicine Post-Graduate Program, Universidade Nove de Julho/UNINOVE, 249 Vergueiro Street, Liberdade, São Paulo, SP, 01504-001, Brazil
| | - João Victor Falcão Batista
- School of Medicine of Universidade Nove de Julho UNINOVE, 249 Vergueiro Street, Liberdade, São Paulo, SP, 01504-001, Brazil
| | - Gabriela Godinho Gutierres
- School of Medicine of Universidade Nove de Julho UNINOVE, 249 Vergueiro Street, Liberdade, São Paulo, SP, 01504-001, Brazil
| | - Nicole Pantojo Silva
- School of Medicine of Universidade Nove de Julho UNINOVE, 249 Vergueiro Street, Liberdade, São Paulo, SP, 01504-001, Brazil
| | - Adriana Lino-Dos-Santos-Franco
- Biophotonics-Medicine Post-Graduate Program, Universidade Nove de Julho/UNINOVE, 249 Vergueiro Street, Liberdade, São Paulo, SP, 01504-001, Brazil
| | | | - Rebeca Boltes Cecatto
- Biophotonics-Medicine Post-Graduate Program, Universidade Nove de Julho/UNINOVE, 249 Vergueiro Street, Liberdade, São Paulo, SP, 01504-001, Brazil.
- School of Medicine of University of Sao Paulo, Instituto de Reabilitação Lucy Montoro HCFMUSP, IMREA Morumbi, R. Jandiatuba, 580 - Vila Andrade, São Paulo, SP, 05716-150, Brazil.
| |
Collapse
|
14
|
Parreira LFS, Pinheiro SL, Fontana CE. Photobiomodulation in the Treatment of Dysgeusia in Patients with Long COVID: A Single-Blind, Randomized Controlled Trial. Photobiomodul Photomed Laser Surg 2024; 42:215-224. [PMID: 38416635 DOI: 10.1089/photob.2023.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Objective: The aim of this study is to evaluate local and systemic photobiomodulation (PBM) in patients with COVID-19-related dysgeusia, with the expectation of improving taste dysfunction. Background: PBM has garnered attention as a potential therapy in long COVID, a condition characterized by many persistent symptoms following the acute phase of COVID-19. Among these symptoms, dysgeusia, or altered taste perception, can significantly affect patients' quality of life. Emerging research suggests that PBM may hold promise in ameliorating dysgeusia by modulating cellular processes and reducing inflammation. Further clinical studies and randomized controlled trials are essential to establish the efficacy and safety of PBM for the treatment of dysgeusia in long COVID, but initial evidence suggests that this noninvasive modality may offer a novel avenue for symptom management. Methods: Seventy patients experiencing dysgeusia were randomly assigned to receive active local and systemic PBM (n = 34) or simulated PBM (n = 36). Low-power laser (red wavelength) was used at 18 spots on the lateral borders of the tongue (3 J per spot), salivary glands (parotid, sublingual, and submandibular glands-3 J per spot), and over the carotid artery for 10 min (60 J). Alongside laser therapy, all patients in both groups received weekly olfactory therapy for up to 8 weeks. Results: Dysgeusia improved in both groups. At weeks 7 and 8, improvement scores were significantly higher in the PBM group than in the sham group (p = 0.048). Conclusions: Combined local and systemic PBM, as applied in this study, proved effective and could serve as a viable treatment option for alleviating dysgeusia in long-COVID patients. Clinical Trial Registration: RBR-2mfbkkk.
Collapse
Affiliation(s)
- Letícia Fernandes Sobreira Parreira
- Postgraduate Program in Health Sciences, Center for Life Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| | - Sérgio Luiz Pinheiro
- Postgraduate Program in Health Sciences, Center for Life Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| | - Carlos Eduardo Fontana
- Postgraduate Program in Health Sciences, Center for Life Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| |
Collapse
|
15
|
Farias TG, Rodrigues JA, Dos Santos MS, Mencalha AL, de Souza da Fonseca A. Effects of low‑power red laser and blue LED on mRNA levels from DNA repair genes in human breast cancer cells. Lasers Med Sci 2024; 39:56. [PMID: 38329547 DOI: 10.1007/s10103-024-04001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
Photobiomodulation (PBM) induced by non-ionizing radiations emitted from low-power lasers and light-emitting diodes (LEDs) has been used for various therapeutic purposes due to its molecular, cellular, and systemic effects. At the molecular level, experimental data have suggested that PBM modulates base excision repair (BER), which is responsible for restoring DNA damage. There is a relationship between the misfunction of the BER DNA repair pathway and the development of tumors, including breast cancer. However, the effects of PBM on cancer cells have been controversial. Breast cancer (BC) is the main public health problem in the world and is the most diagnosed type of cancer among women worldwide. Therefore, the evaluation of new strategies, such as PBM, could increase knowledge about BC and improve therapies against BC. Thus, this work aims to evaluate the effects of low-power red laser (658 nm) and blue LED (470 nm) on the mRNA levels from BER genes in human breast cancer cells. MCF-7 and MDA-MB-231 cells were irradiated with a low-power red laser (69 J cm-2, 0.77 W cm-2) and blue LED (482 J cm-2, 5.35 W cm-2), alone or in combination, and the relative mRNA levels of the APTX, PolB, and PCNA genes were assessed by reverse transcription-quantitative polymerase chain reaction. The results suggested that exposure to low-power red laser and blue LED decreased the mRNA levels from APTX, PolB, and PCNA genes in human breast cancer cells. Our research shows that photobiomodulation induced by low-power red laser and blue LED decreases the mRNA levels of repair genes from the base excision repair pathway in MCF-7 and MDA-MB-231 cells.
Collapse
Affiliation(s)
- Thayssa Gomes Farias
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil.
| | - Juliana Alves Rodrigues
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil
| | - Márcia Soares Dos Santos
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil
| |
Collapse
|
16
|
Hu S, Liu TCY. Mechanism of action of photobiomodulation with light-emitting diode on the glutamine-dependent CT26 cell. JOURNAL OF BIOPHOTONICS 2024; 17:e202300353. [PMID: 37824572 DOI: 10.1002/jbio.202300353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
We investigated the mechanism of action of photobiomodulation (PBM) with light-emitting diode (led) 640 nm of glutamine-dependent CT26 cells. Cells were exposed to 0.147-10.979 mW/cm2 of 640 ± 15 nm laser light for 15 min/day for 10 days. Cell proliferation and apoptosis were detected by MTT (3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-diphenytetrazoliumromide) and annexin V-FITC assays. mRNA and protein levels of cell proliferation-related genes were measured by RT-PCR and western blotting, respectively. With Gln 7.94 mM, on Day 8 and 10, genes GLUT1, MEK1, ERK2, BCL2, E2F1, HO-1, Ctnnb1, and Per2 was significantly upregulated (p < 0.01) of glutamine addiction. In PBM therapy, compared with the non-illuminated group, 2.17 mW/cm2 can significantly reduce cell apoptosis, the mRNA level of gene mTOR1 was significantly upregulated, and the protein level of raptor of GLUT1 and mTOR1, MEK1/2, and ERK1/2 were upregulated. LED 640 nm inhibits cell apoptosis without increasing cell proliferation by regulating GLUT1, MEK/ERK, and PI3K/AKT/mTOR signals.
Collapse
Affiliation(s)
- Shaojuan Hu
- College of Physical Education and Sports Science, HengYang Normal University, Hengyang, China
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
17
|
Park HS, Yokomizo S, Wang H, Manganiello S, Monaco H, McDonnell R, Kim HJ, Rho J, Gladstone J, Ahn S, Jung H, Kang H, Bao K, Kashiwagi S, Choi HS. Bifunctional Tumor-Targeted Bioprobe for Phototheranosis. Biomater Res 2024; 28:0002. [PMID: 38327616 PMCID: PMC10845606 DOI: 10.34133/bmr.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/17/2023] [Indexed: 02/09/2024] Open
Abstract
Background: Near-infrared (NIR) phototheranostics provide promising noninvasive imaging and treatment for head and neck squamous cell carcinoma (HNSCC), capitalizing on its adjacency to skin or mucosal surfaces. Activated by laser irradiation, targeted NIR fluorophores can selectively eradicate cancer cells, harnessing the power of synergistic photodynamic therapy and photothermal therapy. However, there is a paucity of NIR bioprobes showing tumor-specific targeting and effective phototheranosis without hurting surrounding healthy tissues. Methods: We engineered a tumor-specific bifunctional NIR bioprobe designed to precisely target HNSCC and induce phototheranosis using bioconjugation of a cyclic arginine-glycine-aspartic acid (cRGD) motif and zwitterionic polymethine NIR fluorophore. The cytotoxic effects of cRGD-ZW800-PEG were measured by assessing heat and reactive oxygen species (ROS) generation upon an 808-nm laser irradiation. We then determined the in vivo efficacy of cRGD-ZW800-PEG in the FaDu xenograft mouse model of HNSCC, as well as its biodistribution and clearance, using a customized portable NIR imaging system. Results: Real-time NIR imaging revealed that intravenously administered cRGD-ZW800-PEG targeted tumors rapidly within 4 h postintravenous injection in tumor-bearing mice. Upon laser irradiation, cRGD-ZW800-PEG produced ROS and heat simultaneously and exhibited synergistic photothermal and photodynamic effects on the tumoral tissue without affecting the neighboring healthy tissues. Importantly, all unbound bioprobes were cleared through renal excretion. Conclusions: By harnessing phototheranosis in combination with tailored tumor selectivity, our targeted bioprobe ushers in a promising paradigm in cancer treatment. It promises safer and more efficacious therapeutic avenues against cancer, marking a substantial advancement in the field.
