1
|
Zhong X, Chen J, Wen B, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Shen J, Xiao Z. Potential role of mesenchymal stem cells in T cell aging. J Mol Med (Berl) 2023; 101:1365-1378. [PMID: 37750918 DOI: 10.1007/s00109-023-02371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
Immunosenescence occurs with progressive age. T cell aging is manifested by immunodeficiency and inflammation. The main mechanisms are thymic involution, mitochondrial dysfunction, genetic and epigenetic alterations, loss of protein stability, reduction of T cell receptor (TCR) repertoire, naïve-memory T cell ratio imbalance, T cell senescence, and lack of effector plasticity. Mesenchymal stem cells (MSCs) are thought to hold great potential as anti-aging therapy. However, the role of MCSs in T cell aging remains elusive. This review makes a tentative summary of the potential role of MSCs in the protection against T cell aging. It might provide a new idea to intervene in the aging of the immune system.
Collapse
Affiliation(s)
- Xianmei Zhong
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- Department of Pharmacy, People's Hospital of Nanbu County, Nanchong, 637300, China
| | - Jie Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Bo Wen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Chen L, Zhang N, Huang Y, Zhang Q, Fang Y, Fu J, Yuan Y, Chen L, Chen X, Xu Z, Li Y, Izawa H, Xiang C. Multiple Dimensions of using Mesenchymal Stem Cells for Treating Liver Diseases: From Bench to Beside. Stem Cell Rev Rep 2023; 19:2192-2224. [PMID: 37498509 DOI: 10.1007/s12015-023-10583-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
Liver diseases impose a huge burden worldwide. Although hepatocyte transplantation has long been considered as a potential strategy for treating liver diseases, its clinical implementation has created some obvious limitations. As an alternative strategy, cell therapy, particularly mesenchymal stem cell (MSC) transplantation, is widely used in treating different liver diseases, including acute liver disease, acute-on-chronic liver failure, hepatitis B/C virus, autoimmune hepatitis, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, alcoholic liver disease, liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. Here, we summarize the status of MSC transplantation in treating liver diseases, focusing on the therapeutic mechanisms, including differentiation into hepatocyte-like cells, immunomodulating function with a variety of immune cells, paracrine effects via the secretion of various cytokines and extracellular vesicles, and facilitation of homing and engraftment. Some improved perspectives and current challenges are also addressed. In summary, MSCs have great potential in the treatment of liver diseases based on their multi-faceted characteristics, and more accurate mechanisms and novel therapeutic strategies stemming from MSCs will facilitate clinical practice.
Collapse
Affiliation(s)
- Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yuqi Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Qi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Jiamin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Lu Chen
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Xin Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, People's Republic of China
| | - Zhenyu Xu
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Hiromi Izawa
- Jingugaien Woman Life Clinic, Jingu-Gaien 3-39-5 2F, Shibuya-Ku, Tokyo, Japan
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
3
|
Nitta T, Ota A, Iguchi T, Muro R, Takayanagi H. The fibroblast: An emerging key player in thymic T cell selection. Immunol Rev 2021; 302:68-85. [PMID: 34096078 PMCID: PMC8362222 DOI: 10.1111/imr.12985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
Fibroblasts have recently attracted attention as a key stromal component that controls the immune responses in lymphoid tissues. The thymus has a unique microenvironment comprised of a variety of stromal cells, including fibroblasts and thymic epithelial cells (TECs), the latter of which is known to be important for T cell development because of their ability to express self‐antigens. Thymic fibroblasts contribute to thymus organogenesis during embryogenesis and form the capsule and medullary reticular network in the adult thymus. However, the immunological significance of thymic fibroblasts has thus far only been poorly elucidated. In this review, we will summarize the current views on the development and functions of thymic fibroblasts as revealed by new technologies such as multicolor flow cytometry and single cell–based transcriptome profiling. Furthermore, the recently discovered role of medullary fibroblasts in the establishment of T cell tolerance by producing a unique set of self‐antigens will be highlighted.
