1
|
Kao T, Labonne T, Niclis JC, Chaurasia R, Lokmic Z, Qian E, Bruveris FF, Howden SE, Motazedian A, Schiesser JV, Costa M, Sourris K, Ng E, Anderson D, Giudice A, Farlie P, Cheung M, Lamande SR, Penington AJ, Parish CL, Thomson LH, Rafii A, Elliott DA, Elefanty AG, Stanley EG. GAPTrap: A Simple Expression System for Pluripotent Stem Cells and Their Derivatives. Stem Cell Reports 2016; 7:518-526. [PMID: 27594589 PMCID: PMC5032031 DOI: 10.1016/j.stemcr.2016.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 01/30/2023] Open
Abstract
The ability to reliably express fluorescent reporters or other genes of interest is important for using human pluripotent stem cells (hPSCs) as a platform for investigating cell fates and gene function. We describe a simple expression system, designated GAPTrap (GT), in which reporter genes, including GFP, mCherry, mTagBFP2, luc2, Gluc, and lacZ are inserted into the GAPDH locus in hPSCs. Independent clones harboring variations of the GT vectors expressed remarkably consistent levels of the reporter gene. Differentiation experiments showed that reporter expression was reliably maintained in hematopoietic cells, cardiac mesoderm, definitive endoderm, and ventral midbrain dopaminergic neurons. Similarly, analysis of teratomas derived from GT-lacZ hPSCs showed that β-galactosidase expression was maintained in a spectrum of cell types representing derivatives of the three germ layers. Thus, the GAPTrap vectors represent a robust and straightforward tagging system that enables indelible labeling of PSCs and their differentiated derivatives. GAPTrap vector system targets transgenes to the ubiquitously expressed GAPDH locus Targeting transgenes to the GAPDH locus yields reliable transgene expression Transgenes at this locus are robustly expressed in differentiated cells Generation of GAPTrap targeted human PSC lines is simple and efficient
Collapse
Affiliation(s)
- Tim Kao
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia
| | - Tanya Labonne
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia
| | - Jonathan C Niclis
- The Florey Institute of Neuroscience and Mental Health, Melbourne University, Parkville, VIC 3052, Australia
| | - Ritu Chaurasia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia
| | - Zerina Lokmic
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia
| | - Elizabeth Qian
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia
| | - Freya F Bruveris
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sara E Howden
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia
| | - Ali Motazedian
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia
| | - Jacqueline V Schiesser
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Division of Developmental Biology, Cincinnati Children's Hospital Medical Centre, Cincinnati, OH 45229, USA
| | - Magdaline Costa
- Australian Centre for Blood Diseases, Monash University, The Alfred Centre, Melbourne, VIC 3004, Australia
| | - Koula Sourris
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia
| | - Elizabeth Ng
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia
| | - David Anderson
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia
| | - Antonietta Giudice
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Peter Farlie
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia
| | - Michael Cheung
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia; Department of Cardiology, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Shireen R Lamande
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia
| | - Anthony J Penington
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, Melbourne University, Parkville, VIC 3052, Australia
| | - Lachlan H Thomson
- The Florey Institute of Neuroscience and Mental Health, Melbourne University, Parkville, VIC 3052, Australia
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Qatar Foundation, Education City, Doha, Qatar; Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065-4896, USA
| | - David A Elliott
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; School of Biosciences, University of Melbourne, Parkville, VIC 3050, Australia
| | - Andrew G Elefanty
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Edouard G Stanley
- Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3050, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
2
|
Abouhamzeh B, Salehi M, Hosseini A, Masteri-Farahani AR, Fadai F, Heidari MH, Nourozian M, Soleimani M, Khorashadizadeh M, Mossahebi-Mohammadi M, Mansouri A. DNA Methylation and Histone Acetylation Patterns in Cultured Bovine Adipose Tissue-Derived Stem Cells (BADSCs). CELL JOURNAL 2015; 16:466-75. [PMID: 25685737 PMCID: PMC4297485 DOI: 10.22074/cellj.2015.492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/25/2013] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Many studies have focused on the epigenetic characteristics of donor cells to improve somatic cell nuclear transfer (SCNT). We hypothesized that the epigenetic status and chromatin structure of undifferentiated bovine adipose tissue-derived stem cells (BADSCs) would not remain constant during different passages. The objective of this study was to determine the mRNA expression patterns of DNA methyltransferases (DNMT1, DNMT3a, DNMT3b) and histone deacetyltransferses (HDAC1, HDAC2, HDAC3) in BADSCs. In addition, we compared the measured levels of octamer binding protein-4 expression (OCT4) and acetylation of H3K9 (H3K9ac) in BADSCs cultures and different passages in vitro. MATERIALS AND METHODS In this experimental study, subcutaneous fat was obtained from adult cows immediately post-mortem. Relative level of DNMTs and HDACs was examined using quantitative real time polymerase chain reaction (q-PCR), and the level of OCT4 and H3K9ac was analyzed by flow cytometry at passages 3 (P3), 5 (P5) and 7 (P7). RESULTS The OCT4 protein level was similar at P3 and P5 but a significant decrease in its level was seen at P7. The highest and lowest levels of H3K9ac were observed at P5 and P7, respectively. At P5, the expression of HDACs and DNMTs was significantly decreased. In contrast, a remarkable increase in the expression of DNMTs was observed at P7. CONCLUSION Our data demonstrated that the epigenetic status of BADSCs was variable during culture. The P5 cells showed the highest level of stemness and multipotency and the lowest level of chromatin compaction. Therefore, we suggest that P5 cells may be more efficient for SCNT compared with other passages.