Collapse
Affiliation(s)
- Hae Sang Park
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine,
Hallym University, Chuncheon 24253, South Korea
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Haoran Wang
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sophia Manganiello
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hailey Monaco
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Rose McDonnell
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hajin Joanne Kim
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jiyun Rho
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jason Gladstone
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sung Ahn
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Harry Jung
- Institute of New Frontier Research Team, Hallym Clinical and Translation Science Institute,
Hallym University, Chuncheon 24252, South Korea
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kai Bao
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
18
|
Murugan NJ, Cariba S, Abeygunawardena S, Rouleau N, Payne SL. Biophysical control of plasticity and patterning in regeneration and cancer. Cell Mol Life Sci 2023; 81:9. [PMID: 38099951 PMCID: PMC10724343 DOI: 10.1007/s00018-023-05054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Cells and tissues display a remarkable range of plasticity and tissue-patterning activities that are emergent of complex signaling dynamics within their microenvironments. These properties, which when operating normally guide embryogenesis and regeneration, become highly disordered in diseases such as cancer. While morphogens and other molecular factors help determine the shapes of tissues and their patterned cellular organization, the parallel contributions of biophysical control mechanisms must be considered to accurately predict and model important processes such as growth, maturation, injury, repair, and senescence. We now know that mechanical, optical, electric, and electromagnetic signals are integral to cellular plasticity and tissue patterning. Because biophysical modalities underly interactions between cells and their extracellular matrices, including cell cycle, metabolism, migration, and differentiation, their applications as tuning dials for regenerative and anti-cancer therapies are being rapidly exploited. Despite this, the importance of cellular communication through biophysical signaling remains disproportionately underrepresented in the literature. Here, we provide a review of biophysical signaling modalities and known mechanisms that initiate, modulate, or inhibit plasticity and tissue patterning in models of regeneration and cancer. We also discuss current approaches in biomedical engineering that harness biophysical control mechanisms to model, characterize, diagnose, and treat disease states.
Collapse
Affiliation(s)
- Nirosha J Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.
- Allen Discovery Center, Tufts University, Medford, MA, USA.
| | - Solsa Cariba
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Samantha L Payne
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
19
|
Savva A, Hama A, Herrera‐López G, Schmidt T, Migliaccio L, Steiner N, Kawan M, Fiumelli H, Magistretti PJ, McCulloch I, Baran D, Gasparini N, Schindl R, Głowacki ED, Inal S. Photo-Chemical Stimulation of Neurons with Organic Semiconductors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300473. [PMID: 37661572 PMCID: PMC10625067 DOI: 10.1002/advs.202300473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/17/2023] [Indexed: 09/05/2023]
Abstract
Recent advances in light-responsive materials enabled the development of devices that can wirelessly activate tissue with light. Here it is shown that solution-processed organic heterojunctions can stimulate the activity of primary neurons at low intensities of light via photochemical reactions. The p-type semiconducting polymer PDCBT and the n-type semiconducting small molecule ITIC (a non-fullerene acceptor) are coated on glass supports, forming a p-n junction with high photosensitivity. Patch clamp measurements show that low-intensity white light is converted into a cue that triggers action potentials in primary cortical neurons. The study shows that neat organic semiconducting p-n bilayers can exchange photogenerated charges with oxygen and other chemical compounds in cell culture conditions. Through several controlled experimental conditions, photo-capacitive, photo-thermal, and direct hydrogen peroxide effects on neural function are excluded, with photochemical delivery being the possible mechanism. The profound advantages of low-intensity photo-chemical intervention with neuron electrophysiology pave the way for developing wireless light-based therapy based on emerging organic semiconductors.
Collapse
Affiliation(s)
- Achilleas Savva
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB30ASUK
| | - Adel Hama
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Gabriel Herrera‐López
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Tony Schmidt
- Gottfried Schatz Research CenterChair of BiophysicsMedical University of GrazNeue Stiftingtalstraße 6Graz8010Austria
| | - Ludovico Migliaccio
- Bioelectronics Materials and Devices LaboratoryCentral European Institute of TechnologyBrno University of TechnologyPurkyňova 123Brno61200Czech Republic
| | - Nadia Steiner
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Malak Kawan
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Hubert Fiumelli
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Pierre J. Magistretti
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Iain McCulloch
- Physical Science and Engineering (PSE)KAUST Solar Center (KSC)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Derya Baran
- Physical Science and Engineering (PSE)KAUST Solar Center (KSC)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - Rainer Schindl
- Gottfried Schatz Research CenterChair of BiophysicsMedical University of GrazNeue Stiftingtalstraße 6Graz8010Austria
| | - Eric D. Głowacki
- Bioelectronics Materials and Devices LaboratoryCentral European Institute of TechnologyBrno University of TechnologyPurkyňova 123Brno61200Czech Republic
| | - Sahika Inal
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| |
Collapse
|
20
|
Cervetto C, Amaroli A, Amato S, Gatta E, Diaspro A, Maura G, Signore A, Benedicenti S, Marcoli M. Photons Induce Vesicular Exocytotic Release of Glutamate in a Power-Dependent Way. Int J Mol Sci 2023; 24:10977. [PMID: 37446155 DOI: 10.3390/ijms241310977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Increasing evidence indicates that photobiomodulation, based on tissue irradiation with photons in the red to near-infrared spectrum, may be an effective therapeutic approach to central nervous system disorders. Although nervous system functionality has been shown to be affected by photons in animal models, as well as in preliminary evidence in healthy subjects or in patients with neuropsychiatric disorders, the mechanisms involved in the photobiomodulation effects have not yet been clarified. We previously observed that photobiomodulation could stimulate glutamate release. Here, we investigate mechanisms potentially involved in the glutamate-releasing effect of photons from adult mouse cerebrocortical nerve terminals. We report evidence of photon ability to induce an exocytotic vesicular release of glutamate from the terminals of glutamatergic neurons in a power-dependent way. It can be hypothesized that photobiomodulation, depending on the potency, can release glutamate in a potentially neurotoxic or physiological range.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Andrea Amaroli
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
| | - Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Elena Gatta
- DIFILAB, Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Alberto Diaspro
- DIFILAB, Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia-IIT, Via Morego 30, 16133 Genova, Italy
- Biophysics Institute, National Research Council-CNR, Via de Marini, 6, 16149 Genova, Italy
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Antonio Signore
- Therapeutic Dentistry Department, Institute of Dentistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, b. 2, 119992 Moskow, Russia
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genova, Viale Benedetto XV 6, 16132 Genova, Italy
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
- Center of Excellence for Biomedical Research, University of Genova, 16132 Genova, Italy
| |
Collapse
|
21
|
Yang Z, Shen Q, Xing L, Fu X, Qiu Z, Xiang H, Huang Y, Lv F, Bai H, Huo Y, Wang S. A biophotonic device based on a conjugated polymer and a macrophage-laden hydrogel for triggering immunotherapy. MATERIALS HORIZONS 2023; 10:2226-2236. [PMID: 37000524 DOI: 10.1039/d2mh01224c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A biophotonic device is fabricated by a 3D printing technique for tumor immunotherapy utilizing a flexible organic light-emitting diode (OLED) with deep blue emission and a gelatin-alginate hydrogel that contains a poly(phenylene vinylene) (PPV) derivative and live immune cells of macrophages (M0-RAW264.7). PPV is excited by the OLED to generate reactive oxygen species (ROS), enabling the macrophages to polarize to the M1 phenotype and secrete cytotoxic cytokines to induce the apoptosis of tumor cells. This strategy provides a new method for fabricating cell-involved biophotonic devices for immunotherapy.
Collapse
Affiliation(s)
- Zhiwen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Qi Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Longjiang Xing
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Xuancheng Fu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhipeng Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Hongping Xiang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
22
|
Cronshaw M, Parker S, Grootveld M, Lynch E. Photothermal Effects of High-Energy Photobiomodulation Therapies: An In Vitro Investigation. Biomedicines 2023; 11:1634. [PMID: 37371729 DOI: 10.3390/biomedicines11061634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The purpose of this study was to investigate photothermal aspects of photobiomodulation therapies (PBMT) in vitro to assist in the development of safe clinical parameters with respect to higher-power devices with large surface applicators. Laser wavelengths in the range of 650 nm-1064 nm were investigated using a thermal camera. Thermographic measures of surface and sub-surface temperature variations of similar lean porcine muscle tissue samples were recorded for a series of calibrated experiments. A thermal comparison was then made between Flat-top and Gaussian beam spatial distribution devices. Outcome data were subjected to statistical analysis using an ANOVA model. Results acquired at similar parameters of irradiance indicated that the application of the 980 nm wavelength was associated with the highest rise in temperature, which decreased with other wavelengths in the order 980 > 1064 ≈ 650 >>> 810 nm (p < 5 × 10-20). All wavelengths assessed were associated with a significant temperature increase, and with the exception of 810 nm, all exceeded the threshold of a 6 °C rise within the prescribed parameter limits. Optical scanning by movement of the applied source over a relevant area was found to offer effective mitigation of these temperature increases. An extended discussion is presented, analysing the clinical significance of the study outcomes. Recommendations are made within the limits of this in vitro study in order to assist future clinical investigations.
