1
|
Baran Z, Çetinkaya M, Baran Y. Mesenchymal Stem Cells in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:149-177. [PMID: 39470980 DOI: 10.1007/5584_2024_824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The mesenchymal stem/stromal cells (MSCs) are multipotent cells that were initially discovered in the bone marrow in the late 1960s but have so far been discovered in almost all tissues of the body. The multipotent property of MSCs enables them to differentiate into various cell types and lineages, such as adipocytes, chondrocytes, and osteocytes. The immunomodulation capacity and tumor-targeting features of MSCs made their use crucial for cell-based therapies in cancer treatment, yet limited advancement could be observed in translational medicine prospects due to the need for more information regarding the controversial roles of MSCs in crosstalk tumors. In this review, we discuss the therapeutic potential of MSCs, the controversial roles played by MSCs in cancer progression, and the anticancer therapeutic strategies that are in association with MSCs. Finally, the clinical trials designed for the direct use of MSCs for cancer therapy or for their use in decreasing the side effects of other cancer therapies are also mentioned in this review to evaluate the current status of MSC-based cancer therapies.
Collapse
Affiliation(s)
- Züleyha Baran
- Laboratory of Molecular Pharmacology, Department of Pharmacology, Anadolu University, Eskişehir, Turkey
| | - Melisa Çetinkaya
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey
| | - Yusuf Baran
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey.
| |
Collapse
|
2
|
Sajjad U, Ahmed M, Iqbal MZ, Riaz M, Mustafa M, Biedermann T, Klar AS. Exploring mesenchymal stem cells homing mechanisms and improvement strategies. Stem Cells Transl Med 2024; 13:1161-1177. [PMID: 39550211 PMCID: PMC11631218 DOI: 10.1093/stcltm/szae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/16/2024] [Indexed: 11/18/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells with high self-renewal and multilineage differentiation abilities, playing an important role in tissue healing. Recent advancements in stem cell-based technologies have offered new and promising therapeutic options in regenerative medicine. Upon tissue damage, MSCs are immediately mobilized from the bone marrow and move to the injury site via blood circulation. Notably, allogenically transplanted MSCs can also home to the damaged tissue site. Therefore, MSCs hold great therapeutic potential for curing various diseases. However, one major obstacle to this approach is attracting MSCs specifically to the injury site following systemic administration. In this review, we describe the molecular pathways governing the homing mechanism of MSCs and various strategies for improving this process, including targeted stem cell administration, target tissue modification, in vitro priming, cell surface engineering, genetic modifications, and magnetic guidance. These strategies are crucial for directing MSCs precisely to the injury site and, consequently, enhancing their migration and local tissue repair properties. Specifically, our review provides a guide to improving the therapeutic efficacy of clinical applications of MSCs through optimized in vivo administration and homing capacities.
Collapse
Affiliation(s)
- Umar Sajjad
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Ahmed
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - M Zohaib Iqbal
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Mahrukh Riaz
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Muhammad Mustafa
- KAM School of Life Sciences, Forman Christian College University, Lahore, Pakistan
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Zhang Q, Shan Y, Shen L, Ni Q, Wang D, Wen X, Xu H, Liu X, Zeng Z, Yang J, Wang Y, Liu J, Su Y, Wei N, Wang J, Sun L, Wang G, Zhou F. Renal remodeling by CXCL10-CXCR3 axis-recruited mesenchymal stem cells and subsequent IL4I1 secretion in lupus nephritis. Signal Transduct Target Ther 2024; 9:325. [PMID: 39557841 PMCID: PMC11574084 DOI: 10.1038/s41392-024-02018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/19/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUC-MSCs) have shown potential as a therapeutic option for lupus nephritis (LN), particularly in patients refractory to conventional treatments. Despite extensive translational research on MSCs, the precise mechanisms by which MSCs migrate to the kidney and restore renal function remain incompletely understood. Here, we aim to clarify the spatiotemporal characteristics of hUC-MSC migration into LN kidneys and their interactions with host cells in microenvironment. This study elucidates that the migration of hUC-MSCs to the LN kidney is driven by elevated levels of CXCL10, predominantly produced by glomerular vascular endothelial cells through the IFN-γ/IRF1-KPNA4 pathway. Interestingly, the blockade of CXCL10-CXCR3 axis impedes the migration of hUC-MSCs to LN kidney and negatively impacts therapeutic outcomes. Single cell-RNA sequencing analysis underscores the importance of this axis in mediating the regulatory effects of hUC-MSCs on the renal immune environment. Furthermore, hUC-MSCs have been observed to induce and secrete interleukin 4 inducible gene 1 (IL4I1) in response to the microenvironment of LN kidney, thereby suppressing Th1 cells. Genetically ablating IL4I1 in hUC-MSCs abolishes their therapeutic effects and prevents the inhibition of CXCR3+ Th1 cell infiltration into LN kidneys. This study provides valuable insights into the significant involvement of CXCL10-CXCR3 axis in hUC-MSC migration to the LN kidneys and the subsequent remodeling of renal immune microenvironment. Regulating the CXCL10-CXCR3 axis and IL4I1 secretion may be developed as a novel therapeutic strategy to improve treatment outcomes of LN.
Collapse
Affiliation(s)
- Qixiang Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Luping Shen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Ni
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Wen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Huanke Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiaoyan Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhu Zeng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jingwen Yang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yukai Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jiali Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yueyan Su
- Jiangsu Renocell Biotech Co., Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co., Ltd., Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co., Ltd., Nanjing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
4
|
Shan Y, Zhang M, Tao E, Wang J, Wei N, Lu Y, Liu Q, Hao K, Zhou F, Wang G. Pharmacokinetic characteristics of mesenchymal stem cells in translational challenges. Signal Transduct Target Ther 2024; 9:242. [PMID: 39271680 PMCID: PMC11399464 DOI: 10.1038/s41392-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Over the past two decades, mesenchymal stem/stromal cell (MSC) therapy has made substantial strides, transitioning from experimental clinical applications to commercial products. MSC therapies hold considerable promise for treating refractory and critical conditions such as acute graft-versus-host disease, amyotrophic lateral sclerosis, and acute respiratory distress syndrome. Despite recent successes in clinical and commercial applications, MSC therapy still faces challenges when used as a commercial product. Current detection methods have limitations, leaving the dynamic biodistribution, persistence in injured tissues, and ultimate fate of MSCs in patients unclear. Clarifying the relationship between the pharmacokinetic characteristics of MSCs and their therapeutic effects is crucial for patient stratification and the formulation of precise therapeutic regimens. Moreover, the development of advanced imaging and tracking technologies is essential to address these clinical challenges. This review provides a comprehensive analysis of the kinetic properties, key regulatory molecules, different fates, and detection methods relevant to MSCs and discusses concerns in evaluating MSC druggability from the perspective of integrating pharmacokinetics and efficacy. A better understanding of these challenges could improve MSC clinical efficacy and speed up the introduction of MSC therapy products to the market.
Collapse
Affiliation(s)
- Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Mengying Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Enxiang Tao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Yi Lu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Liu
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Kun Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
5
|
Jiang Z, Chen L, Huang L, Yu S, Lin J, Li M, Gao Y, Yang L. Bioactive Materials That Promote the Homing of Endogenous Mesenchymal Stem Cells to Improve Wound Healing. Int J Nanomedicine 2024; 19:7751-7773. [PMID: 39099796 PMCID: PMC11297574 DOI: 10.2147/ijn.s455469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/23/2024] [Indexed: 08/06/2024] Open
Abstract
Endogenous stem cell homing refers to the transport of endogenous mesenchymal stem cells (MSCs) to damaged tissue. The paradigm of using well-designed biomaterials to induce resident stem cells to home in to the injured site while coordinating their behavior and function to promote tissue regeneration is known as endogenous regenerative medicine (ERM). ERM is a promising new avenue in regenerative therapy research, and it involves the mobilizing of endogenous stem cells for homing as the principal means through which to achieve it. Comprehending how mesenchymal stem cells home in and grasp the influencing factors of mesenchymal stem cell homing is essential for the understanding and design of tissue engineering. This review summarizes the process of MSC homing, the factors influencing the homing process, analyses endogenous stem cell homing studies of interest in the field of skin tissue repair, explores the integration of endogenous homing promotion strategies with cellular therapies and details tissue engineering strategies that can be used to modulate endogenous homing of stem cells. In addition to providing more systematic theories and ideas for improved materials for endogenous tissue repair, this review provides new perspectives to explore the complex process of tissue remodeling to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jiabao Lin
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Mengyao Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Park HW, Lee CE, Kim S, Jeong WJ, Kim K. Ex Vivo Peptide Decoration Strategies on Stem Cell Surfaces for Augmenting Endothelium Interaction. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:327-339. [PMID: 37830185 DOI: 10.1089/ten.teb.2023.0210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Ischemic vascular diseases remain leading causes of disability and death. Although various clinical therapies have been tried, reperfusion injury is a major issue, occurring when blood recirculates at the damaged lesion. As an alternative approach, cell-based therapy has emerged. Mesenchymal stem cells (MSCs) are attractive cellular candidates due to their therapeutic capacities, including differentiation, safety, angiogenesis, and tissue repair. However, low levels of receptors/ligands limit targeted migration of stem cells. Thus, it is important to improve homing efficacy of transplanted MSCs toward damaged endothelium. Among various MSC modulations, ex vivo cell surface engineering could effectively augment homing efficiency by decorating MSC surfaces with alternative receptors/ligands, thereby facilitating intercellular interactions with the endothelium. Especially, exogenous decoration of peptides onto stem cell surfaces could provide appropriate functional signaling moieties to achieve sufficient MSC homing. Based on their protein-like functionalities, high modularity in molecular design, and high specific affinities and multivalency to target receptors, peptides could be representative surface-presentable moieties. Moreover, peptides feature a mild synthetic process, enabling precise control of amino acid composition and sequence. Such ex vivo stem cell surface engineering could be achieved primarily by hydrophobic interactions of the cellular bilayer with peptide-conjugated anchor modules and by covalent conjugation between peptides and available compartments in membranes. To this end, this review provides an overview of currently available peptide-mediated, ex vivo stem cell surface engineering strategies for enhancing MSC homing efficiency by facilitating interactions with endothelial cells. Stem cell surface engineering techniques using peptide-based bioconjugates have the potential to revolutionize current vascular disease treatments while addressing their technical limitations.
Collapse
Affiliation(s)
- Hee Won Park
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Chae Eun Lee
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Sungjun Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Woo-Jin Jeong
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Chen DH, Huang JR, Su SL, Chen Q, Wu BY. Therapeutic potential of mesenchymal stem cells for cerebral small vessel disease. Regen Ther 2024; 25:377-386. [PMID: 38414558 PMCID: PMC10899004 DOI: 10.1016/j.reth.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/12/2023] [Accepted: 11/05/2023] [Indexed: 02/29/2024] Open
Abstract
Cerebral small vessel disease (CSVD), as the most common, chronic and progressive vascular disease on the brain, is a serious neurological disease, whose pathogenesis remains unclear. The disease is a leading cause of stroke and vascular cognitive impairment and dementia, and contributes to about 20% of strokes, including 25% of ischemic strokes and 45% of dementias. Undoubtedly, the high incidence and poor prognosis of CSVD have brought a heavy economic and medical burden to society. The present treatment of CSVD focuses on the management of vascular risk factors. Although vascular risk factors may be important causes or accelerators of CSVD and should always be treated in accordance with best clinical practice, controlling risk factors alone could not curb the progression of CSVD brain injury. Therefore, developing safer and more effective treatment strategies for CSVD is urgently needed. Recently, mesenchymal stem cells (MSCs) therapy has become an emerging therapeutic modality for the treatment of central nervous system disease, given their paracrine properties and immunoregulatory. Herein, we discussed the therapeutic potential of MSCs for CSVD, aiming to enable clinicians and researchers to understand of recent progress and future directions in the field.
