1
|
Eirin A, Siddiqi S, Hughes AG, Jiang Y, Zhu XY, Kazeminia S, Lu B, Xing L, Lu B, Tang H, Xue A, Lerman A, Textor SC, Lerman LO. Renovascular Disease and Mitochondrial Dysfunction in Human Mesenchymal Stem Cells. J Am Soc Nephrol 2024; 35:1507-1519. [PMID: 39012704 PMCID: PMC11543019 DOI: 10.1681/asn.0000000000000440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Key Points Renovascular disease impairs the capacity of human adipose tissue–derived mesenchymal stem/stromal cells to repair ischemic murine kidneys. miR-378h modulated the capacity of renovascular disease adipose tissue–derived mesenchymal stem/stromal cells to repair ischemic kidneys in vivo . Background Renovascular disease leads to renal ischemia, hypertension, and eventual kidney failure. Autologous transplantation of adipose tissue–derived mesenchymal stem/stromal cells (MSCs) improves perfusion and oxygenation in stenotic human kidneys, but associated atherosclerosis and hypertension might blunt their effectiveness. We hypothesized that renovascular disease alters the human MSC transcriptome and impairs their reparative potency. Methods MSCs were harvested from subcutaneous abdominal fat of patients with renovascular disease and healthy volunteers (n =3 each), characterized and subsequently injected (5×105/200 μ l) into mice 2 weeks after renal artery stenosis or sham surgery (n =6/group). Two weeks later, mice underwent imaging and tissue studies. MSCs from healthy volunteers and in those with renovascular disease were also characterized by mRNA/microRNA (miRNA) sequencing. Based on these, MSC proliferation and mitochondrial damage were assessed in vitro before and after miRNA modulation and in vivo in additional renal artery stenosis mice administered with MSCs from renovascular disease pretreated with miR-378h mimic (n =5) or inhibitor (n =4). Results MSCs engrafted in stenotic mouse kidneys. Healthy volunteer MSCs (but not renovascular disease MSCs) decreased BP, improved serum creatinine levels and stenotic-kidney cortical perfusion and oxygenation, and attenuated peritubular capillary loss, tubular injury, and fibrosis. Genes upregulated in renovascular disease MSCs versus healthy volunteer MSCs were mostly implicated in transcription and cell proliferation, whereas those downregulated encoded mainly mitochondrial proteins. Upregulated miRNAs, including miR-378h, primarily target nuclear-encoded mitochondrial genes, whereas downregulated miRNAs mainly target genes implicated in transcription and cell proliferation. MSC proliferation was similar, but their mitochondrial structure and reparative function both in vivo and in vitro improved after miR-378h inhibition. Conclusions Renovascular disease impaired the reparative capacity of human MSCs, possibly by dysregulating miR-378h that targets mitochondrial genes. Podcast This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2024_08_21_ASN0000000000000440.mp3
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Sarosh Siddiqi
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Autumn G. Hughes
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Yamei Jiang
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sara Kazeminia
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Bo Lu
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Li Xing
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Brandon Lu
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Hui Tang
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Ailing Xue
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Stephen C. Textor
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
2
|
Lee S, Ohn J, Kang BM, Hwang ST, Kwon O. Activation of mitochondrial aldehyde dehydrogenase 2 promotes hair growth in human hair follicles. J Adv Res 2024; 64:237-247. [PMID: 37972887 PMCID: PMC11464481 DOI: 10.1016/j.jare.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023] Open
Abstract
INTRODUCTION Hair loss is a common phenomenon associated with various environmental and genetic factors. Mitochondrial dysfunction-induced oxidative stress has been recognized as a crucial determinant of hair follicle (HF) biology. Aldehyde dehydrogenase 2 (ALDH2) mitigates oxidative stress by detoxifying acetaldehyde. This study investigated the potential role of ALDH2 modulation in HF function and hair growth promotion. OBJECTIVES To evaluate the effects of ALDH2 activation on oxidative stress in HFs and hair growth promotion. METHODS The modulatory role of ALDH2 on HFs was investigated using an ALDH2 activator. ALDH2 expression in human HFs was evaluated through in vitro immunofluorescence staining. Ex vivo HF organ culture was employed to assess hair shaft elongation, while the fluorescence probe 2',7'- dichlorodihydrofluorescein diacetate was utilized to detect reactive oxygen species (ROS). An in vivo mouse model was used to determine whether ALDH2 activation induces anagen. RESULTS During the anagen phase, ALDH2 showed significantly higher intensity than that in the telogen phase, and its expression was primarily localized along the outer layer of HFs. ALDH2 activation promoted anagen phase induction by reducing ROS levels and enhancing reactive aldehyde clearance, which indicated that ALDH2 functions as a ROS scavenger within HFs. Moreover, ALDH2 activation upregulated Akt/GSK 3β/β-catenin signaling in HFs. CONCLUSIONS Our findings highlight the hair growth promotion effects of ALDH2 activation in HFs and its potential as a promising therapeutic approach for promoting anagen induction.
Collapse
Affiliation(s)
- Seunghee Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, South Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Jungyoon Ohn
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, South Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | - Bo Mi Kang
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, South Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | | | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, South Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea.
| |
Collapse
|
3
|
Eirin A, Thaler R, Glasstetter LM, Xing L, Zhu XY, Osborne AC, Mondesir R, Bhagwate AV, Lerman A, van Wijnen AJ, Lerman LO. Obesity-driven mitochondrial dysfunction in human adipose tissue-derived mesenchymal stem/stromal cells involves epigenetic changes. Cell Death Dis 2024; 15:387. [PMID: 38824145 PMCID: PMC11144257 DOI: 10.1038/s41419-024-06774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
Obesity exacerbates tissue degeneration and compromises the integrity and reparative potential of mesenchymal stem/stromal cells (MSCs), but the underlying mechanisms have not been sufficiently elucidated. Mitochondria modulate the viability, plasticity, proliferative capacity, and differentiation potential of MSCs. We hypothesized that alterations in the 5-hydroxymethylcytosine (5hmC) profile of mitochondria-related genes may mediate obesity-driven dysfunction of human adipose-derived MSCs. MSCs were harvested from abdominal subcutaneous fat of obese and age/sex-matched non-obese subjects (n = 5 each). The 5hmC profile and expression of nuclear-encoded mitochondrial genes were examined by hydroxymethylated DNA immunoprecipitation sequencing (h MeDIP-seq) and mRNA-seq, respectively. MSC mitochondrial structure (electron microscopy) and function, metabolomics, proliferation, and neurogenic differentiation were evaluated in vitro, before and after epigenetic modulation. hMeDIP-seq identified 99 peaks of hyper-hydroxymethylation and 150 peaks of hypo-hydroxymethylation in nuclear-encoded mitochondrial genes from Obese- versus Non-obese-MSCs. Integrated hMeDIP-seq/mRNA-seq analysis identified a select group of overlapping (altered levels of both 5hmC and mRNA) nuclear-encoded mitochondrial genes involved in ATP production, redox activity, cell proliferation, migration, fatty acid metabolism, and neuronal development. Furthermore, Obese-MSCs exhibited decreased mitochondrial matrix density, membrane potential, and levels of fatty acid metabolites, increased superoxide production, and impaired neuronal differentiation, which improved with epigenetic modulation. Obesity elicits epigenetic changes in mitochondria-related genes in human adipose-derived MSCs, accompanied by structural and functional changes in their mitochondria and impaired fatty acid metabolism and neurogenic differentiation capacity. These observations may assist in developing novel therapies to preserve the potential of MSCs for tissue repair and regeneration in obese individuals.
Collapse
Grants
- AG062104 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- DK122734 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R56 DK129240 NIDDK NIH HHS
- DK129240 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 DK129240 NIDDK NIH HHS
- HL158691 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- DK120292 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Li Xing
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Department of Urology, The Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Andrew C Osborne
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ronscardy Mondesir
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Aditya V Bhagwate
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Gaggi G, Di Credico A, Barbagallo F, Ghinassi B, Di Baldassarre A. Bisphenols and perfluoroalkyls alter human stem cells integrity: A possible link with infertility. ENVIRONMENTAL RESEARCH 2023; 235:116487. [PMID: 37419196 DOI: 10.1016/j.envres.2023.116487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023]
Abstract
Bisphenols and Perfluoroalkyls are chemical compounds widely used in industry known to be endocrine disruptors (EDs). Once ingested through contaminated aliments, they mimic the activity of endogenous hormones leading to a broad spectrum of diseases. Due to the extensive use of plastic in human life, particular attention should be paid to antenatal exposure to Bisphenols and Perfluoroalkyls since they cross the placental barrier and accumulates in developing embryo. Here we investigated the effects of Bisphenol-A (BPA), Bisphenol-S (BPS), perfluorooctane-sulfonate (PFOS) and perfluorooctanoic-acid (PFOA), alone or combined, on human-induced pluripotent stem cells (hiPSCs) that share several biological features with the stem cells of blastocysts. Our data show that these EDs affect hiPSC inducing a great mitotoxicity and dramatic changes in genes involved in the maintenance of pluripotency, germline specification, and epigenetic regulation. We also evidenced that these chemicals, when combined, may have additive, synergistic but also negative effects. All these data suggest that antenatal exposure to these EDs may affect the integrity of stem cells in the developing embryos, interfering with critical stages of early human development that might be determinant for fertility. The observation that the effects of exposure to a combination of these chemicals are not easily foreseeable further highlights the need for wider awareness of the complexity of the EDs effects on human health and of the social and economic burden attributable to these compounds.
Collapse
Affiliation(s)
- Giulia Gaggi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" , University of Chieti-Pescara, 66100, Chieti, Italy; UdA -TechLab, "G. D'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy
| | - Andrea Di Credico
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" , University of Chieti-Pescara, 66100, Chieti, Italy; UdA -TechLab, "G. D'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy
| | | | - Barbara Ghinassi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" , University of Chieti-Pescara, 66100, Chieti, Italy; UdA -TechLab, "G. D'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy.
| | - Angela Di Baldassarre
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" , University of Chieti-Pescara, 66100, Chieti, Italy; UdA -TechLab, "G. D'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
5
|
Di Credico A, Gaggi G, Bucci I, Ghinassi B, Di Baldassarre A. The Effects of Combined Exposure to Bisphenols and Perfluoroalkyls on Human Perinatal Stem Cells and the Potential Implications for Health Outcomes. Int J Mol Sci 2023; 24:15018. [PMID: 37834465 PMCID: PMC10573528 DOI: 10.3390/ijms241915018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The present study investigates the impact of two endocrine disruptors, namely Bisphenols (BPs) and Perfluoroalkyls (PFs), on human stem cells. These chemicals leach from plastic, and when ingested through contaminated food and water, they interfere with endogenous hormone signaling, causing various diseases. While the ability of BPs and PFs to cross the placental barrier and accumulate in fetal serum has been documented, the exact consequences for human development require further elucidation. The present research work explored the effects of combined exposure to BPs (BPA or BPS) and PFs (PFOS and PFOA) on human placenta (fetal membrane mesenchymal stromal cells, hFM-MSCs) and amniotic fluid (hAFSCs)-derived stem cells. The effects of the xenobiotics were assessed by analyzing cell proliferation, mitochondrial functionality, and the expression of genes involved in pluripotency and epigenetic regulation, which are crucial for early human development. Our findings demonstrate that antenatal exposure to BPs and/or PFs may alter the biological characteristics of perinatal stem cells and fetal epigenome, with potential implications for health outcomes at birth and in adulthood. Further research is necessary to comprehend the full extent of these effects and their long-term consequences.
Collapse
Affiliation(s)
- Andrea Di Credico
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy; (A.D.C.); (I.B.); (B.G.); (A.D.B.)
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- UdA TechLab Center (UdATech), 66100 Chieti, Italy
| | - Giulia Gaggi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy; (A.D.C.); (I.B.); (B.G.); (A.D.B.)
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- UdA TechLab Center (UdATech), 66100 Chieti, Italy
| | - Ines Bucci
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy; (A.D.C.); (I.B.); (B.G.); (A.D.B.)