Collapse
Affiliation(s)
- Mark Cronshaw
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Steven Parker
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Edward Lynch
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
23
|
Glass GE. Photobiomodulation: A Systematic Review of the Oncologic Safety of Low-Level Light Therapy for Aesthetic Skin Rejuvenation. Aesthet Surg J 2023; 43:NP357-NP371. [PMID: 36722207 PMCID: PMC10309024 DOI: 10.1093/asj/sjad018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/02/2023] Open
Abstract
Photobiomodulation (PBM) therapy is an increasingly popular modality for aesthetic skin rejuvenation. PBM induces genomic, proteomic, and metabolomic processes within target cells, but such manipulation of cell behavior has led to concerns about oncologic safety. This article presents a summary of the clinical and preclinical evidence for the oncologic safety of PBM for aesthetic skin rejuvenation. A focused systematic review was performed, in which safety data from clinical trials of PBM for skin rejuvenation was supplemented by analyses of in vitro data obtained from cells derived from human skin and human neoplastic cells and in vivo data of tumors of the skin, oral cavity, and breast. Within established parameters, red and near infrared light mainly enhances proliferation of healthy cells without a clear pattern of influence on cell viability. The same light parameters mainly reduce neoplastic cell proliferation and viability or else make no difference. Invasiveness potential (appraised by cell migration assays and/or differential gene expression) is equivocal. PBM does not induce dysplastic change in healthy cells. In vivo tumor models yield varied results with no clear pattern emerging. There are no relevant clinical trial data linking PBM with any significant adverse events, including the finding of a new or recurrent malignancy.Current clinical and preclinical evidence suggests that PBM is oncologically safe for skin rejuvenation, and there is no evidence to support the proposition that it should be avoided by patients who have previously undergone treatment for cancer. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
- Graeme Ewan Glass
- Corresponding Author: Dr Graeme Ewan Glass, C1, 120, 1st Floor, OPC, Sidra Medical & Research Center, Al-Gharrafa St., Ar-Rayyan, Doha, State of Qatar. ; Twitter: @drgraemeglass
| |
Collapse
|
24
|
Nie F, Hao S, Ji Y, Zhang Y, Sun H, Will M, Han W, Ding Y. Biphasic dose response in the anti-inflammation experiment of PBM. Lasers Med Sci 2023; 38:66. [PMID: 36749428 DOI: 10.1007/s10103-022-03664-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 10/22/2022] [Indexed: 02/08/2023]
Abstract
Non-invasive laser irradiation can induce photobiomodulation (PBM) effects in cells and tissues, which can help reduce inflammation and pain in several clinical scenarios. The purpose of this study is to review the current literature to verify whether PBM can produce dose effects in anti-inflammatory experiments by summarizing the clinical and experimental effects of different laser parameters of several diseases. The so-called Arndt-Schulz curve is often used to describe two-phase dose reactions, assuming small doses of therapeutic stimulation, medium doses of inhibition, and large doses of killing. In the past decade, more and more attention has been paid to the clinical application of PBM, especially in the field of anti-inflammation, because it represents a non-invasive strategy with few contraindications. Although there are different types of lasers available, their use is adjusted by different parameters. In general, the parameters involved are wavelength, energy density, power output, and radiation time. However, due to the biphasic effect, the scientific and medical communities remain puzzled by the ways in which the application of PBM must be modified depending on its clinical application. This article will discuss these parameter adjustments and will then also briefly introduce two controversial theories of the molecular and cellular mechanisms of PBM. A better understanding of the extent of dualistic dose response in low-intensity laser therapy is necessary to optimize clinical treatment. It also allows us to explore the most dependable mechanism for PBM use and, ultimately, standardize treatment for patients with various diseases.
Collapse
Affiliation(s)
- Fang Nie
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Shaolong Hao
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yu Ji
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Hao Sun
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Melissa Will
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wei Han
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - YuChuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
25
|
Effect of Photobiomodulation With Different Wavelengths on Radiodermatitis Treatment. Plast Reconstr Surg Glob Open 2023; 11:e4809. [PMID: 36751505 PMCID: PMC9894341 DOI: 10.1097/gox.0000000000004809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/14/2022] [Indexed: 02/05/2023]
Abstract
Approximately 80% of patients submitted to radiotherapy develop radiodermatitis. Photobiomodulation based on light-emitted diode (LED) is one of the therapeutic strategies for treating inflammation. This study aimed to investigate the effect of the photobiomodulation with two wavelengths, in an acute radiodermatitis animal model. Methods Twenty rats were submitted to one radiotherapy session. After 15 days, the rats that developed radiodermatitis were divided into control groups, LED-630 nm, LED-850 nm, and LED-630 + 850 nm. The treatment regimen was one session lasting 10 minutes on alternate days for 21 days. We analyzed macroscopy aspects (RTOG scale), vascular density, dermal appendages, VEGF-a, TNF-alpha, MMP-9, and MMP-9 genic expression level. Results All LED groups revealed a two-point reduction on the radiodermatitis severity grade compared with the baseline classification. Dermal appendage and vascular analysis showed a higher counting in all LED groups compared to control. This study showed dermal appendages twice in the 630/850 nm group compared with the control group. The 630/850 nm group showed six times more arterioles than the control group. Regarding genic expression, this study showed a 10-fold decrease between LED-630 nm versus LED-630 + 850 nm (P = 0.02) interleukin-10 expression and a 12-fold decrease between control versus LED-630 nm (P = 0.006) and LED-850 nm (P = 0.002) in TNF-alpha. Conclusion LED (630 nm, 850 nm, and 630 nm + 850 nm) showed benefit in the treatment of radiodermatitis, and the association of the 630 nm + 850 nm and 630 nm parameters demonstrated the best macroscopic and microscopic results.
Collapse
|
26
|
Xavier MGA, Moura MDLND, Ribeiro LN, Carvalho MDV, Ferreira SJ. Possible adverse effects of low-level laser on oral and oropharyngeal cancer cells: A scope review. J Oral Pathol Med 2023; 52:365-371. [PMID: 36691842 DOI: 10.1111/jop.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
BACKGROUND The effects of laser therapy on normal cells are well known and accepted, but the impact of this therapy on malignant cells are not yet fully understood. This review aims to map and outline what the scientific literature addresses on the effects of laser therapy on malignant cells. METHODS This review article followed the guidelines of the PRISMA-ScR protocol, being all the search, analysis, and selection of articles based on it. RESULTS After all application of the predetermined criteria, five studies were included, dated between the years 2013 and 2021. With the complete reading of the selected studies, 100% of the articles were classified as category III of the Agency for Healthcare as Research and Quality classification. Similar themes among the papers included were investigated and compared. In these five studies, the visible red and near infrared wavelengths were used, and energy densities varied between 1 and 5 J/cm2 . It was observed that low-level laser could alter the expression of cell proliferation and migration proteins, such as cyclin D1, E-cadherin, and β-catenin. In addition, changes related to increased cell viability and metabolism were also identified. CONCLUSION The low-level laser seems to positively regulate the proliferative, migratory, and viability capacity of neoplastic cells, depending on the protocol used. All these studies included in the review are equivalent to in vitro studies; the cells are not in such a complex environment as is an organized tissue, making it necessary to carry out more complex tests, such as in vivo research.
Collapse
Affiliation(s)
| | - Maria de Lourdes Neves de Moura
- Postgraduate Program in Health and Social and Environmental Development, University of Pernambuco, Garanhuns, Pernambuco, Brazil
| | | | | | - Stefânia Jeronimo Ferreira
- School of Dentistry, University of Pernambuco, Arcoverde, Pernambuco, Brazil.,Postgraduate Program in Health and Social and Environmental Development, University of Pernambuco, Garanhuns, Pernambuco, Brazil
| |
Collapse
|
27
|
Lin YY, Lee SY, Cheng YJ. Low-Level Laser Therapy Induces Melanoma Tumor Growth by Promoting Angiogenesis. Life (Basel) 2023; 13:life13020320. [PMID: 36836677 PMCID: PMC9962383 DOI: 10.3390/life13020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
The effects of low-level laser therapy (LLLT) on tumor growth are inconsistent. In this study, we investigated the effects of LLLT on melanoma tumor growth and angiogenesis. C57/BL6 mice were challenged with B16F10 melanoma cells and treated with LLLT for 5 consecutive days; untreated mice were used as controls. Tumor weight, angiogenesis, immunohistochemistry, and protein levels were compared between the treated and untreated mice. In an in vitro experiment, B16F10 cells were treated with LLLT. Proteins were extracted and subjected to Western blot analysis for analyzing signaling pathways. Compared with the findings in the untreated mice, tumor weight substantially increased in the treated mice. Both immunohistochemical and Western blot analyses revealed markedly increased levels of CD31, a biomarker of vascular differentiation, in the LLLT group. In B16F10 cells, LLLT considerably induced the phosphorylation of extracellular signal-regulated kinase (ERK), which, in turn, phosphorylated p38 mitogen-activated protein kinase (MAPK). Furthermore, LLLT induced the expression of vascular endothelial growth factor, but not hypoxia-inducible factor-1α, through the ERK/p38 MAKP signaling pathways. Our findings indicate that LLLT induces melanoma tumor growth by promoting angiogenesis. Therefore, it should be avoided in patients with melanoma.
