1
|
McSweeney JE, Yong LY, Goddard NV, Wong JK. Does Secondary Mechanical Manipulation of Lipoaspirate Enhance the Vasculogenic Potential of Fat Grafts? A Systematic Review. Ann Plast Surg 2024; 93:389-396. [PMID: 39150855 DOI: 10.1097/sap.0000000000004048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
BACKGROUND Fat grafting is a highly versatile option in the reconstructive armamentarium but with unpredictable retention rates and outcomes. The primary outcome of this systematic review was to assess whether secondary mechanically processed lipoaspirate favorably enhances the vasculogenic potential of fat grafts when compared to unprocessed lipoaspirate or fat grafts prepared using centrifugation alone. The secondary outcome was to assess the evidence around graft retention and improved outcomes when comparing the aforementioned groups. METHODS A search on MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials was conducted up to February 2022. All human and animal research, which provided a cross-comparison between unprocessed, centrifuged, secondary mechanically fragmented (SMF) or secondary mechanically disrupted (SMD) fat grafts, was included. RESULTS Thirty-one full texts were included. Vasculogenic potential was assessed by quantification of angiogenic growth factors and cellular composition. Cellular composition of mesenchymal stem cells, perivascular stem cells, and endothelial progenitor cells was quantified by fluorescence activated cell sorting (FACS) analysis. Fat graft volume retention rates and fat grafting to aid wound healing were assessed. Although the presence of industry-funded studies and inadequate reporting of methodological data in some studies were sources of bias, data showed SMF grafts contain an enriched pericyte population with increased vascular endothelial growth factor (VEGF) secretion. Animal studies indicate that SMD grafts may increase rates of fat graft retention and wound closure compared to centrifuged grafts; however, clinical studies are yet to show similar results. CONCLUSIONS In this systematic review, we were able to conclude that the existing literature suggests mechanically processing fat, whether it be through fragmentation or disruption, improves vasculogenic potential by enhancing angiogenic growth factor and relevant vascular progenitor cell levels. Whilst in vivo animal studies are scarce, the review findings suggest that secondary mechanically processed fat enhances fat graft retention and can aid with wound healing. Further clinical studies are required to assess potential differences in human studies.
Collapse
Affiliation(s)
- Jared Ethan McSweeney
- From the Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, M13 9PL, UK
| | | | | | | |
Collapse
|
2
|
Hosseini M, Shafiee A. Vascularization of cutaneous wounds by stem cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:327-350. [PMID: 37678977 DOI: 10.1016/bs.pmbts.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Differentiated skin cells have limited self-renewal capacity; thus, the application of stem/progenitor cells, adult or induced stem cells, has attracted much attention for wound healing applications. Upon skin injury, vascularization, known as a highly dynamic process, occurs with the contribution of cells, the extracellular matrix, and relevant growth factors. Considering the importance of this process in tissue regeneration, several strategies have been proposed to enhance angiogenesis and accelerate wound healing. Previous studies report the effectiveness of stem/progenitor cells in skin wound healing by facilitating the vascularization process. This chapter reviews and highlights some of the key and recent investigations on application of stem/progenitor cells to induce skin revascularization after trauma.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia; ARC Industrial Transformation Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D), Queensland University of Technology, Brisbane, QLD, Australia
| | - Abbas Shafiee
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, Australia; Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, QLD, Australia; Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Vascularized Tissue Organoids. Bioengineering (Basel) 2023; 10:bioengineering10020124. [PMID: 36829618 PMCID: PMC9951914 DOI: 10.3390/bioengineering10020124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Tissue organoids hold enormous potential as tools for a variety of applications, including disease modeling and drug screening. To effectively mimic the native tissue environment, it is critical to integrate a microvasculature with the parenchyma and stroma. In addition to providing a means to physiologically perfuse the organoids, the microvasculature also contributes to the cellular dynamics of the tissue model via the cells of the perivascular niche, thereby further modulating tissue function. In this review, we discuss current and developing strategies for vascularizing organoids, consider tissue-specific vascularization approaches, discuss the importance of perfusion, and provide perspectives on the state of the field.
Collapse
|
4
|
Ronchetti GZ, Simões MR, Schereider IRG, Leal MAS, Peçanha GAW, Padilha AS, Vassallo DV. Oxidative Stress Induced by 30 Days of Mercury Exposure Accelerates Hypertension Development in Prehypertensive Young SHRs. Cardiovasc Toxicol 2022; 22:929-939. [DOI: 10.1007/s12012-022-09769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
|
5
|
ÖZTEL ON, YILMAZ H, İŞOĞLU İA, ALLAHVERDİYEV A. COMPARİSON OF EGG WHİTE AND Ε-POLYCAPROLACTONE FOR THREE-DİMENSİONAL CELL CULTURE. GAZI UNIVERSITY JOURNAL OF SCIENCE 2022. [DOI: 10.35378/gujs.1037746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is increasingly becoming important to develop three-dimensional (3-D) cell culture systems due to their numerous advantages over traditional monolayer culture. The aim of this study is to investigate the interaction of adipose derived stem cells (ADSCs) with scaffolds composed of ε-polycaprolactone (ε-PCL) and egg white. In our study; ε-PCL and egg white scaffolds were fabricated from their monomers under the catalysis of tin octoate and by polymerization by heat respectively. Characterization of PCL was carried out with Gel permeability chromatography (GPC), Fourier Transform Infrared Spectrophotometry (FTIR), Proton Nuclear Magnetic Resonance (H-NMR), Differential Scan Calorimetry (DSC) and Scanning Electron Microscopy (SEM). CM-DiI labeled ADSCs were cultured for 12 days on egg white and ε-PCL scaffolds. Cell viability was performed using MTT and nitric oxide level was evaluated for toxicity. Results showed that the number of ADSCs on egg white scaffold increased periodically throughout 12 days compared with the other groups. Although the number of ADSCs on ε-PCL scaffold increased until the 6th day of the culture, the cell number began to decrease after day 6.. These results were associated with the decomposition of PCL scaffolds that occurs through catabolic reactions. This causes the release of lactic acid which makes toxic effect on the cells. Thus, these results showed that egg white scaffold increases and protects cell adhesion and cell viability more than ε-Polycaprolactone scaffold, thus it can be used as a scaffold in tissue engineering studies that involve stem cells.
Collapse
|
6
|
Methods for vascularization and perfusion of tissue organoids. Mamm Genome 2022; 33:437-450. [PMID: 35333952 DOI: 10.1007/s00335-022-09951-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/10/2022] [Indexed: 12/17/2022]
Abstract
Tissue organoids or "mini organs" can be invaluable tools for understanding health and disease biology, modeling tissue dynamics, or screening potential drug candidates. Effective vascularization of these models is critical for truly representing the in vivo tissue environment. Not only is the formation of a vascular network, and ultimately a microcirculation, essential for proper distribution and exchange of oxygen and nutrients throughout larger organoids, but vascular cells dynamically communicate with other cells to modulate overall tissue behavior. Additionally, interstitial fluid flow, mediated by a perfused microvasculature, can have profound influences on tissue biology. Thus, a truly functionally and biologically relevant organoid requires a vasculature. Here, we review existing strategies for fabricating and incorporating vascular elements and perfusion within tissue organoids.
Collapse
|
7
|
Paz C, Suárez E, Gil C, Parga O. Numerical modelling of osteocyte growth on different bone tissue scaffolds. Comput Methods Biomech Biomed Engin 2021; 25:641-655. [PMID: 34459293 DOI: 10.1080/10255842.2021.1972290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The most common solution for the regeneration or replacement of damaged bones is the implantation of prostheses comprising ceramic or metallic materials. However, these implants are known to cause problems such as post-operative infections, collapse of the prosthesis, and lack of osseointegration. Consequently, bone tissue engineering was established because of the limitations of such implants. Osteogenic implants offer promising solutions for bone regeneration; however, three-dimensional scaffolds should be used as supportive structures. It is challenging to correctly design these structures and their compositions or properties to provide a microenvironment that promotes tissue regeneration and expedites bone formation. Computational fluid dynamics can be used to model the main phenomena that occur in bioreactors, such as cell metabolism, nutrient transport, and cell culture growth, or to model the influence of several key mechanisms related to the fluid medium, in particular, the wall shear stress. In this work, a new numerical bone cell growth model was developed, which considered the oxygen and nutrient consumption as well as the wall shear stress effect on cell proliferation. The model was implemented using 35 three-dimensional scaffolds of different porosities, and the effect of the main geometrical parameters involved in each scaffold type was analysed. The porosity plays an important role, however, a similar porosity did not guarantee similar shear stress or cell growth among the scaffolds. Randomised trabecular scaffolds, that more closely resembled trabecular bone, showed the highest cell growth values, so these are the best candidates for cell growth in a bioreactor.
Collapse
Affiliation(s)
- Concepción Paz
- CINTECX, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, Vigo, España.,Biofluids Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Eduardo Suárez
- CINTECX, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, Vigo, España.,Biofluids Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Christian Gil
- CINTECX, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, Vigo, España
| | - Oscar Parga
- CINTECX, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, Vigo, España
| |
Collapse
|
8
|
Lim KT, Patel DK, Dutta SD, Ganguly K. Fluid Flow Mechanical Stimulation-Assisted Cartridge Device for the Osteogenic Differentiation of Human Mesenchymal Stem Cells. MICROMACHINES 2021; 12:927. [PMID: 34442549 PMCID: PMC8398302 DOI: 10.3390/mi12080927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/30/2022]
Abstract
Human mesenchymal stem cells (hMSCs) have the potential to differentiate into different types of mesodermal tissues. In vitro proliferation and differentiation of hMSCs are necessary for bone regeneration in tissue engineering. The present study aimed to design and develop a fluid flow mechanically-assisted cartridge device to enhance the osteogenic differentiation of hMSCs. We used the fluorescence-activated cell-sorting method to analyze the multipotent properties of hMSCs and found that the cultured cells retained their stemness potential. We also evaluated the cell viabilities of the cultured cells via water-soluble tetrazolium salt 1 (WST-1) assay under different rates of flow (0.035, 0.21, and 0.35 mL/min) and static conditions and found that the cell growth rate was approximately 12% higher in the 0.035 mL/min flow condition than the other conditions. Moreover, the cultured cells were healthy and adhered properly to the culture substrate. Enhanced mineralization and alkaline phosphatase activity were also observed under different perfusion conditions compared to the static conditions, indicating that the applied conditions play important roles in the proliferation and differentiation of hMSCs. Furthermore, we determined the expression levels of osteogenesis-related genes, including the runt-related protein 2 (Runx2), collagen type I (Col1), osteopontin (OPN), and osteocalcin (OCN), under various perfusion vis-à-vis static conditions and found that they were significantly affected by the applied conditions. Furthermore, the fluorescence intensities of OCN and OPN osteogenic gene markers were found to be enhanced in the 0.035 mL/min flow condition compared to the control, indicating that it was a suitable condition for osteogenic differentiation. Taken together, the findings of this study reveal that the developed cartridge device promotes the proliferation and differentiation of hMSCs and can potentially be used in the field of tissue engineering.