Collapse
Affiliation(s)
- Dong-Hua Chen
- Neurology Department, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
| | - Jia-Rong Huang
- Neurology Department, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
| | - Shuo-Lei Su
- Shaoguan University, No.288 University Road, Xinshaozhen Zhenjiang District, Shaoguan, 512005, China
| | - Qiong Chen
- Medical Research center of Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
- Precision Medicine Center of Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
| | - Bing-Yi Wu
- Medical Research center of Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
- Precision Medicine Center of Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
| |
Collapse
|
8
|
Kolahi Azar H, Imanpour A, Rezaee H, Ezzatifar F, Zarei-Behjani Z, Rostami M, Azami M, Behestizadeh N, Rezaei N. Mesenchymal stromal cells and CAR-T cells in regenerative medicine: The homing procedure and their effective parameters. Eur J Haematol 2024; 112:153-173. [PMID: 37254607 DOI: 10.1111/ejh.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Mesenchymal stromal cells (MSCs) and chimeric antigen receptor (CAR)-T cells are two core elements in cell therapy procedures. MSCs have significant immunomodulatory effects that alleviate inflammation in the tissue regeneration process, while administration of specific chemokines and adhesive molecules would primarily facilitate CAR-T cell trafficking into solid tumors. Multiple parameters affect cell homing, including the recipient's age, the number of cell passages, proper cell culture, and the delivery method. In addition, several chemokines are involved in the tumor microenvironment, affecting the homing procedure. This review discusses parameters that improve the efficiency of cell homing and significant cell therapy challenges. Emerging comprehensive mechanistic strategies such as non-systemic and systemic homing that revealed a significant role in cell therapy remodeling were also reviewed. Finally, the primary implications for the development of combination therapies that incorporate both MSCs and CAR-T cells for cancer treatment were discussed.
Collapse
Affiliation(s)
- Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Aylar Imanpour
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Rezaee
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ezzatifar
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Molecular and Cell Biology Research Center, Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zeinab Zarei-Behjani
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, Advanced School of Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahmoud Azami
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Behestizadeh
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
9
|
Akbaribazm M. Exploring the Regenerative Potential of Stem Cells for Treating Eye Diseases: A Review of the New Findings. OBM GENETICS 2024; 08:1-14. [DOI: 10.21926/obm.genet.2401212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The escalating prevalence of vision loss due to eye diseases has instigated a quest for innovative therapies, given that conventional approaches often fall short in repairing and regenerating damaged eye tissues, particularly the retina. Stem cell-based interventions have emerged as a promising avenue, with numerous studies in animal models and human trials exploring their potential to enhance visual acuity. Beyond addressing conditions like age-related macular degeneration (AMD) and diabetic retinopathy (DR), stem cell therapies demonstrate efficacy in treating genetic disorders such as retinitis pigmentosa (RP). In severe eye damage necessitating regeneration, stem cells play a pivotal role, leveraging their regenerative capabilities. Noteworthy is the transplantation of retinal pigment epithelial (RPE) cells derived from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), showcasing promising results in preclinical models and clinical studies, leading to improved retinal function without severe side effects. Mesenchymal stem cells (MSCs) have successfully treated optic neuropathy, RP, DR, and glaucoma, yielding positive clinical outcomes. The safety of adult stem cells, particularly MSCs derived from adipose tissue or bone marrow, has been firmly established. This review highlights significant advancements in utilizing human ESC-derived retinal pigmented epithelium and iPSCs for treating eye injuries. While cell-based therapy is relatively nascent, with numerous clinical trials pending review, stem cells' regenerative potential and clinical applications in addressing eye diseases offer substantial promise. This study aims to comprehensively examine the applications of stem cells in the context of eye diseases and their potential role in regenerative medicine.
Collapse
|
10
|
Xiao Y, Xu RH, Dai Y. Nanoghosts: Harnessing Mesenchymal Stem Cell Membrane for Construction of Drug Delivery Platforms Via Optimized Biomimetics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304824. [PMID: 37653618 DOI: 10.1002/smll.202304824] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Indexed: 09/02/2023]
Abstract
Mesenchymal stem cells (MSCs) are becoming hotspots for application in disease therapies recently, combining with biomaterials and drug delivery system. A major advantage of MSCs applied in drug delivery system is that these cells enable specific targeting and releasing of cargos to the disease sites. However, the potential tumor tropic effects of MSCs raised concerns on biosafety. To solve this problem, there are emerging methods of isolating cell membranes and developing nanoformulations to perform drug delivery, which avoids concerns on biosafety without disturbing the membrane functions of specific polarizing and locating. These cargoes are so called "nanoghosts." This review article summarizes the current applications of nanoghosts, the promising potential of MSCs to be applied in membrane isolation and nanoghost construction, and possible approaches to develop better drug delivery system harnessing from MSC ghost cell membranes.
Collapse
Affiliation(s)
- Yuan Xiao
- Faculty of Health Sciences and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Ren-He Xu
- Faculty of Health Sciences and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Yunlu Dai
- Faculty of Health Sciences and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
11
|
Yang H, Cheong S, He Y, Lu F. Mesenchymal stem cell-based therapy for autoimmune-related fibrotic skin diseases-systemic sclerosis and sclerodermatous graft-versus-host disease. Stem Cell Res Ther 2023; 14:372. [PMID: 38111001 PMCID: PMC10729330 DOI: 10.1186/s13287-023-03543-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/23/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) and sclerodermatous graft-versus-host disease (Scl-GVHD)-characterized by similar developmental fibrosis, vascular abnormalities, and innate and adaptive immune response, resulting in severe skin fibrosis at the late stage-are chronic autoimmune diseases of connective tissue. The significant immune system dysfunction, distinguishing autoimmune-related fibrosis from mere skin fibrosis, should be a particular focus of treating autoimmune-related fibrosis. Recent research shows that innovative mesenchymal stem cell (MSC)-based therapy, with the capacities of immune regulation, inflammation suppression, oxidation inhibition, and fibrosis restraint, shows great promise in overcoming the disease. MAIN BODY This review of recent studies aims to summarize the therapeutic effect and theoretical mechanisms of MSC-based therapy in treating autoimmune-related fibrotic skin diseases, SSc and Scl-GVHD, providing novel insights and references for further clinical applications. It is noteworthy that the efficacy of MSCs is not reliant on their migration into the skin. Working on the immune system, MSCs can inhibit the chemotaxis and infiltration of immune cells to the skin by down-regulating the expression of skin chemokines and chemokine receptors and reducing the inflammatory and pro-fibrotic mediators. Furthermore, to reduce levels of oxidative stress, MSCs may improve vascular abnormalities, and enhance the antioxidant defenses through inducible nitric oxide synthase, thioredoxin 1, as well as other mediators. The oxidative stress environment does not weaken MSCs and may even strengthen certain functions. Regarding fibrosis, MSCs primarily target the transforming growth factor-β signaling pathway to inhibit fibroblast activation. Here, miRNAs may play a critical role in ECM remodeling. Clinical studies have demonstrated the safety of these approaches, though outcomes have varied, possibly owing to the heterogeneity of MSCs, the disorders themselves, and other factors. Nevertheless, the research clearly reveals the immense potential of MSCs in treating autoimmune-related fibrotic skin diseases. CONCLUSION The application of MSCs presents a promising approach for treating autoimmune-related fibrotic skin diseases: SSc and Scl-GVHD. Therapies involving MSCs and MSC extracellular vesicles have been found to operate through three primary mechanisms: rebalancing the immune and inflammatory disorders, resisting oxidant stress, and inhibiting overactivated fibrosis (including fibroblast activation and ECM remodeling). However, the effectiveness of these interventions requires further validation through extensive clinical investigations, particularly randomized control trials and phase III/IV clinical trials. Additionally, the hypothetical mechanism underlying these therapies could be elucidated through further research.
Collapse
Affiliation(s)
- Han Yang
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Sousan Cheong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Yunfan He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
12
|
Zhang Z, Zhang H, Antonic-Baker A, Kwan P, Yan Y, Ma Y. CXCR5 Regulates Neuronal Polarity Development and Migration in the Embryonic Stage via F-Actin Homeostasis and Results in Epilepsy-Related Behavior. Neurosci Bull 2023; 39:1605-1622. [PMID: 37460877 PMCID: PMC10603003 DOI: 10.1007/s12264-023-01087-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/19/2023] [Indexed: 10/27/2023] Open
Abstract
Epilepsy is a common, chronic neurological disorder that has been associated with impaired neurodevelopment and immunity. The chemokine receptor CXCR5 is involved in seizures via an unknown mechanism. Here, we first determined the expression pattern and distribution of the CXCR5 gene in the mouse brain during different stages of development and the brain tissue of patients with epilepsy. Subsequently, we found that the knockdown of CXCR5 increased the susceptibility of mice to pentylenetetrazol- and kainic acid-induced seizures, whereas CXCR5 overexpression had the opposite effect. CXCR5 knockdown in mouse embryos via viral vector electrotransfer negatively influenced the motility and multipolar-to-bipolar transition of migratory neurons. Using a human-derived induced an in vitro multipotential stem cell neurodevelopmental model, we determined that CXCR5 regulates neuronal migration and polarization by stabilizing the actin cytoskeleton during various stages of neurodevelopment. Electrophysiological experiments demonstrated that the knockdown of CXCR5 induced neuronal hyperexcitability, resulting in an increased number of seizures. Finally, our results suggested that CXCR5 deficiency triggers seizure-related electrical activity through a previously unknown mechanism, namely, the disruption of neuronal polarity.
Collapse
Affiliation(s)
- Zhijuan Zhang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hui Zhang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ana Antonic-Baker
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Patrick Kwan
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.
| | - Yin Yan
- Chongqing Emergency Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yuanlin Ma
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
13
|
Zeng J, Xiong S, Zhou J, Wei P, Guo K, Wang F, Ouyang M, Long Z, Yao A, Li J, Xiong L, Wu D. Hollow Hydroxyapatite Microspheres Loaded with rhCXCL13 to Recruit BMSC for Osteogenesis and Synergetic Angiogenesis to Promote Bone Regeneration in Bone Defects. Int J Nanomedicine 2023; 18:3509-3534. [PMID: 37404852 PMCID: PMC10317543 DOI: 10.2147/ijn.s408905] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction Bone tissue engineering is a promising method to treat bone defects. However, the current methods of preparing composite materials that mimic the complex structure and biological activity of natural bone are challenging for recruitment of bone marrow mesenchymal stem cells (BMSCs), which affects the application of these materials in situ bone regeneration. Hollow hydroxyapatite microspheres (HHMs) possess a natural porous bone structure, good adsorption, and slow release of chemokines, but have low ability to recruit BMSCs and induce osteogenesis. In this study, The HHM/chitosan (CS) and recombinant human C-X-C motif chemokine ligand 13 (rhCXCL13)-HHM/CS biomimetic scaffolds that optimize bone regeneration and investigated their mechanism of BMSC recruitment and osteogenesis through cell and animal experiments and transcriptomic sequencing. Methods Evaluate the physical characteristics of the HHM/CS and rhCXCL13-HHM/CS biomimetic scaffolds through Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), and the cumulative release curve of rhCXCL13. Transwell migration experiments and co-culture with BMSCs were conducted to study the recruitment ability and osteogenic differentiation of the scaffolds. Transcriptomic sequencing was performed to analyze the osteogenic differentiation mechanism. The osteogenesis and bone healing performance were evaluated using a rabbit radial defect model. Results SEM demonstrated that the rhCXCL13-HHM/CS scaffold comprised hydroxyapatite microspheres in a porous three-dimensional network. The rhCXCL13 showed excellent sustained release capability. The rhCXCL13-HHM/CS scaffold could recruit BMSCs and induce bone regeneration. Transcriptome sequencing and experimental results showed that the osteogenesis mechanism of rhCXCL13-HHM/CS was through the PI3K-AKT pathway. In vivo, the rhCXCL13-HHM/CS scaffold significantly promoted osteogenesis and angiogenesis at 12 weeks after surgery. Conclusion The rhCXCL13-HHM/CS scaffold demonstrates excellent potential for BMSC recruitment, osteogenesis, vascularized tissue-engineered bone reconstruction, and drug delivery, providing a theoretical basis for material osteogenesis mechanism study and promising clinical applications for treating large bone defects.