Collapse
Affiliation(s)
- Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayami Ota
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Iguchi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Abdelmoneim M, El-Naenaeey ESY, Abd-Allah SH, Gharib AA, Alhussein M, Aboalella DA, Abdelghany EM, Fathy MA, Hussein S. Anti-Inflammatory and Immunomodulatory Role of Bone Marrow-Derived MSCs in Mice with Acute Lung Injury. J Interferon Cytokine Res 2021; 41:29-36. [PMID: 33471617 DOI: 10.1089/jir.2020.0073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recently, studies suggested that the mesenchymal stem cells (MSCs) have anti-inflammatory and immune-modulatory roles in the induced acute lung injury in mice via controlling innate, humoral, and cell-mediated immunity. Sixty adult male mice were divided equally into three groups. Group A (control group) received an intraperitoneal (IP) phosphate-buffered saline. Group B was injected IP with lipopolysaccharide (LPS). Group C was injected IP with LPS, followed after 2 h by intravenous labeled bone marrow-derived MSCs (BM-MSCs). The plasma and bronchioalveolar lavage (BAL) fluid were collected at 12, 24, and 72 h postinjection. Estimation of total cell and neutrophils count and immunoglobulin M (IgM) in BAL fluid was performed. Enzyme-linked immunosorbent assay (ELISA) was used to analyze tumor necrosis factor-α (TNF-α) that is a proinflammatory cytokine and interleukin-10 (IL-10), which is an anti-inflammatory cytokine, in plasma. Lung samples were collected for histopathological examination at 12, 24, 72 h, and 1 week postinjection. Decreased TNF-α and increased IL-10 levels in the plasma of MSC-treated group compared to the LPS-infected group were observed. Also, decreased IgM level in BAL fluid of the MSC-treated group after 72 h compared to the LPS-infected group was detected with a resolution of inflammation and improvement in lung injury. Moreover, MSC-treated group showed a reduction in total leukocyte count and neutrophil percentage in comparison to control and LPS-infected groups. Histopathological improvement was detected in MSC-treated group as well. In conclusion, systemic MSCs injection has an anti-inflammatory and immune-modulatory effect in LPS-induced acute lung injury in mice.
Collapse
Affiliation(s)
- Mohamed Abdelmoneim
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - El-Sayed Y El-Naenaeey
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Somia Hassan Abd-Allah
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahlam A Gharib
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mona Alhussein
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa Alhussein Aboalella
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman Mohamed Abdelghany
- Human Anatomy and Embryology Department, and Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Maha Abdelhamid Fathy
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samia Hussein
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Iacobazzi D, Swim MM, Albertario A, Caputo M, Ghorbel MT. Thymus-Derived Mesenchymal Stem Cells for Tissue Engineering Clinical-Grade Cardiovascular Grafts. Tissue Eng Part A 2018; 24:794-808. [DOI: 10.1089/ten.tea.2017.0290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dominga Iacobazzi
- Bristol Medical School, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Megan M. Swim
- Bristol Medical School, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Ambra Albertario
- Bristol Medical School, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Massimo Caputo
- Bristol Medical School, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Mohamed T. Ghorbel
- Bristol Medical School, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
6
|
Wang SJ, Yin MH, Jiang D, Zhang ZZ, Qi YS, Wang HJ, Yu JK. The Chondrogenic Potential of Progenitor Cells Derived from Peripheral Blood: A Systematic Review. Stem Cells Dev 2016; 25:1195-207. [PMID: 27353075 DOI: 10.1089/scd.2016.0055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Shao-Jie Wang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Department of Joint Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Meng-Hong Yin
- Department of Sports Medicine, Dalian Medical University, Liaoning, China
| | - Dong Jiang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Zheng-Zheng Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Yan-Song Qi
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Hai-Jun Wang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Jia-Kuo Yu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| |
Collapse
|
7
|
Myocardial Ischemic Subject's Thymus Fat: A Novel Source of Multipotent Stromal Cells. PLoS One 2015; 10:e0144401. [PMID: 26657132 PMCID: PMC4675557 DOI: 10.1371/journal.pone.0144401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022] Open
Abstract
Objective Adipose Tissue Stromal Cells (ASCs) have important clinical applications in the regenerative medicine, cell replacement and gene therapies. Subcutaneous Adipose Tissue (SAT) is the most common source of these cells. The adult human thymus degenerates into adipose tissue (TAT). However, it has never been studied before as a source of stem cells. Material and Methods We performed a comparative characterization of TAT-ASCs and SAT-ASCs from myocardial ischemic subjects (n = 32) according to the age of the subjects. Results TAT-ASCs and SAT-ASCs showed similar features regarding their adherence, morphology and in their capacity to form CFU-F. Moreover, they have the capacity to differentiate into osteocyte and adipocyte lineages; and they present a surface marker profile corresponding with stem cells derived from AT; CD73+CD90+CD105+CD14-CD19-CD45-HLA-DR. Interestingly, and in opposition to SAT-ASCs, TAT-ASCs have CD14+CD34+CD133+CD45- cells. Moreover, TAT-ASCs from elderly subjects showed higher adipogenic and osteogenic capacities compared to middle aged subjects, indicating that, rather than impairing; aging seems to increase adipogenic and osteogenic capacities of TAT-ASCs. Conclusions This study describes the human TAT as a source of mesenchymal stem cells, which may have an enormous potential for regenerative medicine.