Collapse
Affiliation(s)
- Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (D.-K.P.); (S.-D.D.); (K.G.)
- Biomechagen Co., Ltd., Chuncheon 24341, Korea
| | - Dinesh-K. Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (D.-K.P.); (S.-D.D.); (K.G.)
| | - Sayan-Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (D.-K.P.); (S.-D.D.); (K.G.)
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (D.-K.P.); (S.-D.D.); (K.G.)
| |
Collapse
|
9
|
Huang Y, Qian JY, Cheng H, Li XM. Effects of shear stress on differentiation of stem cells into endothelial cells. World J Stem Cells 2021; 13:894-913. [PMID: 34367483 PMCID: PMC8316872 DOI: 10.4252/wjsc.v13.i7.894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell transplantation is an appealing potential therapy for vascular diseases and an indispensable key step in vascular tissue engineering. Substantial effort has been made to differentiate stem cells toward vascular cell phenotypes, including endothelial cells (ECs) and smooth muscle cells. The microenvironment of vascular cells not only contains biochemical factors that influence differentiation but also exerts hemodynamic forces, such as shear stress and cyclic strain. More recently, studies have shown that shear stress can influence the differentiation of stem cells toward ECs. A deep understanding of the responses and underlying mechanisms involved in this process is essential for clinical translation. This review highlights current data supporting the role of shear stress in stem cell differentiation into ECs. Potential mechanisms and signaling cascades for transducing shear stress into a biological signal are proposed. Further study of stem cell responses to shear stress will be necessary to apply stem cells for pharmacological applications and cardiovascular implants in the realm of regenerative medicine.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jia-Yi Qian
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Hong Cheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiao-Ming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
10
|
Sedlář A, Trávníčková M, Matějka R, Pražák Š, Mészáros Z, Bojarová P, Bačáková L, Křen V, Slámová K. Growth Factors VEGF-A 165 and FGF-2 as Multifunctional Biomolecules Governing Cell Adhesion and Proliferation. Int J Mol Sci 2021; 22:1843. [PMID: 33673317 PMCID: PMC7917819 DOI: 10.3390/ijms22041843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor-A165 (VEGF-A165) and fibroblast growth factor-2 (FGF-2) are currently used for the functionalization of biomaterials designed for tissue engineering. We have developed a new simple method for heterologous expression and purification of VEGF-A165 and FGF-2 in the yeast expression system of Pichia pastoris. The biological activity of the growth factors was assessed in cultures of human and porcine adipose tissue-derived stem cells (ADSCs) and human umbilical vein endothelial cells (HUVECs). When added into the culture medium, VEGF-A165 stimulated proliferation only in HUVECs, while FGF-2 stimulated the proliferation of both cell types. A similar effect was achieved when the growth factors were pre-adsorbed to polystyrene wells. The effect of our recombinant growth factors was slightly lower than that of commercially available factors, which was attributed to the presence of some impurities. The stimulatory effect of the VEGF-A165 on cell adhesion was rather weak, especially in ADSCs. FGF-2 was a potent stimulator of the adhesion of ADSCs but had no to negative effect on the adhesion of HUVECs. In sum, FGF-2 and VEGF-A165 have diverse effects on the behavior of different cell types, which maybe utilized in tissue engineering.
Collapse
Affiliation(s)
- Antonín Sedlář
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
- Department of Physiology, Faculty of Science, Charles University, Viničná 7, CZ 12844 Praha 2, Czech Republic
| | - Martina Trávníčková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
| | - Roman Matějka
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
- Faculty of Biomedical Engineering, Czech Technical University in Prague, CZ 27201 Kladno, Czech Republic;
| | - Šimon Pražák
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
- Faculty of Biomedical Engineering, Czech Technical University in Prague, CZ 27201 Kladno, Czech Republic;
| | - Zuzana Mészáros
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (Z.M.); (V.K.)
- Department of Biochemistry, University of Chemistry and Technology Prague, Technická 6, CZ 16628 Praha 6, Czech Republic
| | - Pavla Bojarová
- Faculty of Biomedical Engineering, Czech Technical University in Prague, CZ 27201 Kladno, Czech Republic;
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (Z.M.); (V.K.)
| | - Lucie Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (Z.M.); (V.K.)
| | - Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (Z.M.); (V.K.)
| |
Collapse
|
11
|
Han TTY, Walker JT, Grant A, Dekaban GA, Flynn LE. Preconditioning Human Adipose-Derived Stromal Cells on Decellularized Adipose Tissue Scaffolds Within a Perfusion Bioreactor Modulates Cell Phenotype and Promotes a Pro-regenerative Host Response. Front Bioeng Biotechnol 2021; 9:642465. [PMID: 33816453 PMCID: PMC8012684 DOI: 10.3389/fbioe.2021.642465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-based therapies involving the delivery of adipose-derived stromal cells (ASCs) on decellularized adipose tissue (DAT) scaffolds are a promising approach for soft tissue augmentation and reconstruction. Our lab has recently shown that culturing human ASCs on DAT scaffolds within a perfusion bioreactor prior to implantation can enhance their capacity to stimulate in vivo adipose tissue regeneration. Building from this previous work, the current study investigated the effects of bioreactor preconditioning on the ASC phenotype and secretory profile in vitro, as well as host cell recruitment following implantation in an athymic nude mouse model. Immunohistochemical analyses indicated that culturing within the bioreactor increased the percentage of ASCs co-expressing inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1), as well as tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10), within the peripheral regions of the DAT relative to statically cultured controls. In addition, bioreactor culture altered the expression levels of a range of immunomodulatory factors in the ASC-seeded DAT. In vivo testing revealed that culturing the ASCs on the DAT within the perfusion bioreactor prior to implantation enhanced the infiltration of host CD31+ endothelial cells and CD26+ cells into the DAT implants, but did not alter CD45+F4/80+CD68+ macrophage recruitment. However, a higher fraction of the CD45+ cell population expressed the pro-regenerative macrophage marker CD163 in the bioreactor group, which may have contributed to enhanced remodeling of the scaffolds into host-derived adipose tissue. Overall, the findings support that bioreactor preconditioning can augment the capacity of human ASCs to stimulate regeneration through paracrine-mediated mechanisms.
Collapse
Affiliation(s)
- Tim Tian Y. Han
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - John T. Walker
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Aaron Grant
- Division of Plastic and Reconstructive Surgery, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Gregory A. Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Lauren E. Flynn
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- *Correspondence: Lauren E. Flynn,
| |
Collapse
|
12
|
Sart S, Jeske R, Chen X, Ma T, Li Y. Engineering Stem Cell-Derived Extracellular Matrices: Decellularization, Characterization, and Biological Function. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:402-422. [DOI: 10.1089/ten.teb.2019.0349] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sébastien Sart
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
- Laboratory of Physical Microfluidics and Bioengineering, Department of Genome and Genetics, Institut Pasteur, Paris, France
| | - Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
13
|
Wyrobnik TA, Ducci A, Micheletti M. Advances in human mesenchymal stromal cell-based therapies - Towards an integrated biological and engineering approach. Stem Cell Res 2020; 47:101888. [PMID: 32688331 DOI: 10.1016/j.scr.2020.101888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Recent advances of stem cell-based therapies in clinical trials have raised the need for large-scale manufacturing platforms that can supply clinically relevant doses to meet an increasing demand. Promising results have been reported using stirred-tank bioreactors, where human Mesenchymal Stromal Cells (hMSCs) were cultured in suspension on microcarriers (MCs), although the formation of microcarrier-cell-aggregates might still limit mass transfer and determine a heterogeneous distribution of hMSCs. A variety of MCs, bioreactor-impeller configurations, and agitation conditions have been established in an attempt to overcome the trade-off of ensuring good suspension while keeping the stresses to a minimum. While understanding and controlling the fluid flow environment of bioreactors has been initially under-appreciated, it has recently gained in popularity in the mission of providing ideal culture environments across different scales. This review article aims to provide a comprehensive overview of how rigorous engineering characterisation studies improved the outcome of biological process development and scale-up efforts. Reconciling these two disciplines is crucial to propose tailored bioprocessing solutions that can provide improved growth environments across a range of scales for the allogeneic cell therapies of the future.
Collapse
Affiliation(s)
- Tom A Wyrobnik
- Department of Biochemical Engineering, UCL, Gower Street, London WC1E 6BT, UK
| | - Andrea Ducci
- Department of Mechanical Engineering, UCL, Torrington Place, London WC1E 7JE, UK
| | - Martina Micheletti
- Department of Biochemical Engineering, UCL, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
14
|
Pinto DS, Ahsan T, Serra J, Fernandes-Platzgummer A, Cabral JMS, da Silva CL. Modulation of the in vitro angiogenic potential of human mesenchymal stromal cells from different tissue sources. J Cell Physiol 2020; 235:7224-7238. [PMID: 32037550 DOI: 10.1002/jcp.29622] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
Abstract
Mesenchymal stromal cells (MSCs) have been widely exploited for the treatment of several conditions due to their intrinsic regenerative and immunomodulatory properties. MSC have demonstrated to be particularly relevant for the treatment of ischemic diseases, where MSC-based therapies can stimulate angiogenesis and induce tissue regeneration. Regardless of the condition targeted, recent analyses of MSC-based clinical trials have demonstrated limited benefits indicating a need to improve the efficacy of this cell product. Preconditioning MSC ex vivo through microenvironment modulation was found to improve MSC survival rate and thus prolong their therapeutic effect. This workstudy aims at enhancing the in vitro angiogenic capacity of a potential MSC-based medicinal product by comparing different sources of MSC and culture conditions. MSC from three different sources (bone marrow [BM], adipose tissue [AT], and umbilical cord matrix [UCM]) were cultured with xenogeneic-/serum-free culture medium under static conditions and their angiogenic potential was studied. Results indicated a higher in vitro angiogenic capacity of UCM MSC, compared with cells derived from BM and AT. Physicochemical preconditioning of UCM MSC through a microcarrier-based culture platform and low oxygen concentration (2% O2 , compared with atmospheric air) increased the in vitro angiogenic potential of the cultured cells. Envisaging the clinical manufacturing of an allogeneic, off-the-shelf MSC-based product, preconditioned UCM MSC maintain the angiogenic gene expression profile upon cryopreservation and delivery processes in the conditions of our study. These results are expected to contribute to the development of MSC-based therapies in the context of angiogenesis.