Collapse
Affiliation(s)
- Jianhua Zeng
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Spine Surgery, People’s Hospital of Ganxian District, Ganzhou, Jiangxi, 341100, China
| | - Shilang Xiong
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Jingyu Zhou
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Peng Wei
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Kai Guo
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Feng Wang
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Min Ouyang
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zhisheng Long
- Department of Spine Surgery, Jiangxi Provincial People’s Hospital the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, China
| | - Aihua Yao
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jingtang Li
- Department of Traumatology, Jiangxi provincial People’s Hospital the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, China
| | - Long Xiong
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
14
|
Haghshenas MR, Ghaderi H, Daneste H, Ghaderi A. Immunological and biological dissection of normal and tumoral salivary glands. Int Rev Immunol 2023; 42:139-155. [PMID: 34378486 DOI: 10.1080/08830185.2021.1958806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Salivary glands naturally play central roles in oral immunity. The salivary glands microenvironment inevitable may be exposed to exogenous factors consequently triggering the initiation and formation of various malignant and benign tumors. Mesenchymal stem cells are recruited into salivary gland microenvironment, interact with tumor cells, and induce inhibitory cytokines as well as cells with immunosuppressive phenotypes such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). The immune components and tumor immune responses in malignant and benign SGTs are still under investigation. Immune responses may directly play a limiting role in tumor growth and expansion, or may participate in formation of a rich milieu for tumor growth in cooperation with other cellular and regulatory molecules. Immune checkpoint molecules (e.g. PDLs, HLA-G and LAG3) are frequently expressed on tumor cells and/or tumor-infiltrating lymphocytes (TILs) in salivary gland microenvironment, and an increase in their expression is associated with T cell exhaustion, immune tolerance and tumor immune escape. Chemokines and chemokine receptors have influential roles on aggressive behaviors of SGTs, and thereby they could be candidate targets for cancer immunotherapy. To present a broad knowledge on salivary glands, this review first provides a brief description on immunological functions of normal salivary glands, and then describe the SGT's tumor microenvironment, by focusing on mesenchymal stem cells, immune cell subsets, immune checkpoint molecules, chemokines and chemokine receptors, and finally introduces immune checkpoint inhibitors as well as potential targets for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Daneste
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Guo Z, Zhang Y, Yan F. Potential of Mesenchymal Stem Cell-Based Therapies for Pulmonary Fibrosis. DNA Cell Biol 2022; 41:951-965. [DOI: 10.1089/dna.2022.0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zhihou Guo
- Stem Cell Lab, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yaping Zhang
- Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Furong Yan
- Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
16
|
Tahmasbpour Marzouni E, Stern C, Henrik Sinclair A, Tucker EJ. Stem Cells and Organs-on-chips: New Promising Technologies for Human Infertility Treatment. Endocr Rev 2022; 43:878-906. [PMID: 34967858 DOI: 10.1210/endrev/bnab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 11/19/2022]
Abstract
Having biological children remains an unattainable dream for most couples with reproductive failure or gonadal dysgenesis. The combination of stem cells with gene editing technology and organ-on-a-chip models provides a unique opportunity for infertile patients with impaired gametogenesis caused by congenital disorders in sex development or cancer survivors. But how will these technologies overcome human infertility? This review discusses the regenerative mechanisms, applications, and advantages of different types of stem cells for restoring gametogenesis in infertile patients, as well as major challenges that must be overcome before clinical application. The importance and limitations of in vitro generation of gametes from patient-specific human-induced pluripotent stem cells (hiPSCs) will be discussed in the context of human reproduction. The potential role of organ-on-a-chip models that can direct differentiation of hiPSC-derived primordial germ cell-like cells to gametes and other reproductive organoids is also explored. These rapidly evolving technologies provide prospects for improving fertility to individuals and couples who experience reproductive failure.
Collapse
Affiliation(s)
- Eisa Tahmasbpour Marzouni
- Laboratory of Regenerative Medicine & Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Catharyn Stern
- Royal Women's Hospital, Parkville and Melbourne IVF, Melbourne, Australia
| | - Andrew Henrik Sinclair
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Elena Jane Tucker
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
17
|
Umar AK, Luckanagul JA, Zothantluanga JH, Sriwidodo S. Complexed Polymer Film-Forming Spray: An Optimal Delivery System for Secretome of Mesenchymal Stem Cell as Diabetic Wound Dressing? Pharmaceuticals (Basel) 2022; 15:867. [PMID: 35890165 PMCID: PMC9324405 DOI: 10.3390/ph15070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes-related wounds have physiological factors that make healing more complicated. High sugar levels can increase microbial infection risk while limiting nutrition and oxygen transfer to the wound area. The secretome of mesenchymal stem cells has been widely known for its efficacy in regenerative therapy. However, applying the secretome directly to the wound can reduce its effectiveness. In this review, we examined the literature on synthesizing the combinations of carboxymethyl chitosan, hyaluronic acid, and collagen tripeptides, as well as the possibility of physicochemical properties enhancement of the hydrogel matrix, which could potentially be used as an optimal delivery system of stem cell's secretome for diabetic wound healing.
Collapse
Affiliation(s)
- Abd. Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - James H. Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India;
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
18
|
Vitale E, Rossin D, Perveen S, Miletto I, Lo Iacono M, Rastaldo R, Giachino C. Silica Nanoparticle Internalization Improves Chemotactic Behaviour of Human Mesenchymal Stem Cells Acting on the SDF1α/CXCR4 Axis. Biomedicines 2022; 10:biomedicines10020336. [PMID: 35203545 PMCID: PMC8961775 DOI: 10.3390/biomedicines10020336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
Human mesenchymal stem cell (hMSC)-based therapy is an emerging resource in regenerative medicine. Despite the innate ability of hMSCs to migrate to sites of injury, homing of infused hMSCs to the target tissue is inefficient. It was shown that silica nanoparticles (SiO2-NPs), previously developed to track the stem cells after transplantation, accumulated in lysosomes leading to a transient blockage of the autophagic flux. Since CXCR4 turnover is mainly regulated by autophagy, we tested the effect of SiO2-NPs on chemotactic migration of hMSCs along the SDF1α/CXCR4 axis that plays a pivotal role in directing MSC homing to sites of injury. Our results showed that SiO2-NP internalization augmented CXCR4 surface levels. We demonstrated that SiO2-NP-dependent CXCR4 increase was transient, and it reversed at the same time as lysosomal compartment normalization. Furthermore, the autophagy inhibitor Bafilomycin-A1 reproduced CXCR4 overexpression in control hMSCs confirming the direct effect of the autophagic degradation blockage on CXCR4 expression. Chemotaxis assays showed that SiO2-NPs increased hMSC migration toward SDF1α. In contrast, migration improvement was not observed in TNFα/TNFR axis, due to the proteasome-dependent TNFR regulation. Overall, our findings demonstrated that SiO2-NP internalization increases the chemotactic behaviour of hMSCs acting on the SDF1α/CXCR4 axis, unmasking a high potential to improve hMSC migration to sites of injury and therapeutic efficacy upon cell injection in vivo.
Collapse
Affiliation(s)
- Emanuela Vitale
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (E.V.); (D.R.); (S.P.); (M.L.I.); (C.G.)
| | - Daniela Rossin
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (E.V.); (D.R.); (S.P.); (M.L.I.); (C.G.)
| | - Sadia Perveen
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (E.V.); (D.R.); (S.P.); (M.L.I.); (C.G.)
| | - Ivana Miletto
- Department of Science and Technological Innovation, University of Eastern Piedmont, 15121 Alessandria, Italy;
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (E.V.); (D.R.); (S.P.); (M.L.I.); (C.G.)
| | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (E.V.); (D.R.); (S.P.); (M.L.I.); (C.G.)
- Correspondence:
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (E.V.); (D.R.); (S.P.); (M.L.I.); (C.G.)
| |
Collapse
|
19
|
Role of the Microenvironment in Mesenchymal Stem Cell-Based Strategies for Treating Human Liver Diseases. Stem Cells Int 2021; 2021:5513309. [PMID: 34824587 PMCID: PMC8610645 DOI: 10.1155/2021/5513309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
Liver disease is a severe health problem that endangers human health worldwide. Mesenchymal stem cell (MSC) therapy is a novel treatment for patients with different liver diseases due to its vast expansion potential and distinctive immunomodulatory properties. Despite several preclinical trials having confirmed the considerable efficacy of MSC therapy in liver diseases, the questionable safety and efficacy still limit its application. As a precursor cell, MSCs can adjust their characteristics in response to the surrounding microenvironment. The microenvironment provides physical and chemical factors essential for stem cell survival, proliferation, and differentiation. However, the mechanisms are still not completely understood. We, therefore, summarized the mechanisms underlying the MSC immune response, especially the interaction between MSCs and the liver microenvironment, discussing how to achieve better therapeutic effects.
Collapse
|
20
|
Alshareef GH, Mohammed AE, Abumaree M, Basmaeil YS. Phenotypic and Functional Responses of Human Decidua Basalis Mesenchymal Stem/Stromal Cells to Lipopolysaccharide of Gram-Negative Bacteria. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2021; 14:51-69. [PMID: 34754198 PMCID: PMC8572118 DOI: 10.2147/sccaa.s332952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022]
Abstract
Introduction Human decidua basalis mesenchymal stem cells (DBMSCs) are potential therapeutics for the medication to cure inflammatory diseases, like atherosclerosis. The current study investigates the capacity of DBMSCs to stay alive and function in a harmful inflammatory environment induced by high levels of lipopolysaccharide (LPS). Methods DBMSCs were exposed to different levels of LPS, and their viability and functional responses (proliferation, adhesion, and migration) were examined. Furthermore, DBMSCs’ expression of 84 genes associated with their functional activities in the presence of LPS was investigated. Results Results indicated that LPS had no significant effect on DBMSCs’ adhesion, migration, and proliferation (24 h and 72 h) (p > 0.05). However, DBMSCs’ proliferation was significantly reduced at 10 µg/mL of LPS at 48 h (p < 0.05). In addition, inflammatory cytokines and receptors related to adhesion, proliferation, migration, and differentiation were significantly overexpressed when DBMSCs were treated with 10 µg/mL of LPS (p < 0.05). Conclusion These results indicated that DBMSCs maintained their functional activities (proliferation, adhesion, and migration) in the presence of LPS as there was no variation between the treated DBMSCs and the control group. This study will lay the foundation for future preclinical and clinical studies to confirm the appropriateness of DBMSCs as a potential medication to cure inflammatory diseases, like atherosclerosis.
Collapse
Affiliation(s)
- Ghofran Hasan Alshareef
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
| | - Afrah E Mohammed
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
| | - Mohammed Abumaree
- Stem Cell & Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, 11481, Saudi Arabia
| | - Yasser S Basmaeil
- Stem Cell & Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Cell-Based Transplantation versus Cell Homing Approaches for Pulp-Dentin Complex Regeneration. Stem Cells Int 2021; 2021:8483668. [PMID: 34646323 PMCID: PMC8505125 DOI: 10.1155/2021/8483668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/01/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Regenerative dentistry has paved the way for a new era for the replacement of damaged dental tissues. Whether the causative factor is dental caries, trauma, or chemical insult, the loss of the pulp vitality constitutes one of the major health problems worldwide. Two regenerative therapies were introduced for a fully functional pulp-dentin complex regeneration, namely, cell-based (cell transplantation) and cell homing (through revascularization or homing by injection of stem cells in situ or intravenously) therapies, with each demonstrating advantages as well as drawbacks, especially in clinical application. The present review is aimed at elaborating on these two techniques in the treatment of irreversibly inflamed or necrotic pulp, which is aimed at regenerating a fully functional pulp-dentin complex.