Collapse
Affiliation(s)
- Beheshteh Abouhamzeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran ; Department of Cell Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran ; Department of Biotechnology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Hosseini
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Reza Masteri-Farahani
- Department of Cell Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadai
- Department of Cell Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Heidari
- Department of Cell Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Nourozian
- Department of Cell Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Khorashadizadeh
- Department of Medical Biotechnology, School of Advanced Medical Technology, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ardalan Mansouri
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Abstract
Pluripotent cells in embryos are situated near the apex of the hierarchy of developmental potential. They are capable of generating all cell types of the mammalian body proper. Therefore, they are the exemplar of stem cells. In vivo, pluripotent cells exist transiently and become expended within a few days of their establishment. Yet, when explanted into artificial culture conditions, they can be indefinitely propagated in vitro as pluripotent stem cell lines. A host of transcription factors and regulatory genes are now known to underpin the pluripotent state. Nonetheless, how pluripotent cells are equipped with their vast multilineage differentiation potential remains elusive. Consensus holds that pluripotency transcription factors prevent differentiation by inhibiting the expression of differentiation genes. However, this does not explain the developmental potential of pluripotent cells. We have presented another emergent perspective, namely, that pluripotency factors function as lineage specifiers that enable pluripotent cells to differentiate into specific lineages, therefore endowing pluripotent cells with their multilineage potential. Here we provide a comprehensive overview of the developmental biology, transcription factors, and extrinsic signaling associated with pluripotent cells, and their accompanying subtypes, in vitro heterogeneity and chromatin states. Although much has been learned since the appreciation of mammalian pluripotency in the 1950s and the derivation of embryonic stem cell lines in 1981, we will specifically emphasize what currently remains unclear. However, the view that pluripotency factors capacitate differentiation, recently corroborated by experimental evidence, might perhaps address the long-standing question of how pluripotent cells are endowed with their multilineage differentiation potential.
Collapse
Affiliation(s)
- Kyle M. Loh
- Department of Developmental Biology and the Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Genome Institute of Singapore, Stem Cell & Regenerative Biology Group, Agency for Science, Technology & Research, Singapore; and Department of Medicine and the Beth Israel Deaconess Medical Center, Division of Hematology/Oncology, Harvard Medical School, Boston, Massachusetts
| | - Bing Lim
- Department of Developmental Biology and the Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Genome Institute of Singapore, Stem Cell & Regenerative Biology Group, Agency for Science, Technology & Research, Singapore; and Department of Medicine and the Beth Israel Deaconess Medical Center, Division of Hematology/Oncology, Harvard Medical School, Boston, Massachusetts
| | - Lay Teng Ang
- Department of Developmental Biology and the Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Genome Institute of Singapore, Stem Cell & Regenerative Biology Group, Agency for Science, Technology & Research, Singapore; and Department of Medicine and the Beth Israel Deaconess Medical Center, Division of Hematology/Oncology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Nazareth EJP, Ostblom JEE, Lücker PB, Shukla S, Alvarez MM, Oh SKW, Yin T, Zandstra PW. High-throughput fingerprinting of human pluripotent stem cell fate responses and lineage bias. Nat Methods 2013; 10:1225-31. [PMID: 24141495 PMCID: PMC5061564 DOI: 10.1038/nmeth.2684] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 08/30/2013] [Indexed: 12/22/2022]
Abstract
Populations of cells create local environments that lead to emergent heterogeneity. This is particularly evident in human pluripotent stem cells (hPSCs) where microenvironmental heterogeneity limits cell fate control. We have developed a high-throughput platform to screen hPSCs in configurable micro-environments, enabling the optimization of colony size, cell density, and additional parameters for rapid and robust cell fate responses. Single-cell protein expression profiling revealed that Oct4 and Sox2 co-staining discriminate pluripotent, neuroectoderm, primitive streak, and extraembryonic cell fates, allowing dose responses of 27 developmental factors to simultaneously delineate lineage-specific concentration optima. This platform also enabled quantification of endogenous signaling pathway activation and differentiation bias (fingerprinting). Short-term (48 h) fingerprinting is predictive of definitive endoderm induction efficiency across 12 cell lines and was used a priori to rescue long-term (>18 day) differentiation of a cell line reticent to cardiac induction. These findings facilitate high-throughput hPSC-based screening and quantification of lineage induction bias.