Collapse
Affiliation(s)
- Diogo S Pinto
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Tabassum Ahsan
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Joana Serra
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
15
|
Lin CH, Lu JH, Hsia K, Lee H, Yao CL, Ma H. The Antithrombotic Function of Sphingosine-1-Phosphate on Human Adipose-Stem-Cell-Recellularized Tissue Engineered Vascular Graft In Vitro. Int J Mol Sci 2019; 20:ijms20205218. [PMID: 31640220 PMCID: PMC6829437 DOI: 10.3390/ijms20205218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 12/26/2022] Open
Abstract
Adipose stem cells (ASCs) show potential in the recellularization of tissue engineerined vascular grafts (TEVGs). However, whether sphingosine-1-phosphate (S1P) could further enhance the adhesion, proliferation, and antithrombosis of ASCs on decellularized vascular scaffolds is unknown. This study investigated the effect of S1P on the recellularization of TEVGs with ASCs. Human ASCs were derived from lipoaspirate. Scaffolds were derived from human umbilical arteries (HUAs) with treatment of 0.1% sodium dodecyl sulfate (SDS) for 48 h (decellularized HUAs; DHUAs). The adhesion, proliferation, and antithrombotic functions (kinetic clotting time and platelet adhesion) of ASCs on DHUAs with S1P or without S1P were evaluated. The histology and DNA examination revealed a preserved structure and the elimination of the nuclear component more than 95% in HUAs after decellularizaiton. Human ASCs (hASCs) showed CD29(+), CD73(+), CD90(+), CD105(+), CD31(-), CD34(-), CD44(-), HLA-DR(-), and CD146(-) while S1P-treated ASCs showed marker shifting to CD31(+). In contrast to human umbilical vein endothelial cells (HUVECs), S1P didn't significantly increase proliferation of ASCs on DHUAs. However, the kinetic clotting test revealed prolonged blood clotting in S1P-treated ASC-recellularized DHUAs. S1P also decreased platelet adhesion on ASC-recellularized DHUAs. In addition, S1P treatment increased the syndecan-1 expression of ASCs. TEVG reconstituted with S1P and ASC-recellularized DHUAs showed an antithrombotic effect in vitro. The preliminary results showed that ASCs could adhere to DHUAs and S1P could increase the antithrombotic effect on ASC-recellularized DHUAs. The antithrombotic effect is related to ASCs exhibiting an endothelial-cell-like function and preventing of syndecan-1 shedding. A future animal study is warranted to prove this novel method.
Collapse
Affiliation(s)
- Chih-Hsun Lin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Jen-Her Lu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Surgery, medicine & Pediatrics, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan.
- Department of Pediatrics, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Kai Hsia
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li, Taoyuan City 32003, Taiwan.
| | - Hsu Ma
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Surgery, medicine & Pediatrics, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
16
|
A fully automated bioreactor system for precise control of stem cell proliferation and differentiation. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Abstract
Accumulating evidence demonstrates that pre-vascularization of tissue-engineered constructs can significantly enhance their survival and engraftment upon transplantation. Endothelial cells (ECs), the basic component of vasculatures, are indispensable to the entire process of pre-vascularization. However, the source of ECs still poses an issue. Recent studies confirmed that diverse approaches are available in the derivation of ECs for tissue engineering, such as direct isolation of autologous ECs, reprogramming of somatic cells, and induced differentiation of stem cells in typology. Herein, we discussed a variety of human stem cells (i.e., totipotent, pluripotent, multipotent, oligopotent, and unipotent stem cells), which can be induced to differentiate into ECs and reviewed the multifarious approaches for EC generation, such as 3D EB formation for embryonic stem cells (ESCs), stem cell-somatic cell co-culture, and directed endothelial differentiation with growth factors in conventional 2D culture.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatological Hospital and College, Anhui Medical University, 69 Meishan Road, Hefei, 230032 Anhui Province China
| | - Jiacai He
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatological Hospital and College, Anhui Medical University, 69 Meishan Road, Hefei, 230032 Anhui Province China
| | - Chengfei Zhang
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Jianguang Xu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatological Hospital and College, Anhui Medical University, 69 Meishan Road, Hefei, 230032 Anhui Province China
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Yuanyin Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatological Hospital and College, Anhui Medical University, 69 Meishan Road, Hefei, 230032 Anhui Province China
| |
Collapse
|
18
|
Li X, Ma T, Sun J, Shen M, Xue X, Chen Y, Zhang Z. Harnessing the secretome of adipose-derived stem cells in the treatment of ischemic heart diseases. Stem Cell Res Ther 2019; 10:196. [PMID: 31248452 PMCID: PMC6598280 DOI: 10.1186/s13287-019-1289-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are promising therapeutic cells for ischemic heart diseases, due to the ease and efficiency of acquisition, the potential of myocardial lineage differentiation, and the paracrine effects. Recently, many researchers have claimed that the ASC-based myocardial repair is mainly attributed to its paracrine effects, including the anti-apoptosis, pro-angiogenesis, anti-inflammation effects, and the inhibition of fibrosis, rather than the direct differentiation into cardiovascular lineage cells. However, the usage of ASCs comes with the problems of low cardiac retention and survival after transplantation, like other stem cells, which compromises the effectiveness of the therapy. To overcome these drawbacks, researchers have proposed various strategies for improving survival rate and ensuring sustained paracrine secretion. They also investigated the safety and efficacy of phase I and II clinical trials of ASC-based therapy for cardiovascular diseases. In this review, we will discuss the characterization and paracrine effects of ASCs on myocardial repair, followed by the strategies for stimulating the paracrine secretion of ASCs, and finally their clinical usage.
Collapse
Affiliation(s)
- Xiaoting Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Teng Ma
- Department of Cardiovascular Surgery, The First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Jiacheng Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Mingjing Shen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Xiang Xue
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Yongbing Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China.
| | - Zhiwei Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China.
| |
Collapse
|
19
|
Effects of direct high sodium exposure at endothelial cell migration. Biochem Biophys Res Commun 2019; 514:1257-1263. [PMID: 31113617 DOI: 10.1016/j.bbrc.2019.05.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/14/2019] [Indexed: 02/05/2023]
Abstract
The present study aimed to test the hypothesis that high sodium affects the migratory phenotype of endothelial cells (EC) and investigates mechanisms involved independently of hemodynamic factors. Cell migration was evaluated by Wound-Healing at conditions: High Sodium (HS; 160 mM) and Control (CT; 140 mM). O2- production was evaluated by DHE. NADPH oxidase activity was determined by chemiluminescence assay. Expression of adhesion molecules was analyzed by RT-PCR. Shear Stress was performed using a rhythmic shake. Nitric oxide production was measured by Griess reaction. HS-induced impairment in EC migration while both Candesartan and DPI prevented it. HS increased NADPH oxidase activity, which was blocked by Candesartan. Also, HS increased O2- production that was inhibited by Candesartan. HS decreased adhesion molecules expression via ROS (Integrin Alpha 5, Integrin Beta 1, Integrin Beta 3, VE-Cadherin and PECAM) and via AT1R (PECAM). The nitric oxide production induced by shear stress was decreased after EC exposure to HS while both Candesartan and DPI prevented it. Conclusion: This study demonstrated that HS reduced EC migration by AT1R and ROS derived from NADPH Oxidase and mitochondria. The HS reduction in adhesion molecules expression modulated by ROS and AT1R may help to explain the impairment in migration capacity. Also, HS affected EC functionality by reducing their nitric oxide production in response to shear stress.
Collapse
|
20
|
Venturini G, Malagrino PA, Padilha K, Tanaka LY, Laurindo FR, Dariolli R, Carvalho VM, Cardozo KHM, Krieger JE, Pereira ADC. Integrated proteomics and metabolomics analysis reveals differential lipid metabolism in human umbilical vein endothelial cells under high and low shear stress. Am J Physiol Cell Physiol 2019; 317:C326-C338. [PMID: 31067084 DOI: 10.1152/ajpcell.00128.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atherosclerotic plaque development is closely associated with the hemodynamic forces applied to endothelial cells (ECs). Among these, shear stress (SS) plays a key role in disease development since changes in flow intensity and direction could stimulate an atheroprone or atheroprotective phenotype. ECs under low or oscillatory SS (LSS) show upregulation of inflammatory, adhesion, and cellular permeability molecules. On the contrary, cells under high or laminar SS (HSS) increase their expression of protective and anti-inflammatory factors. The mechanism behind SS regulation of an atheroprotective phenotype is not completely elucidated. Here we used proteomics and metabolomics to better understand the changes in endothelial cells (human umbilical vein endothelial cells) under in vitro LSS and HSS that promote an atheroprone or atheroprotective profile and how these modifications can be connected to atherosclerosis development. Our data showed that lipid metabolism, in special cholesterol metabolism, was downregulated in cells under LSS. The low-density lipoprotein receptor (LDLR) showed significant alterations both at the quantitative expression level as well as regarding posttranslational modifications. Under LSS, LDLR was seen at lower concentrations and with a different glycosylation profile. Finally, modulating LDLR with atorvastatin led to the recapitulation of a HSS metabolic phenotype in EC under LSS. Altogether, our data suggest that there is significant modulation of lipid metabolism in endothelial cells under different SS intensities and that this could contribute to the atheroprone phenotype of LSS. Statin treatment was able to partially recover the protective profile of these cells.