Collapse
|
22
|
Mesenchymal Stem Cell-Based Therapy as an Alternative to the Treatment of Acute Respiratory Distress Syndrome: Current Evidence and Future Perspectives. Int J Mol Sci 2021; 22:ijms22157850. [PMID: 34360616 PMCID: PMC8346146 DOI: 10.3390/ijms22157850] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) represents a current challenge for medicine due to its incidence, morbidity and mortality and, also, the absence of an optimal treatment. The COVID-19 outbreak only increased the urgent demand for an affordable, safe and effective treatment for this process. Early clinical trials suggest the therapeutic usefulness of mesenchymal stem cells (MSCs) in acute lung injury (ALI) and ARDS. MSC-based therapies show antimicrobial, anti-inflammatory, regenerative, angiogenic, antifibrotic, anti-oxidative stress and anti-apoptotic actions, which can thwart the physiopathological mechanisms engaged in ARDS. In addition, MSC secretome and their derived products, especially exosomes, may reproduce the therapeutic effects of MSC in lung injury. This last strategy of treatment could avoid several safety issues potentially associated with the transplantation of living and proliferative cell populations and may be formulated in different forms. However, the following diverse limitations must be addressed: (i) selection of the optimal MSC, bearing in mind both the heterogeneity among donors and across different histological origins, (ii) massive obtention of these biological products through genetic manipulations of the most appropriate MSC, (iii) bioreactors that allow their growth in 3D, (iv) ideal culture conditions and (v) adequate functional testing of these obtaining biological products before their clinical application.
Collapse
|
23
|
Kim I, Park H, Hwang I, Moon D, Yun H, Lee EJ, Kim HS. Discovery of chemerin as the new chemoattractant of human mesenchymal stem cells. Cell Biosci 2021; 11:120. [PMID: 34210352 PMCID: PMC8252297 DOI: 10.1186/s13578-021-00631-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Background The homing capacity of human mesenchymal stem cells (hMSCs) to the injured sites enables systemic administration of hMSCs in clinical practice. In reality, only a small proportion of MSCs are detected in the target tissue, which is a major bottleneck for MSC-based therapies. We still don’t know the mechanism how MSCs are chemo-attracted to certain target organ and engrafted through trans-endothelial migration. In this study, we aimed to determine the mechanism how the circulating hMSCs home to the injured liver. Methods and results When we compare the cytokine array between normal and injured mouse liver at 1-day thioacetamide (TAA)-treatment, we found that chemerin, CXCL2, and CXCL10 were higher in the injured liver than normal one. Among three, only chemerin was the chemoattractant of hMSCs in 2D- and 3D-migration assay. Analysis of the signal transduction pathways in hMSCs showed that chemerin activated the phosphorylation of JNK1/2, ERK1/2 and p38, and finally upregulated CD44, ITGA4, and MMP-2 that are involved in the transendothelial migration and extravasation of MSCs. Upstream transcription regulators of CD44, ITGA4, and MMP-2 after chemerin treatment were MZF1, GATA3, STAT3, and STAT5A. To develop chemerin as a chemoattractant tool, we cloned gene encoding the active chemerin under the CMV promoter (CMV-aChemerin). We analyzed the migration of hMSCs in the 3D model for space of the Disse, which mimics transmigration of hMSCs in the liver. CMV-aChemerin-transfected hepatocytes were more effective to attract hMSC than control hepatocytes, leading to the enhanced transendothelial migration and homing of hMSCs to liver. The homing efficiency of the intravascularly-delivered hMSCs to liver was evaluated after systemic introduction of the CMV-aChemerin plasmid packed in liposome-vitamin A conjugates which target liver. CMV-aChemerin plasmid targeting liver significantly enhanced homing efficiency of hMSCs to liver compared with control plasmid vector. Conclusions Chemerin is the newly found chemoattractant of hMSCs and may be a useful tool to manipulate the homing of the intravascularly-administered hMSC to the specific target organ. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00631-3.
Collapse
Affiliation(s)
- Irene Kim
- Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul National University Hospital, 101 DeaHak-ro, JongRo-gu, Seoul, 03080, Republic of Korea
| | - Hyomin Park
- Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul National University Hospital, 101 DeaHak-ro, JongRo-gu, Seoul, 03080, Republic of Korea
| | - Injoo Hwang
- Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul National University Hospital, 101 DeaHak-ro, JongRo-gu, Seoul, 03080, Republic of Korea
| | - Dodam Moon
- Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul National University Hospital, 101 DeaHak-ro, JongRo-gu, Seoul, 03080, Republic of Korea
| | - Hyunji Yun
- Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Ju Lee
- Biomedical Research Institute, Seoul National University Hospital, 101 DeaHak-ro, JongRo-gu, Seoul, 03080, Republic of Korea.
| | - Hyo-Soo Kim
- Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul National University Hospital, 101 DeaHak-ro, JongRo-gu, Seoul, 03080, Republic of Korea. .,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Szydlak R. Biological, chemical and mechanical factors regulating migration and homing of mesenchymal stem cells. World J Stem Cells 2021; 13:619-631. [PMID: 34249231 PMCID: PMC8246245 DOI: 10.4252/wjsc.v13.i6.619] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/03/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a population of primary and non-specialized cells, which can be isolated from various tissues. Currently, MSCs are key players in cellular therapy and regenerative medicine. However, the possibility of using MSCs in the treatment of many diseases needs to be preceded, though, by in-depth analysis of their properties, especially by determining the mechanism of tissue homing as well as the mechanism, due to which cells contribute to tissue regeneration. This review is intended to present information on recent findings regarding the mechanism of recruitment and tissue homing by MSCs and discuss current hypotheses for how MSCs can reach target tissues.
Collapse
Affiliation(s)
- Renata Szydlak
- Department of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków 31-034, Poland
| |
Collapse
|
25
|
Fernández-Francos S, Eiro N, Costa LA, Escudero-Cernuda S, Fernández-Sánchez ML, Vizoso FJ. Mesenchymal Stem Cells as a Cornerstone in a Galaxy of Intercellular Signals: Basis for a New Era of Medicine. Int J Mol Sci 2021; 22:ijms22073576. [PMID: 33808241 PMCID: PMC8036553 DOI: 10.3390/ijms22073576] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Around 40% of the population will suffer at some point in their life a disease involving tissue loss or an inflammatory or autoimmune process that cannot be satisfactorily controlled with current therapies. An alternative for these processes is represented by stem cells and, especially, mesenchymal stem cells (MSC). Numerous preclinical studies have shown MSC to have therapeutic effects in different clinical conditions, probably due to their mesodermal origin. Thereby, MSC appear to play a central role in the control of a galaxy of intercellular signals of anti-inflammatory, regenerative, angiogenic, anti-fibrotic, anti-oxidative stress effects of anti-apoptotic, anti-tumor, or anti-microbial type. This concept forces us to return to the origin of natural physiological processes as a starting point to understand the evolution of MSC therapy in the field of regenerative medicine. These biological effects, demonstrated in countless preclinical studies, justify their first clinical applications, and draw a horizon of new therapeutic strategies. However, several limitations of MSC as cell therapy are recognized, such as safety issues, handling difficulties for therapeutic purposes, and high economic cost. For these reasons, there is an ongoing tendency to consider the use of MSC-derived secretome products as a therapeutic tool, since they reproduce the effects of their parent cells. However, it will be necessary to resolve key aspects, such as the choice of the ideal type of MSC according to their origin for each therapeutic indication and the implementation of new standardized production strategies. Therefore, stem cell science based on an intelligently designed production of MSC and or their derivative products will be able to advance towards an innovative and more personalized medical biotechnology.
Collapse
Affiliation(s)
| | - Noemi Eiro
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.F.-F.); (L.A.C.)
- Correspondence: (N.E.); (F.J.V.); Tel.: +34-985320050 (ext. 84216)
| | - Luis A. Costa
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.F.-F.); (L.A.C.)
| | - Sara Escudero-Cernuda
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain; (S.E.-C.); (M.L.F.-S.)
| | - María Luisa Fernández-Sánchez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain; (S.E.-C.); (M.L.F.-S.)
| | - Francisco J. Vizoso
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.F.-F.); (L.A.C.)
- Correspondence: (N.E.); (F.J.V.); Tel.: +34-985320050 (ext. 84216)
| |
Collapse
|
26
|
Zhang T, Huang T, Su Y, Gao J. Mesenchymal Stem Cells‐Based Targeting Delivery System: Therapeutic Promises and Immunomodulation against Tumor. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tianyuan Zhang
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Ting Huang
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Yuanqin Su
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Jianqing Gao
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Cancer Center of Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| |
Collapse
|
27
|
Baljinnyam T, Radnaa E, Niimi Y, Fukuda S, Prough DS, Enkhbaatar P. Cutaneous burn diminishes beneficial effect of intravenously administered mesenchymal stem cells on acute lung injury induced by smoke inhalation in sheep. Burns 2020; 46:1914-1923. [PMID: 32513501 PMCID: PMC11676003 DOI: 10.1016/j.burns.2020.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/16/2020] [Accepted: 05/14/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To investigate effects of intravenously administered allogeneic mesenchymal stem cells (MSCs) on burn/smoke-induced lung injury. METHODS Sheep were subjected to 40%, third-degree flame skin burn and smoke inhalation under deep anesthesia and analgesia. One-hour after injury, PlasmaLite A (control) or 200 million MSCs (treatment) were intravenously administered. Pulmonary oxygenation index, PaO2/FiO2 ratio, lung-lymph flow, and bloodless lung wet-to-dry weight ratio were measured. Distribution of MSCs and stromal cell-derived factor-1 (Sdf-1) protein level were determined in lung and skin tissues. Effects of burn exudate on MSCs migration were characterized. RESULTS MSCs did not attenuate pulmonary dysfunction. The number of MSCs was significantly higher in lungs of sheep with smoke inhalation compared with those with burn/smoke injury. In contrast, number of MSCs was significantly higher beneath burned skin in sheep with burn/smoke than in unburned skin of sheep with smoke inhalation only. Expression of Sdf-1 protein was increased in the burned skin compared to unburned skin. Effects of burn exudate on cultured MSCs proliferation differed depending on collection time. CONCLUSION Skin burn diminishes beneficial effects of MSCs on smoke-induced lung injury, by promoting migration of MSCs from the pulmonary tissue to the injured skin area, possibly via expression of Sdf-1 protein.