Collapse
|
8
|
Abdallah BM, Al-Shammary A, Skagen P, Abu Dawud R, Adjaye J, Aldahmash A, Kassem M. CD34 defines an osteoprogenitor cell population in mouse bone marrow stromal cells. Stem Cell Res 2015; 15:449-458. [DOI: 10.1016/j.scr.2015.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 01/08/2023] Open
|
9
|
Mesenchymal stromal cell therapy: different sources exhibit different immunobiological properties. Transplantation 2015; 99:1113-8. [PMID: 26035274 DOI: 10.1097/tp.0000000000000734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Lin ZB, Qian B, Yang YZ, Zhou K, Sun J, Mo XM, Wu KH. Isolation, Characterization and Cardiac Differentiation of Human Thymus Tissue Derived Mesenchymal Stromal Cells. J Cell Biochem 2015; 116:1205-12. [PMID: 25535722 DOI: 10.1002/jcb.25072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 12/18/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Ze Bang Lin
- Department of Cardiothoracic Surgery; Nanjing Children‘s Hospital; Nanjing Medical University; Nanjing China
| | - Bo Qian
- Department of Cardiothoracic Surgery; Nanjing Children‘s Hospital; Nanjing Medical University; Nanjing China
| | - Yu Zhong Yang
- Department of Cardiothoracic Surgery; Nanjing Children‘s Hospital; Nanjing Medical University; Nanjing China
| | - Kai Zhou
- Department of Cardiothoracic Surgery; Nanjing Children‘s Hospital; Nanjing Medical University; Nanjing China
| | - Jian Sun
- Department of Cardiothoracic Surgery; Nanjing Children‘s Hospital; Nanjing Medical University; Nanjing China
| | - Xu Ming Mo
- Department of Cardiothoracic Surgery; Nanjing Children‘s Hospital; Nanjing Medical University; Nanjing China
| | - Kai Hong Wu
- Department of Cardiothoracic Surgery; Nanjing Children‘s Hospital; Nanjing Medical University; Nanjing China
| |
Collapse
|
11
|
Russo V, Yu C, Belliveau P, Hamilton A, Flynn LE. Comparison of human adipose-derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications. Stem Cells Transl Med 2013; 3:206-17. [PMID: 24361924 DOI: 10.5966/sctm.2013-0125] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adipose tissue is an abundant source of multipotent progenitor cells that have shown promise in regenerative medicine. In humans, fat is primarily distributed in the subcutaneous and visceral depots, which have varying biochemical and functional properties. In most studies to date, subcutaneous adipose tissue has been investigated as the adipose-derived stem cell (ASC) source. In this study, we sought to develop a broader understanding of the influence of specific adipose tissue depots on the isolated ASC populations through a systematic comparison of donor-matched abdominal subcutaneous fat and omentum, and donor-matched pericardial adipose tissue and thymic remnant samples. We found depot-dependent and donor-dependent variability in the yield, viability, immunophenotype, clonogenic potential, doubling time, and adipogenic and osteogenic differentiation capacities of the ASC populations. More specifically, ASCs isolated from both intrathoracic depots had a longer average doubling time and a significantly higher proportion of CD34(+) cells at passage 2, as compared with cells isolated from subcutaneous fat or the omentum. Furthermore, ASCs from subcutaneous and pericardial adipose tissue demonstrated enhanced adipogenic differentiation capacity, whereas ASCs isolated from the omentum displayed the highest levels of osteogenic markers in culture. Through cell culture analysis under hypoxic (5% O(2)) conditions, oxygen tension was shown to be a key mediator of colony-forming unit-fibroblast number and osteogenesis for all depots. Overall, our results suggest that depot selection is an important factor to consider when applying ASCs in tissue-specific cell-based regenerative therapies, and also highlight pericardial adipose tissue as a potential new ASC source.