Collapse
Affiliation(s)
- Emanuel J P Nazareth
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Pereira LA, Wong MS, Mei Lim S, Stanley EG, Elefanty AG. The Mix family of homeobox genes—Key regulators of mesendoderm formation during vertebrate development. Dev Biol 2012; 367:163-77. [DOI: 10.1016/j.ydbio.2012.04.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 04/24/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
|
6
|
Pereira LA, Wong MS, Lim SM, Sides A, Stanley EG, Elefanty AG. Brachyury and related Tbx proteins interact with the Mixl1 homeodomain protein and negatively regulate Mixl1 transcriptional activity. PLoS One 2011; 6:e28394. [PMID: 22164283 PMCID: PMC3229578 DOI: 10.1371/journal.pone.0028394] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/07/2011] [Indexed: 02/07/2023] Open
Abstract
Mixl1 is a homeodomain transcription factor required for mesoderm and endoderm patterning during mammalian embryogenesis. Despite its crucial function in development, co-factors that modulate the activity of Mixl1 remain poorly defined. Here we report that Mixl1 interacts physically and functionally with the T-box protein Brachyury and related members of the T-box family of transcription factors. Transcriptional and protein analyses demonstrated overlapping expression of Mixl1 and Brachyury during embryonic stem cell differentiation. In vitro protein interaction studies showed that the Mixl1 with Brachyury associated via their DNA-binding domains and gel shift assays revealed that the Brachyury T-box domain bound to Mixl1-DNA complexes. Furthermore, luciferase reporter experiments indicated that association of Mixl1 with Brachyury and related T-box factors inhibited the transactivating potential of Mixl1 on the Gsc and Pdgfrα promoters. Our results indicate that the activity of Mixl1 can be modulated by protein-protein interactions and that T-box factors can function as negative regulators of Mixl1 activity.
Collapse
Affiliation(s)
- Lloyd A. Pereira
- Differentiation and Transcription Laboratory, Peter MacCallum Cancer Centre and the Pathology Department, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael S. Wong
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Sue Mei Lim
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Alexandra Sides
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Edouard G. Stanley
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
- * E-mail: (AGE); (EGS)
| | - Andrew G. Elefanty
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
- * E-mail: (AGE); (EGS)
| |
Collapse
|
7
|
Pereira LA, Wong MS, Mossman AK, Sourris K, Janes ME, Knezevic K, Hirst CE, Lim SM, Pimanda JE, Stanley EG, Elefanty AG. Pdgfrα and Flk1 are direct target genes of Mixl1 in differentiating embryonic stem cells. Stem Cell Res 2011; 8:165-79. [PMID: 22265737 DOI: 10.1016/j.scr.2011.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 09/28/2011] [Indexed: 11/25/2022] Open
Abstract
The Mixl1 homeodomain protein plays a key role in mesendoderm patterning during embryogenesis, but its target genes remain to be identified. We compared gene expression in differentiating heterozygous Mixl1(GFP/w) and homozygous null Mixl1(GFP/Hygro) mouse embryonic stem cells to identify potential downstream transcriptional targets of Mixl1. Candidate Mixl1 regulated genes whose expression was reduced in GFP+ cells isolated from differentiating Mixl1(GFP/Hygro) embryoid bodies included Pdgfrα and Flk1. Mixl1 bound to ATTA sequences located in the Pdgfrα and Flk1 promoters and chromatin immunoprecipitation assays confirmed Mixl1 occupancy of these promoters in vivo. Furthermore, Mixl1 transactivated the Pdgfrα and Flk1 promoters through ATTA sequences in a DNA binding dependent manner. These data support the hypothesis that Mixl1 directly regulates Pdgfrα and Flk1 gene expression and strengthens the position of Mixl1 as a key regulator of mesendoderm development during mammalian gastrulation.