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara Ghinassi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy; (A.D.C.); (I.B.); (B.G.); (A.D.B.)
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- UdA TechLab Center (UdATech), 66100 Chieti, Italy
| | - Angela Di Baldassarre
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy; (A.D.C.); (I.B.); (B.G.); (A.D.B.)
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- UdA TechLab Center (UdATech), 66100 Chieti, Italy
| |
Collapse
|
6
|
Gaggi G, Di Credico A, Barbagallo F, Ballerini P, Ghinassi B, Di Baldassarre A. Antenatal Exposure to Plastic Pollutants: Study of the Bisphenols and Perfluoroalkyls Effects on Human Stem Cell Models. EXPOSURE AND HEALTH 2023. [DOI: 10.1007/s12403-023-00586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/07/2023] [Accepted: 07/05/2023] [Indexed: 09/02/2023]
Abstract
AbstractEndocrine disruptors (EDs), such as Bisphenols (BPs) and Perfluoroalkyls (PFs), are a class of plastic pollutants widely used in industrial applications. Human exposure to these molecules usually occurs through ingestion of contaminated food and water. Once entered the human body they can interfere with endogenous hormone signaling, leading to a wide spectrum of diseases. It has been reported that BPs and PFs can cross the placental barrier accumulating in the fetal serum, but the detrimental consequences for human development remain to be clarified. Here we analyze the effects of different doses of bisphenol A and S (BPA, BPS) perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on proliferation and mitochondrial health on different types of stem cells: through an integrated approach that combines data from pluripotent stem cells (hiPSCs) with that from the “environment” in which the embryo develops (fetal annexes-derived perinatal stem cells) we verified the potential developmental toxicity of the in utero EDs exposure. Data obtained showed that overall, BPs, and PFs tended to increase the proliferation rate of perinatal stem cells; a similar response was observed in hiPSCs exposed to very low doses of BPs and PFs, while at higher concentrations these chemicals were toxic; in addition, both the BPs and the PFs exerted a mitotoxic effects hiPSCs at all the concentration studied. All these data suggest that antenatal exposure to BPs and PFs, also at very low concentrations, may modify the biological characteristics of stem cells present in both the developing fetus and the fetal annexes, thus perturbing normal human development.
Collapse
|
7
|
Rajagopalan KS, Kazeminia S, Glasstetter LM, Farahani RA, Zhu XY, Tang H, Jordan KL, Chade AR, Lerman A, Lerman LO, Eirin A. Metabolic Syndrome Induces Epigenetic Alterations in Mitochondria-Related Genes in Swine Mesenchymal Stem Cells. Cells 2023; 12:1274. [PMID: 37174674 PMCID: PMC10177475 DOI: 10.3390/cells12091274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Autologous mesenchymal stem/stromal cells (MSCs) have demonstrated important therapeutic effects in several diseases. Cardiovascular risk factors may impair MSC mitochondrial structure and function, but the underlying mechanisms remain unknown. We hypothesized that metabolic syndrome (MetS) induces epigenetic alterations in mitochondria-related genes in swine MSCs. Pigs were fed a Lean or MetS diet (n = 6 each) for 16 weeks. MSCs were collected from subcutaneous abdominal fat, and DNA hydroxymethylation (5 hmC) profiles of mitochondria-related genes (MitoCarta-2.0) were analyzed by hydroxymethylated DNA immunoprecipitation and next-generation sequencing (hMeDIP-seq) in Lean- and MetS-MSCs untreated or treated with the epigenetic modulator vitamin (Vit)-C (n = 3 each). Functional analysis of genes with differential 5 hmC regions was performed using DAVID6.8. Mitochondrial structure (electron microscopy), oxidative stress, and membrane potential were assessed. hMeDIP-seq identified 172 peaks (associated with 103 mitochondrial genes) with higher and 416 peaks (associated with 165 mitochondrial genes) with lower 5 hmC levels in MetS-MSCs versus Lean-MSCs (≥2-fold, p < 0.05). Genes with higher 5 hmC levels in MetS + MSCs were primarily implicated in fatty acid metabolism, whereas those with lower 5 hmC levels were associated with electron transport chain activity. Vit-C increased 5 hmC levels in mitochondrial antioxidant genes, improved mitochondrial structure and membrane potential, and decreased oxidative stress. MetS alters 5 hmC levels of mitochondria-related genes in swine MSCs. Vit-C modulated 5 hmC levels in these genes and preserved mitochondrial structure and function in MetS-MSCs. These observations may contribute to development of strategies to overcome the deleterious effects of MetS on MSCs.
Collapse
Affiliation(s)
| | - Sara Kazeminia
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Rahele A. Farahani
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Kyra L. Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Alejandro R. Chade
- Department of Medical Pharmacology and Physiology and Department of Medicine, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Lin Q, Chen J, Gu L, Dan X, Zhang C, Yang Y. New insights into mitophagy and stem cells. Stem Cell Res Ther 2021; 12:452. [PMID: 34380561 PMCID: PMC8359610 DOI: 10.1186/s13287-021-02520-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/16/2021] [Indexed: 12/21/2022] Open
Abstract
Mitophagy is a specific autophagic phenomenon in which damaged or redundant mitochondria are selectively cleared by autophagic lysosomes. A decrease in mitophagy can accelerate the aging process. Mitophagy is related to health and longevity and is the key to protecting stem cells from metabolic stress damage. Mitophagy decreases the metabolic level of stem cells by clearing active mitochondria, so mitophagy is becoming increasingly necessary to maintain the regenerative capacity of old stem cells. Stem cell senescence is the core problem of tissue aging, and tissue aging occurs not only in stem cells but also in transport amplifying cell chambers and the stem cell environment. The loss of the autophagic ability of stem cells can cause the accumulation of mitochondria and the activation of the metabolic state as well as damage the self-renewal ability and regeneration potential of stem cells. However, the claim remains controversial. Mitophagy is an important survival strategy against nutrient deficiency and starvation, and mitochondrial function and integrity may affect the viability, proliferation and differentiation potential, and longevity of normal stem cells. Mitophagy can affect the health and longevity of the human body, so the number of studies in this field has increased, but the mechanism by which mitophagy participates in stem cell development is still not fully understood. This review describes the potential significance of mitophagy in stem cell developmental processes, such as self-renewal, differentiation and aging. Through this work, we discovered the role and mechanism of mitophagy in different types of stem cells, identified novel targets for killing cancer stem cells and curing cancer, and provided new insights for future research in this field.
Collapse
Affiliation(s)
- Qingyin Lin
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of School of Basic Medicine, Ningxia Medical University, Yinchuan, 75004, Ningxia, People's Republic of China
| | - Jiaqi Chen
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of School of Basic Medicine, Ningxia Medical University, Yinchuan, 75004, Ningxia, People's Republic of China
| | - Lifang Gu
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of School of Basic Medicine, Ningxia Medical University, Yinchuan, 75004, Ningxia, People's Republic of China
| | - Xingang Dan
- The Agricultural College of Ningxia University, Yinchuan, 750021, Ningxia, People's Republic of China
| | - Cheng Zhang
- College of Life Science, Capital Normal University, Beijing, 100048, People's Republic of China.
| | - Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of School of Basic Medicine, Ningxia Medical University, Yinchuan, 75004, Ningxia, People's Republic of China.
| |
Collapse
|
9
|
Gu LF, Chen JQ, Lin QY, Yang YZ. Roles of mitochondrial unfolded protein response in mammalian stem cells. World J Stem Cells 2021; 13:737-752. [PMID: 34367475 PMCID: PMC8316864 DOI: 10.4252/wjsc.v13.i7.737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/13/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved adaptive mechanism for improving cell survival under mitochondrial stress. Under physiological and pathological conditions, the UPRmt is the key to maintaining intracellular homeostasis and proteostasis. Important roles of the UPRmt have been demonstrated in a variety of cell types and in cell development, metabolism, and immune processes. UPRmt dysfunction leads to a variety of pathologies, including cancer, inflammation, neurodegenerative disease, metabolic disease, and immune disease. Stem cells have a special ability to self-renew and differentiate into a variety of somatic cells and have been shown to exist in a variety of tissues. These cells are involved in development, tissue renewal, and some disease processes. Although the roles and regulatory mechanisms of the UPRmt in somatic cells have been widely reported, the roles of the UPRmt in stem cells are not fully understood. The roles and functions of the UPRmt depend on stem cell type. Therefore, this paper summarizes the potential significance of the UPRmt in embryonic stem cells, tissue stem cells, tumor stem cells, and induced pluripotent stem cells. The purpose of this review is to provide new insights into stem cell differentiation and tumor pathogenesis.
Collapse
Affiliation(s)
- Li-Fang Gu
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jia-Qi Chen
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Qing-Yin Lin
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yan-Zhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750001, Ningxia Hui Autonomous Region, China,
| |
Collapse
|
10
|
Gambini E, Martinelli I, Stadiotti I, Vinci MC, Scopece A, Eramo L, Sommariva E, Resta J, Benaouadi S, Cogliati E, Paolin A, Parini A, Pompilio G, Savagner F. Differences in Mitochondrial Membrane Potential Identify Distinct Populations of Human Cardiac Mesenchymal Progenitor Cells. Int J Mol Sci 2020; 21:ijms21207467. [PMID: 33050449 PMCID: PMC7590175 DOI: 10.3390/ijms21207467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Adult human cardiac mesenchymal progenitor cells (hCmPC) are multipotent resident populations involved in cardiac homeostasis and heart repair. Even if the mechanisms have not yet been fully elucidated, the stem cell differentiation is guided by the mitochondrial metabolism; however, mitochondrial approaches to identify hCmPC with enhanced stemness and/or differentiation capability for cellular therapy are not established. Here we demonstrated that hCmPCs sorted for low and high mitochondrial membrane potential (using a lipophilic cationic dye tetramethylrhodamine methyl ester, TMRM), presented differences in energy metabolism from preferential glycolysis to oxidative rates. TMRM-high cells are highly efficient in terms of oxygen consumption rate, basal and maximal respiration, and spare respiratory capacity compared to TMRM-low cells. TMRM-high cells showed characteristics of pre-committed cells and were associated with higher in vitro differentiation capacity through endothelial, cardiac-like, and, to a lesser extent, adipogenic and chondro/osteogenic cell lineage, when compared with TMRM-low cells. Conversely, TMRM-low showed higher self-renewal potential. To conclude, we identified two hCmPC populations with different metabolic profile, stemness maturity, and differentiation potential. Our findings suggest that metabolic sorting can isolate cells with higher regenerative capacity and/or long-term survival. This metabolism-based strategy to select cells may be broadly applicable to therapies.
Collapse
Affiliation(s)
- Elisa Gambini
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138 Milan, Italy; (I.S.); (M.C.V.); (A.S.); (L.E.); (E.S.); (J.R.); (G.P.)
- Correspondence:
| | - Ilenia Martinelli
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, 31432 Toulouse, France; (I.M.); (S.B.); (A.P.); (F.S.)
| | - Ilaria Stadiotti
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138 Milan, Italy; (I.S.); (M.C.V.); (A.S.); (L.E.); (E.S.); (J.R.); (G.P.)
| | - Maria Cristina Vinci
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138 Milan, Italy; (I.S.); (M.C.V.); (A.S.); (L.E.); (E.S.); (J.R.); (G.P.)
| | - Alessandro Scopece
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138 Milan, Italy; (I.S.); (M.C.V.); (A.S.); (L.E.); (E.S.); (J.R.); (G.P.)
| | - Luana Eramo
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138 Milan, Italy; (I.S.); (M.C.V.); (A.S.); (L.E.); (E.S.); (J.R.); (G.P.)
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138 Milan, Italy; (I.S.); (M.C.V.); (A.S.); (L.E.); (E.S.); (J.R.); (G.P.)
| | - Jessica Resta
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138 Milan, Italy; (I.S.); (M.C.V.); (A.S.); (L.E.); (E.S.); (J.R.); (G.P.)