Collapse
Affiliation(s)
- Valerio Russo
- Departments of Chemical Engineering and Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Human Mobility Research Centre and Department of Surgery, Kingston General Hospital, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
12
|
Lin CS, Ning H, Lin G, Lue TF. Is CD34 truly a negative marker for mesenchymal stromal cells? Cytotherapy 2013; 14:1159-63. [PMID: 23066784 DOI: 10.3109/14653249.2012.729817] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The prevailing school of thought is that mesenchymal stromal cells (MSC) do not express CD34, and this sets MSC apart from hematopoietic stem cells (HSC), which do express CD34. However, the evidence for MSC being CD34(-) is largely based on cultured MSC, not tissue-resident MSC, and the existence of CD34(-) HSC is in fact well documented. Furthermore, the Stro-1 antibody, which has been used extensively for the identification/isolation of MSC, was generated by using CD34(+) bone marrow cells as immunogen. Thus, neither MSC being CD34(-) nor HSC being CD34(+) is entirely correct. In particular, two studies that analyzed CD34 expression in uncultured human bone marrow nucleated cells found that MSC (BMSC) existed in the CD34(+) fraction. Several studies have also found that freshly isolated adipose-derived MSC (ADSC) express CD34. In addition, all of these ADSC studies and several other MSC studies have observed a disappearance of CD34 expression when the cells are propagated in culture. Thus the available evidence points to CD34 being expressed in tissue-resident MSC, and its negative finding being a consequence of cell culturing.
Collapse
Affiliation(s)
- Ching-Shwun Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California , San Francisco, California 94143 – 0738, USA.
| | | | | | | |
Collapse
|
13
|
Jaramillo-Ferrada PA, Wolvetang EJ, Cooper-White JJ. Differential mesengenic potential and expression of stem cell-fate modulators in mesenchymal stromal cells from human-term placenta and bone marrow. J Cell Physiol 2012; 227:3234-42. [PMID: 22105866 DOI: 10.1002/jcp.24014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Placenta has attracted increasing attention over the past decade as a stem cell source for regenerative medicine. In particular, the amniochorionic membrane has been shown to harbor populations of mesenchymal stromal cells (MSCs). In this study, we have characterized ex vivo expanded MSCs from the human amniotic (hAMSCs) and chorionic (hCMSCs) membranes of human full-term placentas and adult bone marrow (hBMSCs). Our results show that hAMSCs, hCMSCs, and hBMSCs express typical mesenchymal (CD73, CD90, CD105, CD44, CD146, CD166) and pluripotent (Oct-4, Sox2, Nanog, Lin28, and Klf4) markers but not hematopoietic markers (CD45, CD34). Ex vivo expanded hAMSCs were found to be of fetal origin, while hCMSCs cultures contained only maternal cells. Cell proliferation was significantly higher in hCMSCs, compared to hAMSCs and hBMSCs. Integrin profiling revealed marked differences in the expression of α subunits between the three cell sources. Cadherin receptors were consistently expressed on a subset of progenitors (ranging from 1% to 60%), while N-CAM (CD56) was only expressed in hAMSCs and hCMSCs but not in hBMSCs. When induced to differentiate, hAMSCs and hCMSCs displayed strong chondrogenic and osteogenic differentiation potential but very limited capacity for adipogenic conversion. In contrast, hBMSCs showed strong differentiation potential along the three lineages. These results illustrate how MSCs from different ontological sources display differential expression of cell-fate mediators and mesodermal differentiation capacity.