Collapse
Affiliation(s)
- Yi-Yuan Lin
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan
| | - Shin-Yi Lee
- General Education Center, China Medical University, Taichung 406, Taiwan
- Foreign Language Center, Feng Chia University, Taichung 407, Taiwan
| | - Yu-Jung Cheng
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung 406, Taiwan
- Department of Rehabilitation, China Medical University Hospital, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-422053366 (ext. 7308)
| |
Collapse
|
28
|
Di Gregorio E, Israel S, Staelens M, Tankel G, Shankar K, Tuszyński JA. The distinguishing electrical properties of cancer cells. Phys Life Rev 2022; 43:139-188. [PMID: 36265200 DOI: 10.1016/j.plrev.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
In recent decades, medical research has been primarily focused on the inherited aspect of cancers, despite the reality that only 5-10% of tumours discovered are derived from genetic causes. Cancer is a broad term, and therefore it is inaccurate to address it as a purely genetic disease. Understanding cancer cells' behaviour is the first step in countering them. Behind the scenes, there is a complicated network of environmental factors, DNA errors, metabolic shifts, and electrostatic alterations that build over time and lead to the illness's development. This latter aspect has been analyzed in previous studies, but how the different electrical changes integrate and affect each other is rarely examined. Every cell in the human body possesses electrical properties that are essential for proper behaviour both within and outside of the cell itself. It is not yet clear whether these changes correlate with cell mutation in cancer cells, or only with their subsequent development. Either way, these aspects merit further investigation, especially with regards to their causes and consequences. Trying to block changes at various levels of occurrence or assisting in their prevention could be the key to stopping cells from becoming cancerous. Therefore, a comprehensive understanding of the current knowledge regarding the electrical landscape of cells is much needed. We review four essential electrical characteristics of cells, providing a deep understanding of the electrostatic changes in cancer cells compared to their normal counterparts. In particular, we provide an overview of intracellular and extracellular pH modifications, differences in ionic concentrations in the cytoplasm, transmembrane potential variations, and changes within mitochondria. New therapies targeting or exploiting the electrical properties of cells are developed and tested every year, such as pH-dependent carriers and tumour-treating fields. A brief section regarding the state-of-the-art of these therapies can be found at the end of this review. Finally, we highlight how these alterations integrate and potentially yield indications of cells' malignancy or metastatic index.
Collapse
Affiliation(s)
- Elisabetta Di Gregorio
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Simone Israel
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Michael Staelens
- Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada
| | - Gabriella Tankel
- Department of Mathematics & Statistics, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada
| | - Karthik Shankar
- Department of Electrical & Computer Engineering, University of Alberta, 9211 116 Street NW, Edmonton, T6G 1H9, AB, Canada
| | - Jack A Tuszyński
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada; Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada.
| |
Collapse
|
29
|
de Souza Contatori CG, Silva CR, de Toledo Pereira S, Rodrigues MFSD, de Lima Luna AC, Marques MM, Ribeiro MS. Responses of melanoma cells to photobiomodulation depend on cell pigmentation and light parameters. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112567. [PMID: 36115314 DOI: 10.1016/j.jphotobiol.2022.112567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Melanoma is a highly aggressive skin cancer that requires new approaches for its management. Low-level laser therapy, currently named photobiomodulation therapy (PBM), has been used to improve different conditions but its effects and safe use on melanoma remain unexplored. Herein, we investigated the PBM impact on melanoma cells differing by pigmentation using near-infrared (NIR) and red lasers in vitro. In vivo, we evaluated the effects of the red laser on melanoma-bearing mice. Amelanotic (SK-MEL-37) and melanotic (B16F10) cells were exposed in vitro to a NIR (780 nm, 40 mW) or a red laser (660 nm, 40 mW) in 3 different light doses: 30, 90, and 150 J/cm2 and responses were assessed regarding mitochondrial activity, invasiveness, migration, and VEGF production. In vivo, melanoma-bearing mice received the red laser delivering 150 J/cm2 directly to the tumor on 3 consecutive days. Mice were monitored for 15 days regarding tumor progression and mouse survival. We noticed that amelanotic cells were unresponsive to NIR light. In contrast, NIR irradiation at 30 J/cm2 promoted an increase in the invasiveness of pigmented cells, even though all light doses have inhibited cell migration. Regarding the red laser on pigmented cells, the highest light dose (150 J/cm2) decreased the VEGF production and migration. In vivo, melanoma-bearing mice treated with red laser showed smaller tumor volume and longer survival than controls. We conclude that PBM appears to be safe for amelanotic non-pigmented melanoma but triggers different responses in melanotic pigmented cells depending on light parameters. Additionally, a high dose of red laser impairs the invasive behavior of melanoma cells, probably due to the decrease in VEGF synthesis, which may have contributed to tumor arrest and increased mouse survival. These findings suggest that red laser therapy could be a new ally in the supportive care of melanoma patients.
Collapse
Affiliation(s)
| | - Camila Ramos Silva
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN/CNEN), São Paulo, SP, Brazil
| | - Saulo de Toledo Pereira
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN/CNEN), São Paulo, SP, Brazil
| | | | | | - Marcia Martins Marques
- AALZ - Aachen Dental Laser Center, RWTH Aachen University, Aachen, Germany; School of Dentistry, Ibirapuera University, São Paulo, SP, Brazil
| | - Martha Simões Ribeiro
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN/CNEN), São Paulo, SP, Brazil.
| |
Collapse
|
30
|
Kim H, Kim Y, Kim TH, Heo SY, Jung WK, Kang HW. Stimulatory effects of wavelength-dependent photobiomodulation on proliferation and angiogenesis of colorectal cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112527. [PMID: 35914464 DOI: 10.1016/j.jphotobiol.2022.112527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 05/01/2023]
Abstract
In recent decades, the laser treatment of cancer has been introduced as a promising treatment option. Because of the maldistribution of optical energy and an ambiguous boundary between the normal and tumor tissues, laser irradiation can stimulate residual cancer cells, leading to a cancer regrowth. As photobiomodulation (PBM) is involved in an extensive range of cellular responses, profound comprehension of photo-stimulated mechanisms against the cancer cells is required to establish a safety margin for PBM. Therefore, we aimed to identify the stimulant effects of PBM at various wavelengths against the tumor cells to establish a safety margin for the laser treatment. CT26 murine colon cancer cells were exposed to either 405 (BL), 635 (VIS), or 808 (NIR) nm laser lights at the fluences of 0, 10, 30, and 50 J/cm2. In addition, CT26 tumor-bearing mice were irradiated with BL, VIS, or NIR at a fluence of 30 J/cm2. Both the proliferation and angiogenesis potential of the CT26 cells and tumors were evaluated using the MTT assay, western blot, and immunohistochemistry (IHC) staining analyses. Although cell viability was not statistically significant, BL significantly induced p-ERK upregulation in the CT26 cells, indicating that PBM with BL can stimulate proliferation. In vivo tests showed that the NIR group exhibited the maximum relative tumor volume, and BL yielded a slight increase compared to the control. In the IHC staining and western blot analyses, both BL and NIR increased the expression of EGFR, VEGF, MMP-9, and HIF-1α, which are related to the proliferation and angiogenesis-related factors. Further investigations will be pursued to clarify the molecular pathways that depend on the cancer cell types and laser wavelengths for the establishment of safety guidelines in clinical environments.
Collapse
Affiliation(s)
- Hyejin Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea; Marine-integrated Biomedical Technology Center, Pukyong National University, Busan, Republic of Korea
| | - Yeongeun Kim
- Marine-integrated Biomedical Technology Center, Pukyong National University, Busan, Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan, Republic of Korea
| | - Tae-Hee Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea; Marine-integrated Biomedical Technology Center, Pukyong National University, Busan, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, Republic of Korea
| | - Won-Kyo Jung
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea; Marine-integrated Biomedical Technology Center, Pukyong National University, Busan, Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan, Republic of Korea
| | - Hyun Wook Kang
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea; Marine-integrated Biomedical Technology Center, Pukyong National University, Busan, Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
31
|
Robijns J, Nair RG, Lodewijckx J, Arany P, Barasch A, Bjordal JM, Bossi P, Chilles A, Corby PM, Epstein JB, Elad S, Fekrazad R, Fregnani ER, Genot MT, Ibarra AMC, Hamblin MR, Heiskanen V, Hu K, Klastersky J, Lalla R, Latifian S, Maiya A, Mebis J, Migliorati CA, Milstein DMJ, Murphy B, Raber-Durlacher JE, Roseboom HJ, Sonis S, Treister N, Zadik Y, Bensadoun RJ. Photobiomodulation therapy in management of cancer therapy-induced side effects: WALT position paper 2022. Front Oncol 2022; 12:927685. [PMID: 36110957 PMCID: PMC9468822 DOI: 10.3389/fonc.2022.927685] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
DisclaimerThis article is based on recommendations from the 12th WALT Congress, Nice, October 3-6, 2018, and a follow-up review of the existing data and the clinical observations of an international multidisciplinary panel of clinicians and researchers with expertise in the area of supportive care in cancer and/or PBM clinical application and dosimetry. This article is informational in nature. As with all clinical materials, this paper should be used with a clear understanding that continued research and practice could result in new insights and recommendations. The review reflects the collective opinion and, as such, does not necessarily represent the opinion of any individual author. In no event shall the authors be liable for any decision made or action taken in reliance on the proposed protocols.ObjectiveThis position paper reviews the potential prophylactic and therapeutic effects of photobiomodulation (PBM) on side effects of cancer therapy, including chemotherapy (CT), radiation therapy (RT), and hematopoietic stem cell transplantation (HSCT).BackgroundThere is a considerable body of evidence supporting the efficacy of PBM for preventing oral mucositis (OM) in patients undergoing RT for head and neck cancer (HNC), CT, or HSCT. This could enhance patients’ quality of life, adherence to the prescribed cancer therapy, and treatment outcomes while reducing the cost of cancer care.MethodsA literature review on PBM effectiveness and dosimetry considerations for managing certain complications of cancer therapy were conducted. A systematic review was conducted when numerous randomized controlled trials were available. Results were presented and discussed at an international consensus meeting at the World Association of photobiomoduLation Therapy (WALT) meeting in 2018 that included world expert oncologists, radiation oncologists, oral oncologists, and oral medicine professionals, physicists, engineers, and oncology researchers. The potential mechanism of action of PBM and evidence of PBM efficacy through reported outcomes for individual indications were assessed.ResultsThere is a large body of evidence demonstrating the efficacy of PBM for preventing OM in certain cancer patient populations, as recently outlined by the Multinational Association for Supportive Care in Cancer/International Society of Oral Oncology (MASCC/ISOO). Building on these, the WALT group outlines evidence and prescribed PBM treatment parameters for prophylactic and therapeutic use in supportive care for radiodermatitis, dysphagia, xerostomia, dysgeusia, trismus, mucosal and bone necrosis, lymphedema, hand-foot syndrome, alopecia, oral and dermatologic chronic graft-versus-host disease, voice/speech alterations, peripheral neuropathy, and late fibrosis amongst cancer survivors.ConclusionsThere is robust evidence for using PBM to prevent and treat a broad range of complications in cancer care. Specific clinical practice guidelines or evidence-based expert consensus recommendations are provided. These recommendations are aimed at improving the clinical utilization of PBM therapy in supportive cancer care and promoting research in this field. It is anticipated these guidelines will be revised periodically.