Collapse
Affiliation(s)
- Lloyd A Pereira
- Differentiation and Transcription Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Musashi1 and hairy and enhancer of split 1 high expression cells derived from embryonic stem cells enhance the repair of small-intestinal injury in the mouse. Dig Dis Sci 2011; 56:1354-68. [PMID: 21221806 DOI: 10.1007/s10620-010-1441-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 09/19/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND Embryonic stem cells have great plasticity. In this study, we repaired impaired small intestine by transplanting putative intestinal epithelial stem cells (Musashi1 and hairy and enhancer of split 1 high expression cells) derived from embryonic stem cells. METHODS The differentiation of definitive endoderm in embryoid bodies, derived from male ES-E14TG2a cells by the hanging-drop method, was monitored to define a time point for maximal induction of putative intestinal epithelial stem cells by epidermal growth factor. Furthermore, to evaluate the regenerative potential of intestinal epithelium, these putative stem cells were engrafted into NOD/SCID mice and female mice with enteritis. Donor cells were located by SRY DNA in situ hybridization. RESULTS The results revealed that definitive endodermal markers were highly expressed in 5-day embryoid bodies. These embryoid body cells were induced into putative intestinal epithelial stem cells on the 5th day of epidermal growth factor administration. Grafts from these cells consisted of adenoid structures and nonspecific structural cells with strong expression of small-intestinal epithelial cell markers. In situ hybridization revealed that the donor cells could specifically locate in damaged intestinal epithelium, contribute to epithelial structures, and enhance regeneration. CONCLUSIONS In conclusion, the Musashi1 and hairy and enhancer of split 1 high expression cells, derived from mouse embryonic stem cells, locate predominantly in impaired small-intestinal epithelium after transplantation and contribute to epithelial regeneration.
Collapse
|
9
|
Pan Y, Ouyang Z, Wong WH, Baker JC. A new FACS approach isolates hESC derived endoderm using transcription factors. PLoS One 2011; 6:e17536. [PMID: 21408072 PMCID: PMC3052315 DOI: 10.1371/journal.pone.0017536] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 02/08/2011] [Indexed: 01/18/2023] Open
Abstract
We show that high quality microarray gene expression profiles can be obtained following FACS sorting of cells using combinations of transcription factors. We use this transcription factor FACS (tfFACS) methodology to perform a genomic analysis of hESC-derived endodermal lineages marked by combinations of SOX17, GATA4, and CXCR4, and find that triple positive cells have a much stronger definitive endoderm signature than other combinations of these markers. Additionally, SOX17(+) GATA4(+) cells can be obtained at a much earlier stage of differentiation, prior to expression of CXCR4(+) cells, providing an important new tool to isolate this earlier definitive endoderm subtype. Overall, tfFACS represents an advancement in FACS technology which broadly crosses multiple disciplines, most notably in regenerative medicine to redefine cellular populations.
Collapse
Affiliation(s)
- Yuqiong Pan
- Departments of Statistics, Genetics, and Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Zhengqing Ouyang
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Wing Hung Wong
- Departments of Statistics, Health Research and Policy, and Biology, Stanford University, Stanford, California, United States of America
- * E-mail: (WHW); (JCB)
| | - Julie C. Baker
- Department of Genetics, Stanford University, Stanford, California, United States of America
- * E-mail: (WHW); (JCB)
| |
Collapse
|
10
|
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate messenger RNAs at the post-transcriptional level. They play an important role in the control of cell physiological functions, and their alterations have been related to cancer, where they can function as oncogenes or tumor suppressor genes. Recently, they have emerged as key regulators of "stemness", collaborating in the maintenance of pluripotency, control of self-renewal, and differentiation of stem cells. The miRNA pathway has been shown to be crucial in embryonic development and in embryonic stem (ES) cells, as shown by Dicer knockout analysis. Specific patterns of miRNAs have been reported to be expressed only in ES cells and in early phases of embryonic development. Moreover, many cancers present small populations of cells with stem cell characteristics, called cancer stem cells (CSCs). CSCs are responsible for relapse and treatment failure in many cancer patients, and the comparative analysis of expression patterns between ES cells and tumors can lead to the identification of a miRNA signature to define CSCs. Most of the key miRNAs identified to date in ES cells have been shown to play a role in tumor diagnosis or prognosis, and may well prove to be essential in cancer therapy in the foreseeable future.
Collapse
Affiliation(s)
- Alfons Navarro
- Human Anatomy and Embryology Unit, Molecular Oncology and Embryology Laboratory, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Mariano Monzó
- Human Anatomy and Embryology Unit, Molecular Oncology and Embryology Laboratory, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
11
|
Harvey NT, Hughes JN, Lonic A, Yap C, Long C, Rathjen PD, Rathjen J. Response to BMP4 signalling during ES cell differentiation defines intermediates of the ectoderm lineage. J Cell Sci 2010; 123:1796-804. [PMID: 20427322 DOI: 10.1242/jcs.047530] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The formation and differentiation of multipotent precursors underlies the generation of cell diversity during mammalian development. Recognition and analysis of these transient cell populations has been hampered by technical difficulties in accessing them in vivo. In vitro model systems, based on the differentiation of embryonic stem (ES) cells, provide an alternative means of identifying and characterizing these populations. Using a previously established mouse ES-cell-based system that recapitulates the development of the ectoderm lineage we have identified a transient population that is consistent with definitive ectoderm. This previously unidentified progenitor occurs as a temporally discrete population during ES cell differentiation, and differs from the preceding and succeeding populations in gene expression and differentiation potential, with the unique ability to form surface ectoderm in response to BMP4 signalling.