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, 31432 Toulouse, France; (I.M.); (S.B.); (A.P.); (F.S.)
| | - Sabrina Benaouadi
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, 31432 Toulouse, France; (I.M.); (S.B.); (A.P.); (F.S.)
| | - Elisa Cogliati
- Treviso Tissue Bank Foundation, Via Antonio Scarpa 9, 31100 Treviso, Italy; (E.C.); (A.P.)
| | - Adolfo Paolin
- Treviso Tissue Bank Foundation, Via Antonio Scarpa 9, 31100 Treviso, Italy; (E.C.); (A.P.)
| | - Angelo Parini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, 31432 Toulouse, France; (I.M.); (S.B.); (A.P.); (F.S.)
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138 Milan, Italy; (I.S.); (M.C.V.); (A.S.); (L.E.); (E.S.); (J.R.); (G.P.)
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Frederique Savagner
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, 31432 Toulouse, France; (I.M.); (S.B.); (A.P.); (F.S.)
| |
Collapse
|
11
|
Lu J, Li Y, Mollinari C, Garaci E, Merlo D, Pei G. Amyloid-β Oligomers-induced Mitochondrial DNA Repair Impairment Contributes to Altered Human Neural Stem Cell Differentiation. Curr Alzheimer Res 2020; 16:934-949. [PMID: 31642778 DOI: 10.2174/1567205016666191023104036] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/25/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Amyloid-β42 oligomers (Aβ42O), the proximate effectors of neurotoxicity observed in Alzheimer's disease (AD), can induce mitochondrial oxidative stress and impair mitochondrial function besides causing mitochondrial DNA (mtDNA) damage. Aβ42O also regulate the proliferative and differentiative properties of stem cells. OBJECTIVE We aimed to study whether Aβ42O-induced mtDNA damage is involved in the regulation of stem cell differentiation. METHOD Human iPSCs-derived neural stem cell (NSC) was applied to investigate the effect of Aβ42O on reactive oxygen species (ROS) production and DNA damage using mitoSOX staining and long-range PCR lesion assay, respectively. mtDNA repair activity was measured by non-homologous end joining (NHEJ) in vitro assay using mitochondria isolates and the expression and localization of NHEJ components were determined by Western blot and immunofluorescence assay. The expressions of Tuj-1 and GFAP, detected by immunofluorescence and qPCR, respectively, were examined as an index of neurons and astrocytes production. RESULTS We show that in NSC Aβ42O treatment induces ROS production and mtDNA damage and impairs DNA end joining activity. NHEJ components, such as Ku70/80, DNA-PKcs, and XRCC4, are localized in mitochondria and silencing of XRCC4 significantly exacerbates the effect of Aβ42O on mtDNA integrity. On the contrary, pre-treatment with Phytic Acid (IP6), which specifically stimulates DNA-PK-dependent end-joining, inhibits Aβ42O-induced mtDNA damage and neuronal differentiation alteration. CONCLUSION Aβ42O-induced mtDNA repair impairment may change cell fate thus shifting human NSC differentiation toward an astrocytic lineage. Repair stimulation counteracts Aβ42O neurotoxicity, suggesting mtDNA repair pathway as a potential target for the treatment of neurodegenerative disorders like AD.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yi Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Cristiana Mollinari
- Department of Neuroscience, Istituto Superiore di Sanita, Rome, Italy.,Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Enrico Garaci
- IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.,Telematic University San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Daniela Merlo
- Department of Neuroscience, Istituto Superiore di Sanita, Rome, Italy
| | - Gang Pei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.,Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Cytotoxic constituents from Penicillium concentricum, an endophytic fungus from Trichocolea tomentella. Anticancer Drugs 2020; 30:323-329. [PMID: 30688672 DOI: 10.1097/cad.0000000000000759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In our continuing effort to identify bioactive secondary metabolites from natural sources, the antiproliferative activity of 23 compounds, previously isolated from Penicillium concentricum, was assessed using the sulforhodamine B assay. The cytotoxic effect was determined against HeLa cervical, HT-29 colon, MDA-MB-321 breast, PC-3, and DU-145 prostate cancer cell lines. Compounds were also tested in the mitochondrial transmembrane potential (MTP) and nuclear factor kappa B (NF-κB) target-based assays. The results showed that 2-bromogentisyl alcohol (2) and 3-hydroxy-benzenemethanol (8) exhibited the highest cytotoxic activity against different cancer cell lines. Epoxydon (14) showed selectivity against DU-145 prostate cancer cells [inhibitory concentration 50 (IC50)=1.2 μmol/l]. Compounds 2, 8, 14, 18, 21 also induced damage of MTP (IC50=0.1, 0.2, 7.0, 9.6, and 1.8 μmol/l, respectively). In the NF-κB assay, only compound 8 exhibited potent inhibition (IC50=0.3 μmol/l). Compounds 2 and 14 showed cytotoxic activity and induction of damage in mitochondrial membrane potential while compound 8 inhibited NF-κB and MTP damage. Additionally, compound 14 with selectivity against DU-145 prostate cancer cells induced cell cycle arrested in G2/M phase. Thus, compounds 2, 8, and 14 could be useful leads in the development of new anticancer agents from natural sources.
Collapse
|
13
|
Morganti C, Bonora M, Marchi S, Ferroni L, Gardin C, Wieckowski MR, Giorgi C, Pinton P, Zavan B. Citrate Mediates Crosstalk between Mitochondria and the Nucleus to Promote Human Mesenchymal Stem Cell In Vitro Osteogenesis. Cells 2020; 9:cells9041034. [PMID: 32326298 PMCID: PMC7226543 DOI: 10.3390/cells9041034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/07/2020] [Accepted: 04/19/2020] [Indexed: 12/15/2022] Open
Abstract
Citrate, generated in the mitochondria, is a key metabolite that might link metabolism with signaling, chromatin structure and transcription to orchestrate mesenchymal stem cells (MSCs) fate determination. Based on a detailed morphological analysis of 3D reconstruction of mitochondria and nuclei in single cells, we identified contact sites between these organelles that drastically increase in volume and number during the early stage of mesenchymal stem cell differentiation. These contact sites create a microdomain that facilitates exchange of signals from mitochondria to the nucleus. Interestingly, we found that the citrate derived from mitochondria is necessary for osteogenic lineage determination. Indeed, inhibition of the citrate transporter system dramatically affected osteogenesis, reduced citrate levels that could be converted in α-ketoglutarate, and consequently affected epigenetic marker H3K9me3 associated with the osteogenesis differentiation process. These findings highlight that mitochondrial metabolites play key regulatory roles in the MSCs differentiation process. Further in-depth investigation is needed to provide novel therapeutic strategies in the field of regenerative medicine.
Collapse
Affiliation(s)
- Claudia Morganti
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (M.B.); (S.M.); (C.G.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Bonora
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (M.B.); (S.M.); (C.G.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Saverio Marchi
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (M.B.); (S.M.); (C.G.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, 48033 Ravenna, Italy; (L.F.); (C.G.)
| | - Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, 48033 Ravenna, Italy; (L.F.); (C.G.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (M.B.); (S.M.); (C.G.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (M.B.); (S.M.); (C.G.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, 48033 Ravenna, Italy; (L.F.); (C.G.)
- Correspondence: (P.P.); (B.Z.)
| | - Barbara Zavan
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, 48033 Ravenna, Italy; (L.F.); (C.G.)
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (P.P.); (B.Z.)
| |
Collapse
|
14
|
Wang C, Shao L, Pan C, Ye J, Ding Z, Wu J, Du Q, Ren Y, Zhu C. Elevated level of mitochondrial reactive oxygen species via fatty acid β-oxidation in cancer stem cells promotes cancer metastasis by inducing epithelial-mesenchymal transition. Stem Cell Res Ther 2019; 10:175. [PMID: 31196164 PMCID: PMC6567550 DOI: 10.1186/s13287-019-1265-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 12/25/2022] Open
Abstract
Background Cancer stem cells (CSCs) play a critical role in tumor development and progression and are involved in cancer metastasis. The role of reactive oxygen species (ROS) in CSCs and cancer metastasis remains controversial. The aim of the present study was to investigate the correlation between ROS level of CSCs and cancer metastasis and to explore the possible underlying molecular mechanisms. Methods Four different cell lines were used to isolate tumor spheres and to analyze intrinsic properties of tumor sphere cells including proliferation, self-renewal potential, differentiation, drug-resistance and cancer metastasis in vitro and in vivo. ROS assays were used to detect the intracellular ROS level of tumor spheres cells. Gene expression analysis and western blot were used to investigate the underlying mechanisms of ROS in regulating cancer metastasis. Results Tumor spheres possessed the characteristic features of CSCs, and ROS-high tumor spheres (RH-TS) displayed elevated mitochondrial ROS level exclusively drove metastasis formation. The gene expression analysis showed elevated fatty acid β-oxidation, downregulation of epithelial marker upregulation of mesenchymal markers, and the activation of MAP kinase cascades. Furthermore, 14 up-regulated genes in RH-TS cells were associated with reduced overall survival of different cancer patients. Conclusions Our findings demonstrate that CSCs characterized by elevated mitochondrial ROS level potentiate cancer metastasis. Mechanistically, elevated mitochondrial ROS via fatty acid β-oxidation, activates the MAPK cascades, resulting in the epithelial-mesenchymal transition (EMT) process of RH-TS cells, thereby potentiating caner invasion and metastasis. Therefore, targeting mitochondrial ROS might provide a promising approach to prevent and alleviate cancer metastasis induced by RH-TS cells. Electronic supplementary material The online version of this article (10.1186/s13287-019-1265-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caihua Wang
- Department of Gastroenterology, The Second Affiliated Hospital, ZhejiangUniversity School of Medicine, Hangzhou, 310009, China
| | - Liming Shao
- Department of Gastroenterology, The Second Affiliated Hospital, ZhejiangUniversity School of Medicine, Hangzhou, 310009, China
| | - Chi Pan
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, ZhejiangUniversity School of Medicine, Hangzhou, 310009, China
| | - Zonghui Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Arizona, AZ, 85259, USA
| | - Jia Wu
- Department of Gastroenterology, The Second Affiliated Hospital, ZhejiangUniversity School of Medicine, Hangzhou, 310009, China
| | - Qin Du
- Department of Gastroenterology, The Second Affiliated Hospital, ZhejiangUniversity School of Medicine, Hangzhou, 310009, China
| | - Yuezhong Ren
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Chunpeng Zhu
- Department of Gastroenterology, The Second Affiliated Hospital, ZhejiangUniversity School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
15
|
Chicherin IV, Dashinimaev E, Baleva M, Krasheninnikov I, Levitskii S, Kamenski P. Cytochrome c Oxidase on the Crossroads of Transcriptional Regulation and Bioenergetics. Front Physiol 2019; 10:644. [PMID: 31231235 PMCID: PMC6558401 DOI: 10.3389/fphys.2019.00644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are the organelles of eukaryotic cells responsible for the ATP production by means of the electron transfer chain (ETC). Its work is under strict genetic control providing the correct assembly of the enzyme complexes and the interface to adapt the energetic demands of the cell to the environment. These mechanisms are particularly developed in the cells with high energy consumption, like neurons and myocytes. This review summarizes several aspects of the involvement of the ETC complexes in the transcriptional control mechanisms of the neurons and other cells. Their influence on the differentiation of neurons is also discussed.