Collapse
Affiliation(s)
- Tuvshintugs Baljinnyam
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Enkhtuya Radnaa
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine Perinatal Research, The University of Texas Medical Branch, Galveston, TX, USA
| | - Yosuke Niimi
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Satoshi Fukuda
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Donald S Prough
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA; Shriners Hospital for Children, Galveston, TX, USA.
| |
Collapse
|
28
|
Regional Hyperthermia Enhances Mesenchymal Stem Cell Recruitment to Tumor Stroma: Implications for Mesenchymal Stem Cell-Based Tumor Therapy. Mol Ther 2020; 29:788-803. [PMID: 33068779 DOI: 10.1016/j.ymthe.2020.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
The tropism of mesenchymal stem cells (MSCs) for tumors forms the basis for their use as delivery vehicles for the tumor-specific transport of therapeutic genes, such as the theranostic sodium iodide symporter (NIS). Hyperthermia is used as an adjuvant for various tumor therapies and has been proposed to enhance leukocyte recruitment. Here, we describe the enhanced recruitment of adoptively applied NIS-expressing MSCs to tumors in response to regional hyperthermia. Hyperthermia (41°C, 1 h) of human hepatocellular carcinoma cells (HuH7) led to transiently increased production of immunomodulatory factors. MSCs showed enhanced chemotaxis to supernatants derived from heat-treated cells in a 3D live-cell tracking assay and was validated in vivo in subcutaneous HuH7 mouse xenografts. Cytomegalovirus (CMV)-NIS-MSCs were applied 6-48 h after or 24-48 h before hyperthermia treatment. Using 123I-scintigraphy, thermo-stimulation (41°C, 1 h) 24 h after CMV-NIS-MSC injection resulted in a significantly increased uptake of 123I in heat-treated tumors compared with controls. Immunohistochemical staining and real-time PCR confirmed tumor-selective, temperature-dependent MSC migration. Therapeutic efficacy was significantly enhanced by combining CMV-NIS-MSC-mediated 131I therapy with regional hyperthermia. We demonstrate here for the first time that hyperthermia can significantly boost tumoral MSC recruitment, thereby significantly enhancing therapeutic efficacy of MSC-mediated NIS gene therapy.
Collapse
|
29
|
Al-Khawaga S, Abdelalim EM. Potential application of mesenchymal stem cells and their exosomes in lung injury: an emerging therapeutic option for COVID-19 patients. Stem Cell Res Ther 2020; 11:437. [PMID: 33059757 PMCID: PMC7558244 DOI: 10.1186/s13287-020-01963-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic has negatively impacted the global public health and the international economy; therefore, there is an urgent need for an effective therapy to treat COVID-19 patients. Mesenchymal stem cells (MSCs) have been proposed as an emerging therapeutic option for the SARS-CoV-2 infection. Recently, numerous clinical trials have been registered to examine the safety and efficacy of different types of MSCs and their exosomes for treating COVID-19 patients, with less published data on the mechanism of action. Although there is no approved effective therapy for COVID-19 as of yet, MSC therapies showed an improvement in the treatment of some COVID-19 patients. MSC’s therapeutic effect is displayed in their ability to reduce the cytokine storm, enhance alveolar fluid clearance, and promote epithelial and endothelial recovery; however, the safest and most effective route of MSC delivery remains unclear. The use of poorly characterized MSC products remains one of the most significant drawbacks of MSC-based therapy, which could theoretically promote the risk for thromboembolism. Optimizing the clinical-grade production of MSCs and establishing a consensus on registered clinical trials based on cell-product characterization and mode of delivery would aid in laying the foundation for a safe and effective therapy in COVID-19. In this review, we shed light on the mechanistic view of MSC therapeutic role based on preclinical and clinical studies on acute lung injury and ARDS; therefore, offering a unique correlation and applicability in COVID-19 patients. We further highlight the challenges and opportunities in the use of MSC-based therapy.
Collapse
Affiliation(s)
- Sara Al-Khawaga
- Dermatology Department, Hamad Medical Corporation, Doha, Qatar.,Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar. .,College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
| |
Collapse
|
30
|
Wu X, Jiang J, Gu Z, Zhang J, Chen Y, Liu X. Mesenchymal stromal cell therapies: immunomodulatory properties and clinical progress. Stem Cell Res Ther 2020; 11:345. [PMID: 32771052 PMCID: PMC7414268 DOI: 10.1186/s13287-020-01855-9] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a subset of heterogeneous non-hematopoietic fibroblast-like cells that can differentiate into cells of multiple lineages, such as chondrocytes, osteoblasts, adipocytes, myoblasts, and others. These multipotent MSCs can be found in nearly all tissues but mostly located in perivascular niches, playing a significant role in tissue repair and regeneration. Additionally, MSCs interact with immune cells both in innate and adaptive immune systems, modulating immune responses and enabling immunosuppression and tolerance induction. Understanding the biology of MSCs and their roles in clinical treatment is crucial for developing MSC-based cellular therapy for a variety of pathological conditions. Here, we review the progress in the study on the mechanisms underlying the immunomodulatory and regenerative effects of MSCs; update the medical translation of MSCs, focusing on the registration trials leading to regulatory approvals; and discuss how to improve therapeutic efficacy and safety of MSC applications for future.
Collapse
Affiliation(s)
- Xiaomo Wu
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China.,Department of Biomedicine, University of Basel, Klingelbergstr 70, CH-4056, Basel, Switzerland
| | - Ju Jiang
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China
| | - Zhongkai Gu
- The Institute of Biomedical Sciences, Fudan University, Mingdao Building, Dongan Road 131, Shanghai, 200032, China
| | - Jinyan Zhang
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China
| | - Yang Chen
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, China.
| |
Collapse
|
31
|
Salih M, Shaharuddin B, Abdelrazeg S. A Concise Review on Mesenchymal Stem Cells for Tissue Engineering with a Perspective on Ocular Surface Regeneration. Curr Stem Cell Res Ther 2020; 15:211-218. [DOI: 10.2174/1574888x15666200129145251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/27/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022]
Abstract
Organ and tissue transplantation are limited by the scarcity of donated organs or tissue
sources. The success of transplantation is limited by the risk of disease transmission and immunological-
related rejection. There is a need for new strategies and innovative solutions to make transplantation
readily available, safer and with less complications to increase the success rates. Accelerating progress
in stem cell biology and biomaterials development have pushed tissue and organ engineering to a
higher level. Among stem cells repertoire, Mesenchymal Stem Cells (MSC) are gaining interest and
recognized as a cell population of choice. There is accumulating evidence that MSC growth factors, its
soluble and insoluble proteins are involved in several key signaling pathways to promote tissue development,
cellular differentiation and regeneration. MSC as multipotent non-hematopoietic cells with
paracrine factors is advantageous for regenerative therapies. In this review, we discussed and summarized
the important features of MSC including its immunomodulatory properties, mechanism of homing
in the direction of tissue injury, licensing of MSC and the role of MSC soluble factors in cell-free
therapy. Special consideration is highlighted on the rapidly growing research interest on the roles of
MSC in ocular surface regeneration.
Collapse
Affiliation(s)
- Mohamed Salih
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Bakiah Shaharuddin
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Samar Abdelrazeg
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
32
|
Shammaa R, El-Kadiry AEH, Abusarah J, Rafei M. Mesenchymal Stem Cells Beyond Regenerative Medicine. Front Cell Dev Biol 2020; 8:72. [PMID: 32133358 PMCID: PMC7040370 DOI: 10.3389/fcell.2020.00072] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are competent suitors of cellular therapy due to their therapeutic impact on tissue degeneration and immune-based pathologies. Additionally, their homing and immunomodulatory properties can be exploited in cancer malignancies to transport pharmacological entities, produce anti-neoplastic agents, or induce anti-tumor immunity. Herein, we create a portfolio for MSC properties, showcasing their distinct multiple therapeutic utilities and successes/challenges thereof in both animal studies and clinical trials. We further highlight the promising potential of MSCs not only in cancer management but also in instigating tumor-specific immunity - i.e., cancer vaccination. Finally, we reflect on the possible reasons impeding the clinical advancement of MSC-based cancer vaccines to assist in contriving novel methodologies from which a therapeutic milestone might emanate.
Collapse
Affiliation(s)
- Riam Shammaa
- Canadian Centre for Regenerative Therapy, Toronto, ON, Canada.,IntelliStem Technologies Inc., Toronto, ON, Canada.,Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Abed El-Hakim El-Kadiry
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Montreal, QC, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Jamilah Abusarah
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada.,Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
33
|
Hmadcha A, Martin-Montalvo A, Gauthier BR, Soria B, Capilla-Gonzalez V. Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy. Front Bioeng Biotechnol 2020; 8:43. [PMID: 32117924 PMCID: PMC7013101 DOI: 10.3389/fbioe.2020.00043] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are among the most frequently used cell type for regenerative medicine. A large number of studies have shown the beneficial effects of MSC-based therapies to treat different pathologies, including neurological disorders, cardiac ischemia, diabetes, and bone and cartilage diseases. However, the therapeutic potential of MSCs in cancer is still controversial. While some studies indicate that MSCs may contribute to cancer pathogenesis, emerging data reported the suppressive effects of MSCs on cancer cells. Because of this reality, a sustained effort to understand when MSCs promote or suppress tumor development is needed before planning a MSC-based therapy for cancer. Herein, we provide an overview on the therapeutic application of MSCs for regenerative medicine and the processes that orchestrates tissue repair, with a special emphasis placed on cancer, including central nervous system tumors. Furthermore, we will discuss the current evidence regarding the double-edged sword of MSCs in oncological treatment and the latest advances in MSC-based anti-cancer agent delivery systems.
Collapse
Affiliation(s)
- Abdelkrim Hmadcha
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Madrid, Spain
| | - Alejandro Martin-Montalvo
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, Seville, Spain
| | - Benoit R Gauthier
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Madrid, Spain
| | - Bernat Soria
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Madrid, Spain.,School of Medicine, Miguel Hernández University, Alicante, Spain.,Pablo de Olavide University, Seville, Spain
| | - Vivian Capilla-Gonzalez
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, Seville, Spain
| |
Collapse
|
34
|
Schmohl KA, Mueller AM, Dohmann M, Spellerberg R, Urnauer S, Schwenk N, Ziegler SI, Bartenstein P, Nelson PJ, Spitzweg C. Integrin αvβ3-Mediated Effects of Thyroid Hormones on Mesenchymal Stem Cells in Tumor Angiogenesis. Thyroid 2019; 29:1843-1857. [PMID: 31816265 DOI: 10.1089/thy.2019.0413] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Several clinical and experimental studies have implicated thyroid hormones in cancer progression. Cancer-relevant effects, including stimulation of tumor growth and new blood vessel formation by angiogenesis, are thought to be mediated by a nonclassical signaling pathway initiated through integrin αvβ3 expressed on cancer cells and proliferating endothelium. In an earlier study, we established mesenchymal stem cells (MSCs), important contributors to the fibrovascular network of tumors, as new thyroid hormone-dependent targets. Here, we evaluated the effects of the thyroid hormones triiodothyronine (T3) and thyroxine (T4) versus Tetrac, an integrin-specific inhibitor of thyroid hormone action, on MSCs in tumor angiogenesis. Methods: Modulation of the expression and secretion of angiogenesis-relevant factors by thyroid hormones in primary human MSCs and their effect on endothelial cell tube formation were tested in vitro. We further engineered MSCs to express the sodium iodide symporter (NIS) reporter gene under control of a hypoxia-responsive promoter and the vascular endothelial growth factor (VEGF) promoter to test effects on these pathways in vitro and, for VEGF, in vivo in an orthotopic hepatocellular carcinoma (HCC) xenograft mouse model by positron emission tomography imaging. Results: T3 and T4 increased the expression of pro-angiogenic genes in MSCs and NIS-mediated radioiodide uptake in both NIS reporter MSC lines in the presence of HCC cell-conditioned medium. Supernatant from thyroid hormone-treated MSCs significantly enhanced endothelial cell tube formation. Tetrac and/or inhibitors of signaling pathways downstream of the integrin reversed all these effects. Tumoral radioiodide uptake in vivo demonstrated successful recruitment of MSCs to tumors and VEGF promoter-driven NIS expression. Hyperthyroid mice showed an increased radioiodide uptake compared with euthyroid mice, while tracer uptake was markedly reduced in hypothyroid and Tetrac-treated mice. Conclusions: Our data suggest that thyroid hormones influence angiogenic signaling in MSCs via integrin αvβ3 and further substantiate the anti-angiogenic activity of Tetrac in the tumor microenvironment.