Collapse
Affiliation(s)
- Jolien Robijns
- UHasselt, Faculty of Medicine and Life Sciences, Diepenbeek, Belgium
| | - Raj G. Nair
- Oral Medicine, Oral Pathology and Oral Oncology, Griffith University, Department of Haematology and Oncology, Gold Coast University Hospital, Gold Coast, QL, Australia
| | - Joy Lodewijckx
- UHasselt, Faculty of Medicine and Life Sciences, Diepenbeek, Belgium
| | - Praveen Arany
- School of Dental Medicine, Oral Biology and Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| | - Andrei Barasch
- Harvard School of Dental Medicine, Division of Oral Medicine and Dentistry, Boston, MA, United States
| | - Jan M. Bjordal
- Physiotherapy Research Group, IGS, University of Bergen, Bergen, Norway
| | - Paolo Bossi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Anne Chilles
- Radiotherapy Department, Institut Curie, Paris, France
| | - Patricia M. Corby
- New York University College of Dentistry, Bluestone Center for Clinical Research, New York, NY, United States
| | - Joel B. Epstein
- City of Hope Duarte, CA and Cedars-Sinai Health System, Los Angeles, CA, United States
| | - Sharon Elad
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, United States
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty – Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
| | | | - Marie-Thérèse Genot
- Laser Therapy Unit, Institut Jules Bordet, Centre des Tumeurs de l’Université Libre de Bruxelles, Brussels, Belgium
| | - Ana M. C. Ibarra
- Postgraduate Program on Biophotonics Applied to Health Sciences, Nove de Julho University, São Paulo, Brazil
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Vladimir Heiskanen
- Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Ken Hu
- Department of Radiation Oncology, NYU Langone Health, New York, NY, United States
| | | | - Rajesh Lalla
- Section of Oral Medicine, University of Connecticut School of Dental Medicine, Farmington, CT, United States
| | - Sofia Latifian
- Department of Medicine, Institut Jules Bordet, Universiteí Libre de Bruxelles, Brussels, Belgium
| | - Arun Maiya
- Manipal College of Health Professions, MAHE, Manipal, India
| | - Jeroen Mebis
- UHasselt, Faculty of Medicine and Life Sciences, Diepenbeek, Belgium
| | - Cesar A. Migliorati
- Department of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, Florida, United States
| | - Dan M. J. Milstein
- Oral and Maxillofacial Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Barbara Murphy
- Department of Oncology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Judith E. Raber-Durlacher
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Department of Oral Medicine, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, Netherlands
| | - Hendrik J. Roseboom
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Department of Oral Medicine, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, Netherlands
| | - Stephen Sonis
- Division of Oral Medicine and Dentistry, Brigham and Women’s Hospital; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine; Division of Oral Medicine and Dentistry, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Nathaniel Treister
- Division of Oral Medicine and Dentistry, Brigham and Women’s Hospital; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine; Division of Oral Medicine and Dentistry, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Yehuda Zadik
- Department of Military Medicine, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel, and Department of Oral Medicine, Sedation and Maxillofacial Imaging, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - René-Jean Bensadoun
- Department of Radiation Oncology, Centre de Haute Energie, Nice, France
- *Correspondence: René-Jean Bensadoun,
| |
Collapse
|
32
|
Staelens M, Di Gregorio E, Kalra AP, Le HT, Hosseinkhah N, Karimpoor M, Lim L, Tuszyński JA. Near-Infrared Photobiomodulation of Living Cells, Tubulin, and Microtubules In Vitro. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:871196. [PMID: 35600165 PMCID: PMC9115106 DOI: 10.3389/fmedt.2022.871196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
We report the results of experimental investigations involving photobiomodulation (PBM) of living cells, tubulin, and microtubules in buffer solutions exposed to near-infrared (NIR) light emitted from an 810 nm LED with a power density of 25 mW/cm2 pulsed at a frequency of 10 Hz. In the first group of experiments, we measured changes in the alternating current (AC) ionic conductivity in the 50–100 kHz range of HeLa and U251 cancer cell lines as living cells exposed to PBM for 60 min, and an increased resistance compared to the control cells was observed. In the second group of experiments, we investigated the stability and polymerization of microtubules under exposure to PBM. The protein buffer solution used was a mixture of Britton-Robinson buffer (BRB aka PEM) and microtubule cushion buffer. Exposure of Taxol-stabilized microtubules (~2 μM tubulin) to the LED for 120 min resulted in gradual disassembly of microtubules observed in fluorescence microscopy images. These results were compared to controls where microtubules remained stable. In the third group of experiments, we performed turbidity measurements throughout the tubulin polymerization process to quantify the rate and amount of polymerization for PBM-exposed tubulin vs. unexposed tubulin samples, using tubulin resuspended to final concentrations of ~ 22.7 μM and ~ 45.5 μM in the same buffer solution as before. Compared to the unexposed control samples, absorbance measurement results demonstrated a slower rate and reduced overall amount of polymerization in the less concentrated tubulin samples exposed to PBM for 30 min with the parameters mentioned above. Paradoxically, the opposite effect was observed in the 45.5 μM tubulin samples, demonstrating a remarkable increase in the polymerization rates and total polymer mass achieved after exposure to PBM. These results on the effects of PBM on living cells, tubulin, and microtubules are novel, further validating the modulating effects of PBM and contributing to designing more effective PBM parameters. Finally, potential consequences for the use of PBM in the context of neurodegenerative diseases are discussed.
Collapse
Affiliation(s)
- Michael Staelens
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | | | - Aarat P. Kalra
- Scholes Lab, Department of Chemistry, Princeton University, Princeton, NJ, United States
| | - Hoa T. Le
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | | | | | - Lew Lim
- Vielight Inc., Toronto, ON, Canada
| | - Jack A. Tuszyński
- Department of Physics, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Jack A. Tuszyński
| |
Collapse
|
33
|
Monaco H, Yokomizo S, Choi HS, Kashiwagi S. Quickly evolving near‐infrared photoimmunotherapy provides multifaceted approach to modern cancer treatment. VIEW 2022. [DOI: 10.1002/viw.20200110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Hailey Monaco
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
- Department of Radiological Sciences Tokyo Metropolitan University Arakawa Tokyo Japan
| | - Hak Soo Choi
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
34
|
Baczewska M, Stępień P, Mazur M, Krauze W, Nowak N, Szymański J, Kujawińska M. Method to analyze effects of low-level laser therapy on biological cells with a digital holographic microscope. APPLIED OPTICS 2022; 61:B297-B306. [PMID: 35201152 DOI: 10.1364/ao.445337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Low-level laser therapy (LLLT) is a therapeutic tool that uses the photobiochemical interaction between light and tissue. Its effectiveness is controversial due to a strong dependence on dosimetric parameters. In this work, we demonstrate that digital holographic microscopy is an effective label-free imaging technique to analyze the effects of LLLT on biological cells, and we propose the full methodology to create correct synthetic aperture phase maps for further extensive, highly accurate statistical analysis. The proposed methodology has been designed to provide a basis for many other biological experiments using quantitative phase imaging. We use SHSY-5Y and HaCaT cells irradiated with different doses of red light for the experiment. The analysis shows quantitative changes in cell dry mass density and the projected cell surface in response to different radiation doses.