Collapse
Affiliation(s)
- Ivan Vladimirovich Chicherin
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, Russia
| | - Erdem Dashinimaev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Mariia Baleva
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Igor Krasheninnikov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey Levitskii
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Piotr Kamenski
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
16
|
Kam A, Loo S, Dutta B, Sze SK, Tam JP. Plant-derived mitochondria-targeting cysteine-rich peptide modulates cellular bioenergetics. J Biol Chem 2019; 294:4000-4011. [PMID: 30674551 PMCID: PMC6422099 DOI: 10.1074/jbc.ra118.006693] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are attractive therapeutic targets for developing agents to delay age-related frailty and diseases. However, few promising leads have been identified from natural products. Previously, we identified roseltide rT1, a hyperstable 27-residue cysteine-rich peptide from Hibiscus sabdariffa, as a knottin-type neutrophil elastase inhibitor. Here, we show that roseltide rT1 is also a cell-penetrating, mitochondria-targeting peptide that increases ATP production. Results from flow cytometry, live-cell imaging, pulldown assays, and genetically-modified cell lines supported that roseltide rT1 enters cells via glycosaminoglycan-dependent endocytosis, and enters the mitochondria through TOM20, a mitochondrial protein import receptor. We further showed that roseltide rT1 increases cellular ATP production via mitochondrial membrane hyperpolarization. Using biotinylated roseltide rT1 for target identification and proteomic analysis, we showed that human mitochondrial membrane ATP synthase subunit O is an intramitochondrial target. Collectively, these data support our discovery that roseltide rT1 is a first-in-class mitochondria-targeting, cysteine-rich peptide with potentials to be developed into tools to further our understanding of mitochrondria-related diseases.
Collapse
Affiliation(s)
- Antony Kam
- From the School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Shining Loo
- From the School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Bamaprasad Dutta
- From the School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Siu Kwan Sze
- From the School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - James P Tam
- From the School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| |
Collapse
|
17
|
Karabulutoglu M, Finnon R, Imaoka T, Friedl AA, Badie C. Influence of diet and metabolism on hematopoietic stem cells and leukemia development following ionizing radiation exposure. Int J Radiat Biol 2018; 95:452-479. [PMID: 29932783 DOI: 10.1080/09553002.2018.1490042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The review aims to discuss the prominence of dietary and metabolic regulators in maintaining hematopoietic stem cell (HSC) function, long-term self-renewal, and differentiation. RESULTS Most adult stem cells are preserved in a quiescent, nonmotile state in vivo which acts as a "protective state" for stem cells to reduce endogenous stress provoked by DNA replication and cellular respiration as well as exogenous environmental stress. The dynamic balance between quiescence, self-renewal and differentiation is critical for supporting a functional blood system throughout life of an organism. Stress-conditions, for example ionizing radiation exposure can trigger the blood forming HSCs to proliferate and migrate through extramedullary tissues to expand the number of HSCs and increase hematopoiesis. In addition, a wealth of investigation validated that deregulation of this balance plays a critical pathogenic role in various different hematopoietic diseases including the leukemia development. CONCLUSION The review summarizes the current knowledge on how alterations in dietary and metabolic factors could alter the risk of leukemia development following ionizing radiation exposure by inhibiting or even reversing the leukemic progression. Understanding the influence of diet, metabolism, and epigenetics on radiation-induced leukemogenesis may lead to the development of practical interventions to reduce the risk in exposed populations.
Collapse
Affiliation(s)
- Melis Karabulutoglu
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK.,b CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology , University of Oxford , Oxford , UK
| | - Rosemary Finnon
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| | - Tatsuhiko Imaoka
- c Department of Radiation Effects Research, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Anna A Friedl
- d Department of Radiation Oncology , University Hospital, LMU Munich , Munich , Germany
| | - Christophe Badie
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| |
Collapse
|
18
|
Ravera S, Podestà M, Sabatini F, Fresia C, Columbaro M, Bruno S, Fulcheri E, Ramenghi LA, Frassoni F. Mesenchymal stem cells from preterm to term newborns undergo a significant switch from anaerobic glycolysis to the oxidative phosphorylation. Cell Mol Life Sci 2018; 75:889-903. [PMID: 28975370 PMCID: PMC11105169 DOI: 10.1007/s00018-017-2665-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/04/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
We evaluated the energy metabolism of human mesenchymal stem cells (MSC) isolated from umbilical cord (UC) of preterm (< 37 weeks of gestational age) and term (≥ 37 weeks of gestational age) newborns, using MSC from adult bone marrow as control. A metabolic switch has been observed around the 34th week of gestational age from a prevalently anaerobic glycolysis to the oxidative phosphorylation. This metabolic change is associated with the organization of mitochondria reticulum: preterm MSCs presented a scarcely organized mitochondrial reticulum and low expression of proteins involved in the mitochondrial fission/fusion, compared to term MSCs. These changes seem governed by the expression of CLUH, a cytosolic messenger RNA-binding protein involved in the mitochondria biogenesis and distribution inside the cell; in fact, CLUH silencing in term MSC determined a metabolic fingerprint similar to that of preterm MSC. Our study discloses novel information on the production of energy and mitochondrial organization and function, during the passage from fetal to adult life, providing useful information for the management of preterm birth.
Collapse
Affiliation(s)
- Silvia Ravera
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy.
| | - Marina Podestà
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Federica Sabatini
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Chiara Fresia
- Section of Biochemistry, Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Marta Columbaro
- SC Laboratory of Musculoskeletal Cell Biology, IRCCS Rizzoli Orthopedic Institute, 40136, Bologna, Italy
| | - Silvia Bruno
- Section of Human Anatomy, Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Ezio Fulcheri
- Laboratory Medicine and Diagnostic Services, Division of Perinatal Pathology, Department of Translational Research, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | | | - Francesco Frassoni
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| |
Collapse
|
19
|
Meng Y, Eirin A, Zhu XY, Tang H, Chanana P, Lerman A, van Wijnen AJ, Lerman LO. Obesity-induced mitochondrial dysfunction in porcine adipose tissue-derived mesenchymal stem cells. J Cell Physiol 2018; 233:5926-5936. [PMID: 29243809 DOI: 10.1002/jcp.26402] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/30/2022]
Abstract
Transplantation of autologous mesenchymal stem cells (MSCs) may be a viable option for treatment of several diseases. MSCs efficacy depends on adequate function of their mitochondria, which might be impaired in a noxious milieu. We hypothesized that obesity compromises MSCs mitochondrial structure and function, possibly via micro-RNA (miRNA)-based mechanisms. MSCs were collected from swine abdominal adipose tissue after 16 weeks of Lean or Obese diet (n = 7 each). Mitochondrial structure was assessed by electron microscopy and function by membrane potential and cytochrome-c oxidase (COX)-IV activity. Oxidative stress was assessed by Mito-SOX and dihydroethidium staining. Next-generation sequencing (RNA-seq) was performed to identify miRNAs expression in MSCs, and predicted mitochondrial target genes were then identified (MitoCarta). Compared to Lean-MSCs, mitochondria from Obese-MSCs were smaller and showed cristae remodeling and loss. Mitochondrial membrane potential and COX-IV activity decreased in Obese-MSCs, associated with increased mitochondrial oxidative stress. RNA-seq generated reads for 413 miRNAs, of which 5 miRNAs were upregulated in Obese-MSCs (fold change >2, p < 0.05) and found to target 43 specific mitochondrial genes. Obesity impairs MSC mitochondrial structure and function, possibly mediated partly through miRNA-induced mitochondrial gene regulation, leading to increased oxidative stress. Importantly, these alterations may limit the therapeutic use of autologous MSCs in subjects with obesity.
Collapse
Affiliation(s)
- Yu Meng
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.,Department of Nephrology, the First Hospital Affiliated to Jinan University, Guangzhou, China
| | - Alfonso Eirin
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Xiang-Yang Zhu
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Hui Tang
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Pritha Chanana
- Health Sciences Research & Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Amir Lerman
- Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | | | - Lilach O Lerman
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.,Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
20
|
Stem Cell Technology for (Epi)genetic Brain Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:443-475. [PMID: 28523560 DOI: 10.1007/978-3-319-53889-1_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the enormous efforts of the scientific community over the years, effective therapeutics for many (epi)genetic brain disorders remain unidentified. The common and persistent failures to translate preclinical findings into clinical success are partially attributed to the limited efficiency of current disease models. Although animal and cellular models have substantially improved our knowledge of the pathological processes involved in these disorders, human brain research has generally been hampered by a lack of satisfactory humanized model systems. This, together with our incomplete knowledge of the multifactorial causes in the majority of these disorders, as well as a thorough understanding of associated (epi)genetic alterations, has been impeding progress in gaining more mechanistic insights from translational studies. Over the last years, however, stem cell technology has been offering an alternative approach to study and treat human brain disorders. Owing to this technology, we are now able to obtain a theoretically inexhaustible source of human neural cells and precursors in vitro that offer a platform for disease modeling and the establishment of therapeutic interventions. In addition to the potential to increase our general understanding of how (epi)genetic alterations contribute to the pathology of brain disorders, stem cells and derivatives allow for high-throughput drugs and toxicity testing, and provide a cell source for transplant therapies in regenerative medicine. In the current chapter, we will demonstrate the validity of human stem cell-based models and address the utility of other stem cell-based applications for several human brain disorders with multifactorial and (epi)genetic bases, including Parkinson's disease (PD), Alzheimer's disease (AD), fragile X syndrome (FXS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Rett syndrome (RTT).
Collapse
|
21
|
Tamrin SH, Majedi FS, Tondar M, Sanati-Nezhad A, Hasani-Sadrabadi MM. Electromagnetic Fields and Stem Cell Fate: When Physics Meets Biology. Rev Physiol Biochem Pharmacol 2017; 171:63-97. [PMID: 27515674 DOI: 10.1007/112_2016_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Controlling stem cell (SC) fate is an extremely important topic in the realm of SC research. A variety of different external cues mainly mechanical, chemical, or electrical stimulations individually or in combination have been incorporated to control SC fate. Here, we will deconstruct the probable relationship between the functioning of electromagnetic (EMF) and SC fate of a variety of different SCs. The electromagnetic (EM) nature of the cells is discussed with the emphasis on the effects of EMF on the determinant factors that directly and/or indirectly influence cell fate. Based on the EM effects on a variety of cellular processes, it is believed that EMFs can be engineered to provide a controlled signal with the highest impact on the SC fate decision. Considering the novelty and broad applications of applying EMFs to change SC fate, it is necessary to shed light on many unclear mechanisms underlying this phenomenon.
Collapse
Affiliation(s)
- Sara Hassanpour Tamrin
- Center of Excellence in Biomaterials, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Mahdi Tondar
- Department of Biochemistry and Molecular & Cellular Biology, School of Medicine, Georgetown University, Washington, DC, USA
| | - Amir Sanati-Nezhad
- BioMEMS and BioInspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Center for Bioengineering Research and Education, University of Calgary, Calgary, AB, Canada, T2N1N4.
| | - Mohammad Mahdi Hasani-Sadrabadi
- Department of Chemistry & Biochemistry, and California NanoSystems Institute, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience and G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
22
|
Abstract
SIGNIFICANCE In the last years, metabolic reprogramming, fluctuations in bioenergetic fuels, and modulation of oxidative stress became new key hallmarks of tumor development. In cancer, elevated glucose uptake and high glycolytic rate, as a source of adenosine triphosphate, constitute a growth advantage for tumors. This represents the universally known Warburg effect, which gave rise to one major clinical application for detecting cancer cells using glucose analogs: the positron emission tomography scan imaging. Recent Advances: Glucose utilization and carbon sources in tumors are much more heterogeneous than initially thought. Indeed, new studies emerged and revealed a dual capacity of tumor cells for glycolytic and oxidative phosphorylation (OXPHOS) metabolism. OXPHOS metabolism, which relies predominantly on mitochondrial respiration, exhibits fine-tuned regulation of respiratory chain complexes and enhanced antioxidant response or detoxification capacity. CRITICAL ISSUES OXPHOS-dependent cancer cells use alternative oxidizable substrates, such as glutamine and fatty acids. The diversity of carbon substrates fueling neoplastic cells is indicative of metabolic heterogeneity, even within tumors sharing the same clinical diagnosis. Metabolic switch supports cancer cell stemness and their bioenergy-consuming functions, such as proliferation, survival, migration, and invasion. Moreover, reactive oxygen species-induced mitochondrial metabolism and nutrient availability are important for interaction with tumor microenvironment components. Carcinoma-associated fibroblasts and immune cells participate in the metabolic interplay with neoplastic cells. They collectively adapt in a dynamic manner to the metabolic needs of cancer cells, thus participating in tumorigenesis and resistance to treatments. FUTURE DIRECTIONS Characterizing the reciprocal metabolic interplay between stromal, immune, and neoplastic cells will provide a better understanding of treatment resistance. Antioxid. Redox Signal. 26, 462-485.