Collapse
Affiliation(s)
- Kathrin A Schmohl
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Andrea M Mueller
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Maike Dohmann
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Rebekka Spellerberg
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sarah Urnauer
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Nathalie Schwenk
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Peter J Nelson
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| |
Collapse
|
35
|
Cheng RJ, Xiong AJ, Li YH, Pan SY, Zhang QP, Zhao Y, Liu Y, Marion TN. Mesenchymal Stem Cells: Allogeneic MSC May Be Immunosuppressive but Autologous MSC Are Dysfunctional in Lupus Patients. Front Cell Dev Biol 2019; 7:285. [PMID: 31799252 PMCID: PMC6874144 DOI: 10.3389/fcell.2019.00285] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have a potently immunosuppressive capacity in both innate and adaptive immune responses. Consequently, MSCs transplantation has emerged as a potential beneficial therapy for autoimmune diseases even though the mechanisms underlying the immunomodulatory activity of MSCs is incompletely understood. Transplanted MSCs from healthy individuals with no known history of autoimmune disease are immunosuppressive in systemic lupus erythematosus (SLE) patients and can ameliorate SLE disease symptoms in those same patients. In contrast, autologous MSCs from SLE patients are not immunosuppressive and do not ameliorate disease symptoms. Recent studies have shown that MSCs from SLE patients are dysfunctional in both proliferation and immunoregulation and phenotypically senescent. The senescent phenotype has been attributed to multiple genes and signaling pathways. In this review, we focus on the possible mechanisms for the defective phenotype and function of MSCs from SLE patients and summarize recent research on MSCs in autoimmune diseases.
Collapse
Affiliation(s)
- Rui-Juan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - An-Ji Xiong
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Yan-Hong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shu-Yue Pan
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiu-Ping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Tony N Marion
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
36
|
Zhang S, Hu B, Liu W, Wang P, Lv X, Chen S, Liu H, Shao Z. Articular cartilage regeneration: The role of endogenous mesenchymal stem/progenitor cell recruitment and migration. Semin Arthritis Rheum 2019; 50:198-208. [PMID: 31767195 DOI: 10.1016/j.semarthrit.2019.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/04/2019] [Accepted: 11/01/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Trauma- or osteoarthritis-related cartilage damage resulted in functional decline of joints and heavy burden of public health. Recently, the reparative role of mesenchymal stem/progenitor cells (MSCs) in articular cartilage (AC) reconstruction is drawing more and more attention. OBJECTIVE To provide a review on (1) the locations and categories of joint-resident MSCs, (2) the regulation of chondrogenic capacities of MSCs, (3) the migratory approaches of MSCs to diseased AC and regulatory mechanisms. METHODS PubMed and Web of Science were searched for English-language articles related to MSC recruitment and migration for AC repair until June 2019. The presence of various MSCs in or around joints, the potential approaches to diseased AC` and the regenerative capacities of MSCs were reviewed. RESULTS Various intra- and peri-articular MSCs, with inherent migratory potentials, are present in multiple stem cell niches in or around joints. The recruitment and migration of joint-resident MSCs play crucial roles in endogenous AC repair. Multiple recruiting signals, such as chemokines, growth factors, etc., emerge during the development of AC diseases and participate in the regulation of MSC mobilization. Motivated MSCs could migrate into cartilage lesions and then exert multiple reparative potentials, including extracellular matrix (ECM) reconstruction and microenvironment modulation. CONCLUSION In general, AC repair based on endogenous MSC recruitment and migration is a feasible strategy, and a promising research field. Furthermore, endogenous AC repair mediated by native MSCs would provide new opportunities to efficient preventative or therapeutic options for AC diseases.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - Peng Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - Songfeng Chen
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.
| | - Hongjian Liu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
37
|
Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci 2019; 76:3323-3348. [PMID: 31055643 PMCID: PMC11105258 DOI: 10.1007/s00018-019-03125-1] [Citation(s) in RCA: 343] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are isolated from multiple biological tissues-adult bone marrow and adipose tissues and neonatal tissues such as umbilical cord and placenta. In vitro, MSCs show biological features of extensive proliferation ability and multipotency. Moreover, MSCs have trophic, homing/migration and immunosuppression functions that have been demonstrated both in vitro and in vivo. A number of clinical trials are using MSCs for therapeutic interventions in severe degenerative and/or inflammatory diseases, including Crohn's disease and graft-versus-host disease, alone or in combination with other drugs. MSCs are promising for therapeutic applications given the ease in obtaining them, their genetic stability, their poor immunogenicity and their curative properties for tissue repair and immunomodulation. The success of MSC therapy in degenerative and/or inflammatory diseases might depend on the robustness of the biological functions of MSCs, which should be linked to their therapeutic potency. Here, we outline the fundamental and advanced concepts of MSC biological features and underline the biological functions of MSCs in their basic and translational aspects in therapy for degenerative and/or inflammatory diseases.
Collapse
Affiliation(s)
- Abderrahim Naji
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan.
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Benoit Favier
- CEA, DRF-IBFJ, IDMIT, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, Paris-Sud University, Fontenay-aux-Roses, France
| | - Frédéric Deschaseaux
- STROMALab, Etablissement Français du Sang Occitanie, UMR 5273 CNRS, INSERM U1031, Université de Toulouse, Toulouse, France
| | - Nathalie Rouas-Freiss
- CEA, DRF-Francois Jacob Institute, Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, IRSL, UMRS 976, Paris, France
| | - Narufumi Suganuma
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
38
|
Study of bone repair mediated by recombination BMP-2/ recombination CXC chemokine Ligand-13-loaded hollow hydroxyapatite microspheres/chitosan composite. Life Sci 2019; 234:116743. [PMID: 31408660 DOI: 10.1016/j.lfs.2019.116743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 01/14/2023]
Abstract
AIMS The present study aimed to investigate the mechanism of bone repair mediated by recombination BMP-2 (rhBMP-2)/recombination CXC chemokine ligand-13 (rhCXCL13)-loaded hollow hydroxyapatite (HA) microspheres/chitosan (CS) composite. MATERIALS AND METHODS Firstly, the biological activity of rhBMP-2 and rhCXCL13 released from the complex was investigated. Secondly, the effect of rhBMP-2 sustained release solution on ALP activity and rhCXCL13 sustained release solution on cell migration of rat bone marrow mesenchyme stem cells was tested. Thirdly, osteoblasts differentiation test, X-ray scoring and three-point bending test were performed. Finally, the mRNAs expression of osteogenic marker genes and the protein expression of Runx2 was tested by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting (WB), respectively. KEY FINDINGS RhBMP-2 could significantly promote the proliferation and differentiation, and RhCXCL13 could promote the migration of rat bone marrow MSCs. Detection of ALP activity and calcium salt deposition showed that rhBMP-2 and rhCXCL13 could significantly improve the biological activity and promote cell differentiation ability. X-ray scoring of radius and flexural strength test showed that rhBMP-2 and rhCXCL13 could promote bone healing and improve the bending resistance of bone tissue. The in vitro molecular experiments including RT-PCR and WB further demonstrated the roles of rhBMP-2 and rhCXCL13 in bone formation and bone repair. SIGNIFICANCE Our results indicated that the hollow HA microspheres/CS composite could be effective as a delivery vehicle for rhBMP-2 and rhCXCL13 in bone regeneration and bone repair. In this process, rhBMP-2 may promote bone regeneration by regulating bone marrow MSCs cells recruited by rhCXCL13.
Collapse
|
39
|
Ullah M, Liu DD, Thakor AS. Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. iScience 2019; 15:421-438. [PMID: 31121468 PMCID: PMC6529790 DOI: 10.1016/j.isci.2019.05.004] [Citation(s) in RCA: 352] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/30/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been widely investigated for their therapeutic potential in regenerative medicine, owing to their ability to home damaged tissue and serve as a reservoir of growth factors and regenerative molecules. As such, clinical applications of MSCs are reliant on these cells successfully migrating to the desired tissue following their administration. Unfortunately, MSC homing is inefficient, with only a small percentage of cells reaching the target tissue following systemic administration. This attrition represents a major bottleneck in realizing the full therapeutic potential of MSC-based therapies. Accordingly, a variety of strategies have been employed in the hope of improving this process. Here, we review the molecular mechanisms underlying MSC homing, based on a multistep model involving (1) initial tethering by selectins, (2) activation by cytokines, (3) arrest by integrins, (4) diapedesis or transmigration using matrix remodelers, and (5) extravascular migration toward chemokine gradients. We then review the various strategies that have been investigated for improving MSC homing, including genetic modification, cell surface engineering, in vitro priming of MSCs, and in particular, ultrasound techniques, which have recently gained significant interest. Contextualizing these strategies within the multistep homing model emphasizes that our ability to optimize this process hinges on our understanding of its molecular mechanisms. Moving forward, it is only with a combined effort of basic biology and translational work that the potential of MSC-based therapies can be realized.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA
| | - Daniel D Liu
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA.
| |
Collapse
|
40
|
Al-Sowayan B, Keogh RJ, Abumaree M, Georgiou HM, Kalionis B. Valproic acid stimulates in vitro migration of the placenta-derived mesenchymal stem/stromal cell line CMSC29. Stem Cell Investig 2019; 6:3. [PMID: 30976600 DOI: 10.21037/sci.2019.01.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/11/2018] [Indexed: 01/07/2023]
Abstract
Background The placenta is an abundant source of mesenchymal stem/stromal cells (MSC), but our understanding of their functional properties remains limited. We previously created a placental-derived chorionic MSC (CMSC) cell line to overcome the difficulties associated with conducting extensive ex vivo optimization and experimental work on primary cells. The aim of this study was to characterize the migratory behavior of the CMSC29 cell line in vitro. Methods Stimulators of MSC migration, including two cytokines, stromal cell-derived factor-1α (SDF-1α) and hepatocyte growth factor (HGF), and a pharmacological agent, valproic acid (VPA), were tested for their ability to stimulate CMSC29 cell migration. Assessment of cell migration was performed using the xCELLigence Real-Time Cell Analyzer (RTCA). Results There was no significant increase in CMSC29 cell migration towards serum free medium with increasing concentration gradients of SDF-1α or HGF. In contrast, treating CMSC29 cells with VPA alone significantly increased their migration towards serum free medium. Conclusions Immortalized CMSC29 cells retain important properties of primary CMSC, but their migratory properties are altered. CMSC29 cells do not migrate in response to factors that reportedly stimulate primary MSC/CMSC migration. However, CMSC29 increase their migration in response to VPA treatment alone. Further studies are needed to determine the mechanism by which VPA acts alone to stimulate CMSC29 migration. Still, this study provides evidence that VPA pre-treatment may improve the benefits of cell-based therapies that employ certain MSC sub-types.
Collapse
Affiliation(s)
- Balta Al-Sowayan
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria 3052, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Victoria 3052, Australia.,Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Rosemary J Keogh
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria 3052, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Mohammed Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, 11426, Saudi Arabia.,College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, 11481, Saudi Arabia
| | - Harry M Georgiou
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria 3052, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria 3052, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
41
|
Schug C, Urnauer S, Jaeckel C, Schmohl KA, Tutter M, Steiger K, Schwenk N, Schwaiger M, Wagner E, Nelson PJ, Spitzweg C. TGFB1-driven mesenchymal stem cell-mediated NIS gene transfer. Endocr Relat Cancer 2019; 26:89-101. [PMID: 30121623 DOI: 10.1530/erc-18-0173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/13/2018] [Indexed: 01/01/2023]
Abstract
Based on their excellent tumor-homing capacity, genetically engineered mesenchymal stem cells (MSCs) are under investigation as tumor-selective gene delivery vehicles. Transgenic expression of the sodium iodide symporter (NIS) in genetically engineered MSCs allows noninvasive tracking of MSC homing by imaging of functional NIS expression as well as therapeutic application of 131I. The use of tumor stroma-activated promoters can improve tumor-specific MSC-mediated transgene delivery. The essential role of transforming growth factor B1 (TGFB1) and the SMAD downstream target in the signaling between tumor and the surrounding stroma makes the biology of this pathway a potential option to better control NIS expression within the tumor milieu. Bone marrow-derived MSCs were stably transfected with a NIS-expressing plasmid driven by a synthetic SMAD-responsive promoter (SMAD-NIS-MSCs). Radioiodide uptake assays revealed a 4.9-fold increase in NIS-mediated perchlorate-sensitive iodide uptake in SMAD-NIS-MSCs after TGFB1 stimulation compared to unstimulated cells demonstrating the successful establishment of MSCs, which induce NIS expression in response to activation of TGFB1 signaling using a SMAD-responsive promoter. 123I-scintigraphy revealed significant tumor-specific radioiodide accumulation and thus NIS expression after systemic application of SMAD-NIS-MSCs into mice harboring subcutaneous tumors derived from the human hepatocellular carcinoma (HCC) cell line HuH7, which express TGFB1. 131I therapy in SMAD-NIS-MSCs-treated mice demonstrated a significant delay in tumor growth and prolonged survival. Making use of the tumoral TGFB1 signaling network in the context of MSC-mediated NIS gene delivery is a promising approach to foster tumor stroma-selectivity of NIS transgene expression and tailor NIS-based gene therapy to TGFB1-rich tumor environments.