Collapse
|
35
|
Liebert A, Seyedsadjadi N, Pang V, Litscher G, Kiat H. Evaluation of Gender Differences in Response to Photobiomodulation Therapy, Including Laser Acupuncture: A Narrative Review and Implication to Precision Medicine. Photobiomodul Photomed Laser Surg 2022; 40:78-87. [PMID: 34964662 DOI: 10.1089/photob.2021.0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: The influence of gender is significant in the manifestation and response to many diseases and in the treatment strategy. Photobiomodulation (PBM) therapy, including laser acupuncture, is an evidence-based treatment and disease prevention modality that has shown promising efficacy for a myriad of chronic and acute diseases. Anecdotal experience and limited clinical trials suggest gender differences exist in treatment outcomes to PBM therapy. There is preliminary evidence that gender may be as important as skin color in the individual response to PBM therapy. Purpose: To conduct a literature search of publications addressing the effects of gender differences in PBM therapy, including laser acupuncture, to provide a narrative review of the findings, and to explore potential mechanisms for the influence of gender. Methods: A narrative review of the literature on gender differences in PBM applications was conducted using key words relating to PBM therapy and gender. Results: A total of 13 articles were identified. Of these articles, 11 have direct experimental investigations into the response difference in gender for PBM, including laser acupuncture. A variety of cadaver, human, and experimental studies demonstrated results that gender effects were significant in PBM outcome responses, including differences in tendon structural and mechanical outcomes, and mitochondrial gene expression. One cadaver experiment showed that gender was more important than skin tone. The physiologic mechanisms directing gender differences are explored and postulated. Conclusions: The review suggests that to address the requirements of a proficient precision medicine-based strategy, it is important for PBM therapy to consider gender in its treatment plan and dosing prescription. Further research is warranted to determine the correct dose for optimal gender treatment, including gender-specific treatment plans to improve outcomes, taking into account wavelength, energy exposure, intensity, and parameters related to the deliverance of treatment to each anatomical location.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia.,Research and Governance, Adventist Hospital Group, Wahroonga, Australia.,SYMBYX Pty Ltd., Artarmon, Australia
| | - Neda Seyedsadjadi
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | | | - Gerhard Litscher
- Traditional Chinese Medicine, Research Center Graz, Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, and Research Unit for Complementary and Integrative Laser Medicine, Medical University of Graz, Graz, Austria
| | - Hosen Kiat
- Cardiac Health Institute, Sydney, Australia.,Faculty of Medicine, University of NSW, Kensington, Australia.,Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, Australia
| |
Collapse
|
36
|
Topaloglu N, Bakay E. Mechanistic Approaches to the Light-Induced Neural Cell Differentiation: Photobiomodulation vs Low-Dose Photodynamic Therapy. Photodiagnosis Photodyn Ther 2021; 37:102702. [PMID: 34954387 DOI: 10.1016/j.pdpdt.2021.102702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Neurodegenerative diseases are the results of irreversible damages in the neuronal cells by affecting vital functions temporarily or even permanently. The use of light for the treatment of these diseases is an emerging promising innovative method. Photobiomodulation (PBM) and Photodynamic Therapy (PDT) are the modalities that have a wide range of use in medicine and have opposite purposes, biostimulation and cell death respectively. METHODS In this study, we aimed to compare these two modalities (PDT and PBM) at low-level intensities and create a stimulatory effect on the differentiation of PC12 cells. Three different energy densities (1, 3, and 5 J/cm2) were used in PBM and Chlorin e6-mediated PDT applications upon irradiation with 655-nm laser light. The light-induced differentiation profile of PC12 cells was analyzed by morphological examinations, qRT-PCR, cell viability assay, and some mechanistic approaches such as; the analysis of intracellular ROS production, NO release, and mitochondrial membrane potential change. RESULTS It has been observed that both of these modalities were successful at neural cell differentiation. PBM at 1 J/cm2 and low-dose PDT at 3 J/cm2 energy densities provided the best differentiation profiles which were proved by the over-expressions of SYN-1 and GAP43 genes. It was also observed that intracellular ROS production and NO release had pivotal roles in these mechanisms with more cell differentiation obtained especially in low-dose PDT application. CONCLUSION It can be concluded that light-induced mechanisms with properly optimized light parameters have the capacity for neural cell regeneration and thus, can be a successful treatment for incurable neurodegenerative diseases.
Collapse
Affiliation(s)
- Nermin Topaloglu
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, 35620 Turkey.
| | - Emel Bakay
- Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Izmir, 35620 Turkey.
| |
Collapse
|
37
|
Effect of red laser irradiation and Ajwain essential oil on 2D and 3D culture models of MDA-MB-231 breast cancer cells. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Ravera S, Bertola N, Pasquale C, Bruno S, Benedicenti S, Ferrando S, Zekiy A, Arany P, Amaroli A. 808-nm Photobiomodulation Affects the Viability of a Head and Neck Squamous Carcinoma Cellular Model, Acting on Energy Metabolism and Oxidative Stress Production. Biomedicines 2021; 9:biomedicines9111717. [PMID: 34829946 PMCID: PMC8615884 DOI: 10.3390/biomedicines9111717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Photobiomodulation (PBM) is a form of low-dose light therapy that acts through energy delivery from non-ionizing sources. During the recent two decades, there has been tremendous progress with PBM acceptance in medicine. However, PBM effects on potential stimulation of existing malignant or pre-malignant cells remain unknown. Thus, the primary endpoint was to assess the safety of PBM treatment parameters on head and neck squamous cell carcinoma (HNSCC) proliferation or survival. The secondary endpoint was to assess any putative anti-cancer effects of PBM treatments. Cell viability, energy metabolism, oxidative stress, and pro- and anti-apoptotic markers expression were investigated on a Human Head and Neck Squamous Cell Carcinoma cellular model (OHSU-974 FAcorr cell line). PBM therapy was administered through the 810 nm diode laser (GaAlAs) device (Garda Laser, 7024 Negrar, Verona, Italy) at the powers of 0, 0.25, 0.50, 0.75, 1.00, or 1.25 W in continuous wave (CW) mode for an exposure time of 60 s with a spot-size of 1 cm2 and with a distance of 1.86 cm from the cells. Results showed that 810-nm PBM affected oxidative phosphorylation in OHSU-971 FAcorr, causing a metabolic switch to anaerobic glycolysis. In addition, PBM reduced the catalase activity, determining an unbalance between oxidative stress production and the antioxidant defenses, which could stimulate the pro-apoptotic cellular pathways. Our data, at the parameters investigated, suggest the safeness of PBM as a supportive cancer therapy. Pre-clinical and clinical studies are necessary to confirm the in vitro evidence.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy; (S.R.); (N.B.); (S.B.)
| | - Nadia Bertola
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy; (S.R.); (N.B.); (S.B.)
| | - Claudio Pasquale
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (C.P.); (S.B.)
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy; (S.R.); (N.B.); (S.B.)
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (C.P.); (S.B.)
| | - Sara Ferrando
- Department of Earth, Environmental and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Angelina Zekiy
- Department of Orthopedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Praveen Arany
- Departments of Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA;
| | - Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (C.P.); (S.B.)
- Department of Orthopedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Correspondence: ; Tel.: +39-010-3537309
| |
Collapse
|
39
|
Xia Y, Yu W, Cheng F, Rao T, Ruan Y, Yuan R, Ning J, Zhou X, Lin F, Zheng D. Photobiomodulation With Blue Laser Inhibits Bladder Cancer Progression. Front Oncol 2021; 11:701122. [PMID: 34733776 PMCID: PMC8558536 DOI: 10.3389/fonc.2021.701122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/30/2021] [Indexed: 01/22/2023] Open
Abstract
Blue lasers are becoming more widely used in the diagnosis and treatment of bladder cancer; however, their photobiomodulation effects on bladder cancer cells remains unclear. The purpose of the current study was to explore the photobiomodulation effect of blue laser irradiation on bladder cancer progression and the associated mechanisms. The human uroepithelial cell line SV-HUC-1 and human bladder cancer cell lines T24 and EJ were exposed to blue laser irradiation (450 nm) at various energy densities, and cell proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and the levels of the proteins associated with the MAPK pathway proteins were determined. A significant decrease in cell viability was observed in a density-dependent manner after blue laser irradiation at > 4 J/cm2 in both bladder cancer cell lines. However, the blue laser did not reduce cell viability in SV-HUC-1 cells until the energy density exceeded 16 J/cm2. Meanwhile, Ki67 levels, reflecting cell proliferation and senescence, were also significantly decreased after blue laser irradiation at 4 J/cm2 and 8 J/cm2 in the absence of cell cycle arrest. Moreover, blue laser irradiation at 4 J/cm2 and 8 J/cm2 caused a reduction in cell migration and invasion and also reduced the expression levels of MMP-2, MMP-9, Snail, N-cadherin, phospho-MEK and phospho-ERK, and elevated the expression levels of E-cadherin. Meanwhile ERK activator(tBHQ) significantly reversed the irradiation-induced suppression of proliferation, migration and invasion in T24 and EJ cell lines. The present study showed that blue laser irradiation inhibited bladder cancer proliferation in a density-dependent manner and inhibited bladder cancer progression by suppressing migration, invasion, and the EMT process in T24 and EJ cell lines. This inhibition was possibly mediated via suppression of the MAPK/MEK/ERK pathway. Thus, the use of a low-energy blue laser in the diagnosis and treatment of bladder cancer is possibly safe and may have an anti-tumor effect.