Collapse
Affiliation(s)
- Nathan T Harvey
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, 5005, Australia
| | | | | | | | | | | | | |
Collapse
|
12
|
Dong XJ, Zhang GR, Zhou QJ, Pan RL, Chen Y, Xiang LX, Shao JZ. Direct hepatic differentiation of mouse embryonic stem cells induced by valproic acid and cytokines. World J Gastroenterol 2009; 15:5165-75. [PMID: 19891015 PMCID: PMC2773895 DOI: 10.3748/wjg.15.5165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To develop a protocol for direct hepatic lineage differentiation from early developmental progenitors to a population of mature hepatocytes.
METHODS: Hepatic progenitor cells and then mature hepatocytes from mouse embryonic stem (ES) cells were obtained in a sequential manner, induced by valproic acid (VPA) and cytokines (hepatocyte growth factor, epidermal growth factor and insulin). Morphological changes of the differentiated cells were examined by phase-contrast microscopy and electron microscopy. Reverse transcription polymerase chain reaction and immunocytochemical analyses were used to evaluate the gene expression profiles of the VPA-induced hepatic progenitors and the hepatic progenitor-derived hepatocytes. Glycogen storage, cytochrome P450 activity, transplantation assay, differentiation of bile duct-like structures and tumorigenic analyses were performed for the functional identification of the differentiated cells. Furthermore, FACS and electron microscopy were used for the analyses of cell cycle profile and apoptosis in VPA-induced hepatic differentiated cells.
RESULTS: Based on the combination of VPA and cytokines, mouse ES cells differentiated into a uniform and homogeneous cell population of hepatic progenitor cells and then matured into functional hepatocytes. The progenitor population shared several characteristics with ES cells and hepatic stem/progenitor cells, and represented a novel progenitor cell between ES and hepatic oval cells in embryonic development. The differentiated hepatocytes from progenitor cells shared typical characteristics with mature hepatocytes, including the patterns of gene expression, immunological markers, in vitro hepatocyte functions and in vivo capacity to restore acute-damaged liver function. In addition, the differentiation of hepatic progenitor cells from ES cells was accompanied by significant cell cycle arrest and selective survival of differentiating cells towards hepatic lineages.
CONCLUSION: Hepatic cells of different developmental stages from early progenitors to matured hepatocytes can be acquired in the appropriate order based on sequential induction with VPA and cytokines.
Collapse
|
13
|
Lim SM, Pereira L, Wong MS, Hirst CE, Van Vranken BE, Pick M, Trounson A, Elefanty AG, Stanley EG. Enforced expression of Mixl1 during mouse ES cell differentiation suppresses hematopoietic mesoderm and promotes endoderm formation. Stem Cells 2009; 27:363-74. [PMID: 19038793 DOI: 10.1634/stemcells.2008-1008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Mixl1 gene encodes a homeodomain transcription factor that is required for normal mesoderm and endoderm development in the mouse. We have examined the consequences of enforced Mixl1 expression during mouse embryonic stem cell (ESC) differentiation. We show that three independently derived ESC lines constitutively expressing Mixl1 (Mixl1(C) ESCs) differentiate into embryoid bodies (EBs) containing a higher proportion of E-cadherin (E-Cad)(+) cells. Our analysis also shows that this differentiation occurs at the expense of hematopoietic mesoderm differentiation, with Mixl1(C) ESCs expressing only low levels of Flk1 and failing to develop hemoglobinized cells. Immunohistochemistry and immunofluorescence studies revealed that Mixl1(C) EBs have extensive areas containing cells with an epithelial morphology that express E-Cad, FoxA2, and Sox17, consistent with enhanced endoderm formation. Luciferase reporter transfection experiments indicate that Mixl1 can transactivate the Gsc, Sox17, and E-Cad promoters, supporting the hypothesis that Mixl1 has a direct role in definitive endoderm formation. Taken together, these studies suggest that high levels of Mixl1 preferentially allocate cells to the endoderm during ESC differentiation.