Collapse
Affiliation(s)
- Géraldine Gentric
- 1 Stress and Cancer Laboratory, Équipe Labelisée LNCC, Institut Curie , Paris, France .,2 Inserm , U830, Paris, France
| | - Virginie Mieulet
- 1 Stress and Cancer Laboratory, Équipe Labelisée LNCC, Institut Curie , Paris, France .,2 Inserm , U830, Paris, France
| | - Fatima Mechta-Grigoriou
- 1 Stress and Cancer Laboratory, Équipe Labelisée LNCC, Institut Curie , Paris, France .,2 Inserm , U830, Paris, France
| |
Collapse
|
23
|
Shin JW, Wu Y, Kang YG, Kim JK, Choi HJ, Shin JW. The Effects of Epigallocatechin-3-Gallate and Mechanical Stimulation on Osteogenic Differentiation of Human Mesenchymal Stem Cells: Individual or Synergistic Effects. Tissue Eng Regen Med 2017; 14:307-315. [PMID: 30603487 DOI: 10.1007/s13770-017-0040-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/28/2016] [Accepted: 09/09/2016] [Indexed: 12/21/2022] Open
Abstract
This study aims to investigate the roles and effects of EGCG (epigallocatechin-3-gallate) during the osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro. Recent studies have shown that proper mechanical stimuli can induce osteogenic differentiation of hMSCs apart from biochemical factors. In this study, the hMSC cultures were subjected to: (1) 25 uM EGCG alone or (2) 3% mechanical stretching (0.2 Hz for 4 h/day for 4 days) or (3) in combination with 3% mechanical stretching (0.2 Hz for 4 h/day for 4 days). The two factors were applied to the cell cultures separately and in combination to investigate the individual and synergistic effect of both mechanical stimulation and ECGC in the osteogenic differentiation of hMSCs. Utilizing real time PCR, we measured various osteogenic markers and even those related to intracellular signalings. Further investigation of mitochondria was performed that mitochondria biogenesis, antioxidant capacity, and morphological related markers were measured. hMSCs were to be osteogenic or myogenic differentiated when they were under 3% stretching only. However, when EGCG was applied along with stretching they were to be osteogenic differentiated rather than to be myogenic differentiated. This was supported by evaluating intracellular signalings: BMP-2 and VEGF. Therefore, the synergistical effects of simultaneous employment of stretching and EGCG on osteogenic differentiation were confirmed. Moreover, simultaneous employment was found positive in mitochondria biogenesis, antioxidant capacity, and morphological changes. Through this study, we came into the conclusion that the combination of proper mechanical stretching, 3% in this study, and EGCG promote osteogenic differentiation. Reflecting that EGCG can be obtained from plants not from the chemical syntheses, it is worth to be studied further either by animal tests or long-term experiments for clinical applications.
Collapse
Affiliation(s)
- Ji Won Shin
- 1Department of Biomedical Engineering, Inje University, 197 Inje-ro, Gimhae, 50834 Korea
| | - Yanru Wu
- 2Department of Health Science and Technology, Inje University, 197 Inje-ro, Gimhae, 50834 Korea
| | - Yun Gyeong Kang
- 1Department of Biomedical Engineering, Inje University, 197 Inje-ro, Gimhae, 50834 Korea
| | - Jeong Koo Kim
- 1Department of Biomedical Engineering, Inje University, 197 Inje-ro, Gimhae, 50834 Korea
| | - Hyun Ju Choi
- Research and Development Team, Gimhae Biomedical Center, Gimhae, Gyeongnam 50834 Korea
| | - Jung-Woog Shin
- 1Department of Biomedical Engineering, Inje University, 197 Inje-ro, Gimhae, 50834 Korea.,2Department of Health Science and Technology, Inje University, 197 Inje-ro, Gimhae, 50834 Korea.,4Cardiovascular and Metabolic Disease Center/Institute of Aged Life Redesign/UHARC, Inje University, 197 Inje-ro, Gimhae, 50834 Korea
| |
Collapse
|
24
|
Tang Y, Luo B, Deng Z, Wang B, Liu F, Li J, Shi W, Xie H, Hu X, Li J. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration. PeerJ 2016; 4:e1821. [PMID: 27168957 PMCID: PMC4860312 DOI: 10.7717/peerj.1821] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/26/2016] [Indexed: 12/26/2022] Open
Abstract
Background. Emerging research revealed the essential role of mitochondria in regulating stem/progenitor cell differentiation of neural progenitor cells, mesenchymal stem cells and other stem cells through reactive oxygen species (ROS), Notch or other signaling pathway. Inhibition of mitochondrial protein synthesis results in hair loss upon injury. However, alteration of mitochondrial morphology and metabolic function during hair follicle stem cells (HFSCs) differentiation and how they affect hair regeneration has not been elaborated upon. Methods. We compared the difference in mitochondrial morphology and activity between telogen bulge cells and anagen matrix cells. Expression levels of mitochondrial ROS and superoxide dismutase 2 (SOD2) were measured to evaluate redox balance. In addition, the level of pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase (PDH) were estimated to present the change in energetic metabolism during differentiation. To explore the effect of the mitochondrial metabolism on regulating hair regeneration, hair growth was observed after application of a mitochondrial respiratory inhibitor upon hair plucking. Results. During HFSCs differentiation, mitochondria became elongated with more abundant organized cristae and showed higher activity in differentiated cells. SOD2 was enhanced for redox balance with relatively stable ROS levels in differentiated cells. PDK increased in HFSCs while differentiated cells showed enhanced PDH, indicating that respiration switched from glycolysis to oxidative phosphorylation during differentiation. Inhibiting mitochondrial respiration in differentiated hair follicle cells upon hair plucking repressed hair regeneration in vivo. Conclusions. Upon HFSCs differentiation, mitochondria are elongated with more abundant cristae and show higher activity, accompanying with activated aerobic respiration in differentiated cells for higher energy supply. Also, dysfunction of mitochondrial respiration delays hair regeneration upon injury.
Collapse
Affiliation(s)
- Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Binping Luo
- Department of Dermatology, The Third Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Fangfen Liu
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Jinmao Li
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Wei Shi
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Xingwang Hu
- Department of Infectious Diseases and Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| |
Collapse
|
25
|
Intraperitoneal 188Re-Liposome delivery switches ovarian cancer metabolism from glycolysis to oxidative phosphorylation and effectively controls ovarian tumour growth in mice. Radiother Oncol 2016; 119:282-90. [DOI: 10.1016/j.radonc.2016.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 12/24/2015] [Accepted: 02/01/2016] [Indexed: 01/02/2023]
|
26
|
Yan B, Dong L, Neuzil J. Mitochondria: An intriguing target for killing tumour-initiating cells. Mitochondrion 2016; 26:86-93. [DOI: 10.1016/j.mito.2015.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/25/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022]
|
27
|
Panfoli I, Ravera S, Podestà M, Cossu C, Santucci L, Bartolucci M, Bruschi M, Calzia D, Sabatini F, Bruschettini M, Ramenghi LA, Romantsik O, Marimpietri D, Pistoia V, Ghiggeri G, Frassoni F, Candiano G. Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants. FASEB J 2015; 30:1416-24. [PMID: 26655706 DOI: 10.1096/fj.15-279679] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/23/2015] [Indexed: 01/13/2023]
Abstract
Exosomes are secreted nanovesicles that are able to transfer RNA and proteins to target cells. The emerging role of mesenchymal stem cell (MSC) exosomes as promoters of aerobic ATP synthesis restoration in damaged cells, prompted us to assess whether they contain an extramitochondrial aerobic respiration capacity. Exosomes were isolated from culture medium of human MSCs from umbilical cord of ≥37-wk-old newborns or between 28- to 30-wk-old newborns (i.e.,term or preterm infants). Characterization of samples was conducted by cytofluorometry. Oxidative phosphorylation capacity was assessed by Western blot analysis, oximetry, and luminometric and fluorometric analyses. MSC exosomes express functional respiratory complexes I, IV, and V, consuming oxygen. ATP synthesis was only detectable in exosomes from term newborns, suggestive of a specific mechanism that is not completed at an early gestational age. Activities are outward facing and comparable to those detected in mitochondria isolated from term MSCs. MSC exosomes display an unsuspected aerobic respiratory ability independent of whole mitochondria. This may be relevant for their ability to rescue cell bioenergetics. The differential oxidative metabolism of pretermvs.term exosomes sheds new light on the preterm newborn's clinical vulnerability. A reduced ability to repair damaged tissue and an increased capability to cope with anoxic environment for preterm infants can be envisaged.-Panfoli, I., Ravera, S., Podestà, M., Cossu, C., Santucci, L., Bartolucci, M., Bruschi, M., Calzia, D., Sabatini, F., Bruschettini, M., Ramenghi, L. A., Romantsik, O., Marimpietri, D., Pistoia, V., Ghiggeri, G., Frassoni, F., Candiano, G. Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants.
Collapse
Affiliation(s)
- Isabella Panfoli
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Ravera
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Marina Podestà
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Claudia Cossu
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Laura Santucci
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Martina Bartolucci
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Bruschi
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Daniela Calzia
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Sabatini
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Matteo Bruschettini
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Luca Antonio Ramenghi
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Olga Romantsik
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Danilo Marimpietri
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Vito Pistoia
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Gianmarco Ghiggeri
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Francesco Frassoni
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Giovanni Candiano
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
28
|
Xavier JM, Morgado AL, Rodrigues CM, Solá S. Tauroursodeoxycholic acid increases neural stem cell pool and neuronal conversion by regulating mitochondria-cell cycle retrograde signaling. Cell Cycle 2015; 13:3576-89. [PMID: 25483094 DOI: 10.4161/15384101.2014.962951] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The low survival and differentiation rates of stem cells after either transplantation or neural injury have been a major concern of stem cell-based therapy. Thus, further understanding long-term survival and differentiation of stem cells may uncover new targets for discovery and development of novel therapeutic approaches. We have previously described the impact of mitochondrial apoptosis-related events in modulating neural stem cell (NSC) fate. In addition, the endogenous bile acid, tauroursodeoxycholic acid (TUDCA) was shown to be neuroprotective in several animal models of neurodegenerative disorders by acting as an anti-apoptotic and anti-oxidant molecule at the mitochondrial level. Here, we hypothesize that TUDCA might also play a role on NSC fate decision. We found that TUDCA prevents mitochondrial apoptotic events typical of early-stage mouse NSC differentiation, preserves mitochondrial integrity and function, while enhancing self-renewal potential and accelerating cell cycle exit of NSCs. Interestingly, TUDCA prevention of mitochondrial alterations interfered with NSC differentiation potential by favoring neuronal rather than astroglial conversion. Finally, inhibition of mitochondrial reactive oxygen species (mtROS) scavenger and adenosine triphosphate (ATP) synthase revealed that the effect of TUDCA is dependent on mtROS and ATP regulation levels. Collectively, these data underline the importance of mitochondrial stress control of NSC fate decision and support a new role for TUDCA in this process.