Collapse
Affiliation(s)
- Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Run Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinzhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di Zheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Silva LAD, Pinheiro SL. Clinical Evaluation of Intravascular Blood Irradiation with Laser, Photobiomodulation, and Photodynamic Therapy in Cancer Patients with Mucositis. Photobiomodul Photomed Laser Surg 2021; 39:687-695. [DOI: 10.1089/photob.2021.0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lucas Augusto da Silva
- Center for Life Sciences, Postgraduate Program in Health Sciences, Pontifícia Universidade Católica de Campinas (PUC Campinas), Campinas, Brazil
| | - Sérgio Luiz Pinheiro
- Center for Life Sciences, Postgraduate Program in Health Sciences, Pontifícia Universidade Católica de Campinas (PUC Campinas), Campinas, Brazil
| |
Collapse
|
41
|
Extraoral photobiomodulation for prevention of oral and oropharyngeal mucositis in head and neck cancer patients: interim analysis of a randomized, double-blind, clinical trial. Support Care Cancer 2021; 30:2225-2236. [PMID: 34708311 PMCID: PMC8550910 DOI: 10.1007/s00520-021-06625-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022]
Abstract
Purpose To assess the safety and efficacy of prophylactic extraoral photobiomodulation (PBM) for the prevention of oral and oropharyngeal mucositis (OM) on clinical outcomes and survival in patients with oral cavity and oropharyngeal squamous cell carcinoma (OOPSCC). Methods OOPSCC patients who received radiotherapy (RT) were prospectively randomized to two groups: prophylactic extraoral PBM and placebo. OM grade (NCI), pain (VAS), analgesia, and anti-inflammatory prescriptions were assessed weekly. Quality of life questionnaires (QoL) were performed at the first and last day of RT. Following RT, participants were evaluated quarterly for oncological outcomes follow-up. Results Fifty-five patients met the inclusion criteria. The first occurrence of OM was observed at week 1, for the placebo group (p = 0.014). Later, OM onset and severity was observed for the PBM group, with first occurrence at week 2 (p = 0.009). No difference in severe OM incidence was observed (p > 0.05). Lower mean pain score was noted at week 7 for the PBM group (2.1) compared to placebo group (4.5) (p = 0.009). Less analgesics (week 3; p = 0.009/week 7; p = 0.02) and anti-inflammatory prescription (week 5; p = 0.0346) were observed for the PBM group. Better QoL scores were observed for the PBM group at last day of RT (p = 0.0034). No difference in overall survival among groups was observed in 1 year of follow-up (p = 0.889). Conclusion Prophylactic extraoral PBM can delay OM onset, reduce pain, and reduce analgesic and anti-inflammatory prescription requirements. Extraoral PBM was associated with better QoL. There was no evidence of PBM impact on oncological outcomes. Trial registration TRN:RBR-4w4swx (date of registration: 01/20/2020). Supplementary Information The online version contains supplementary material available at 10.1007/s00520-021-06625-8.
Collapse
|
42
|
Ulmschneider C, Baker J, Vize I, Jiang J. Phonosurgery: A review of current methodologies. World J Otorhinolaryngol Head Neck Surg 2021; 7:344-353. [PMID: 34632350 PMCID: PMC8486699 DOI: 10.1016/j.wjorl.2020.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 01/11/2023] Open
Abstract
Cold-steel has served as the gold standard modality of phonosurgery for most of its history. Surgical laser technology has revolutionized this field with its wide use of applications. Additional modalities have also been introduced such as coagulative lasers, photodynamic therapy, and cryotherapy. This review will compare the surgical modalities of cold steel, surgical lasers, phototherapy and cryotherapy. The mechanism of action, tissue effects and typical uses will be addressed for each modality.
Collapse
Affiliation(s)
| | - Jeffrey Baker
- University of Wisconsin Madison School of Medicine and Public Health, United States
| | - Ian Vize
- University of Wisconsin Madison School of Medicine and Public Health, United States
| | - Jack Jiang
- University of Wisconsin Madison School of Medicine and Public Health, United States
| |
Collapse
|
43
|
Fractionated low-level laser irradiation on breast cancer (MCF 7 cells) treatment. Lasers Med Sci 2021; 37:1265-1271. [PMID: 34331605 DOI: 10.1007/s10103-021-03384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Breast cancer is responsible for one of the top leading causes of cancer deaths among women. Radiotherapy (RT) uses high energy radiation to kill cancer cells, but this method has been reportedly linked to risks of toxicity. Post-therapeutic relapse from RT believed to be caused by its toxicity is one of the challenges encountered during tumour therapy. Therefore, further attention should be devoted to developing novel anti-tumour therapeutic approaches. The role of low-level laser therapy (LLLT) in breast cancer management is to alleviate the side effects arising from RT, instead of acting against the tumour cells directly. This study investigated the effects of low-level laser (532 nm), as well as single and fractionated irradiation, on breast cancer MCF 7 cell line. Additionally, this study assessed the most effective laser parameter for fractionated irradiation. The MCF 7 cells were irradiated with green laser power at 1.5, 45.0, and 100.0 mW with a spot size diameter of 0.7 mm for 1, 5, 10, and 15 min. The irradiation was carried out in single, double, and triple fractionation separated by 5- and 10-min intervals in between the fractional regimes. The laser output of 100 mW showed a promising potential in killing cells with single fractionation. However, as the irradiation was fractionated into two, power of 1.5 mW appeared to be more effective in cell death, which contributed to the lowest percentage cells viable of 31.4% recorded in the study. It was proven that fractionated regime was more successful in tumour cell death.
Collapse
|
44
|
Al-Rudayni AHM, Gopinath D, Maharajan MK, Veettil SK, Menon RK. Efficacy of Photobiomodulation in the Treatment of Cancer Chemotherapy-Induced Oral Mucositis: A Meta-Analysis with Trial Sequential Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7418. [PMID: 34299869 PMCID: PMC8307997 DOI: 10.3390/ijerph18147418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 01/14/2023]
Abstract
Oral mucositis is a debilitating complication of chemotherapy, characterized by erythema, ulcers and oedema of the oral mucosa. This review aimed to evaluate the efficacy of Photobiomodulation in the treatment of oral mucositis using meta-analysis and trial sequential analysis, and also to assess the quality of the results by Grading of Recommendations, Assessment, Development and Evaluation (GRADE). A comprehensive search of three databases, including Embase, Medline and Central, was performed to identify randomized controlled trials studying the efficacy of Photobiomodulation in the treatment of cancer chemotherapy-induced oral mucositis. The primary outcome was reduction in the severity of oral mucositis. Secondary outcomes were pain relief, duration of oral mucositis and adverse effects. The meta-analysis was performed using the random-effects model, and random errors of the meta-analyses were detected by trial sequential analysis. A total of 6 randomized controlled trials with 398 participants were included in our analysis. Photobiomodulation significantly reduced the severity of oral mucositis when compared to sham radiation (RR 0.43, 95% CI 0.20 to 0.93; p < 0.05). Sensitivity analysis by excluding trials with high risk of bias reiterated the robustness of our results (RR 0.28, 95% CI 0.16 to 0.48). Trial sequential analysis illustrated that the evidence from the meta-analysis was conclusive. The result of the meta-analyses with trial sequential analysis illustrated that Photobiomodulation is an effective therapeutic intervention for the treatment of oral mucositis, and the evidence gathered can be considered conclusive with a moderate level of certainty according to GRADE. Further trials are recommended to standardize the laser parameters required for the optimal effect.
Collapse
Affiliation(s)
| | - Divya Gopinath
- Department of Oral Diagnostics & Surgical Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Mari Kannan Maharajan
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Sajesh K. Veettil
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA;
| | - Rohit Kunnath Menon
- Division of Restorative Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
45
|
Gonçalves de Faria CM, Ciol H, Salvador Bagnato V, Pratavieira S. Effects of photobiomodulation on the redox state of healthy and cancer cells. BIOMEDICAL OPTICS EXPRESS 2021; 12:3902-3916. [PMID: 34457388 PMCID: PMC8367241 DOI: 10.1364/boe.421302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/09/2021] [Accepted: 04/29/2021] [Indexed: 06/13/2023]
Abstract
Photobiomodulation therapy (PBMT) uses light to stimulate cells. The molecular basis of the effects of PBMT is being unveiled, but it is stated that the cytochrome-c oxidase enzyme in mitochondria, a photon acceptor of PBMT, contributes to an increase in ATP production and modulates the reduction and oxidation of electron carriers NADH and FAD. Since its effects are not fully understood, PBMT is not used on tumors. Thus, it is interesting to investigate if its effects correlate to mitochondrial metabolism and if so, how it could be linked to the optical redox ratio (ORR), defined as the ratio of FAD/(NADH + FAD) fluorescences. To that end, fibroblasts (HDFn cell line) and oral squamous cell carcinoma (SCC-25 cell line) were irradiated with a light source of 780 nm and a total dose of 5 J/cm2, and imaged by optical microscopy. PBMT down-regulated the SCC-25 ORR by 10%. Furthermore, PBMT led to an increase in ROS and ATP production in carcinoma cells after 4 h, while fibroblasts only had a modest ATP increase 6 h after irradiation. Cell lines did not show distinct cell cycle profiles, as both had an increase in G2/M cells. This study indicates that PBMT decreases the redox state of oral cancer by possibly increasing glycolysis and affects normal and tumor cells through distinct pathways. To our knowledge, this is the first study that investigated the effects of PBMT on mitochondrial metabolism from the initiation of the cascade to DNA replication. This is an essential step in the investigation of the mechanism of action of PBMT in an effort to avoid misinterpretations of a variety of combined protocols.