Collapse
Affiliation(s)
- Gabriela Venturini
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Pamella Araujo Malagrino
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Kallyandra Padilha
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leonardo Yuji Tanaka
- Vascular Biology Laboratory, Heart Institute (InCor), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Francisco Rafael Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Rafael Dariolli
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | - Jose Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Alexandre da Costa Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
21
|
Roberts EL, Dang T, Lepage SIM, Alizadeh AH, Walsh T, Koch TG, Kallos MS. Improved expansion of equine cord blood derived mesenchymal stromal cells by using microcarriers in stirred suspension bioreactors. J Biol Eng 2019; 13:25. [PMID: 30949237 PMCID: PMC6429778 DOI: 10.1186/s13036-019-0153-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/22/2019] [Indexed: 12/22/2022] Open
Abstract
Equine mesenchymal stromal cells (MSCs) are increasingly investigated for their clinical therapeutic utility. Such cell-based treatments can require cell numbers in the millions or billions, with conventional expansion methods using static T-flasks typically inefficient in achieving these cell numbers. Equine cord blood-derived MSCs (eCB-MSCs), are promising cell candidates owing to their capacity for chondrogenic differentiation and immunomodulation. Expansion of eCB-MSCs in stirred suspension bioreactors with microcarriers as an attachment surface has the potential to generate clinically relevant numbers of cells while decreasing cost, time and labour requirements and increasing reproducibility and yield when compared to static expansion. As eCB-MSCs have not yet been expanded in stirred suspension bioreactors, a robust protocol was required to expand these cells using this method. This study outlines the development of an expansion bioprocess, detailing the inoculation phase, expansion phase, and harvesting phase, followed by phenotypic and trilineage differentiation characterization of two eCB-MSC donors. The process achieved maximum cell densities up to 75,000 cells/cm2 corresponding to 40 million cells in a 100 mL bioreactor, with a harvesting efficiency of up to 80%, corresponding to a yield of 32 million cells from a 100 mL bioreactor. When compared to cells grown in static T-flasks, bioreactor-expanded eCB-MSC cultures did not change in surface marker expression or trilineage differentiation capacity. This indicates that the bioreactor expansion process yields large quantities of eCB-MSCs with similar characteristics to conventionally grown eCB-MSCs.
Collapse
Affiliation(s)
- Erin L. Roberts
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| | - Tiffany Dang
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| | - Sarah I. M. Lepage
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Gordon St, Guelph, ON N1G 2W1 Canada
| | - Amir Hamed Alizadeh
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Gordon St, Guelph, ON N1G 2W1 Canada
| | - Tylor Walsh
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| | - Thomas G. Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Gordon St, Guelph, ON N1G 2W1 Canada
| | - Michael S. Kallos
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| |
Collapse
|
22
|
Zhang Y, Yu M, Zhao X, Dai M, Chen C, Tian W. Optimizing adipose tissue extract isolation with stirred suspension culture. Connect Tissue Res 2019; 60:178-188. [PMID: 29852798 DOI: 10.1080/03008207.2018.1483357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Adherent culture which is used to collect adipose tissue extract (ATE) previously brings the problem of inhomogeneity and non-repeatability. Here we aim to extract ATE with stirred suspension culture to speed up the extraction process, stabilize the yield, and improve consistent potency metrics of ATE. MATERIALS AND METHODS ATE was collected with adherent culture (ATE-A) and stirred suspension culture (ATE-S) separately. Protein yield and composition were detected by SDS-PAGE, while cytokines in ATE were determined with ELISA. The adipogenic and angiogenic potential of ATE were compared by western blot and qPCR. In addition, haematoxylin and eosin staining and lactate dehydrogenase (LDH) activity assays were used to analyze the cell viability of adipose tissue cultured with different methods. RESULTS The yield of ATE-S was consistent while ATE-A varied notably. Characterization of the protein composition and exosome-like vesicles (ELVs) indicated no significant difference between ATE-S and ATE-A. The concentrations of cytokines (VEGF, bFGF, and IL-6) showed no significant difference, while IGF in ATE-S was higher than that in ATE-A. ATE-S showed upregulated adipogenic and angiogenic potential compared to ATE-A. Morever, stirred suspension culture decreased the LDH activity of ATE while increased the number of viable adipocytes and reduced adipose tissue necrosis. CONCLUSION Compared with adherent culture, stirred suspension culture is a reliable, time- and labor-saving method to collect ATE, which might be used to improve the downstream applications of ATE.
Collapse
Affiliation(s)
- Yan Zhang
- a State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Mei Yu
- a State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Xueyong Zhao
- a State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Minjia Dai
- a State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Chang Chen
- a State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Weidong Tian
- a State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| |
Collapse
|
23
|
de Almeida Fuzeta M, de Matos Branco AD, Fernandes-Platzgummer A, da Silva CL, Cabral JMS. Addressing the Manufacturing Challenges of Cell-Based Therapies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:225-278. [PMID: 31844924 DOI: 10.1007/10_2019_118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exciting developments in the cell therapy field over the last decades have led to an increasing number of clinical trials and the first cell products receiving marketing authorization. In spite of substantial progress in the field, manufacturing of cell-based therapies presents multiple challenges that need to be addressed in order to assure the development of safe, efficacious, and cost-effective cell therapies.The manufacturing process of cell-based therapies generally requires tissue collection, cell isolation, culture and expansion (upstream processing), cell harvest, separation and purification (downstream processing), and, finally, product formulation and storage. Each one of these stages presents significant challenges that have been the focus of study over the years, leading to innovative and groundbreaking technological advances, as discussed throughout this chapter.Delivery of cell-based therapies relies on defining product targets while controlling process variable impact on cellular features. Moreover, commercial viability is a critical issue that has had damaging consequences for some therapies. Implementation of cost-effectiveness measures facilitates healthy process development, potentially being able to influence end product pricing.Although cell-based therapies represent a new level in bioprocessing complexity in every manufacturing stage, they also show unprecedented levels of therapeutic potential, already radically changing the landscape of medical care.
Collapse
Affiliation(s)
- Miguel de Almeida Fuzeta
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - André Dargen de Matos Branco
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia Lobato da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
24
|
Ma Y, Lin M, Huang G, Li Y, Wang S, Bai G, Lu TJ, Xu F. 3D Spatiotemporal Mechanical Microenvironment: A Hydrogel-Based Platform for Guiding Stem Cell Fate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705911. [PMID: 30063260 DOI: 10.1002/adma.201705911] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/05/2018] [Indexed: 05/06/2023]
Abstract
Stem cells hold great promise for widespread biomedical applications, for which stem cell fate needs to be well tailored. Besides biochemical cues, accumulating evidence has demonstrated that spatiotemporal biophysical cues (especially mechanical cues) imposed by cell microenvironments also critically impact on the stem cell fate. As such, various biomaterials, especially hydrogels due to their tunable physicochemical properties and advanced fabrication approaches, are developed to spatiotemporally manipulate biophysical cues in vitro so as to recapitulate the 3D mechanical microenvironment where stem cells reside in vivo. Here, the main mechanical cues that stem cells experience in their native microenvironment are summarized. Then, recent advances in the design of hydrogel materials with spatiotemporally tunable mechanical properties for engineering 3D the spatiotemporal mechanical microenvironment of stem cells are highlighted. These in vitro engineered spatiotemporal mechanical microenvironments are crucial for guiding stem cell fate and their potential biomedical applications are subsequently discussed. Finally, the challenges and future perspectives are presented.
Collapse
Affiliation(s)
- Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuhui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shuqi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, P. R. China
- Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, P. R. China
| | - Guiqin Bai
- Department of Gynaecology and Obstetrics, First Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- MOE Key Laboratory for Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
25
|
Wang P, Zhu S, Yuan C, Wang L, Xu J, Liu Z. Shear stress promotes differentiation of stem cells from human exfoliated deciduous teeth into endothelial cells via the downstream pathway of VEGF-Notch signaling. Int J Mol Med 2018; 42:1827-1836. [PMID: 30015843 PMCID: PMC6108868 DOI: 10.3892/ijmm.2018.3761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/21/2018] [Indexed: 12/31/2022] Open
Abstract
Effects of shear stress on endotheliaxl differentiation of stem cells from human exfoliated deciduous teeth (SHEDs) were investigated. SHEDs were treated with shear stress, then reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to analyse the mRNA expression of arterial markers and western blot analysis was performed to analyse protein expression of angiogenic markers. Additionally, in vitro matrigel angiogenesis assay was performed to evaluate vascular-like structure formation. The secreted protein expression levels of the vascular endothelial growth factor (VEGF) of SHEDs after shear stress was also quantified using corresponding ELISA kits. Untreated SHEDs seeded on Matrigel cannot form vessel-like structures at any time points, whereas groups treated with shear stress formed a few vessel-like structures at 4, 8 and 12 h. When SHEDs were treated with EphrinB2-siRNA for 24, the capability of vessel-like structure formation was suppressed. After being treated with shear stress, the expression of VEGF, VEGFR2, DLL4, Notch1, EphrinB2, Hey1 and Hey2 (arterial markers) gene expression was significantly upregulated, moreover, the protein levels of VEGFR2, EphrinB2, CD31, Notch1, DLL4, Hey1, and Hey2 were also significantly up-regulated. Both the mRNA and protein expression levels of EphB4 (venous marker) were downregulated. The average VEGF protein concentration in supernatants secreted by shear stress treated SHEDs groups increased significantly. In conclusion, shear stress was able to induce arterial endothelial differentiation of stem cells from human exfoliated deciduous teeth, and VEGF-DLL4/Notch‑EphrinB2 signaling was involved in this process.
Collapse
Affiliation(s)
- Penglai Wang
- Dental Implant Center, Xuzhou Stomatological Hospital, Xuzhou, Jiangsu, P.R. China
| | - Shaoyue Zhu
- Department of Orthodontics, Xuzhou Stomatological Hospital, Xuzhou, Jiangsu, P.R. China
| | - Changyong Yuan
- Dental Implant Center, Xuzhou Stomatological Hospital, Xuzhou, Jiangsu, P.R. China
| | - Lei Wang
- Department of Periodontics, Xuzhou Stomatological Hospital, Xuzhou, Jiangsu, P.R. China
| | - Jianguang Xu
- The Discipline of Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Zongxiang Liu
- Department of ExperDignosis, Xuzhou Stomatological Hospital, Xuzhou, Jiangsu, P.R. China
| |
Collapse
|
26
|
Polo-Corrales L, Ramirez-Vick J, Feria-Diaz JJ. Recent Advances in Biophysical stimulation of MSC for bone regeneration. ACTA ACUST UNITED AC 2018. [DOI: 10.17485/ijst/2018/v11i15/121405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
27
|
La A, Tranquillo RT. Shear Conditioning of Adipose Stem Cells for Reduced Platelet Binding to Engineered Vascular Grafts. Tissue Eng Part A 2018; 24:1242-1250. [PMID: 29448915 DOI: 10.1089/ten.tea.2017.0475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Conferring antithrombogenicity to tissue-engineered vascular grafts remains a major challenge, especially for urgent bypass grafting that excludes approaches based on expanding autologous endothelial cells (ECs) that requires weeks of cell culture. Adipose-derived stem cells (ASCs) are available from most patients in sufficient number for coronary bypass graft seeding and may be effective as allogeneic cells. We thus compared the adhesion and platelet binding of human ASCs that were shear conditioned with constant and pulsatile shear stress (SS) after seeding the cells on a biologically engineered matrix suitable for arterial grafts. A monolayer of cells was maintained up to 15 dyn/cm2 constant SS and up to 15 dyn/cm2 mean pulsatile SS for 6 days of shear flow. Platelet binding was reduced from 83% to 6% of surface area and nitric oxide production was increased 23-fold with 7.5-15 dyn/cm2 constant SS, but not pulsatile SS, relative to cells cultured statically on the matrix for 6 days. The reduction in platelet binding varied from no reduction to maximum reduction over a constant shear range of ∼2 to 4 dyn/cm2, respectively. Collectively, the study supports the potential use of ASCs to seed the luminal surface of a vascular graft made from this biologically engineered matrix to confer an antithrombogenic surface during the development of an endothelium from the seeded cells or the surrounding blood and tissue.