Collapse
Key Words
- ATP
- ATP, adenosine triphosphate
- BrdU, bromodeoxyuridine
- CsA, cyclosporin A
- DiOC6(3), 3, 3′-dihexyloxacarbocyanine iodide
- FACS, fluorescence-activated cell sorting analysis
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- GFAP, glial fibrillary acidic protein
- MnSOD, manganese superoxide dismutase
- NSC, neural stem cells
- OGG1, 8-oxoguanine DNA glycosylase
- OligA, oligomycin A
- ROS, reactive oxygen species
- Sox2, sex determining region Y- box 2
- TUDCA, tauroursodeoxycholic acid
- UDCA, ursodeoxycholic acid
- VDAC, voltage-dependent anion channel
- cdk, cyclin-dependent kinase
- cell cycle
- mitochondrial oxidative stress
- mtDNA, mitochondrial DNA
- mtROS, mitochondrial reactive oxygen species
- neural stem cell fate
- tauroursodeoxycholic acid
Collapse
Affiliation(s)
- Joana M Xavier
- a Research Institute for Medicines (iMed.ULisboa) ; Faculty of Pharmacy ; Universidade de Lisboa ; Lisbon , Portugal
| | | | | | | |
Collapse
|
29
|
Sun X, Voloboueva LA, Stary CM, Giffard RG. Physiologically normal 5% O2 supports neuronal differentiation and resistance to inflammatory injury in neural stem cell cultures. J Neurosci Res 2015; 93:1703-12. [PMID: 26147710 DOI: 10.1002/jnr.23615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/09/2015] [Accepted: 06/15/2015] [Indexed: 01/09/2023]
Abstract
Recent studies have demonstrated that neural stem cell (NSC) culture at physiologically normoxic conditions (2-5% O2) is advantageous in terms of neuronal differentiation and survival. Neuronal differentiation is accompanied by a remarkable shift to mitochondrial oxidative metabolism compared with preferentially glycolytic metabolism of proliferating cells. However, metabolic changes induced by growth in a normoxic (5%) O2 culture environment in NSCs have been minimally explored. This study demonstrates that culturing under 5% O2 conditions results in higher levels of mitochondrial oxidative metabolism, decreased glycolysis, and reduced levels of reactive oxygen species in NSC cultures. Inflammation is one of the major environmental factors limiting postinjury NSC neuronal differentiation and survival. Our results show that NSCs differentiated under 5% O2 conditions possess better resistance to in vitro inflammatory injury compared with those exposed to 20% O2. The present work demonstrates that lower, more physiologically normal O2 levels support metabolic changes induced during NSC neuronal differentiation and provide increased resistance to inflammatory injury, thus highlighting O2 tension as an important determinant of cell fate and survival in various stem cell therapies.
Collapse
Affiliation(s)
- Xiaoyun Sun
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Ludmila A Voloboueva
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Creed M Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Rona G Giffard
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
30
|
Lambertini E, Penolazzi L, Morganti C, Lisignoli G, Zini N, Angelozzi M, Bonora M, Ferroni L, Pinton P, Zavan B, Piva R. Osteogenic differentiation of human MSCs: Specific occupancy of the mitochondrial DNA by NFATc1 transcription factor. Int J Biochem Cell Biol 2015; 64:212-9. [DOI: 10.1016/j.biocel.2015.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/09/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
|
31
|
Shin JW, Kim HL, Kang YG, Park SH, Kim YM, Shin JW. 물리적 인장 자극에 의한 줄기세포의 분화에 동반되는 미토콘드리아의 특성 변화에 관한 고찰. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-015-0432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
32
|
Novosadova EV, Grivennikov IA. Induced pluripotent stem cells: From derivation to application in biochemical and biomedical research. BIOCHEMISTRY (MOSCOW) 2015; 79:1425-41. [DOI: 10.1134/s000629791413001x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
D'Aprile A, Scrima R, Quarato G, Tataranni T, Falzetti F, Di Ianni M, Gemei M, Del Vecchio L, Piccoli C, Capitanio N. Hematopoietic stem/progenitor cells express myoglobin and neuroglobin: adaptation to hypoxia or prevention from oxidative stress? Stem Cells 2014; 32:1267-77. [PMID: 24446190 DOI: 10.1002/stem.1646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 12/25/2013] [Indexed: 12/22/2022]
Abstract
Oxidative metabolism and redox signaling prove to play a decisional role in controlling adult hematopoietic stem/progenitor cells (HSPCs) biology. However, HSPCs reside in a hypoxic bone marrow microenvironment raising the question of how oxygen metabolism might be ensued. In this study, we provide for the first time novel functional and molecular evidences that human HSPCs express myoglobin (Mb) at level comparable with that of a muscle-derived cell line. Optical spectroscopy and oxymetry enabled to estimate an O2-sensitive heme-containing protein content of approximately 180 ng globin per 10(6) HSPC and a P50 of approximately 3 µM O2. Noticeably, expression of Mb mainly occurs through a HIF-1-induced alternative transcript (Mb-V/Mb-N = 35 ± 15, p < .01). A search for other Mb-related globins unveiled significant expression of neuroglobin (Ngb) but not of cytoglobin. Confocal microscopy immune detection of Mb in HSPCs strikingly revealed nuclear localization in cell subsets expressing high level of CD34 (nuclear/cytoplasmic Mb ratios 1.40 ± 0.02 vs. 0.85 ± 0.05, p < .01) whereas Ngb was homogeneously distributed in all the HSPC population. Dual-color fluorescence flow cytometry indicated that while the Mb content was homogeneously distributed in all the HSPC subsets that of Ngb was twofold higher in more immature HSPC. Moreover, we show that HSPCs exhibit a hypoxic nitrite reductase activity releasing NO consistent with described noncanonical functions of globins. Our finding extends the notion that Mb and Ngb can be expressed in nonmuscle and non-neural contexts, respectively, and is suggestive of a differential role of Mb in HSPC in controlling oxidative metabolism at different stages of commitment.
Collapse
Affiliation(s)
- Annamaria D'Aprile
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Xavier JM, Morgado AL, Solá S, Rodrigues CMP. Mitochondrial translocation of p53 modulates neuronal fate by preventing differentiation-induced mitochondrial stress. Antioxid Redox Signal 2014; 21:1009-24. [PMID: 24329038 PMCID: PMC4123470 DOI: 10.1089/ars.2013.5417] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Apoptosis regulatory proteins, such as p53, play a pivotal role in neural differentiation, through mechanisms independent of cell death. In addition, p53 has been identified as an important regulator of mitochondrial survival response, maintaining mitochondrial DNA (mtDNA) integrity and oxidative protection. The aim of this study was to determine the role of mitochondrial p53 in organelle damage and neural differentiation. RESULTS Our results show that mitochondrial apoptotic events such as reactive oxygen species production, mitochondrial membrane permeabilization, and cytochrome c release are typical of early-stage mouse neural stem cell differentiation, which occurs 3-18 h after induction of differentiation, with no evidence of cell death. In addition, decreased mtDNA content, lipidated LC3 (LC3-II), colocalization of mitochondria and LC3-II puncta, and mitochondria-associated Parkin are consistent with activation of mitophagy. Importantly, at early stages of neural differentiation, p53 was actively translocated to mitochondria and attenuated mitochondrial oxidative stress, cytochrome c release, and mitophagy. Forced mitochondrial translocation of p53 increased neurogenic potential and neurite outgrowth. INNOVATION AND CONCLUSION In conclusion, our results reveal a novel role for mitochondrial p53, which modulates mitochondrial damage and apoptosis-related events in the context of neural differentiation, thus enhancing neuronal fate.
Collapse
Affiliation(s)
- Joana M Xavier
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa , Lisboa, Portugal
| | | | | | | |
Collapse
|
35
|
Han S, Auger C, Thomas SC, Beites CL, Appanna VD. Mitochondrial Biogenesis and Energy Production in Differentiating Murine Stem Cells: A Functional Metabolic Study. Cell Reprogram 2014; 16:84-90. [DOI: 10.1089/cell.2013.0049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Sungwon Han
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Christopher Auger
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Sean C. Thomas
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Crestina L. Beites
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
- School of Midwifery, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Vasu D. Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| |
Collapse
|
36
|
Inhibition of mitochondrial complex III blocks neuronal differentiation and maintains embryonic stem cell pluripotency. PLoS One 2013; 8:e82095. [PMID: 24312632 PMCID: PMC3847032 DOI: 10.1371/journal.pone.0082095] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/21/2013] [Indexed: 12/19/2022] Open
Abstract
The mitochondrion is emerging as a key organelle in stem cell biology, acting as a regulator of stem cell pluripotency and differentiation. In this study we sought to understand the effect of mitochondrial complex III inhibition during neuronal differentiation of mouse embryonic stem cells. When exposed to antimycin A, a specific complex III inhibitor, embryonic stem cells failed to differentiate into dopaminergic neurons, maintaining high Oct4 levels even when subjected to a specific differentiation protocol. Mitochondrial inhibition affected distinct populations of cells present in culture, inducing cell loss in differentiated cells, but not inducing apoptosis in mouse embryonic stem cells. A reduction in overall proliferation rate was observed, corresponding to a slight arrest in S phase. Moreover, antimycin A treatment induced a consistent increase in HIF-1α protein levels. The present work demonstrates that mitochondrial metabolism is critical for neuronal differentiation and emphasizes that modulation of mitochondrial functions through pharmacological approaches can be useful in the context of controlling stem cell maintenance/differentiation.
Collapse
|
37
|
Bukowiecki R, Adjaye J, Prigione A. Mitochondrial function in pluripotent stem cells and cellular reprogramming. Gerontology 2013; 60:174-82. [PMID: 24281332 DOI: 10.1159/000355050] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 08/13/2013] [Indexed: 01/19/2023] Open
Abstract
Mitochondria are organelles playing pivotal roles in a range of diverse cellular functions, from energy generation to redox homeostasis and apoptosis regulation. Their loss of functionality may indeed contribute to the development of aging and age-related neurodegenerative disorders. Recently, mitochondria have been shown to exhibit peculiar features in pluripotent stem cells (PSCs). Moreover, an extensive restructuring of mitochondria has been observed during the process of cellular reprogramming, i.e. the conversion of somatic cells into induced pluripotent stem cells (iPSCs). These transformation events impact mitochondrial number, morphology, activity, cellular metabolism, and mtDNA integrity. PSCs retain the capability to self-renew indefinitely and to give rise to virtually any cell type of the body and thus hold great promise in medical research. Understanding the mitochondrial properties of PSCs, and how to modulate them, may thus help to shed light on the features of stemness and possibly increase our knowledge on cellular identity and differentiation pathways. Here, we review these recent findings and discuss their implications in the context of stem cell biology, aging research, and regenerative medicine.
Collapse
Affiliation(s)
- Raul Bukowiecki
- Max Delbrueck Center for Molecular Medicine (MDC), Berlin, Germany
| | | | | |
Collapse
|
38
|
Zhao Y, Alakhova DY, Kabanov AV. Can nanomedicines kill cancer stem cells? Adv Drug Deliv Rev 2013; 65:1763-83. [PMID: 24120657 DOI: 10.1016/j.addr.2013.09.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 09/30/2013] [Accepted: 09/30/2013] [Indexed: 12/12/2022]
Abstract
Most tumors are heterogeneous and many cancers contain small population of highly tumorigenic and intrinsically drug resistant cancer stem cells (CSCs). Like normal stem cell, CSCs have the ability to self-renew and differentiate to other tumor cell types. They are believed to be a source for drug resistance, tumor recurrence and metastasis. CSCs often overexpress drug efflux transporters, spend most of their time in non-dividing G0 cell cycle state, and therefore, can escape the conventional chemotherapies. Thus, targeting CSCs is essential for developing novel therapies to prevent cancer relapse and emerging of drug resistance. Nanocarrier-based therapeutic agents (nanomedicines) have been used to achieve longer circulation times, better stability and bioavailability over current therapeutics. Recently, some groups have successfully applied nanomedicines to target CSCs to eliminate the tumor and prevent its recurrence. These approaches include 1) delivery of therapeutic agents (small molecules, siRNA, antibodies) that affect embryonic signaling pathways implicated in self-renewal and differentiation in CSCs, 2) inhibiting drug efflux transporters in an attempt to sensitize CSCs to therapy, 3) targeting metabolism in CSCs through nanoformulated chemicals and field-responsive magnetic nanoparticles and carbon nanotubes, and 4) disruption of multiple pathways in drug resistant cells using combination of chemotherapeutic drugs with amphiphilic Pluronic block copolymers. Despite clear progress of these studies the challenges of targeting CSCs by nanomedicines still exist and leave plenty of room for improvement and development. This review summarizes biological processes that are related to CSCs, overviews the current state of anti-CSCs therapies, and discusses state-of-the-art nanomedicine approaches developed to kill CSCs.