Collapse
Affiliation(s)
| | - Heloisa Ciol
- São Carlos Institute of Physics - University of São Paulo, São Carlos, SP, Brazil
| | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics - University of São Paulo, São Carlos, SP, Brazil
- Faculty Fellow at the Hagler Institute for Advanced Study and Visiting Professor at the Department of Biomedical Engineering - Texas A&M University, College Station Texas - USA 77843, USA
| | | |
Collapse
|
46
|
Khorsandi K, Kianmehr Z, Ghelichkhani E. Combination effect of red light irradiation and Traychspermum ammi essential oil on colorectal cancer cells (SW480). Lasers Med Sci 2021; 37:1031-1040. [PMID: 34191208 DOI: 10.1007/s10103-021-03350-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/07/2021] [Indexed: 11/29/2022]
Abstract
Colon cancer is the third significant reason for death related to cancers in the world. There are various treatments for colon cancer, which have several side effects. Polyphenol agents are a type of antioxidant in plants that have diverse biological properties, such as anti-cancer effects. Here, we investigate the effect of Trachyspermum ammi essential oil (TEO) and red light irradiation on the colorectal cancer cell line (SW 480). The colorectal cancer cell lines were irradiated at 660 nm for 90 s and then the cells were incubated with different TEO concentrations. In another study, cells initially were treated with various TEO concentrations and then irradiation for 90 s. Effect of TEO and the red light irradiation on viability of the cell, ROS generation, and cell cycle was assessed by MTT and flow cytometry, respectively. The findings demonstrated that early incubation with TEO and then irradiation decreased the SW 480 cells survival more than the early irradiation at 660 nm and then essential oil. In addition, TEO treatment at IC50 concentration in combination with low-level laser irradiation induces ROS generation in SW 480 cells as compared to the dark group. In addition, TEO treatment at IC50 in combination with low-level laser irradiation induces G0/G1 arrest of the cell cycle in SW 480 cells in comparison to the dark group. This study revealed that the Trachyspermum ammi essential oil in combination with low-level laser results in more reduction in survival which leads to ROS generation and cell cycle arrest in SW 480 colorectal cancer cells.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran. .,Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Zahra Kianmehr
- Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Elmira Ghelichkhani
- Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
47
|
Castro KADF, Ramos L, Mesquita M, Biazzotto JC, Moura NMM, Mendes RF, Almeida Paz FA, Tomé AC, Cavaleiro JAS, Simões MMQ, Faustino MAF, Jager AV, Nakagaki S, P M S Neves MG, da Silva RS. Comparison of the Photodynamic Action of Porphyrin, Chlorin, and Isobacteriochlorin Derivatives toward a Melanotic Cell Line. ACS APPLIED BIO MATERIALS 2021; 4:4925-4935. [PMID: 35007041 DOI: 10.1021/acsabm.1c00218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Melanoma is the most dangerous form of skin cancer, with an abrupt growth of its incidence over the last years. It is extremely resistant to traditional treatments such as chemotherapy and radiotherapy, but therapies for this cancer are gaining attention. Photodynamic therapy (PDT) is considered an effective modality to treat several types of skin cancers and can offer the possibility to treat one of the most aggressive ones: melanoma. In this work, the effect of PDT on a melanotic cell line (B16F10 cells) was assessed by exposing cultured cells to 5,10,15-tris(pentafluorophenyl)-20-(4-pyridyl)porphyrin (PS1) and to its chlorin (PS2) and isobacteriochlorin (PS3) corresponding derivatives and red LED light (λ = 660 ± 20 nm). The PDT effect in the cells' viability was measured using the MTT assay. The cell apoptosis was quantified by flow cytometry, and the subcellular localization of the photosensitizer was determined by fluorescence microscopy. In addition, the ability of PS2 to generate superoxide radicals was qualitatively assessed by tyrosine nitration. The results show that the efficiency of the PDT process is dependent on the structure of the PS and on their ability to produce singlet oxygen. Besides that, the photoactivation efficiency is highly dependent on the cellular sublocalization of the PS and on its cellular uptake and singlet oxygen production. We also found that the resistant cell line B16F10 has distinctive chlorin, isobacteriochlorin, or porphyrin-specific resistance profiles. Furthermore, it is shown that the highly fluorescent chlorin derivative PS2 can also be considered in imaging diagnostics.
Collapse
Affiliation(s)
- Kelly A D F Castro
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 SP, Brazil.,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Loyanne Ramos
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 SP, Brazil
| | - Mariana Mesquita
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Juliana Cristina Biazzotto
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 SP, Brazil
| | - Nuno M M Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo F Mendes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe A Almeida Paz
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Augusto C Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José A S Cavaleiro
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mário M Q Simões
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria A F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alessandra Vincenzi Jager
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 SP, Brazil
| | - Shirley Nakagaki
- Laboratory of Bioinorganic and Catalysis, Department of Chemistry, Federal University of Paraná, 81531-980 Paraná, Brazil
| | - M Graça P M S Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Roberto S da Silva
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 SP, Brazil
| |
Collapse
|
48
|
Garcez AS, Delgado MGT, Sperandio M, Dantas E Silva FT, de Assis JSR, Suzuki SS. Photodynamic Therapy and Photobiomodulation on Oral Lesion in Patient with Coronavirus Disease 2019: A Case Report. Photobiomodul Photomed Laser Surg 2021; 39:386-389. [PMID: 34009028 DOI: 10.1089/photob.2020.4977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective: This article reports the case of a patient with oral manifestation of coronavirus disease 2019 (COVID-19) treated with photobiomodulation (PBM) and photodynamic therapy (PDT). Background: Some dermatological and oral mucosal lesions have recently been linked to severe acute respiratory syndrome coronavirus 2 infection. Methods: A 65-year-old female patient with a confirmed real-time reverse transcriptase-polymerase chain reaction diagnosis of COVID-19 presented with dry edematous lips, edema with mucosal desquamation, ulceration and blood crust on the inner aspect of the lips, gingival petechiae and erythematous and pseudomembranous lesions on the dorsum of the tongue. The treatment protocol was three sessions of antimicrobial PDT (aPDT) (660 nm diode laser + methylene blue) to the lips and tongue, every 24 h to control contamination, followed by PBM (low-power laser, 100 mW, 2 J/point) to the lips, tongue, and oral mucosa for additional four sessions every 24 h. Results: Therapy association promoted pain control and healing of oral mucosal lesions in 7 days of treatment. Conclusions: PBM and aPDT could be an interesting approach to manage COVID-19 patients.
Collapse
|
49
|
Photobiomodulation therapy combined with radiotherapy in the treatment of triple-negative breast cancer-bearing mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 220:112215. [PMID: 34029847 DOI: 10.1016/j.jphotobiol.2021.112215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/31/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022]
Abstract
This work investigated the effect of photobiomodulation therapy (PBM) combined with radiotherapy (RT) on triple-negative breast cancer (TNBC)-bearing mice. Female BALB/c mice received 4 T1 cells into a mammary fat pad. Local RT was performed with a total dose of 60 Gy divided into 4 consecutive sessions of 15 Gy. For PBM, a red laser was used in three different protocols: i-) single exposure delivering 150 J.cm-2 (24 h after the last RT session), and ii-) radiant exposure of 150 J.cm-2 or iii-) fractionated radiant exposure of 37.5 J.cm-2 (after each RT session). Tumor volume, complete blood cell count, clinical condition, metastasis, and survival of animals were monitored during 3 weeks post-RT. Our results demonstrated that regardless of the protocol, PBM arrested the tumor growth, improved the clinical condition, and prevented hemolytic anemia. Besides, although PBM groups have exhibited a high neutrophil:lymphocyte ratio (NLR), they decreased the number of lung metastases and enhanced mouse survival. Worthy of note, PBM should be used along with the RT sessions in higher radiant exposures, since PBM at 150 J.cm-2 per session significantly extended the survival rate. Together, these data suggest PBM could be a potential ally to RT to fight TNBC.
Collapse
|
50
|
Dos Santos Ferreira F, Cadoná FC, Aurélio AR, de Oliveira Martins TN, Pivetta HMF. Photobiomodulation-blue and red LED: protection or cellular toxicity? In vitro study with human fibroblasts. Lasers Med Sci 2021; 37:523-530. [PMID: 33742277 DOI: 10.1007/s10103-021-03290-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Photobiomodulation is widely used in clinical practice, and there is increasing interest in using this tool to treat numerous dysfunctions in living organisms. Therefore, this study aimed to verify the action of blue and red light-emitting diode light in cells. Human fibroblast cell line (HFF-1) were irradiated by blue (470 nm) or red (658 nm) light at doses of 4 and 18 J/cm2, respectively. Laboratory analyses were carried out to check for viability, proliferation, cell death, and the formation of reactive oxygen and nitric oxide species. The blue light demonstrated cell protection potential by reducing free radical formation and protecting the cell membrane by decreasing double-stranded DNA strands. On the other hand, the red light showed less potential for cell protection due to the risk of associating more significant nitric oxide formation with increased reactive oxygen species formation, in addition to having a greater amount of extracellular DNA. Cell damage prevention is a potential beneficial effect of blue light at 18 J/cm2. Despite the consolidated effects of red light in treating wounds, there was a potential toxic effect of this wavelength in the doses studied. Given the above, new studies relating these parameters with pathological cells or aggressors that simulate damage may offer results that can better support clinical practice.
Collapse
Affiliation(s)
- Fabiana Dos Santos Ferreira
- Post-graduate Program in Functional Rehabilitation, Federal University of Santa Maria, 408 Adriano Chaves Street, 408 apartament, Santa Maria, RS, 97105-010, Brazil.
| | - Francine Carla Cadoná
- Post-graduate Program in Health and Life Sciences, Franciscan University, Santa Maria, RS, Brazil
| | | | - Thaís Nogueira de Oliveira Martins
- Post-graduate Program in Functional Rehabilitation, Federal University of Santa Maria, 408 Adriano Chaves Street, 408 apartament, Santa Maria, RS, 97105-010, Brazil
| | - Hedioneia Maria Foletto Pivetta
- Post-graduate Program in Functional Rehabilitation, Federal University of Santa Maria, 408 Adriano Chaves Street, 408 apartament, Santa Maria, RS, 97105-010, Brazil
| |
Collapse
|