Collapse
Affiliation(s)
- Anh La
- 1 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Robert T Tranquillo
- 1 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota.,2 Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
28
|
Can photobiomodulation associated with implantation of mesenchymal adipose-derived stem cells attenuate the expression of MMPs and decrease degradation of type II collagen in an experimental model of osteoarthritis? Lasers Med Sci 2018. [PMID: 29520686 DOI: 10.1007/s10103-018-2466-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study aimed to determine whether photobiomodulation therapy (PBMT) could improve the bioavailability and chondroprotective benefits of mesenchymal stem cells injected into the knees of rats used as an experimental model of osteoarthritis (OA) as well as reduce the expression of matrix metalloproteinases (MMPs) and degradation of type II collagen (COL2-1) in the cartilage. Adipose-derived stem/stromal cells (ADSCs) were collected from three male Fischer 344 rats and characterized by flow cytometry. Fifty female Fischer 344 rats were distributed into five groups of 10 animals each. These groups were as follows: control, OA, OA PBMT, OA ADSC, and OA ADSC PBMT. OA was induced in the animals using a 4% papain solution. Animals from the OA ADSC and OA ADSC PBMT groups received an intra-articular injection of 10 × 106 ADSCs and were treated with PBMT by irradiation (wavelength: 808 nm, power: 50 mW, energy: 42 J, energy density: 71.2 J/cm2, spot size: 0.028). Euthanasia was performed 7 days after the first treatment. The use of PBMT alone and the injection of ADSCs resulted in downregulation of pro-inflammatory cytokines and MPs in cartilage compared to the OA group. PBMT and ADSCs caused upregulation of tissue inhibitors of MPs 1 and 2 and mRNA and protein expression of COL2-1 in cartilage compared to the OA group. The intra-articular injection of ADSCs and PBMT prevented joint degeneration resulting from COL2-1 degradation and modulated inflammation by downregulating cytokines and MMPs in the OA group.
Collapse
|
29
|
Wang W, Naolou T, Ma N, Deng Z, Xu X, Mansfeld U, Wischke C, Gossen M, Neffe AT, Lendlein A. Polydepsipeptide Block-Stabilized Polyplexes for Efficient Transfection of Primary Human Cells. Biomacromolecules 2017; 18:3819-3833. [PMID: 28954190 DOI: 10.1021/acs.biomac.7b01034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rational design of a polyplex gene carrier aims to balance maximal effectiveness of nucleic acid transfection into cells with minimal adverse effects. Depsipeptide blocks with an Mn ∼ 5 kDa exhibiting strong physical interactions were conjugated with PEI moieties (2.5 or 10 kDa) to di- and triblock copolymers. Upon nanoparticle formation and complexation with DNA, the resulting polyplexes (sizes typically 60-150 nm) showed remarkable stability compared to PEI-only or lipoplex and facilitated efficient gene delivery. Intracellular trafficking was visualized by observing fluorescence-labeled pDNA and highlighted the effective cytoplasmic uptake of polyplexes and release of DNA to the perinuclear space. Specifically, a triblock copolymer with a middle depsipeptide block and two 10 kDa PEI swallowtail structures mediated the highest levels of transgenic VEGF secretion in mesenchymal stem cells with low cytotoxicity. These nanocarriers form the basis for a delivery platform technology, especially for gene transfer to primary human cells.
Collapse
Affiliation(s)
- Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Toufik Naolou
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , 14195 Berlin, Germany
| | - Zijun Deng
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , 14195 Berlin, Germany
| | - Xun Xu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , 14195 Berlin, Germany
| | - Ulrich Mansfeld
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Christian Wischke
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Manfred Gossen
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Axel T Neffe
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.,Institute of Chemistry, University of Potsdam , 14476 Potsdam, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , 14195 Berlin, Germany.,Institute of Chemistry, University of Potsdam , 14476 Potsdam, Germany
| |
Collapse
|
30
|
Strong AL, Neumeister MW, Levi B. Stem Cells and Tissue Engineering: Regeneration of the Skin and Its Contents. Clin Plast Surg 2017; 44:635-650. [PMID: 28576253 DOI: 10.1016/j.cps.2017.02.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this review, the authors discuss the stages of skin wound healing, the role of stem cells in accelerating skin wound healing, and the mechanism by which these stem cells may reconstitute the skin in the context of tissue engineering.
Collapse
Affiliation(s)
- Amy L Strong
- Division of Plastic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Michael W Neumeister
- Department of Surgery, Institute for Plastic Surgery, Southern Illinois University School of Medicine, 747 North Rutledge Street, Springfield, IL 62702, USA
| | - Benjamin Levi
- Division of Plastic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; Burn Wound and Regenerative Medicine Laboratory, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
31
|
de Soure AM, Fernandes-Platzgummer A, da Silva CL, Cabral JMS. Scalable microcarrier-based manufacturing of mesenchymal stem/stromal cells. J Biotechnol 2016; 236:88-109. [PMID: 27527397 DOI: 10.1016/j.jbiotec.2016.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Due to their unique features, mesenchymal stem/stromal cells (MSC) have been exploited in clinical settings as therapeutic candidates for the treatment of a variety of diseases. However, the success in obtaining clinically-relevant MSC numbers for cell-based therapies is dependent on efficient isolation and ex vivo expansion protocols, able to comply with good manufacturing practices (GMP). In this context, the 2-dimensional static culture systems typically used for the expansion of these cells present several limitations that may lead to reduced cell numbers and compromise cell functions. Furthermore, many studies in the literature report the expansion of MSC using fetal bovine serum (FBS)-supplemented medium, which has been critically rated by regulatory agencies. Alternative platforms for the scalable manufacturing of MSC have been developed, namely using microcarriers in bioreactors, with also a considerable number of studies now reporting the production of MSC using xenogeneic/serum-free medium formulations. In this review we provide a comprehensive overview on the scalable manufacturing of human mesenchymal stem/stromal cells, depicting the various steps involved in the process from cell isolation to ex vivo expansion, using different cell tissue sources and culture medium formulations and exploiting bioprocess engineering tools namely microcarrier technology and bioreactors.
Collapse
Affiliation(s)
- António M de Soure
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal.
| |
Collapse
|
32
|
Bandara N, Gurusinghe S, Chen H, Chen S, Wang LX, Lim SY, Strappe P. Minicircle DNA-mediated endothelial nitric oxide synthase gene transfer enhances angiogenic responses of bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2016; 7:48. [PMID: 27036881 PMCID: PMC4818467 DOI: 10.1186/s13287-016-0307-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/24/2016] [Accepted: 03/11/2016] [Indexed: 11/10/2022] Open
Abstract
Background Non-viral-based gene modification of adult stem cells with endothelial nitric oxide synthase (eNOS) may enhance production of nitric oxide and promote angiogenesis. Nitric oxide (NO) derived from endothelial cells is a pleiotropic diffusible gas with positive effects on maintaining vascular tone and promoting wound healing and angiogenesis. Adult stem cells may enhance angiogenesis through expression of bioactive molecules, and their genetic modification to express eNOS may promote NO production and subsequent cellular responses. Methods Rat bone marrow-derived mesenchymal stem cells (rBMSCs) were transfected with a minicircle DNA vector expressing either green fluorescent protein (GFP) or eNOS. Transfected cells were analysed for eNOS expression and NO production and for their ability to form in vitro capillary tubules and cell migration. Transcriptional activity of angiogenesis-associated genes, CD31, VEGF-A, PDGFRα, FGF2, and FGFR2, were analysed by quantitative polymerase chain reaction. Results Minicircle vectors expressing GFP (MC-GFP) were used to transfect HEK293T cells and rBMSCs, and were compared to a larger parental vector (P-GFP). MC-GFP showed significantly higher transfection in HEK293T cells (55.51 ± 3.3 %) and in rBMSC (18.65 ± 1.05 %) compared to P-GFP in HEK293T cells (43.4 ± 4.9 %) and rBMSC (15.21 ± 0.22 %). MC-eNOS vectors showed higher transfection efficiency (21 ± 3 %) compared to P-eNOS (9 ± 1 %) and also generated higher NO levels. In vitro capillary tubule formation assays showed both MC-eNOS and P-eNOS gene-modified rBMSCs formed longer (14.66 ± 0.55 mm and 13.58 ± 0.68 mm, respectively) and a greater number of tubules (56.33 ± 3.51 and 51 ± 4, respectively) compared to controls, which was reduced with the NOS inhibitor L-NAME. In an in vitro wound healing assay, MC-eNOS transfected cells showed greater migration which was also reversed by L-NAME treatment. Finally, gene expression analysis in MC-eNOS transfected cells showed significant upregulation of the endothelial-specific marker CD31 and enhanced expression of VEGFA and FGF-2 and their corresponding receptors PDGFRα and FGFR2, respectively. Conclusions A novel eNOS-expressing minicircle vector can efficiently transfect rBMSCs and produce sufficient NO to enhance in vitro models of capillary formation and cell migration with an accompanying upregulation of CD31, angiogenic growth factor, and receptor gene expression.
Collapse
Affiliation(s)
- Nadeeka Bandara
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Saliya Gurusinghe
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Haiying Chen
- Central laboratory and key Laboratory of Oral and Maxillofacial-Head and Neck Medical Biology, Liaocheng People's Hospital, Liaocheng, 252000, PR China
| | - Shuangfeng Chen
- Central laboratory and key Laboratory of Oral and Maxillofacial-Head and Neck Medical Biology, Liaocheng People's Hospital, Liaocheng, 252000, PR China
| | - Le-Xin Wang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,Central laboratory and key Laboratory of Oral and Maxillofacial-Head and Neck Medical Biology, Liaocheng People's Hospital, Liaocheng, 252000, PR China
| | - Shiang Y Lim
- O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.,Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, VIC, 3002, Australia
| | - Padraig Strappe
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
| |
Collapse
|
33
|
Sart S, Agathos SN, Li Y, Ma T. Regulation of mesenchymal stem cell 3D microenvironment: From macro to microfluidic bioreactors. Biotechnol J 2015; 11:43-57. [PMID: 26696441 DOI: 10.1002/biot.201500191] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 11/02/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022]
Abstract
Human mesenchymal stem cells (hMSCs) have emerged as an important cell type in cell therapy and tissue engineering. In these applications, maintaining the therapeutic properties of hMSCs requires tight control of the culture environments and the structural cell organizations. Bioreactor systems are essential tools to achieve these goals in the clinical-scale expansion and tissue engineering applications. This review summarizes how different bioreactors provide cues to regulate the structure and the chemico-mechanical microenvironment of hMSCs with a focus on 3D organization. In addition to conventional bioreactors, recent advances in microfluidic bioreactors as a novel approach to better control the hMSC microenvironment are also discussed. These advancements highlight the key role of bioreactor systems in preserving hMSC's functional properties by providing dynamic and temporal regulation of in vitro cellular microenvironment.