Collapse
Affiliation(s)
- Sue Mei Lim
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gibson JD, Jakuba CM, Boucher N, Holbrook KA, Carter MG, Nelson CE. Single-cell transcript analysis of human embryonic stem cells. Integr Biol (Camb) 2009; 1:540-51. [PMID: 20023769 DOI: 10.1039/b908276j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We demonstrate the qualitative and quantitative power of single-cell transcript analysis to characterize transcriptome dynamics in human embryonic stem cells (hESC's). Single-cell analysis can systematically determine unique cellular profiles for use in cell sorting and identification, show the potential to augment standing models of cellular differentiation, and elucidate the behavior of stem cells exiting pluripotency. Using single-cell analysis of H9 hESC's differentiating under three culture conditions, we revealed transient expression of mesendodermal markers in all three protocols, followed by increasingly stable expression of embryonic endoderm and extra-embryonic endoderm markers. Our single-cell profiles reveal mixed populations of cell types, with both transcriptional and temporal heterogeneity marking differentiation under all conditions. Interestingly, we also observe extensive and prolonged co-expression of markers regulating both pluripotency and lineage differentiation in all culture conditions, and we find that pluripotency marker transcripts remain detectable in the majority of cells for many days. Finally, we show that cells derived from undifferentiated hESC colonies display consistent gene expression profiles characterized by three cohorts of transcripts: uniform, absent and sporadically detected messages, and that a striking correlation exists between genes' membership in these cohorts and their hESC promoter chromatin state, with bivalent promoters dominating the sporadic transcripts.
Collapse
Affiliation(s)
- Jason D Gibson
- University of Connecticut, Department of Molecular and Cell Biology, Storrs, 06269-2131, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Yamauchi K, Hasegawa K, Chuma S, Nakatsuji N, Suemori H. In vitro germ cell differentiation from cynomolgus monkey embryonic stem cells. PLoS One 2009; 4:e5338. [PMID: 19399191 PMCID: PMC2671468 DOI: 10.1371/journal.pone.0005338] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 04/02/2009] [Indexed: 01/12/2023] Open
Abstract
Background Mouse embryonic stem (ES) cells can differentiate into female and male germ cells in vitro. Primate ES cells can also differentiate into immature germ cells in vitro. However, little is known about the differentiation markers and culture conditions for in vitro germ cell differentiation from ES cells in primates. Monkey ES cells are thus considered to be a useful model to study primate gametogenesis in vitro. Therefore, in order to obtain further information on germ cell differentiation from primate ES cells, this study examined the ability of cynomolgus monkey ES cells to differentiate into germ cells in vitro. Methods and Findings To explore the differentiation markers for detecting germ cells differentiated from ES cells, the expression of various germ cell marker genes was examined in tissues and ES cells of the cynomolgus monkey (Macaca fascicularis). VASA is a valuable gene for the detection of germ cells differentiated from ES cells. An increase of VASA expression was observed when differentiation was induced in ES cells via embryoid body (EB) formation. In addition, the expression of other germ cell markers, such as NANOS and PIWIL1 genes, was also up-regulated as the EB differentiation progressed. Immunocytochemistry identified the cells expressing stage-specific embryonic antigen (SSEA) 1, OCT-4, and VASA proteins in the EBs. These cells were detected in the peripheral region of the EBs as specific cell populations, such as SSEA1-positive, OCT-4-positive cells, OCT-4-positive, VASA-positive cells, and OCT-4-negative, VASA-positive cells. Thereafter, the effect of mouse gonadal cell-conditioned medium and growth factors on germ cell differentiation from monkey ES cells was examined, and this revealed that the addition of BMP4 to differentiating ES cells increased the expression of SCP1, a meiotic marker gene. Conclusion VASA is a valuable gene for the detection of germ cells differentiated from ES cells in monkeys, and the identification and characterization of germ cells derived from ES cells are possible by using reported germ cell markers in vivo, including SSEA1, OCT-4, and VASA, in vitro as well as in vivo. These findings are thus considered to help elucidate the germ cell developmental process in primates.
Collapse
Affiliation(s)
- Kaori Yamauchi
- Laboratory of Embryonic Stem Cell Research, Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kouichi Hasegawa
- Laboratory of Embryonic Stem Cell Research, Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Shinichiro Chuma
- Department of Development and Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Norio Nakatsuji
- Department of Development and Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hirofumi Suemori
- Laboratory of Embryonic Stem Cell Research, Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
- * E-mail:
| |
Collapse
|
16
|
Hansson M, Olesen DR, Peterslund JML, Engberg N, Kahn M, Winzi M, Klein T, Maddox-Hyttel P, Serup P. A late requirement for Wnt and FGF signaling during activin-induced formation of foregut endoderm from mouse embryonic stem cells. Dev Biol 2009; 330:286-304. [PMID: 19358838 DOI: 10.1016/j.ydbio.2009.03.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 03/18/2009] [Accepted: 03/30/2009] [Indexed: 02/07/2023]
Abstract
Here we examine how BMP, Wnt, and FGF signaling modulate activin-induced mesendodermal differentiation of mouse ES cells grown under defined conditions in adherent monoculture. We monitor ES cells containing reporter genes for markers of primitive streak (PS) and its progeny and extend previous findings on the ability of increasing concentrations of activin to progressively induce more ES cell progeny to anterior PS and endodermal fates. We find that the number of Sox17- and Gsc-expressing cells increases with increasing activin concentration while the highest number of T-expressing cells is found at the lowest activin concentration. The expression of Gsc and other anterior markers induced by activin is prevented by treatment with BMP4, which induces T expression and subsequent mesodermal development. We show that canonical Wnt signaling is required only during late stages of activin-induced development of Sox17-expressing endodermal cells. Furthermore, Dkk1 treatment is less effective in reducing development of Sox17(+) endodermal cells in adherent culture than in aggregate culture and appears to inhibit nodal-mediated induction of Sox17(+) cells more effectively than activin-mediated induction. Notably, activin induction of Gsc-GFP(+) cells appears refractory to inhibition of canonical Wnt signaling but shows a dependence on early as well as late FGF signaling. Additionally, we find a late dependence on FGF signaling during induction of Sox17(+) cells by activin while BMP4-induced T expression requires FGF signaling in adherent but not aggregate culture. Lastly, we demonstrate that activin-induced definitive endoderm derived from mouse ES cells can incorporate into the developing foregut endoderm in vivo and adopt a mostly anterior foregut character after further culture in vitro.
