1
|
Warrier S, Taelman J, Tilleman L, Van der Jeught M, Duggal G, Lierman S, Popovic M, Van Soom A, Peelman L, Van Nieuwerburgh F, Deforce D, Chuva de Sousa Lopes SM, De Sutter P, Heindryckx B. Transcriptional landscape changes during human embryonic stem cell derivation. Mol Hum Reprod 2019; 24:543-555. [PMID: 30239859 DOI: 10.1093/molehr/gay039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/14/2018] [Indexed: 01/06/2023] Open
Abstract
STUDY QUESTION What are the transcriptional changes occurring during the human embryonic stem cell (hESC) derivation process, from the inner cell mass (ICM) to post-ICM intermediate stage (PICMI) to hESC stage, that have downstream effects on pluripotency states and differentiation? SUMMARY ANSWER We reveal that although the PICMI is transcriptionally similar to the hESC profile and distinct from ICM, it exhibits upregulation of primordial germ cell (PGC) markers, dependence on leukemia inhibitory factor (LIF) signaling, upregulation of naïve pluripotency-specific signaling networks and appears to be an intermediate switching point from naïve to primed pluripotency. WHAT IS KNOWN ALREADY It is currently known that the PICMI exhibits markers of early and late-epiblast stage. It is suggested that hESCs acquire primed pluripotency features due to the upregulation of post-implantation genes in the PICMI which renders them predisposed towards differentiation cues. Despite this current knowledge, the transcriptional landscape changes during hESC derivation from ICM to hESC and the effect of PICMI on pluripotent state is still not well defined. STUDY DESIGN, SIZE, DURATION To gain insight into the signaling mechanisms that may govern the ICM to PICMI to hESC transition, comparative RNA sequencing (RNA-seq) analysis was performed on preimplantation ICMs, PICMIs and hESCs in biological and technical triplicates (n = 3). PARTICIPANTS/MATERIALS, SETTING, AND METHODS Primed hESCs (XX) were maintained in feeder-free culture conditions on Matrigel for two passages and approximately 50 cells were collected in biological and technical triplicates (n = 3). For ICM sample collection, Day 3, frozen-thawed human embryos were cultured up to day five blastocyst stage and only good quality blastocysts were subjected to laser-assisted micromanipulation for ICM collection (n = 3). Next, day six expanded blastocysts were cultured on mouse embryonic fibroblasts and manual dissection was performed on the PICMI outgrowths between post-plating Day 6 and Day 10 (n = 3). Sequencing of these samples was performed on NextSeq500 and statistical analysis was performed using edgeR (false discovery rate (FDR) < 0.05). MAIN RESULTS AND THE ROLE OF CHANCE Comparative RNA-seq data analysis revealed that 634 and 560 protein-coding genes were significantly up and downregulated in hESCs compared to ICM (FDR < 0.05), respectively. Upon ICM to PICMI transition, 471 genes were expressed significantly higher in the PICMI compared to ICM, while 296 genes were elevated in the ICM alone (FDR < 0.05). Principle component analysis showed that the ICM was completely distinct from the PICMI and hESCs while the latter two clustered in close proximity to each other. Increased expression of E-CADHERIN1 (CDH1) in ICM and intermediate levels in the PICMI was observed, while CDH2 was higher in hESCs, suggesting a role of extracellular matrix components in facilitating pluripotency transition during hESC derivation. The PICMI also showed regulation of naïve-specific LIF and bone morphogenetic protein signaling, differential regulation of primed pluripotency-specific fibroblast growth factor and NODAL signaling pathway components, upregulation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway (PI3K/AKT/mTORC), as well as predisposition towards the germ cell lineage, further confirmed by gene ontology analysis. Hence, the data suggest that the PICMI may serve as an intermediate pluripotency stage which, when subjected to an appropriate culture niche, could aid in enhancing naïve hESC derivation and germ cell differentiation efficiency. LARGE-SCALE DATA Gene Expression Omnibus (GEO) Accession number GSE119378. LIMITATIONS, REASONS FOR CAUTION Owing to the limitation in sample availability, the sex of ICM and PICMI have not been taken into consideration. Obtaining cells from the ICM and maintaining them in culture is not feasible as it will hamper the formation of PICMI and hESC derivation. Single-cell quantitative real-time PCR on low ICM and PICMI cell numbers, although challenging due to limited availability of human embryos, will be advantageous to further corroborate the RNA-seq data on transcriptional changes during hESC derivation process. WIDER IMPLICATIONS OF THE FINDINGS We elucidate the dynamics of transcriptional network changes from the naïve ICM to the intermediate PICMI stage and finally the primed hESC lines. We provide an in-depth understanding of the PICMI and its role in conferring the type of pluripotent state which may have important downstream effects on differentiation, specifically towards the PGC lineage. This knowledge contributes to our limited understanding of the true nature of the human pluripotent state in vitro. STUDY FUNDING/COMPETING INTEREST(S) This research is supported by the Concerted Research Actions funding from Bijzonder Onderzoeksfonds University Ghent (BOF GOA 01G01112).The authors declare no conflict of interest.