Collapse
|
39
|
Abstract
Hematopoietic stem cells (HSCs) are inherently quiescent and self-renewing, yet can differentiate and commit to multiple blood cell types. Intracellular mitochondrial content is dynamic, and there is an increase in mitochondrial content during differentiation and lineage commitment in HSCs. HSCs reside in a hypoxic niche within the bone marrow and rely heavily on glycolysis, while differentiated and committed progenitors rely on oxidative phosphorylation. Increased oxidative phosphorylation during differentiation and commitment is not only due to increased mitochondrial content but also due to changes in mitochondrial cytosolic distribution and efficiency. These changes in the intracellular mitochondrial landscape contribute signals toward regulating differentiation and commitment. Thus, a functional relationship exists between the mitochondria in HSCs and the state of the HSCs (i.e., stemness vs. differentiated). This review focuses on how autophagy-mediated mitochondrial clearance (i.e., mitophagy) may affect HSC mitochondrial content, thereby influencing the fate of HSCs and maintenance of hematopoietic homeostasis.
Collapse
Affiliation(s)
- Aashish Joshi
- Department of Pathology; St. Jude Children's Research Hospital; Memphis, TN USA
| | | |
Collapse
|
40
|
Maria S, Helle B, Tristan L, Gaynor S, Arnar A, Michele M, Teresia O, Oliver C, Roger S, Penelope H, Ole I. Improved cell therapy protocols for Parkinson's disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells 2013; 31:1548-62. [PMID: 23666606 PMCID: PMC3775937 DOI: 10.1002/stem.1415] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/01/2013] [Indexed: 12/22/2022]
Abstract
The main motor symptoms of Parkinson's disease are due to the loss of dopaminergic (DA) neurons in the ventral midbrain (VM). For the future treatment of Parkinson's disease with cell transplantation it is important to develop efficient differentiation methods for production of human iPSCs and hESCs-derived midbrain-type DA neurons. Here we describe an efficient differentiation and sorting strategy for DA neurons from both human ES/iPS cells and non-human primate iPSCs. The use of non-human primate iPSCs for neuronal differentiation and autologous transplantation is important for preclinical evaluation of safety and efficacy of stem cell-derived DA neurons. The aim of this study was to improve the safety of human- and non-human primate iPSC (PiPSC)-derived DA neurons. According to our results, NCAM(+) /CD29(low) sorting enriched VM DA neurons from pluripotent stem cell-derived neural cell populations. NCAM(+) /CD29(low) DA neurons were positive for FOXA2/TH and EN1/TH and this cell population had increased expression levels of FOXA2, LMX1A, TH, GIRK2, PITX3, EN1, NURR1 mRNA compared to unsorted neural cell populations. PiPSC-derived NCAM(+) /CD29(low) DA neurons were able to restore motor function of 6-hydroxydopamine (6-OHDA) lesioned rats 16 weeks after transplantation. The transplanted sorted cells also integrated in the rodent brain tissue, with robust TH+/hNCAM+ neuritic innervation of the host striatum. One year after autologous transplantation, the primate iPSC-derived neural cells survived in the striatum of one primate without any immunosuppression. These neural cell grafts contained FOXA2/TH-positive neurons in the graft site. This is an important proof of concept for the feasibility and safety of iPSC-derived cell transplantation therapies in the future.
Collapse
Affiliation(s)
- Sundberg Maria
- Neuroregeneration Laboratories, Harvard Medical School/McLean Hospital, Belmont, MA, 02478
| | - Bogetofte Helle
- Neuroregeneration Laboratories, Harvard Medical School/McLean Hospital, Belmont, MA, 02478
| | - Lawson Tristan
- Neuroregeneration Laboratories, Harvard Medical School/McLean Hospital, Belmont, MA, 02478
- New England Primate Research Center, Harvard Medical School, Southborough, MA 01772
| | - Smith Gaynor
- Neuroregeneration Laboratories, Harvard Medical School/McLean Hospital, Belmont, MA, 02478
| | - Astradsson Arnar
- Neuroregeneration Laboratories, Harvard Medical School/McLean Hospital, Belmont, MA, 02478
| | - Moore Michele
- Neuroregeneration Laboratories, Harvard Medical School/McLean Hospital, Belmont, MA, 02478
- New England Primate Research Center, Harvard Medical School, Southborough, MA 01772
| | - Osborn Teresia
- Neuroregeneration Laboratories, Harvard Medical School/McLean Hospital, Belmont, MA, 02478
| | - Cooper Oliver
- Neuroregeneration Laboratories, Harvard Medical School/McLean Hospital, Belmont, MA, 02478
| | - Spealman Roger
- New England Primate Research Center, Harvard Medical School, Southborough, MA 01772
| | - Hallett Penelope
- Neuroregeneration Laboratories, Harvard Medical School/McLean Hospital, Belmont, MA, 02478
| | - Isacson Ole
- Neuroregeneration Laboratories, Harvard Medical School/McLean Hospital, Belmont, MA, 02478
| |
Collapse
|
41
|
Duan JJ, Qiu W, Xu SL, Wang B, Ye XZ, Ping YF, Zhang X, Bian XW, Yu SC. Strategies for isolating and enriching cancer stem cells: well begun is half done. Stem Cells Dev 2013; 22:2221-39. [PMID: 23540661 DOI: 10.1089/scd.2012.0613] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) constitute a subpopulation of cancer cells that have the potential for self-renewal, multipotent differentiation, and tumorigenicity. Studies on CSC biology and CSC-targeted therapies depend on CSC isolation and/or enrichment methodologies. Scientists have conducted extensive research in this field since John Dick's group successfully isolated CSCs based on the expression of the CD34 and CD38 surface markers. Progress in CSC research has been greatly facilitated by the enrichment and isolation of these cells. In this review, we summarize the current strategies used in our and other laboratories for CSC isolation and enrichment, including methods based on stem cell surface markers, intracellular enzyme activity, the concentration of reactive oxygen species, the mitochondrial membrane potential, promoter-driven fluorescent protein expression, autofluorescence, suspension/adherent culture, cell division, the identification of side population cells, resistance to cytotoxic compounds or hypoxia, invasiveness/adhesion, immunoselection, and physical property. Although many challenges remain to be overcome, it is reasonable to believe that more reliable, efficient, and convenient methods will be developed in the near future.
Collapse
Affiliation(s)
- Jiang-Jie Duan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Vazquez-Martin A, Cufi S, Corominas-Faja B, Oliveras-Ferraros C, Vellon L, Menendez JA. Mitochondrial fusion by pharmacological manipulation impedes somatic cell reprogramming to pluripotency: new insight into the role of mitophagy in cell stemness. Aging (Albany NY) 2013; 4:393-401. [PMID: 22713507 PMCID: PMC3409676 DOI: 10.18632/aging.100465] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent studies have suggested a pivotal role for autophagy in stem cell maintenance and differentiation. Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) has been also suggested to bio-energetically take advantage of mitochondrial autophagy (mitophagy). We have preliminary addressed how mitophagy might play a role in the regulation of induced pluripotency using mdivi-1 (for mitochondrial division inhibitor), a highly efficacious small molecule that selectively inhibits the self-assembly of DRP1, a member of the dynamin family of large GTPases that mediates mitochondrial fission. At mdivi-1 concentrations that rapidly induced the formation of mitochondrial net-like or collapsed perinuclear mitochondrial structures, we observed that the reprogramming efficiency of mouse embryonic fibroblasts transduced with the Yamanaka three-factor cocktail (OCT4, KLF4, and SOX2) is drastically reduced by more than 95%. Treatment of MEFs with mdivi-1 at the early stages of reprogramming before the appearance of iPSC colonies was sufficient to completely inhibit somatic cell reprogramming. Therefore, the observed effects on reprogramming efficiencies were due likely to the inhibition of the process of reprogramming itself and not to an impairment of iPSC colony survival or growth. Moreover, the typical morphology of established iPSC colonies with positive alkaline phosphatase staining was negatively affected by mdivi-1 exposure. In the presence of mdivi-1, the colony morphology of the iPSCs was lost, and they somewhat resembled fibroblasts. The alkaline phosphatase staining was also significantly reduced, a finding that is indicative of differentiation. Our current findings provide new insight into how mitochondrial division is integrated into the reprogramming factors-driven transcriptional network that specifies the unique pluripotency of stem cells.
Collapse
|
43
|
Romero-Moya D, Bueno C, Montes R, Navarro-Montero O, Iborra FJ, López LC, Martin M, Menendez P. Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function. Haematologica 2013; 98:1022-9. [PMID: 23349299 DOI: 10.3324/haematol.2012.079244] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The homeostasis of the hematopoietic stem/progenitor cell pool relies on a fine-tuned balance between self-renewal, differentiation and proliferation. Recent studies have proposed that mitochondria regulate these processes. Although recent work has contributed to understanding the role of mitochondria during stem cell differentiation, it remains unclear whether the mitochondrial content/function affects human hematopoietic stem versus progenitor function. We found that mitochondrial mass correlates strongly with mitochondrial membrane potential in CD34(+) hematopoietic stem/progenitor cells. We, therefore, sorted cord blood CD34(+) cells on the basis of their mitochondrial mass and analyzed the in vitro homeostasis and clonogenic potential as well as the in vivo repopulating potential of CD34(+) cells with high (CD34(+) Mito(High)) versus low (CD34(+) Mito(Low)) mitochondrial mass. The CD34(+) Mito(Low) fraction contained 6-fold more CD34(+)CD38(-) primitive cells and was enriched in hematopoietic stem cell function, as demonstrated by its significantly greater hematopoietic reconstitution potential in immuno-deficient mice. In contrast, the CD34(+) Mito(High) fraction was more enriched in hematopoietic progenitor function with higher in vitro clonogenic capacity. In vitro differentiation of CD34(+) Mito(Low) cells was significantly delayed as compared to that of CD34(+) Mito(High) cells. The eventual complete differentiation of CD34(+) Mito(Low) cells, which coincided with a robust expansion of the CD34(-) differentiated progeny, was accompanied by mitochondrial adaptation, as shown by significant increases in ATP production and expression of the mitochondrial genes ND1 and COX2. In conclusion, cord blood CD34(+) cells with low levels of mitochondrial mass are enriched in hematopoietic repopulating stem cell function whereas high levels of mitochondrial mass identify hematopoietic progenitors. A mitochondrial response underlies hematopoietic stem/progenitor cell differentiation and proliferation of lineage-committed CD34(-) cells.
Collapse
Affiliation(s)
- Damia Romero-Moya
- GENyO-Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Government, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential. PLoS One 2012; 7:e48014. [PMID: 23144844 PMCID: PMC3489895 DOI: 10.1371/journal.pone.0048014] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/24/2012] [Indexed: 12/03/2022] Open
Abstract
In the stem cell field there is a lack of non invasive and fast methods to identify stem cell’s metabolic state, differentiation state and cell-lineage commitment. Here we describe a label-free method that uses NADH as an intrinsic biomarker and the Phasor approach to Fluorescence Lifetime microscopy to measure the metabolic fingerprint of cells. We show that different metabolic states are related to different cell differentiation stages and to stem cell bias to neuronal and glial fate, prior the expression of lineage markers. Our data demonstrate that the NADH FLIM signature distinguishes non-invasively neurons from undifferentiated neural progenitor and stem cells (NPSCs) at two different developmental stages (E12 and E16). NPSCs follow a metabolic trajectory from a glycolytic phenotype to an oxidative phosphorylation phenotype through different stages of differentiation. NSPCs are characterized by high free/bound NADH ratio, while differentiated neurons are characterized by low free/bound NADH ratio. We demonstrate that the metabolic signature of NPSCs correlates with their differentiation potential, showing that neuronal progenitors and glial progenitors have a different free/bound NADH ratio. Reducing conditions in NPSCs correlates with their neurogenic potential, while oxidative conditions correlate with glial potential. For the first time we show that FLIM NADH metabolic fingerprint provides a novel, and quantitative measure of stem cell potential and a label-free and non-invasive means to identify neuron- or glial- biased progenitors.