Collapse
Affiliation(s)
- Sébastien Sart
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
| | - Spiros N Agathos
- Laboratory of Bioengineering, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA.
| |
Collapse
|
34
|
Rammal H, Harmouch C, Lataillade JJ, Laurent-Maquin D, Labrude P, Menu P, Kerdjoudj H. Stem cells: a promising source for vascular regenerative medicine. Stem Cells Dev 2015; 23:2931-49. [PMID: 25167472 DOI: 10.1089/scd.2014.0132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rising and diversity of many human vascular diseases pose urgent needs for the development of novel therapeutics. Stem cell therapy represents a challenge in the medicine of the twenty-first century, an area where tissue engineering and regenerative medicine gather to provide promising treatments for a wide variety of diseases. Indeed, with their extensive regeneration potential and functional multilineage differentiation capacity, stem cells are now highlighted as promising cell sources for regenerative medicine. Their multilineage differentiation involves environmental factors such as biochemical, extracellular matrix coating, oxygen tension, and mechanical forces. In this review, we will focus on human stem cell sources and their applications in vascular regeneration. We will also discuss the different strategies used for their differentiation into both mature and functional smooth muscle and endothelial cells.
Collapse
Affiliation(s)
- Hassan Rammal
- 1 UMR 7365, Biopôle, Faculté de Médecine, CNRS-Université de Lorraine , Vandœuvre-lès-Nancy, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Damous LL, Nakamuta JS, Carvalho AETSD, Carvalho KC, Soares JM, Simões MDJ, Krieger JE, Baracat EC. Does adipose tissue-derived stem cell therapy improve graft quality in freshly grafted ovaries? Reprod Biol Endocrinol 2015; 13:108. [PMID: 26394676 PMCID: PMC4580300 DOI: 10.1186/s12958-015-0104-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/11/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND A major concern in ovarian transplants is substantial follicle loss during the initial period of hypoxia. Adipose tissue-derived stem cells (ASCs) have been employed to improve angiogenesis when injected into ischemic tissue. This study evaluated the safety and efficacy of adipose tissue-derived stem cells (ASCs) therapy in the freshly grafted ovaries 30 days after injection. METHODS Rat ASCs (rASCs) obtained from transgenic rats expressing green fluorescent protein (GFP)-(5 × 10(4) cells/ovary) were injected in topic (intact) or freshly grafted ovaries of 30 twelve-week-old adult female Wistar rats. The whole ovary was grafted in the retroperitoneum without vascular anastomosis, immediately after oophorectomy. Vaginal smears were performed daily to assess the resumption of the estrous cycle. Estradiol levels, grafts morphology and follicular viability and density were analyzed. Immunohistochemistry assays were conducted to identify and quantify rASC-GFP(+), VEGF tissue expression, apoptosis (cleaved caspase-3 and TUNEL), and cell proliferation (Ki-67). Quantitative gene expression (qPCR) for VEGF-A, Bcl2, EGF and TGF-β1 was evaluated using RT-PCR and a double labeling immunofluorescence assay for GFP and Von Willebrand Factor (VWF) was performed. RESULTS Grafted ovaries treated with rASC-GFP(+) exhibited earlier resumption of the estrous phase (p < 0.05), increased VEGF-A expression (11-fold in grafted ovaries and 5-fold in topic ovaries vs. control) and an increased number of blood vessels (p < 0.05) in ovarian tissue without leading to apoptosis or cellular proliferation (p > 0.05). Estradiol levels were similar among groups (p > 0.05). rASC-GFP(+) were observed in similar quantities in the topic and grafted ovaries (p > 0.05), and double-labeling for GFP and vWF was observed in both injected groups. CONCLUSION rASC therapy in autologous freshly ovarian grafts could be feasible and safe, induces earlier resumption of the estrous phase and enhances blood vessels in rats. This pilot study may be useful in the future for new researches on frozen-thawed ovarian tissue.
Collapse
Affiliation(s)
- Luciana L Damous
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Dr Arnaldo av 455, 2nd floor, room 2113, Pacaembu, 01246-903, São Paulo, Brazil.
| | - Juliana S Nakamuta
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (Incor), Faculdade de Medicina da Universidade de São Paulo, Dr Enéas de Carvalho Aguiar Av 44, 10th floor, Cerqueira Cesar, 05403-000, São Paulo, Brazil.
| | - Ana E T Saturi de Carvalho
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (Incor), Faculdade de Medicina da Universidade de São Paulo, Dr Enéas de Carvalho Aguiar Av 44, 10th floor, Cerqueira Cesar, 05403-000, São Paulo, Brazil.
| | - Katia Candido Carvalho
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Dr Arnaldo av 455, 2nd floor, room 2113, Pacaembu, 01246-903, São Paulo, Brazil.
| | - José Maria Soares
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Dr Arnaldo av 455, 2nd floor, room 2113, Pacaembu, 01246-903, São Paulo, Brazil.
| | - Manuel de Jesus Simões
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Botucatu St 740. Ed. Lemos Torres, 2nd floor, Vila Clementino, 04023-009, São Paulo, Brazil.
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (Incor), Faculdade de Medicina da Universidade de São Paulo, Dr Enéas de Carvalho Aguiar Av 44, 10th floor, Cerqueira Cesar, 05403-000, São Paulo, Brazil.
| | - Edmund Chada Baracat
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Dr Arnaldo av 455, 2nd floor, room 2113, Pacaembu, 01246-903, São Paulo, Brazil.
| |
Collapse
|
36
|
Wang W, Lee Y, Lee CH. Effects of nitric oxide on stem cell therapy. Biotechnol Adv 2015; 33:1685-96. [PMID: 26394194 DOI: 10.1016/j.biotechadv.2015.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 09/14/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022]
Abstract
The use of stem cells as a research tool and a therapeutic vehicle has demonstrated their great potential in the treatment of various diseases. With unveiling of nitric oxide synthase (NOS) universally present at various levels in nearly all types of body tissues, the potential therapeutic implication of nitric oxide (NO) has been magnified, and thus scientists have explored new treatment strategies involved with stem cells and NO against various diseases. As the functionality of NO encompasses cardiovascular, neuronal and immune systems, NO is involved in stem cell differentiation, epigenetic regulation and immune suppression. Stem cells trigger cellular responses to external signals on the basis of both NO specific pathways and concerted action with endogenous compounds including stem cell regulators. As potency and interaction of NO with stem cells generally depend on the concentrations of NO and the presence of the cofactors at the active site, the suitable carriers for NO delivery is integral for exerting maximal efficacy of stem cells. The innovative utilization of NO functionality and involved mechanisms would invariably alter the paradigm of therapeutic application of stem cells. Future prospects in NO-involved stem cell research which promises to enhance drug discovery efforts by opening new era to improve drug efficacy, reduce drug toxicity and understand disease mechanisms and pathways, were also addressed.
Collapse
Affiliation(s)
- Wuchen Wang
- School of Pharmacy University of Missouri, Kansas City, USA
| | - Yugyung Lee
- School of Computing and Engineering, University of Missouri, Kansas City, USA
| | - Chi H Lee
- School of Pharmacy University of Missouri, Kansas City, USA.
| |
Collapse
|
37
|
Tan KY, Reuveny S, Oh SKW. Recent advances in serum-free microcarrier expansion of mesenchymal stromal cells: Parameters to be optimized. Biochem Biophys Res Commun 2015; 473:769-73. [PMID: 26385177 DOI: 10.1016/j.bbrc.2015.09.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/13/2015] [Indexed: 12/19/2022]
Abstract
Mesenchymal stromal cells (MSCs) are being investigated for a variety of therapeutic indications. However, current 2D planar technology cannot meet the anticipated demand and a shift to serum-free microcarrier cultures is needed in order to meet the quality and quantity of cells required. Here we summarize several recent attempts to grow cells in such conditions, and identify several variables that affect cell expansion, including tissue source, serum-free medium formulation, microcarrier type and matrix, and agitation regime (continuous versus intermittent). Optimization of these culture conditions will be necessary to ensure success in bioreactor-scale production of MSCs for cell therapies.
Collapse
Affiliation(s)
- Kah Yong Tan
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.
| | - Shaul Reuveny
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Steve Kah Weng Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.
| |
Collapse
|
38
|
Carmelo JG, Fernandes-Platzgummer A, Diogo MM, da Silva CL, Cabral JMS. A xeno-free microcarrier-based stirred culture system for the scalable expansion of human mesenchymal stem/stromal cells isolated from bone marrow and adipose tissue. Biotechnol J 2015; 10:1235-47. [DOI: 10.1002/biot.201400586] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/19/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022]
|
39
|
Wang Z, Teoh SH, Hong M, Luo F, Teo EY, Chan JKY, Thian ES. Dual-Microstructured Porous, Anisotropic Film for Biomimicking of Endothelial Basement Membrane. ACS APPLIED MATERIALS & INTERFACES 2015; 7:13445-13456. [PMID: 26030777 DOI: 10.1021/acsami.5b02464] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Human endothelial basement membrane (BM) plays a pivotal role in vascular development and homeostasis. Here, a bioresponsive film with dual-microstructured geometries was engineered to mimic the structural roles of the endothelial BM in developing vessels, for vascular tissue engineering (TE) application. Flexible poly(ε-caprolactone) (PCL) thin film was fabricated with microscale anisotropic ridges/grooves and through-holes using a combination of uniaxial thermal stretching and direct laser perforation, respectively. Through optimizing the interhole distance, human mesenchymal stem cells (MSCs) cultured on the PCL film's ridges/grooves obtained an intact cell alignment efficiency. With prolonged culturing for 8 days, these cells formed aligned cell multilayers as found in native tunica media. By coculturing human umbilical vein endothelial cells (HUVECs) on the opposite side of the film, HUVECs were observed to build up transmural interdigitation cell-cell contact with MSCs via the through-holes, leading to a rapid endothelialization on the PCL film surface. Furthermore, vascular tissue construction based on the PCL film showed enhanced bioactivity with an elevated total nitric oxide level as compared to single MSCs or HUVECs culturing and indirect MSCs/HUVECs coculturing systems. These results suggested that the dual-microstructured porous and anisotropic film could simulate the structural roles of endothelial BM for vascular reconstruction, with aligned stromal cell multilayers, rapid endothelialization, and direct cell-cell interaction between the engineered stromal and endothelial components. This study has implications of recapitulating endothelial BM architecture for the de novo design of vascular TE scaffolds.