Collapse
Affiliation(s)
- S Warrier
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - J Taelman
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - L Tilleman
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - M Van der Jeught
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - G Duggal
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - S Lierman
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - M Popovic
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - A Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - L Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - F Van Nieuwerburgh
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - D Deforce
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - S M Chuva de Sousa Lopes
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - P De Sutter
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - B Heindryckx
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
2
|
Geens M, Chuva De Sousa Lopes SM. X chromosome inactivation in human pluripotent stem cells as a model for human development: back to the drawing board? Hum Reprod Update 2018; 23:520-532. [PMID: 28582519 DOI: 10.1093/humupd/dmx015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human pluripotent stem cells (hPSC), both embryonic and induced (hESC and hiPSC), are regarded as a valuable in vitro model for early human development. In order to fulfil this promise, it is important that these cells mimic as closely as possible the in vivo molecular events, both at the genetic and epigenetic level. One of the most important epigenetic events during early human development is X chromosome inactivation (XCI), the transcriptional silencing of one of the two X chromosomes in female cells. XCI is important for proper development and aberrant XCI has been linked to several pathologies. Recently, novel data obtained using high throughput single-cell technology during human preimplantation development have suggested that the XCI mechanism is substantially different from XCI in mouse. It has also been suggested that hPSC show higher complexity in XCI than the mouse. Here we compare the available recent data to understand whether XCI during human preimplantation can be properly recapitulated using hPSC. OBJECTIVE AND RATIONALE We will summarize what is known on the timing and mechanisms of XCI during human preimplantation development. We will compare this to the XCI patterns that are observed during hPSC derivation, culture and differentiation, and comment on the cause of the aberrant XCI patterns observed in hPSC. Finally, we will discuss the implications of the aberrant XCI patterns on the applicability of hPSC as an in vitro model for human development and as cell source for regenerative medicine. SEARCH METHODS Combinations of the following keywords were applied as search criteria in the PubMed database: X chromosome inactivation, preimplantation development, embryonic stem cells, induced pluripotent stem cells, primordial germ cells, differentiation. OUTCOMES Recent single-cell RNASeq data have shed new light on the XCI process during human preimplantation development. These indicate a gradual inactivation on both XX chromosomes, starting from Day 4 of development and followed by a random choice to inactivate one of them, instead of the mechanism in mice where imprinted XCI is followed by random XCI. We have put these new findings in perspective using previous data obtained in human (and mouse) embryos. In addition, there is an ongoing discussion whether or not hPSC lines show X chromosome reactivation upon derivation, mimicking the earliest embryonic cells, and the XCI states observed during culture of hPSC are highly variable. Recent studies have shown that hPSC rapidly progress to highly aberrant XCI patterns and that this process is probably driven by suboptimal culture conditions. Importantly, these aberrant XCI states seem to be inherited by the differentiated hPSC-progeny. WIDER IMPLICATIONS The aberrant XCI states (and epigenetic instability) observed in hPSC throw a shadow on their applicability as an in vitro model for development and disease modelling. Moreover, as the aberrant XCI states observed in hPSC seem to shift to a more malignant phenotype, this may also have important consequences for the safety aspect of using hPSC in the clinic.