Collapse
|
45
|
Hatzi VI, Terzoudi GI, Pantelias GE, Makropoulos V. Mitochondria malfunctions as mediators of stem-cells' related carcinogenesis: a hypothesis that supports the highly conserved profile of carcinogenesis. Med Hypotheses 2012; 80:70-4. [PMID: 23111201 DOI: 10.1016/j.mehy.2012.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/21/2012] [Accepted: 10/05/2012] [Indexed: 12/12/2022]
Abstract
Cancer development is an evolutionary process that has been highly conserved among centuries within organisms. Based on this, the interest in cancer research focuses on cells, organelles and genes that possess a genetic conservatism from yeasts to human. Towards this thought, mitochondria, the highly conserved and responsible for the cellular bioenergetic activity organelles, might play crucial role in carcinogenesis. Interestingly, tumors with low bioenergetic signature have worse prognosis and show a decreased expression of ATPase protein. Furthermore, according to the stem-cell theory of carcinogenesis, aggressive tumors are characterized by an increase number of malignant stem-like cell population and their resistance to chemotherapy has been found to be mitochondrially driven. The above considerations triggered us to hypothesize that mitochondrial bioenergetic processes in stem-like cancer cells plays a crucial role in the highly conserved process of carcinogenesis. Specifically, we support that mitochondrial and/or nuclear DNA alterations that control stem cells' ATP production drive stem cells to "immortalization" (Otto Warburg theory) that mediates cancer initiation and progression. Substantiation of our hypothesis requires evidence that: (1) alterations in mitochondria bioenergetic metabolites and enzymes encoded either from the mtDNA or the nuclear DNA are linked to human cancer and (2) mitochondrial functions are regulated by highly conserved genes involved in cancer-related cellular processes such as apoptosis, aging and autophagy. Experimental approach on how this hypothesis might be tested and promising strategies in cancer therapeutics are also discussed. In case the hypothesis of stem-cell bioenergetic malformations' related carcinogenesis proves to be correct, it would contribute to the development of new prognostic, diagnostic and even more effective therapeutic interventions against various types of cancer.
Collapse
Affiliation(s)
- Vasiliki I Hatzi
- Institute of Nuclear & Radiological Sciences & Technology, Energy and Safety, National Centre of Scientific Research (NCSR) "Demokritos", Athens, Greece.
| | | | | | | |
Collapse
|
46
|
Solá S, Morgado AL, Rodrigues CMP. Death receptors and mitochondria: two prime triggers of neural apoptosis and differentiation. Biochim Biophys Acta Gen Subj 2012; 1830:2160-6. [PMID: 23041071 DOI: 10.1016/j.bbagen.2012.09.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/21/2012] [Accepted: 09/27/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Stem cell therapy is a strategy far from being satisfactory and applied in the clinic. Poor survival and differentiation levels of stem cells after transplantation or neural injury have been major problems. Recently, it has been recognized that cell death-relevant proteins, notably those that operate in the core of the executioner apoptosis machinery are functionally involved in differentiation of a wide range of cell types, including neural cells. SCOPE OF REVIEW This article will review recent studies on the mechanisms underlying the non-apoptotic function of mitochondrial and death receptor signaling pathways during neural differentiation. In addition, we will discuss how these major apoptosis-regulatory pathways control the decision between differentiation, self-renewal and cell death in neural stem cells and how levels of activity are restrained to prevent cell loss as final outcome. MAJOR CONCLUSIONS Emerging evidence suggests that, much like p53, caspases and Bcl-2 family members, the two prime triggers of cell death pathways, death receptors and mitochondria, may influence proliferation and differentiation potential of stem cells, neuronal plasticity, and astrocytic versus neuronal stem cell fate decision. GENERAL SIGNIFICANCE A better understanding of the molecular mechanisms underlying key checkpoints responsible for neural differentiation as an alternative to cell death will surely contribute to improve neuro-replacement strategies.
Collapse
Affiliation(s)
- Susana Solá
- Research Institute for Medicines and Pharmaceutical Sciences, Lisbon, Portugal.
| | | | | |
Collapse
|
47
|
Hepatocyte-like cells differentiated from human induced pluripotent stem cells: relevance to cellular therapies. Stem Cell Res 2012; 9:196-207. [PMID: 22885101 DOI: 10.1016/j.scr.2012.06.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Maturation of induced pluripotent stem cells (hiPSCs) to hepatocyte-like cells (HLCs) has been proposed to address the shortage of human hepatocytes for therapeutic applications. The purpose of this study was to evaluate hiPSCs, HLCs and hepatocytes, all of human origin, in terms of performance metrics of relevance to cell therapies. hiPSCs were differentiated to HLCs in vitro using an established four-stage approach. We observed that hiPSCs had low oxygen consumption and possessed small, immature mitochondria located around the nucleus. With maturation to HLCs, mitochondria showed characteristic changes in morphology, ultrastructure, and gene expression. These changes in mitochondria included elongated morphology, swollen cristae, dense matrices, cytoplasmic migration, increased expression of mitochondrial DNA transcription and replication-related genes, and increased oxygen consumption. Following differentiation, HLCs expressed characteristic hepatocyte proteins including albumin and hepatocyte nuclear factor 4-alpha, and intrinsic functions including cytochrome P450 metabolism. But HLCs also expressed high levels of alpha fetoprotein, suggesting a persistent immature phenotype or inability to turn off early stage genes. Furthermore, the levels of albumin production, urea production, cytochrome P450 activity, and mitochondrial function of HLCs were significantly lower than primary human hepatocytes. CONCLUSION - hiPSCs offer an unlimited source of human HLCs. However, reduced functionality of HLCs compared to primary human hepatocytes limits their usefulness in clinical practice. Novel techniques are needed to complete differentiation of hiPSCs to mature hepatocytes.
Collapse
|
48
|
Stringari C, Sierra R, Donovan PJ, Gratton E. Label-free separation of human embryonic stem cells and their differentiating progenies by phasor fluorescence lifetime microscopy. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:046012. [PMID: 22559690 PMCID: PMC3381030 DOI: 10.1117/1.jbo.17.4.046012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/23/2012] [Accepted: 02/28/2012] [Indexed: 05/22/2023]
Abstract
We develop a label-free optical technique to image and discriminate undifferentiated human embryonic stem cells (hESCs) from their differentiating progenies in vitro. Using intrinsic cellular fluorophores, we perform fluorescence lifetime microscopy (FLIM) and phasor analysis to obtain hESC metabolic signatures. We identify two optical biomarkers to define the differentiation status of hESCs: Nicotinamide adenine dinucleotide (NADH) and lipid droplet-associated granules (LDAGs). These granules have a unique lifetime signature and could be formed by the interaction of reactive oxygen species and unsaturated metabolic precursor that are known to be abundant in hESC. Changes in the relative concentrations of these two intrinsic biomarkers allow for the discrimination of undifferentiated hESCs from differentiating hESCs. During early hESC differentiation we show that NADH concentrations increase, while the concentration of LDAGs decrease. These results are in agreement with a decrease in oxidative phosphorylation rate. Single-cell phasor FLIM signatures reveal an increased heterogeneity in the metabolic states of differentiating H9 and H1 hESC colonies. This technique is a promising noninvasive tool to monitor hESC metabolism during differentiation, which can have applications in high throughput analysis, drug screening, functional metabolomics and induced pluripotent stem cell generation.
Collapse
Affiliation(s)
- Chiara Stringari
- University of California, Irvine, Laboratory of Fluorescence Dynamics, Biomedical Engineering Department, Irvine, California
| | - Robert Sierra
- University of California, Irvine, Departments of Developmental & Cell Biology and of Biological Chemistry, Irvine, California
| | - Peter J. Donovan
- University of California, Irvine, Departments of Developmental & Cell Biology and of Biological Chemistry, Irvine, California
- University of California, Irvine, Sue and Bill Gross Stem Cell Research Center, Irvine, California
| | - Enrico Gratton
- University of California, Irvine, Laboratory of Fluorescence Dynamics, Biomedical Engineering Department, Irvine, California
- Address all correspondence to: Enrico Gratton, University of California, Laboratory of Fluorescence Dynamics, Biomedical Engineering Department, Irvine, California. Tel.: 949-824-2674; Fax: 949-824-1727; E-mail:
| |
Collapse
|
49
|
Stringari C, Cinquin A, Cinquin O, Digman MA, Donovan PJ, Gratton E. Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc Natl Acad Sci U S A 2011; 108:13582-7. [PMID: 21808026 PMCID: PMC3158156 DOI: 10.1073/pnas.1108161108] [Citation(s) in RCA: 284] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a label-free imaging method to monitor stem-cell metabolism that discriminates different states of stem cells as they differentiate in living tissues. In this method we use intrinsic fluorescence biomarkers and the phasor approach to fluorescence lifetime imaging microscopy in conjunction with image segmentation, which we use to introduce the concept of the cell phasor. In live tissues we are able to identify intrinsic fluorophores, such as collagen, retinol, retinoic acid, porphyrin, flavins, and free and bound NADH. We have exploited the cell phasor approach to detect a trend in metabolite concentrations along the main axis of the Caenorhabditis elegans germ line. This trend is consistent with known changes in metabolic states during differentiation. The cell phasor approach to lifetime imaging provides a label-free, fit-free, and sensitive method to identify different metabolic states of cells during differentiation, to sense small changes in the redox state of cells, and may identify symmetric and asymmetric divisions and predict cell fate. Our method is a promising noninvasive optical tool for monitoring metabolic pathways during differentiation or disease progression, and for cell sorting in unlabeled tissues.
Collapse
Affiliation(s)
- Chiara Stringari
- Laboratory of Fluorescence Dynamics, Biomedical Engineering Department
| | - Amanda Cinquin
- Department of Developmental and Cell Biology
- Center for Complex Biological Systems, and
| | - Olivier Cinquin
- Department of Developmental and Cell Biology
- Center for Complex Biological Systems, and
| | | | - Peter J. Donovan
- Department of Developmental and Cell Biology
- Department of Biological Chemistry and the Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697
| | - Enrico Gratton
- Laboratory of Fluorescence Dynamics, Biomedical Engineering Department
| |
Collapse
|
50
|
Zhou Y, Zhou Y, Shingu T, Feng L, Chen Z, Ogasawara M, Keating MJ, Kondo S, Huang P. Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis. J Biol Chem 2011; 286:32843-53. [PMID: 21795717 DOI: 10.1074/jbc.m111.260935] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent studies suggest that a small subpopulation of malignant cells with stem-like properties is resistant to chemotherapy and may be responsible for the existence of residual cancer after treatment. We have isolated highly tumorigenic cancer cells with 100-fold increase in tumor initiating capacity from the tumor xenografts of human glioblastoma U87 cells in mice. These cells exhibit stem-like properties and show unique energy metabolic characteristics including low mitochondrial respiration, increased glycolysis for ATP generation, and preference for hypoxia to maintain their stemness and tumor forming capacity. Mechanistically, mitochondrial depression in the highly tumorigenic cells occurs mainly at complex II of the electron transport chain with a down-regulation of the succinate dehydrogenase subunit B, leading to deregulation of hypoxia-inducible factors. Under hypoxia, the stem-like cancer cells are resistant to conventional anticancer agents but are sensitive to glycolytic inhibition. Furthermore, combination of glycolytic inhibition with standard therapeutic agents is effective in killing the tumor-initiating cells in vitro and inhibits tumor formation in vivo. Our study suggests that stem-like cancer cells prefer a low oxygen microenvironment and actively utilize the glycolytic pathway for ATP generation. Inhibition of glycolysis may be an effective strategy to eradicate residual cancer stem cells that are otherwise resistant to chemotherapeutic agents in their hypoxic niches.
Collapse
Affiliation(s)
- Yunfei Zhou
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|