Collapse
Affiliation(s)
- Mattias Hansson
- Department of Developmental Biology, Hagedorn Research Institute, Niels Steensens Vej 6, DK-2820 Gentofte, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gallicano GI. A New Approach to Investigating Embryonic Stem Cell Differentiation. Stem Cells Dev 2009; 18:201-4. [DOI: 10.1089/scd.2008.0394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- G. Ian Gallicano
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
18
|
Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood 2007; 111:1876-84. [PMID: 18032708 DOI: 10.1182/blood-2007-06-093609] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Differentiating human embryonic stem cells (HESCs) represent an experimental platform for establishing the relationships between the earliest lineages that emerge during human development. Here we report the targeted insertion in HESCs of sequences encoding green fluorescent protein (GFP) into the locus of MIXL1, a gene transiently expressed in the primitive streak during embryogenesis.(1,2) GFP fluorescence in MIXL1(GFP/)(w) HESCs differentiated in the presence of BMP4 reported the expression of MIXL1, permitting the identification of viable human primitive streak-like cells. The use of GFP as a reporter for MIXL1 combined with cell surface staining for platelet-derived growth factor receptor alpha (PDGFRalpha) enabled the isolation of a cell population that was highly enriched in primitive hematopoietic precursors, the earliest derivatives of the primitive streak. These experiments demonstrate the utility of MIXL1(GFP/w) HESCs for analyzing the previously inaccessible events surrounding the development of human primitive streak-like cells and their subsequent commitment to hematopoiesis.
Collapse
|
19
|
Hatfield S, Ruohola-Baker H. microRNA and stem cell function. Cell Tissue Res 2007; 331:57-66. [PMID: 17987317 DOI: 10.1007/s00441-007-0530-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 09/19/2007] [Indexed: 12/19/2022]
Abstract
The identification and characterization of stem cells for various tissues has led to a greater understanding of development, tissue maintenance, and cancer pathology. Stem cells possess the ability to divide throughout their life and to produce differentiated daughter cells while maintaining a population of undifferentiated cells that remain in the stem cell niche and that retain stem cell identity. Many cancers also have small populations of cells with stem cell characteristics. These cells have been called cancer stem cells and are a likely cause of relapse in cancer patients. Understanding the biology of stem cells and cancer stem cells offers great promise in the fields of regenerative medicine and cancer treatment. microRNAs (miRNAs) are emerging as important regulators of post-transcriptional gene expression and are considered crucial for proper stem cell maintenance and function. miRNAs have also been strongly implicated in the development and pathology of cancer. In this review, we discuss the characteristics of various stem cell types, including cancer stem cells, and the importance of miRNAs therein.
Collapse
Affiliation(s)
- Steven Hatfield
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
20
|
Izzi L, Silvestri C, von Both I, Labbé E, Zakin L, Wrana JL, Attisano L. Foxh1 recruits Gsc to negatively regulate Mixl1 expression during early mouse development. EMBO J 2007; 26:3132-43. [PMID: 17568773 PMCID: PMC1914101 DOI: 10.1038/sj.emboj.7601753] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 05/21/2007] [Indexed: 01/10/2023] Open
Abstract
Mixl1 is a member of the Mix/Bix family of paired-like homeodomain proteins and is required for proper axial mesendoderm morphogenesis and endoderm formation during mouse development. Mix/Bix proteins are transcription factors that function in Nodal-like signaling pathways and are themselves regulated by Nodal. Here, we show that Foxh1 forms a DNA-binding complex with Smads to regulate transforming growth factor beta (TGFbeta)/Nodal-dependent Mixl1 gene expression. Whereas Foxh1 is commonly described as a transcriptional activator, we observed that Foxh1-null embryos exhibit expanded and enhanced Mixl1 expression during gastrulation, indicating that Foxh1 negatively regulates expression of Mixl1 during early mouse embryogenesis. We demonstrate that Foxh1 associates with the homeodomain-containing protein Goosecoid (Gsc), which in turn recruits histone deacetylases to repress Mixl1 gene expression. Ectopic expression of Gsc in embryoid bodies represses endogenous Mixl1 expression and this effect is dependent on Foxh1. As Gsc is itself induced in a Foxh1-dependent manner, we propose that Foxh1 initiates positive and negative transcriptional circuits to refine cell fate decisions during gastrulation.