Collapse
Affiliation(s)
- Zuyong Wang
- †Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Swee Hin Teoh
- ‡School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Minghui Hong
- §Department of Electrical and Computer Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore
| | - Fangfang Luo
- §Department of Electrical and Computer Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore
| | - Erin Yiling Teo
- ⊥Department of Reproductive Medicine, KK Women's and Children's Hospital, 100 Buikit Timah Road, Singapore 229899, Singapore
| | - Jerry Kok Yen Chan
- ⊥Department of Reproductive Medicine, KK Women's and Children's Hospital, 100 Buikit Timah Road, Singapore 229899, Singapore
- ∥Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- ⊗Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Eng San Thian
- †Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
40
|
Lloyd-Griffith C, Duffy GP, O'Brien FJ. Investigating the effect of hypoxic culture on the endothelial differentiation of human amniotic fluid-derived stem cells. J Anat 2015; 227:767-80. [PMID: 25833670 DOI: 10.1111/joa.12283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2015] [Indexed: 12/14/2022] Open
Abstract
Amniotic fluid-derived stem cells (AFSCs) are a unique stem cell source that may have great potential for use in tissue engineering (TE) due to their pluripotentiality. AFSCs have previously shown angiogenic potential and may present an alternative cell source for endothelial-like cells that could be used in range of applications, including the pre-vascularisation of TE constructs and the treatment of ischaemic diseases. This study investigated the ability of these cells to differentiate down an endothelial lineage with the aim of producing an endothelial-like cell suitable for use in pre-vascularisation. As hypoxia and the associated HIF-1 pathway have been implicated in the induction of angiogenesis in a number of biological processes, it was hypothesised that culture in hypoxic conditions could enhance the endothelial differentiation of AFSCs. The cells were cultured in endothelial cell media supplemented with 50 ng mL(-1) of VEGF, maintained in normoxia, intermittent hypoxia or continuous hypoxia and assessed for markers of endothelial differentiation at day 7 and 14. The results demonstrated that AFSCs subjected to these culture conditions display an endothelial gene expression profile and adopted functional endothelial cell characteristics indicative of early endothelial differentiation. Culture in continuous hypoxia enhanced endothelial gene expression but did not enhance functional endothelial cell characteristics. Overall, AFSCs subjected to endothelial stimuli demonstrated a less mature endothelial gene expression profile and phenotype when compared with HUVECs, the endothelial cell control. However, this study is the first time that the positive effect of an extended period of continuous hypoxic culture on endothelial differentiation in AFSCs has been demonstrated.
Collapse
Affiliation(s)
- Cai Lloyd-Griffith
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin 2, Ireland
| | - Garry P Duffy
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin 2, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin 2, Ireland
| |
Collapse
|
41
|
Mahmoudabady M, Kazemi N, Niazmand S, Rezaee SA, Soukhtanloo M, Hosseini M. The effect of angiotensin-converting enzyme inhibition on inflammatory and angiogenic factors in hypercholesterolemia. Pharmacol Rep 2015; 67:837-41. [PMID: 26398373 DOI: 10.1016/j.pharep.2015.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 01/10/2015] [Accepted: 01/13/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Renin-angiotensin system (RAS) can be activated during hyperlipidemia. Angiotensin II increases the migration of monocytes, cytokine levels, and gene expressions of VEGF and VCAM-1. With this in mind, the present work attempted to investigate the effect of angiotensin-converting enzyme (ACE) inhibition on VEGF, VCAM-1, and nitric oxide (NO) serum levels in hypercholesterolemic rats. METHODS Forty male Wistar rats were divided into 4 groups including normal diet+saline injection (control), hypercholesterol diet+saline injection, normal diet+captopril injection, and hypercholesterol diet+captopril injection. Before and after the beginning of the diet and after the treatment, the serum levels of cholesterol, triglycerides, LDL, HDL, and NO were measured. Finally, gene expressions of VCAM-1 and VEGF in the vascular cells from aorta were determined. RESULTS Hypercholesterolemic diet increased the serum levels of cholesterol, LDL (p<0.001), triglycerides (p<0.01) and decreased HDL (p<0.001). Captopril caused a reduction in the serum levels of cholesterol, LDL (p<0.001), and triglycerides (p<0.05) as well as an increase in HDL levels (p<0.01). Although the serum levels of NO decreased after hypercholesterolemic diet (p<0.001), no significant change was observed after the treatment. Increased gene expressions of VEGF (p<0.05) and VCAM-1 (p<0.01) in hypercholesterolemia were regressed in captopril treated rats (p<0.01 and p<0.05, respectively). CONCLUSION Captopril, an ACE inhibitor, improves hyperlipidemia and prevents from overexpression of genes for VEGF and VCAM-1, that are implicated in the inflammation and angiogenesis.
Collapse
Affiliation(s)
- Maryam Mahmoudabady
- Neurogenic Inflammation Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Narges Kazemi
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Saeed Niazmand
- Neurogenic Inflammation Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyyed Abdolrahim Rezaee
- Immunology Research Centre, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Hosseini
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
42
|
Dan P, Velot É, Decot V, Menu P. The role of mechanical stimuli in the vascular differentiation of mesenchymal stem cells. J Cell Sci 2015; 128:2415-22. [DOI: 10.1242/jcs.167783] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are among the most promising and suitable stem cell types for vascular tissue engineering. Substantial effort has been made to differentiate MSCs towards vascular cell phenotypes, including endothelial cells and smooth muscle cells (SMCs). The microenvironment of vascular cells not only contains biochemical factors that influence differentiation, but also exerts hemodynamic forces, such as shear stress and cyclic strain. Recent evidence has shown that these forces can influence the differentiation of MSCs into endothelial cells or SMCs. In this Commentary, we present the main findings in the area with the aim of summarizing the mechanisms by which shear stress and cyclic strain induce MSC differentiation. We will also discuss the interactions between these mechanical cues and other components of the microenvironment, and highlight how these insights could be used to maintain differentiation.
Collapse
Affiliation(s)
- Pan Dan
- UMR 7365 CNRS Université de Lorraine, Ingenierie Moleculaire et Physiopathologie Articulaire, Department of Cell and Tissue Engineering, Vectorization, Imaging, Biopôle de l'Université de Lorraine, Avenue de la forêt de Haye, C.S. 50184, Vandœuvre-lès-Nancy Cedex F-54505, France
- Department of Thoracic and Cardiovascular surgery, Zhongnan hospital of Wuhan University, Wuhan, 430071, China
| | - Émilie Velot
- UMR 7365 CNRS Université de Lorraine, Ingenierie Moleculaire et Physiopathologie Articulaire, Department of Cell and Tissue Engineering, Vectorization, Imaging, Biopôle de l'Université de Lorraine, Avenue de la forêt de Haye, C.S. 50184, Vandœuvre-lès-Nancy Cedex F-54505, France
| | - Véronique Decot
- UMR 7365 CNRS Université de Lorraine, Ingenierie Moleculaire et Physiopathologie Articulaire, Department of Cell and Tissue Engineering, Vectorization, Imaging, Biopôle de l'Université de Lorraine, Avenue de la forêt de Haye, C.S. 50184, Vandœuvre-lès-Nancy Cedex F-54505, France
- CHU de Nancy, Unité de Thérapie Cellulaire et Tissus, allée du Morvan, Vandœuvre-lès-Nancy F-54500, France
| | - Patrick Menu
- UMR 7365 CNRS Université de Lorraine, Ingenierie Moleculaire et Physiopathologie Articulaire, Department of Cell and Tissue Engineering, Vectorization, Imaging, Biopôle de l'Université de Lorraine, Avenue de la forêt de Haye, C.S. 50184, Vandœuvre-lès-Nancy Cedex F-54505, France
| |
Collapse
|
43
|
Nitric oxide regulates multiple functions and fate of adult progenitor and stem cells. J Physiol Biochem 2014; 71:141-53. [DOI: 10.1007/s13105-014-0373-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/05/2014] [Indexed: 01/21/2023]
|
44
|
Colazzo F, Alrashed F, Saratchandra P, Carubelli I, Chester AH, Yacoub MH, Taylor PM, Somers P. Shear stress and VEGF enhance endothelial differentiation of human adipose-derived stem cells. Growth Factors 2014; 32:139-49. [PMID: 25112491 DOI: 10.3109/08977194.2014.945642] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein we combine chemical and mechanical stimulation to investigate the effects of vascular endothelial growth factor (VEGF) and physiological shear stress in promoting the differentiation human adipose derived stem cells (ADSCs) into endothelial cells. ADSCs were isolated and characterized; endothelial differentiation was promoted by culturing confluent cells in 50 ng/ml VEGF under physiological shear stress for up to 14 days. Afterwards, endothelial cells were seeded onto collagen or acellular aortic valve matrices and exposed to four culture conditions: shear stress + VEGF; shear stress - VEGF; static + VEGF and static - VEGF. After 7 days, phenotype was investigated. ADSCs subjected to shear stress and VEGF express a comprehensive range of specific endothelial markers (vWF, eNOS and FLT-1 after 7 days and CD31, FLk-1 and VE-cadherin after 14 days) and maintain the phenotype when seeded onto scaffolds. Our protocol proved to be an efficient source of endothelial-like cells for tissue engineering based on autologous ADSC.