Collapse
Affiliation(s)
- Pamela A Jaramillo-Ferrada
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
14
|
Woods Ignatoski KM, Bingham EL, Frome LK, Doherty GM. DirectedTrans-Differentiation of Thymus Cells into Parathyroid-Like Cells Without Genetic Manipulation. Tissue Eng Part C Methods 2011; 17:1051-9. [PMID: 21797755 DOI: 10.1089/ten.tec.2011.0170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Kathleen M. Woods Ignatoski
- Division of Endocrine Surgery, Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan
| | - Evangeline L. Bingham
- Division of Endocrine Surgery, Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan
| | - Lauren K. Frome
- Division of Endocrine Surgery, Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan
| | - Gerard M. Doherty
- Division of Endocrine Surgery, Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan
| |
Collapse
|
15
|
Lee WI, Khim M, Im IR, Shin O, Park JW, Choo SJ, Yun TJ, Kim SW, Lee H. Safe and effective gene transfer by adeno-associated virus of neonatal thymus-derived mesenchymal stromal cells. Tissue Cell 2011; 43:108-14. [PMID: 21310455 DOI: 10.1016/j.tice.2010.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 12/24/2010] [Indexed: 12/25/2022]
Abstract
Recently, human neonatal thymus-derived mesenchymal stromal cells (nTMSCs) have been recognized as a promising mesenchymal stem cell source for combined cell and gene therapy. While efficient gene transfer is crucial for optimizing therapeutic efficacy, almost no studies have yet reported on the characteristics of nTMSC in terms of genetic modification. The present study investigates and realizes the potential of self-complementary adeno-associated viruses (scAAVs) as an effective transduction tool for nTMSCs. Transduction efficiency (TE), cytotoxicity and functional characteristics were determined in nTMSCs isolated from thymic tissues and transduced with scAAV1-6 and -8 serotypes expressing GFP. Our study confirms MSC-typical characteristics in nTMSCs and additionally, suggests further therapeutic advantages of nTMSCs due to its particularities with lower levels of MHC class I protein and higher levels of CD31 and CD34 expression. Effective transduction by scAAV2 and scAAV5 was evident in the majority of nTMSCs that were GFP-positive at a multiplicity of infection (MOI) of 1000. TE was further improved by higher MOI treatments. Transduced cells also successfully maintained adipocyte and vessel-forming endothelial cell multi-potency and showed no evidence of gene delivery-related cytotoxicity. Collectively, the data strongly suggest that scAAVs are promising technical platforms for safe and effective transgene expression in nTMSCs.
Collapse
Affiliation(s)
- W I Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cimpean AM, Ceauşu R, Encică S, Gaje PN, Ribatti D, Raica M. Platelet-derived growth factor and platelet-derived growth factor receptor-α expression in the normal human thymus and thymoma. Int J Exp Pathol 2011; 92:340-4. [PMID: 21645144 DOI: 10.1111/j.1365-2613.2011.00777.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Platelet-derived growth factor (PDGF) and its receptors (PDGFRs) are strongly involved in the normal development of several organs, tumour angiogenesis and malignant progression and metastasis. Few studies concerning their expression, distribution and role in normal and pathological human thymus are available in the literature. The aim of this study has been to analyse the immunohistochemical expression of PDGF and PDGFR-α in prenatal and postnatal normal human thymus and thymomal biopsy specimens. The results demonstrated immunoreactivity to both PDGF and PDGFR-α in all specimens, but the intensity, distribution and number of positive cells were different in normal thymus and thymomas, and also among different tumour types. PDGF and PDGFR-α were weakly expressed in foetal and postnatal humans with a different distribution between cortex and medulla in both blood vessels and epithelial cells, whereas they were overexpressed in thymoma, especially in type B2 and B3, in the tumour epithelial cells. Overall, these data suggest that PDGF and PDGFR-α may be involved in the pathophysiology of the human thymus.