Collapse
Affiliation(s)
- Christina Schug
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sarah Urnauer
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Carsten Jaeckel
- Clinical Biochemistry Group, Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Kathrin A Schmohl
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Mariella Tutter
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Klinikum Rechts der Isar der Technischen Universitaet Muenchen, Munich, Germany
| | - Nathalie Schwenk
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum Rechts der Isar der Technischen Universitaet Muenchen, Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Munich, Germany
| | - Peter J Nelson
- Clinical Biochemistry Group, Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| |
Collapse
|
42
|
Schug C, Gupta A, Urnauer S, Steiger K, Cheung PFY, Neander C, Savvatakis K, Schmohl KA, Trajkovic-Arsic M, Schwenk N, Schwaiger M, Nelson PJ, Siveke JT, Spitzweg C. A Novel Approach for Image-Guided 131I Therapy of Pancreatic Ductal Adenocarcinoma Using Mesenchymal Stem Cell-Mediated NIS Gene Delivery. Mol Cancer Res 2018; 17:310-320. [PMID: 30224540 DOI: 10.1158/1541-7786.mcr-18-0185] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/28/2018] [Accepted: 08/22/2018] [Indexed: 11/16/2022]
Abstract
The sodium iodide symporter (SLC5A5/NIS) as theranostic gene would allow for non-invasive imaging of functional NIS expression and therapeutic radioiodine application. Genetically engineered mesenchymal stem cells (MSC), based on their tumor-homing abilities, show great promise as tumor-selective NIS gene delivery vehicles for non-thyroidal tumors. As a next step towards clinical application, tumor specificity and efficacy of MSCs were investigated in an advanced genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC). Syngeneic murine MSCs were stably transfected with a NIS-expressing plasmid driven by the CMV-promoter (NIS-MSC). In vivo 123I-scintigraphy and 124I-PET revealed significant perchlorate-sensitive NIS-mediated radioiodide accumulation in PDAC after systemic injection of NIS-MSCs. Active MSC recruitment into the tumor stroma was confirmed using NIS immunohistochemistry (IHC). A therapeutic strategy, consisting of three cycles of systemic MSC-mediated NIS delivery, followed by 131I application, resulted in a significant delay and reduction in tumor growth as compared to controls. Furthermore, IHC analysis of α-SMA and Ki67 revealed differences in the amount and behavior of activated fibroblasts in tumors of mice injected with NIS-MSCs as compared with saline-treated mice. Taken together, MSCs as NIS gene delivery vehicles in this advanced endogenous PDAC mouse model demonstrated high stromal targeting of NIS by selective recruitment of NIS-MSCs after systemic application resulting in an impressive 131I therapeutic effect. IMPLICATIONS: These data expand the prospect of MSC-mediated radioiodine imaging-guided therapy of pancreatic cancer using the sodium iodide symporter as a theranostic gene in a clinical setting.
Collapse
Affiliation(s)
- Christina Schug
- Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Aayush Gupta
- Department of Internal Medicine II, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Sarah Urnauer
- Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Phyllis Fung-Yi Cheung
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Neander
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantinos Savvatakis
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin A Schmohl
- Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marija Trajkovic-Arsic
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nathalie Schwenk
- Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Peter J Nelson
- Clinical Biochemistry Group, Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens T Siveke
- Department of Internal Medicine II, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany.,Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
43
|
Wang Y, Li J, Qiu Y, Hu B, Chen J, Fu T, Zhou P, Song J. Low‑intensity pulsed ultrasound promotes periodontal ligament stem cell migration through TWIST1‑mediated SDF‑1 expression. Int J Mol Med 2018; 42:322-330. [PMID: 29620151 PMCID: PMC5979833 DOI: 10.3892/ijmm.2018.3592] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/19/2018] [Indexed: 12/13/2022] Open
Abstract
Low‑intensity pulsed ultrasound (LIPUS) is a non‑invasive therapeutic treatment for accelerating fracture healing. A previous study from our group demonstrated that LIPUS has the potential to promote periodontal tissue regeneration. However, the underlying molecular mechanism by which LIPUS promotes periodontal tissue regeneration remains unknown. In the present study, periodontal ligament stem cells (PDLSCs) were isolated from premolars. Flow cytometry and differentiation assays were used to characterize the isolated PDLSCs. LIPUS treatment was administered to PDLSCs, and stromal cell‑derived factor‑1 (SDF‑1) expression levels were examined by reverse transcription‑quantitative polymerase chain reaction with or without blocking the SDF‑1/C‑X‑C motif chemokine receptor 4 (CXCR4) pathway with AMD3100. ELISA was used to evaluate SDF‑1 secretion in PDLSCs. Wound healing and transwell assays were conducted to assess the migration‑promoting effect of LIPUS. A potential upstream gene of SDF‑1, twist family bHLH transcription factor 1 (TWIST1), was silenced by small interfering (si) RNA transfection. The results demonstrated that LIPUS treatment promoted the expression of TWIST1 and SDF‑1 at both the mRNA and protein levels. In addition, LIPUS treatment enhanced the cell migration of PDLSCs. Knockdown of TWIST1 impaired the expression of SDF‑1 and the cell migration ability of PDLSCs. TWIST1 may be an upstream regulator of SDF‑1 in PDLSCs. Taken together, these findings indicate that the SDF1/CXCR4 signaling pathway is involved in LIPUS‑promoted PDLSC migration, which might be one of the mechanisms for LIPUS‑mediated periodontal regeneration. TWIST1 might be a mechanical stress sensor during mechanotransduction.
Collapse
Affiliation(s)
- Yunji Wang
- College of Stomatology, Chongqing Medical University; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P.R. China
| | - Jie Li
- College of Stomatology, Chongqing Medical University; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P.R. China
| | - Ye Qiu
- College of Stomatology, Chongqing Medical University; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P.R. China
| | - Bo Hu
- College of Stomatology, Chongqing Medical University; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P.R. China
| | - Jin Chen
- College of Stomatology, Chongqing Medical University; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P.R. China
| | - Tiwei Fu
- College of Stomatology, Chongqing Medical University; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P.R. China
| | - Pengfei Zhou
- College of Stomatology, Chongqing Medical University; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P.R. China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P.R. China
| |
Collapse
|
44
|
Müller AM, Schmohl KA, Knoop K, Schug C, Urnauer S, Hagenhoff A, Clevert DA, Ingrisch M, Niess H, Carlsen J, Zach C, Wagner E, Bartenstein P, Nelson PJ, Spitzweg C. Hypoxia-targeted 131I therapy of hepatocellular cancer after systemic mesenchymal stem cell-mediated sodium iodide symporter gene delivery. Oncotarget 2018; 7:54795-54810. [PMID: 27458162 PMCID: PMC5342382 DOI: 10.18632/oncotarget.10758] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/10/2016] [Indexed: 12/18/2022] Open
Abstract
Adoptively transferred mesenchymal stem cells (MSCs) home to solid tumors. Biologic features within the tumor environment can be used to selectively activate transgenes in engineered MSCs after tumor invasion. One of the characteristic features of solid tumors is hypoxia. We evaluated a hypoxia-based imaging and therapy strategy to target expression of the sodium iodide symporter (NIS) gene to experimental hepatocellular carcinoma (HCC) delivered by MSCs. MSCs engineered to express transgenes driven by a hypoxia-responsive promoter showed robust transgene induction under hypoxia as demonstrated by mCherry expression in tumor cell spheroid models, or radioiodide uptake using NIS. Subcutaneous and orthotopic HCC xenograft mouse models revealed significant levels of perchlorate-sensitive NIS-mediated tumoral radioiodide accumulation by tumor-recruited MSCs using 123I-scintigraphy or 124I-positron emission tomography. Functional NIS expression was further confirmed by ex vivo123I-biodistribution analysis. Administration of a therapeutic dose of 131I in mice treated with NIS-transfected MSCs resulted in delayed tumor growth and reduced tumor perfusion, as shown by contrast-enhanced sonography, and significantly prolonged survival of mice bearing orthotopic HCC tumors. Interestingly, radioiodide uptake into subcutaneous tumors was not sufficient to induce therapeutic effects. Our results demonstrate the potential of using tumor hypoxia-based approaches to drive radioiodide therapy in non-thyroidal tumors.
Collapse
Affiliation(s)
- Andrea M Müller
- Department of Internal Medicine II, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Kathrin A Schmohl
- Department of Internal Medicine II, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Kerstin Knoop
- Department of Internal Medicine II, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christina Schug
- Department of Internal Medicine II, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sarah Urnauer
- Department of Internal Medicine II, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anna Hagenhoff
- Clinical Biochemistry Group, Medizinische Klinik und Poliklinik IV, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dirk-André Clevert
- Department of Clinical Radiology, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Michael Ingrisch
- Department of Clinical Radiology, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hanno Niess
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Janette Carlsen
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christian Zach
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Peter J Nelson
- Clinical Biochemistry Group, Medizinische Klinik und Poliklinik IV, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine II, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
45
|
Li X, He X, Yin Y, Wu R, Tian B, Chen F. Administration of signalling molecules dictates stem cell homing for in situ regeneration. J Cell Mol Med 2017; 21:3162-3177. [PMID: 28767189 PMCID: PMC5706509 DOI: 10.1111/jcmm.13286] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
Ex vivo-expanded stem cells have long been a cornerstone of biotherapeutics and have attracted increasing attention for treating intractable diseases and improving tissue regeneration. However, using exogenous cellular materials to develop restorative treatments for large numbers of patients has become a major concern for both economic and safety reasons. Advances in cell biological research over the past two decades have expanded the potential for using endogenous stem cells during wound healing processes, and in particular, recent insight into stem cell movement and homing has prompted regenerative research and therapy based on recruiting endogenous cells. Inspired by the natural healing process, artificial administration of specific chemokines as signals systemically or at the injury site, typically using biomaterials as vehicles, is a state-of-the-art strategy that potentiates stem cell homing and recreates an anti-inflammatory and immunomodulatory microenvironment to enhance in situ tissue regeneration. However, pharmacologically coaxing endogenous stem cells to act as therapeutics in the field of biomedicine remains in the early stages; its efficacy is limited by the lack of innovative methodologies for chemokine presentation and release. This review describes how to direct the homing of endogenous stem cells via the administration of specific signals, with a particular emphasis on targeted signalling molecules that regulate this homing process, to enhance in situ tissue regeneration. We also provide an outlook on and critical considerations for future investigations to enhance stem cell recruitment and harness the reparative potential of these recruited cells as a clinically relevant cell therapy.