Collapse
Affiliation(s)
- Mieke Geens
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| | - Susana M Chuva De Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.,Department of Reproductive Medicine, Ghent-Fertility and Stem Cell Team (G-FaST), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Ye J, Bates N, Soteriou D, Grady L, Edmond C, Ross A, Kerby A, Lewis PA, Adeniyi T, Wright R, Poulton KV, Lowe M, Kimber SJ, Brison DR. High quality clinical grade human embryonic stem cell lines derived from fresh discarded embryos. Stem Cell Res Ther 2017; 8:128. [PMID: 28583200 PMCID: PMC5460457 DOI: 10.1186/s13287-017-0561-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human embryonic stem cells (hESCs) hold tremendous promise for cell replacement therapies for a range of degenerative diseases. In order to provide cost-effective treatments affordable by public health systems, HLA-matched allogeneic tissue banks of the highest quality clinical-grade hESCs will be required. However only a small number of existing hESC lines are suitable for clinical use; they are limited by moral and ethical concerns and none of them apply Good Manufacturing Practice (GMP) standards to the earliest and critical stages of gamete and embryo procurement. We thus aimed to derive new clinical grade hESC lines of highest quality from fresh surplus GMP grade human embryos. METHODS A comprehensive screen was performed for suitable combinations of culture media with supporting feeder cells or feeder-free matrix, at different stages, to support expansion of the inner cell mass and to establish new hESC lines. RESULTS We developed a novel two-step and sequential media system of clinical-grade hESC derivation and successfully generated seven new hESC lines of widely varying HLA type, carefully screened for genetic health, from human embryos donated under the highest ethical and moral standards under an integrated GMP system which extends from hESC banking all the way back to gamete and embryo procurement. CONCLUSIONS The present study, for the first time, reports the successful derivation of highest-quality clinical-grade hESC lines from fresh poor-quality surplus human embryos generated in a GMP-grade IVF laboratory. The availability of hESC lines of this status represents an important step towards more widespread application of regenerative medicine therapies.
Collapse
Affiliation(s)
- Jinpei Ye
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
- Present Address: Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Nicola Bates
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| | - Despina Soteriou
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| | - Lisa Grady
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| | - Clare Edmond
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| | - Alex Ross
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9PW UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| | - Alan Kerby
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
| | - Philip A. Lewis
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
| | - Tope Adeniyi
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9PW UK
| | - Ronnie Wright
- Genomic Diagnostics Laboratory, Manchester Centre for Genomic Medicine, Saint Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Rd, Manchester, M13 9WL UK
| | - Kay V. Poulton
- Transplantation Laboratory, Manchester Royal Infirmary, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
| | - Marcus Lowe
- Transplantation Laboratory, Manchester Royal Infirmary, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| | - Daniel R. Brison
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9PW UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| |
Collapse
|
4
|
Van der Jeught M, Taelman J, Duggal G, Ghimire S, Lierman S, Chuva de Sousa Lopes SM, Deforce D, Deroo T, De Sutter P, Heindryckx B. Application Of Small Molecules Favoring Naïve Pluripotency during Human Embryonic Stem Cell Derivation. Cell Reprogram 2016; 17:170-80. [PMID: 26053517 DOI: 10.1089/cell.2014.0085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In mice, inhibition of both the fibroblast growth factor (FGF) mitogen-activated protein kinase kinase/extracellular-signal regulated kinase (MEK/Erk) and the Wnt signaling inhibitor glycogen synthase-3β (GSK3β) enables the derivation of mouse embryonic stem cells (mESCs) from nonpermissive strains in the presence of leukemia inhibitory factor (LIF). Whereas mESCs are in an uncommitted naïve state, human embryonic stem cells (hESCs) represent a more advanced state, denoted as primed pluripotency. This burdens hESCs with a series of characteristics, which, in contrast to naïve ESCs, makes them not ideal for key applications such as cell-based clinical therapies and human disease modeling. In this study, different small molecule combinations were applied during human ESC derivation. Hereby, we aimed to sustain the naïve pluripotent state, by interfering with various key signaling pathways. First, we tested several combinations on existing, 2i (PD0325901 and CHIR99021)-derived mESCs. All combinations were shown to be equally adequate to sustain the expression of naïve pluripotency markers. Second, these conditions were tested during hESC derivation. Overall, the best results were observed in the presence of medium supplemented with 2i, LIF, and the noncanonical Wnt signaling agonist Wnt5A, alone and combined with epinephrine. In these conditions, outgrowths repeatedly showed an ESC progenitor-like morphology, starting from day 3. Culturing these "progenitor cells" did not result in stable, naïve hESC lines in the current conditions. Although Wnt5A could not promote naïve hESC derivation, we found that it was sustaining the conversion of established hESCs toward a more naïve state. Future work should aim to distinct the effects of the various culture formulations, including our Wnt5A-supplemented medium, reported to promote stable naïve pluripotency in hESCs.