Collapse
Affiliation(s)
- Francesca Colazzo
- Heart Science Centre, NHLI, Imperial College London , Harefield, Middlesex , UK and
| | | | | | | | | | | | | | | |
Collapse
|
45
|
de Oliveira TS, Serra AJ, Manchini MT, Bassaneze V, Krieger JE, de Tarso Camillo de Carvalho P, Antunes DE, Bocalini DS, Ferreira Tucci PJ, Silva JA. Effects of low level laser therapy on attachment, proliferation, and gene expression of VEGF and VEGF receptor 2 of adipocyte-derived mesenchymal stem cells cultivated under nutritional deficiency. Lasers Med Sci 2014; 30:217-23. [PMID: 25192841 DOI: 10.1007/s10103-014-1646-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 08/28/2014] [Indexed: 01/02/2023]
Abstract
Low-level laser therapy (LLLT) has been shown to increase the proliferation of several cell types. We evaluated the effects of LLLT on adhesion, proliferation, and gene expression of vascular endothelial growth factor (VEGF) and type 2 receptor of VEGF (VEGFR2) at mesenchymal stem cells (MSCs) from human (hMSCs) and rat (rMSCs) adipose tissues on nutritional deficiencies. A dose-response curve was performed with cells treated with laser Ga-Al-As (660 nm, 30 mW) at energy of 0.7 to 9 J. Cell adhesion and proliferation were quantified 20, 40, and 60 min after LLLT and 24, 72, and 120 h after cultivation. Gene expression was verified by RT-PCR after 2 h of LLLT. A minor nutritional support caused a significant decrease in proliferation and adhesion of hMSCs and rMSCs. However, at the lowest LLLT dose (0.7 J), we observed a higher proliferation in hMSCs at standard condition shortly after irradiation (24 h). Adhesion was higher in hMSCs cultivated in controlled conditions at higher LLLT doses (3 and 9 J), and rMSCs show a reduction in the adhesion on 1.5 to 9 J. On nutritional deprivation, a 9 J dose was shown to reduce proliferation with 24 h and adhesion to all culture times in rMSCs. VEGF and VEGFR2 were increased after LLLT in both cell types. However, hMSCs under nutritional deprivation showed higher expression of VEGF and its receptor after irradiation with other laser doses. In conclusion, LLLT on human and rat MSCs might upregulate VEGF messenger RNA (mRNA) expression and modulate cell adhesion and proliferation distinctively.
Collapse
|
46
|
Girão-Silva T, Bassaneze V, Campos LCG, Barauna VG, Dallan LAO, Krieger JE, Miyakawa AA. Short-term mechanical stretch fails to differentiate human adipose-derived stem cells into cardiovascular cell phenotypes. Biomed Eng Online 2014; 13:54. [PMID: 24885410 PMCID: PMC4012171 DOI: 10.1186/1475-925x-13-54] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/22/2014] [Indexed: 12/31/2022] Open
Abstract
Background We and others have previously demonstrated that adipose-derived stem cells (ASCs) transplantation improve cardiac dysfunction post-myocardium infarction (MI) under hemodynamic stress in rats. The beneficial effects appear to be associated with pleiotropic factors due to a complex interplay between the transplanted ASCs and the microenvironment in the absence of cell transdifferentiation. In the present work, we tested the hypothesis that mechanical stretch per se could change human ASCs (hASCs) into cardiovascular cell phenotypes that might influence post-MI outcomes. Methods Human ASCs were obtained from patients undergoing liposuction procedures. These cells were stretched 12%, 1Hz up to 96 hours by using Flexercell 4000 system. Protein and gene expression were evaluated to identify cardiovascular cell markers. Culture medium was analyzed to determine cell releasing factors, and contraction potential was also evaluated. Results Mechanical stretch, which is associated with extracellular signal-regulated kinase (ERK) phosphorylation, failed to induce the expression of cardiovascular cell markers in human ASCs, and mesenchymal cell surface markers (CD29; CD90) remained unchanged. hASCs and smooth muscle cells (SMCs) displayed comparable contraction ability. In addition, these cells demonstrated a profound ability to secrete an array of cytokines. These two properties of human ASCs were not influenced by mechanical stretch. Conclusions Altogether, our findings demonstrate that hASCs secrete an array of cytokines and display contraction ability even in the absence of induction of cardiovascular cell markers or the loss of mesenchymal surface markers when exposed to mechanical stretch. These properties may contribute to beneficial post-MI cardiovascular outcomes and deserve to be further explored under the controlled influence of other microenvironment components associated with myocardial infarction, such as tissue hypoxia.
Collapse
Affiliation(s)
| | | | | | | | | | - Jose Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor) - University of São Paulo School of Medicine, Avenue Dr, Eneas de Carvalho Aguiar, 44, São Paulo, SP 05403-000, Brazil.
| | | |
Collapse
|
47
|
Barauna VG, Mantuan PR, Magalhães FC, Campos LCG, Krieger JE. AT1 receptor blocker potentiates shear-stress induced nitric oxide production via modulation of eNOS phosphorylation of residues Thr(495) and Ser(1177.). Biochem Biophys Res Commun 2013; 441:713-9. [PMID: 24211212 DOI: 10.1016/j.bbrc.2013.10.108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 10/20/2013] [Indexed: 01/08/2023]
Abstract
We tested the hypothesis that AT1R blockade modulates the shear stress-induced (SS) synthesis of nitric oxide (NO) in endothelial cells (EC). The AT1R blocker Candesartan in the absence of the ligand angiotensin II (ang II) potentiated SS-induced NO synthesis accompanied by increased p-eNOS(Ser1177) and decreased p-eNOS(Thr495). Candesartan also inhibited SS-induced ERK activation and increased intracellular calcium transient in a time-dependent manner. To confirm the role of ERK to modulate p-eNOS(Thr495) and calcium to modulate p-eNOS(Ser1177), the MEK inhibitor U0126 and the calcium chelator BAPTA-AM were used, respectively. Pre-treatment of EC with U0126 completed abrogated basal and SS-induced ERK activation, inhibited p-eNOS(Thr495) and increased NO production by SS. On the other hand, pre-treatment of EC with BAPTA-AM decreased the effects of SS alone or in combination with Candesartan to induce p-eNOS(Ser1177) and partially inhibited the effects of Candesartan to potentiate NO release by SS. The AT1R blockers Losartan and Telmisartan were also tested but only Telmisartan potentiated NO synthesis and blocked SS-induced AT1R activation. Altogether, we provide evidence that Candesartan and Telmisartan potentiate SS-induced NO production even in the absence of the ligand ang II. This response requires both the inhibition of eNOS phosphorylation at its inhibitory residue Thr(495) as well as the increase of eNOS phosphorylation at its excitatory residue Ser(1177). In addition, the response is associated with inhibition of SS-induced ERK activation as well as increasing intracellular calcium transient. One may speculate that these yet undescribed events may contribute to the benefits of ARBs in cardiovascular diseases.
Collapse
Affiliation(s)
- Valério G Barauna
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-000, Brazil
| | | | | | | | | |
Collapse
|
48
|
Kim JH, Kim SH, Song SY, Kim WS, Song SU, Yi T, Jeon MS, Chung HM, Xia Y, Sung JH. Hypoxia induces adipocyte differentiation of adipose-derived stem cells by triggering reactive oxygen species generation. Cell Biol Int 2013; 38:32-40. [DOI: 10.1002/cbin.10170] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/29/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Ji Hye Kim
- Department of Applied Bioscience; CHA University; Seoul Korea
- Stem Cell Research Laboratory; CHA Stem Cell Institute; Seoul Korea
| | - Seok-Ho Kim
- Department of Pharmacy; CHA University; Pocheon-si Gyeonggi-do Korea
| | - Seung Yong Song
- Department of Plastic and Reconstructive Surgery; CHA Bundang Medical Center; CHA University; Seongnam-si, Gyeonggi-do Korea
| | - Won-Serk Kim
- Department of Dermatology; Kangbuk Samsung Hospital; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Sun U. Song
- Translational Research Center and Inha Research Institute for Medical Sciences; Inha University School of Medicine; Incheon Korea
| | - TacGhee Yi
- Translational Research Center and Inha Research Institute for Medical Sciences; Inha University School of Medicine; Incheon Korea
| | - Myung-Shin Jeon
- Translational Research Center and Inha Research Institute for Medical Sciences; Inha University School of Medicine; Incheon Korea
| | - Hyung-Min Chung
- Department of Applied Bioscience; CHA University; Seoul Korea
- Stem Cell Research Laboratory; CHA Stem Cell Institute; Seoul Korea
| | - Ying Xia
- Department of Neurosurgery; The University of Texas Medical School at Houston; Houston Texas 77030 USA
| | - Jong-Hyuk Sung
- Department of Applied Bioscience; CHA University; Seoul Korea
- Stem Cell Research Laboratory; CHA Stem Cell Institute; Seoul Korea
- Department of Pharmacy; CHA University; Pocheon-si Gyeonggi-do Korea
| |
Collapse
|
49
|
Barauna VG, Magalhaes FC, Campos LCG, Reis RI, Kunapuli SP, Costa-Neto CM, Miyakawa AA, Krieger JE. Shear stress-induced Ang II AT1 receptor activation: G-protein dependent and independent mechanisms. Biochem Biophys Res Commun 2013; 434:647-52. [PMID: 23583236 DOI: 10.1016/j.bbrc.2013.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 04/04/2013] [Indexed: 01/14/2023]
Abstract
Mechanotransduction enables cells to sense and respond to stimuli, such as strain, pressure and shear stress (SS), critical for maintenance of cardiovascular homeostasis or pathological states. The angiotensin II type 1 receptor (AT1R) was the first G protein-coupled receptor described to display stretch-induced activation in cardiomyocytes independent of its ligand Ang II. Here, we assessed whether SS (15 dynes/cm(2), 10 min), an important mechanical force present in the cardiovascular system, activates AT1R independent of its ligand. SS induced extracellular signal-regulated kinase (ERK) activation, used as a surrogate of AT1R activation, in Chinese hamster ovary cells expressing the AT1R (CHO+AT1) but not in wild type cells (CHO). AT1R dependent SS-induced ERK activation involves Ca(2+) inflow and activation of Gαq since Ca(2+) chelator EGTA or Gαq-specific inhibitor YM-254890 decreased SS-induced ERK activation. On the other hand, the activation of JAK-2 and Src, two intracellular signaling molecules independent of G protein activation, were not differently modulated in the presence of AT1R. Also, ERK activation by SS was observed in CHO cells expressing the mutated AT1R DRY/AAY, which has impaired ability to activate Gαq dependent intracellular signaling. Altogether we provided evidence that SS activates AT1R in the absence of its ligand by both a G protein-dependent and -independent pathways. The biological relevance of these observations deserves to be further investigated since the novel mechanisms described extend the knowledge of the activation of GPCRs independent of its traditional ligand.
Collapse
Affiliation(s)
- Valerio G Barauna
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, InCor, University of São Paulo Medical School, São Paulo 05403-000, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Yuan L, Sakamoto N, Song G, Sato M. High-level Shear Stress Stimulates Endothelial Differentiation and VEGF Secretion by Human Mesenchymal Stem Cells. Cell Mol Bioeng 2013. [DOI: 10.1007/s12195-013-0275-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|