Collapse
Affiliation(s)
- Xuan Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Xiao‐Tao He
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Yuan Yin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Rui‐Xin Wu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Bei‐Min Tian
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Fa‐Ming Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| |
Collapse
|
46
|
Sun Z, Gou W, Kim DS, Dong X, Strange C, Tan Y, Adams DB, Wang H. Adipose Stem Cell Therapy Mitigates Chronic Pancreatitis via Differentiation into Acinar-like Cells in Mice. Mol Ther 2017; 25:2490-2501. [PMID: 28784560 PMCID: PMC5675167 DOI: 10.1016/j.ymthe.2017.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 06/10/2017] [Accepted: 06/17/2017] [Indexed: 12/11/2022] Open
Abstract
The objective of this study was to assess the capacity of adipose-derived mesenchymal stem cells (ASCs) to mitigate disease progression in an experimental chronic pancreatitis mouse model. Chronic pancreatitis (CP) was induced in C57BL/6 mice by repeated ethanol and cerulein injection, and mice were then infused with 4 × 105 or 1 × 106 GFP+ ASCs. Pancreas morphology, fibrosis, inflammation, and presence of GFP+ ASCs in pancreases were assessed 2 weeks after treatment. We found that ASC infusion attenuated pancreatic damage, preserved pancreas morphology, and reduced pancreatic fibrosis and cell death. GFP+ ASCs migrated to pancreas and differentiated into amylase+ cells. In further confirmation of the plasticity of ASCs, ASCs co-cultured with acinar cells in a Transwell system differentiated into amylase+ cells with increased expression of acinar cell-specific genes including amylase and chymoB1. Furthermore, culture of acinar or pancreatic stellate cell lines in ASC-conditioned medium attenuated ethanol and cerulein-induced pro-inflammatory cytokine production in vitro. Our data show that a single intravenous injection of ASCs ameliorated CP progression, likely by directly differentiating into acinar-like cells and by suppressing inflammation, fibrosis, and pancreatic tissue damage. These results suggest that ASC cell therapy has the potential to be a valuable treatment for patients with pancreatitis.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Wenyu Gou
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Do-Sung Kim
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Xiao Dong
- Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Charlie Strange
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yu Tan
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - David B Adams
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
47
|
Heirani-Tabasi A, Toosi S, Mirahmadi M, Mishan MA, Bidkhori HR, Bahrami AR, Behravan J, Naderi-Meshkin H. Chemokine Receptors Expression in MSCs: Comparative Analysis in Different Sources and Passages. Tissue Eng Regen Med 2017; 14:605-615. [PMID: 30603514 DOI: 10.1007/s13770-017-0069-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/19/2017] [Accepted: 06/29/2017] [Indexed: 12/13/2022] Open
Abstract
MSC-based therapy is providing a cure for degenerative diseases with unmet medical need and usually iliac crest bone marrow (ICBM) are being applied in clinics. Alternative sources, including adipose tissue and reamer/irrigator/aspirator hold great potential for isolating MCSs. Here, we compared original MSCs features of adipose tissue (Ad-MSCs) and bone marrow of long-bone (RIA-MSCs) or iliac crest, and the expression of chemokine receptors (including CXCR4, CX3CR1, CXCR6, CXCR2, CCR1 and CCR7) in these three sources, which are important in the context of homing. We further investigated the role of SDF-1/CXCR4 axis as a key player in motility of different population of MSCs using Transwell migration assay. All cells exhibited typical MSCs characteristics. However, different MSCs sources expressed different levels of chemokine receptors. Generally, the expression of these chemokine receptors was decreased with increasing passage (P) number from 2 to 3. Interestingly, it was observed that the CXCR4 expression and migration capacity in Ad-MSCs is significantly higher than ICBM and RIA-MSCs in P2. Although our data showed that CXCR4 had highest expression in P2 Ad-MSCs, but it dramatically declined following sub-culturing in the P3. Hence, to improve homing of MSCs by means of chemokine/their receptors axis, the source of isolation and passage number should be considered for clinical applications.
Collapse
Affiliation(s)
- Asieh Heirani-Tabasi
- Department of stem Cells and Regenerative Medicine Research, ACECR-Khorasan Razavi Branch Institute, Mashhad, 917751436 Iran
| | - Shirin Toosi
- 2Department of Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 917751436 Iran
| | - Mahdi Mirahmadi
- Department of stem Cells and Regenerative Medicine Research, ACECR-Khorasan Razavi Branch Institute, Mashhad, 917751436 Iran
| | - Mohammad Amir Mishan
- Department of stem Cells and Regenerative Medicine Research, ACECR-Khorasan Razavi Branch Institute, Mashhad, 917751436 Iran
| | - Hamid Reza Bidkhori
- Department of stem Cells and Regenerative Medicine Research, ACECR-Khorasan Razavi Branch Institute, Mashhad, 917751436 Iran
| | - Ahmad Reza Bahrami
- Department of stem Cells and Regenerative Medicine Research, ACECR-Khorasan Razavi Branch Institute, Mashhad, 917751436 Iran
- 3Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 917751436 Iran
| | - Javad Behravan
- 2Department of Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 917751436 Iran
| | - Hojjat Naderi-Meshkin
- Department of stem Cells and Regenerative Medicine Research, ACECR-Khorasan Razavi Branch Institute, Mashhad, 917751436 Iran
| |
Collapse
|
48
|
Maerz T, Fleischer M, Newton MD, Davidson A, Salisbury M, Altman P, Kurdziel MD, Anderson K, Bedi A, Baker KC. Acute mobilization and migration of bone marrow-derived stem cells following anterior cruciate ligament rupture. Osteoarthritis Cartilage 2017; 25:1335-1344. [PMID: 28284998 DOI: 10.1016/j.joca.2017.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/21/2017] [Accepted: 03/01/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Little is known regarding acute local and systemic processes following anterior cruciate ligament (ACL) rupture. No study has elucidated whether bone marrow-derived mesenchymal stem cells (MSCs) are mobilized into circulation and recruited to the injured joint. METHODS In Part 1, Lewis rats were randomized to noninvasive ACL rupture (Rupture) or non-injured (Control) (n = 6/group). After 72 h, whole blood MSC concentration was assessed using flow cytometry. Synovial fluid and serum were assayed for stromal cell-derived factor (SDF)-1α and cartilage degeneration biomarkers, respectively. In Part 2, 12 additional rats were randomized and intravenously-injected with fluorescently-labeled allogenic MSCs. Cell tracking was performed using longitudinal, in vivo and ex vivo near-infrared (NIR) imaging and histology. Synovium SDF-1α and interleukin (IL)-17A immunostaining was performed. Serum was assayed for SDF-1α and 29 other cytokines. RESULTS In Part 1, there was a significant increase in MSC concentration and synovial fluid SDF-1α in Rupture. No differences in cartilage biomarkers were observed. In Part 2, Rupture had significantly higher NIR signal at 24, 48, and 72 h, indicating active recruitment of MSCs to the injured joint. Ex vivo cell tracking demonstrated MSC localization in the synovium and myotendinous junction (MTJ) of the quadriceps. Injured synovia exhibited increased synovitis grade and higher degree of IL-17A and SDF-1α immunostaining. CONCLUSION ACL rupture induced peripheral blood mobilization of MSCs and migration of intravenously-injected allogenic MSCs to the injured joint, where they localized in the synovium and quadriceps MTJ.
Collapse
Affiliation(s)
- T Maerz
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, MI, USA; Department of Orthopaedic Surgery, Oakland University - William Beaumont School of Medicine, Rochester, MI, USA
| | - M Fleischer
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, MI, USA
| | - M D Newton
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, MI, USA
| | - A Davidson
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, MI, USA
| | - M Salisbury
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, MI, USA
| | - P Altman
- Department of Orthopaedic Surgery, Beaumont Health, Royal Oak, MI, USA
| | - M D Kurdziel
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, MI, USA; Department of Orthopaedic Surgery, Oakland University - William Beaumont School of Medicine, Rochester, MI, USA
| | - K Anderson
- Department of Orthopaedic Surgery, Oakland University - William Beaumont School of Medicine, Rochester, MI, USA; Department of Orthopaedic Surgery, Beaumont Health, Royal Oak, MI, USA
| | - A Bedi
- MedSport and Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - K C Baker
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, MI, USA; Department of Orthopaedic Surgery, Oakland University - William Beaumont School of Medicine, Rochester, MI, USA.
| |
Collapse
|
49
|
Zhao Y, Zhang H. Update on the mechanisms of homing of adipose tissue-derived stem cells. Cytotherapy 2017; 18:816-27. [PMID: 27260205 DOI: 10.1016/j.jcyt.2016.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/11/2016] [Accepted: 04/25/2016] [Indexed: 02/06/2023]
Abstract
Adipose tissue-derived stem cells (ADSCs), which resemble bone marrow mesenchymal stromal cells (BMSCs), have shown great advantages and promise in the field of regenerative medicine. They can be readily harvested in large numbers with low donor-site morbidity. To date, a great number of preclinical and clinical studies have shown ADSCs' safety and efficacy in regenerative medicine. However, a better understanding of the mechanisms of homing of ADSCs is needed to advance the clinical utility of this therapy. In this review, the reports of the homing of ADSCs were searched using Pubmed and Google Scholar to update our knowledge. ADSCs were proved to interact with endothelial cells by expressing the similar integrins with BMSCs. In addition, ADSCs do not possess the dominant ligand for P-selectin, just like BMSCs. Stromal derived factor-1 (SDF-1)/CXCR4 and CXC ligand-5 (CXCL5)/CXCR2 interactions are the two main axes governing ADSCs extravasation from bone marrow vessels. Some more signaling pathways involved in migration of ADSCs have been investigated, including LPA/LPA1 signaling pathway, MAPK/Erk1/2 signaling pathway, RhoA/Rock signaling pathway and PDGF-BB/PDGFR-β signaling pathway. Status quo of a lack of intensive studies on the details of homing of ADSCs should be improved in the near future before clinical application.
Collapse
Affiliation(s)
- Yong Zhao
- Minimally Invasive Urology Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Haiyang Zhang
- Minimally Invasive Urology Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China; Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
50
|
Mesenchymal stem cell detachment with trace trypsin is superior to EDTA for in vitro chemotaxis and adhesion assays. Biochem Biophys Res Commun 2017; 484:656-661. [PMID: 28153723 DOI: 10.1016/j.bbrc.2017.01.171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/28/2017] [Indexed: 02/06/2023]
Abstract
Trypsin is frequently used to dissociate mesenchymal stem cells (MSCs) for in vitro adhesion and chemotaxis assays. However, its potential impact on surface receptor degradation is poorly understood. The purpose of this study was to evaluate the effect of trypsin-EDTA exposure versus PBS-EDTA on MSC surface receptor integrity and function. Primary human MSCs were detached with PBS-EDTA alone, or Cell Dissociation Buffer followed by 30 s exposure to 0.05% w/v trypsin-EDTA (trace trypsin method, TT), or 0.25% w/v trypsin exposure for 2 or 5 min. Cells were characterized for surface integrity of β1 integrin (CD29) and PDGF Receptor (PDGF-R), and assessed in vitro for adhesion to atelocollagen-coated surfaces and migration to PDGF-BB. PBS-EDTA detachment fully preserved receptor integrity but routinely detached only half of the adherent cells and led to cell aggregates that failed to adhere evenly across the Transwell migration insert. Both CD29 and PDGF-R were significantly degraded by 0.25% trypsin detachment for 2 or 5 min compared to the TT method or PBS-EDTA (p < 0.05). Cells migrated optimally to PDGF-BB when detached with the TT method (3.1-fold vs α-MEM, p = 0.01). Cells attached optimally to atelocollagen when detached using the TT method or PBS-EDTA (6- to 10-fold vs 0.25% trypsin, p < 0.01). CDB followed by trace trypsin-EDTA exposure is recommended over PBS-EDTA to produce a single-cell MSC suspension that preserves receptor integrity and more reproducible receptor-mediated responses.
Collapse
|