Collapse
Affiliation(s)
- Margot Van der Jeught
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium .,4 These authors contributed equally to this work
| | - Jasin Taelman
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium .,4 These authors contributed equally to this work
| | - Galbha Duggal
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium
| | - Sabitri Ghimire
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium
| | - Sylvie Lierman
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium
| | - Susana M Chuva de Sousa Lopes
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium .,2 Department of Anatomy and Embryology, Leiden University Medical Center , 2300 Leiden, The Netherlands
| | - Dieter Deforce
- 3 Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University , 9000 Ghent, Belgium
| | - Tom Deroo
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium
| | - Petra De Sutter
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium
| | - Björn Heindryckx
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium
| |
Collapse
|
5
|
Van der Jeught M, O'Leary T, Duggal G, De Sutter P, Chuva de Sousa Lopes S, Heindryckx B. The post-inner cell mass intermediate: implications for stem cell biology and assisted reproductive technology. Hum Reprod Update 2015; 21:616-26. [PMID: 26089403 DOI: 10.1093/humupd/dmv028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/01/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Until recently, the temporal events that precede the generation of pluripotent embryonic stem cells (ESCs) and their equivalence with specific developmental stages in vivo was poorly understood. Our group has discovered the existence of a transient epiblast-like structure, coined the post-inner cell mass (ICM) intermediate or PICMI, that emerges before human ESC (hESCs) are established, which supports their primed nature (i.e. already showing some predispositions towards certain cell types) of pluripotency. METHODS The PICMI results from the progressive epithelialization of the ICM and it expresses a mixture of early and late epiblast markers, as well as some primordial germ cell markers. The PICMI is a closer progenitor of hESCs than the ICM and it can be seen as the first proof of why all existing hESCs, until recently, display a primed state of pluripotency. RESULTS Even though the pluripotent characteristics of ESCs differ from mouse (naïve) to human (primed), it has recently been shown in mice that a similar process of self-organization at the transition from ICM to (naïve) mouse ESCs (mESCs) transforms the amorphous ICM into a rosette of polarized epiblast cells, a mouse PICMI. The transient PICMI stage is therefore at the origin of both mESCs and hESCs. In addition, several groups have now reported the conversion from primed to the naïve (mESCs-like) hESCs, broadening the pluripotency spectrum and opening new opportunities for the use of pluripotent stem cells. CONCLUSIONS In this review, we discuss the recent discoveries of mouse and human transient states from ICM to ESCs and their relation towards the state of pluripotency in the eventual stem cells, being naïve or primed. We will now further investigate how these intermediate and/or different pluripotent stages may impact the use of human stem cells in regenerative medicine and assisted reproductive technology.