Collapse
Affiliation(s)
- Anca Maria Cimpean
- Department of Histology, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | | | | | | | | | | |
Collapse
|
17
|
Arufe MC, De la Fuente A, Fuentes I, de Toro FJ, Blanco FJ. Chondrogenic potential of subpopulations of cells expressing mesenchymal stem cell markers derived from human synovial membranes. J Cell Biochem 2010; 111:834-45. [PMID: 20665538 DOI: 10.1002/jcb.22768] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study we analyzed the chondrogenic potential of subpopulations of mesenchymal stem cells (MSCs) derived from human synovial membranes enriched for CD73, CD106, and CD271 markers. Subpopulations of human synovial membrane MSCs enriched for CD73, CD106, and CD271 markers were isolated using a cytometry sorter and characterized by flow cytometry for MSC markers. The expression of Sox9, Nanog, and Runx2 genes by these cells was measured by reverse transcriptase-polymerase chain reaction. The chondrogenesis of each subpopulation was assessed by culturing the cells in a defined medium to produce spontaneous spheroid formation and differentiation towards chondrocyte-like cells. The examination of the spheroids by histological and immunohistochemical analyses for collagen type II (COL2), aggrecan, collagen type I (COL1), metalloprotease 13 (MMP13), and collagen type X (COLX) levels were performed to assess their chondrogenesis capacity. The adipogenesis and osteogenesis potential of each subpopulation was determined using commercial media; the resulting cells were stained with oil red O or red alizarin to test the degree of differentiation. The subpopulations had different profiles of cells positive for the MSC markers CD44, CD69, CD73, CD90, and CD105 and showed different expression levels of the genes Sox9, Nanog, and Runx2 involved in chondrogenesis, undifferentiation, and osteoblastogenesis, respectively. Immunohistochemical analysis demonstrated that COL1, COL2, COLX, MMP13, and aggrecan were expressed in the spheroids as soon as 14 days of culture. The CD271(+) subpopulation expressed the highest levels of COL2 staining compared to the other subpopulations. CD105 and Runx2 were shown by immunohistochemistry and genetic analysis to have significantly higher expression CD271(+) subpopulation than the other subpopulations. Spheroids formed from CD271-enriched and CD73-enriched MSCs from normal human synovial membranes mimic the native cartilage extracellular matrix more closely than CD106(+) MSCs and are possible candidates for use in cartilage tissue engineering. Both cell types have potential for promoting the differentiation of MSCs into chondrocytes, presenting new possibilities for achieving intrinsic cartilage repair.
Collapse
Affiliation(s)
- M C Arufe
- Osteoarticular and Aging Research Lab, Cellular Therapy Unit, INIBIC-CH Universitario Juan Canalejo, 15006 A Coruña, Spain
| | | | | | | | | |
Collapse
|
18
|
Human thymus mesenchymal stromal cells augment force production in self-organized cardiac tissue. Ann Thorac Surg 2010; 90:796-803; discussion 803-4. [PMID: 20732499 DOI: 10.1016/j.athoracsur.2010.04.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/13/2010] [Accepted: 04/15/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mesenchymal stromal cells have been recently isolated from thymus gland tissue discarded after surgical procedures. The role of this novel cell type in heart regeneration has yet to be defined. The purpose of this study was to evaluate the therapeutic potential of human thymus-derived mesenchymal stromal cells using self-organized cardiac tissue as an in vitro platform for quantitative assessment. METHODS Mesenchymal stromal cells were isolated from discarded thymus tissue from neonates undergoing heart surgery and were incubated in differentiation media to demonstrate multipotency. Neonatal rat cardiomyocytes self-organized into cardiac tissue fibers in a custom culture dish either alone or in combination with varying numbers of mesenchymal stromal cells. A transducer measured force generated by spontaneously contracting self-organized cardiac tissue fibers. Work and power outputs were calculated from force tracings. Immunofluorescence was performed to determine the fate of the thymus-derived mesenchymal stromal cells. RESULTS Mesenchymal stromal cells were successfully isolated from discarded thymus tissue. After incubation in differentiation media, mesenchymal stromal cells attained the expected phenotypes. Although mesenchymal stromal cells did not differentiate into mature cardiomyocytes, addition of these cells increased the rate of fiber formation, force production, and work and power outputs. Self-organized cardiac tissue containing mesenchymal stromal cells acquired a defined microscopic architecture. CONCLUSIONS Discarded thymus tissue contains mesenchymal stromal cells, which can augment force production and work and power outputs of self-organized cardiac tissue fibers by several-fold. These findings indicate the potential utility of mesenchymal stromal cells in treating heart failure.
Collapse
|