Collapse
Affiliation(s)
- Luisa Izzi
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Terence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada
| | - Cristoforo Silvestri
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Terence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada
| | - Ingo von Both
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Etienne Labbé
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Terence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada
| | - Lise Zakin
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - Jeffrey L Wrana
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada
| | - Liliana Attisano
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Terence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Room 1008, 160 College Street, Toronto, Ontario, Canada M5S 3E1. Tel.: +1 416 946 3129; Fax: +1 416 978 8287; E-mail:
| |
Collapse
|
21
|
Pick M, Azzola L, Mossman A, Stanley EG, Elefanty AG. Differentiation of human embryonic stem cells in serum-free medium reveals distinct roles for bone morphogenetic protein 4, vascular endothelial growth factor, stem cell factor, and fibroblast growth factor 2 in hematopoiesis. Stem Cells 2007; 25:2206-14. [PMID: 17556598 DOI: 10.1634/stemcells.2006-0713] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have utilized a serum- and stromal cell-free "spin embryoid body (EB)" differentiation system to investigate the roles of four growth factors, bone morphogenetic protein 4 (BMP4), vascular endothelial growth factor (VEGF), stem cell factor (SCF), and basic fibroblast growth factor (FGF2), singly and in combination, on the generation of hematopoietic cells from human embryonic stem cells (HESCs). Of the four factors, only BMP4 induced expression of genes that signaled the emergence of the primitive streak-like population required for the subsequent development of hematopoietic mesoderm. In addition, BMP4 initiated the expression of genes marking hematopoietic mesoderm and supported the generation of hematopoietic progenitor cells at a low frequency. However, the appearance of robust numbers of hematopoietic colony forming cells and their mature progeny required the inclusion of VEGF. Finally, the combination of BMP4, VEGF, SCF, and FGF2 further enhanced the total yield of hematopoietic cells. These data demonstrate the utility of the serum-free spin EB system in dissecting the roles of specific growth factors required for the directed differentiation of HESCs toward the hematopoietic lineage.
Collapse
Affiliation(s)
- Marjorie Pick
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
22
|
Izumi N, Era T, Akimaru H, Yasunaga M, Nishikawa SI. Dissecting the molecular hierarchy for mesendoderm differentiation through a combination of embryonic stem cell culture and RNA interference. Stem Cells 2007; 25:1664-74. [PMID: 17446562 DOI: 10.1634/stemcells.2006-0681] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although there is a criticism that embryonic stem (ES) cell differentiation does not always reflect the differentiation process involved in mouse development, it is a suitable model system to dissect the specific differentiation pathway. We established the culture conditions that selectively differentiated mouse ES cells into three germ layers containing mesendoderm, definitive endoderm (DE), visceral endoderm (VE), mesoderm, and neuroectoderm. However, the molecular mechanisms of differentiation under each specific condition still remain unclear. Here, in combination with the RNA interference-mediated gene knockdown (KD) method, we show that Eomesodermin (Eomes), Mixl1, Brachyury (T), and GATA6 are major molecular determinants in the differentiation of mesendoderm, DE, VE, and mesoderm. Eomes plays a pivotal role in an early stage of mesendoderm differentiation, whereas Mixl1 does the same in the later stage where mesendoderm differentiates into DE. Further analyses of quantitative reverse transcription polymerase chain reaction and overexpression of Mixl1 demonstrated that Mixl1 is genetically a downstream molecule of Eomes. In addition, both Eomes and Mixl1 act as negative regulators of T expression. This strategy also reveals that Eomes and T play cell-autonomous roles in platelet-derived growth factor receptor alpha (PDGFRalpha)+ vascular endothelial growth factor receptor 2 (VEGFR2)+ and PDGFRalpha+ mesoderm generations, respectively. Our results obtained from this study are fully consistent with previous knockout studies of those genes. The present study, therefore, demonstrates that the major molecular mechanism underlying in vitro ES cell differentiation largely recapitulates that in actual embryogenesis, and the combination of our culture system and RNAi-mediated gene KD is an useful tool to elucidate the molecular hierarchy in in vitro ES cell differentiation. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Naoki Izumi
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|