Collapse
Affiliation(s)
- Margot Van der Jeught
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium
| | - Thomas O'Leary
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium Present address: Coastal Fertility Specialists, 1375 Hospital Drive, Mt Pleasant, SC 29464, USA
| | - Galbha Duggal
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium Present address: Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Petra De Sutter
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium
| | - Susana Chuva de Sousa Lopes
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Björn Heindryckx
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium
| |
Collapse
|
6
|
Scheerlinck E, Van Steendam K, Vandewoestyne M, Lepez T, Gobin V, Meert P, Vossaert L, Van Nieuwerburgh F, Van Soom A, Peelman L, Heindryckx B, De Sutter P, Dhaenens M, Deforce D. Detailed method description for noninvasive monitoring of differentiation status of human embryonic stem cells. Anal Biochem 2014; 461:60-6. [PMID: 24909445 DOI: 10.1016/j.ab.2014.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/20/2014] [Accepted: 05/28/2014] [Indexed: 11/27/2022]
Abstract
The (non)differentiation status of human embryonic stem cells (hESCs) is usually analyzed by determination of key pluripotency defining markers (e.g., OCT4, Nanog, SOX2) by means of reverse transcription quantitative polymerase chain reaction (RT-qPCR), flow cytometry (FC), and immunostaining. Despite proven usefulness of these techniques, their destructive nature makes it impossible to follow up on the same hESC colonies for several days, leading to a loss of information. In 2003, an OCT4-eGFP knock-in hESC line to monitor OCT4 expression was developed and commercialized. However, to the best of our knowledge, the use of fluorescence microscopy (FM) for monitoring the OCT4-eGFP expression of these cells without sacrificing them has not been described to date. Here, we describe such a method in detail, emphasizing both its resolving power and its complementary nature to FC as well as the potential pitfalls in standardizing the output of the FM measurements. The potential of the method is demonstrated by comparison of hESCs cultured in several conditions, both feeder free (vitronectin, VN) and grown on feeder cells (mouse embryonic fibroblasts, MEFs).
Collapse
Affiliation(s)
- Ellen Scheerlinck
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Katleen Van Steendam
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Mado Vandewoestyne
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Trees Lepez
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Veerle Gobin
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Paulien Meert
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Liesbeth Vossaert
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | | | - Ann Van Soom
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics, and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Björn Heindryckx
- Department for Reproductive Medicine, Ghent University Hospital, B-9000 Ghent, Belgium
| | - Petra De Sutter
- Department for Reproductive Medicine, Ghent University Hospital, B-9000 Ghent, Belgium
| | - Maarten Dhaenens
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
7
|
Is it acceptable to destroy or include human embryos before day 5 in research programmes? Reprod Biomed Online 2014; 28:522-9. [PMID: 24581988 DOI: 10.1016/j.rbmo.2013.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 11/21/2022]
Abstract
Day-3 poor-quality embryos (PQE) from IVF-embryo transfer cycles are usually destroyed or are included in research programmes. Knowing that these embryos have the ability to evolve to the blastocyst stage and yield embryonic stem cell lines, this study postulated that they could also give rise to live births. This is a prospective study including 186 IVF-embryo transfer candidates who had obtained at least one supernumerary PQE on day 3. PQE were kept for extended culture and high-quality blastocysts were frozen. A total of 620 PQE were eligible for the study, 217 (35.0%) reached the blastocyst stage and 73 (33.6%) were frozen. Blastulation rates were 7-fold higher (OR 7.29, 95% CI 5.01-10.61) in embryos compacted on day 4. Of the frozen blastocysts, 40 were thawed during 33 thawed blastocyst transfer cycles, which led to 10 clinical pregnancies. These pregnancies resulted in five miscarriages and five healthy live births at full term. PQE may achieve their development to the blastocyst stage, be frozen-thawed and harbour reasonable implantation potential. These results, thereby, raise an ethical issue regarding the fate reserved to PQE.
Collapse
|
8
|
Van der Jeught M, Heindryckx B, O'Leary T, Duggal G, Ghimire S, Lierman S, Van Roy N, Chuva de Sousa Lopes SM, Deroo T, Deforce D, De Sutter P. Treatment of human embryos with the TGF inhibitor SB431542 increases epiblast proliferation and permits successful human embryonic stem cell derivation. Hum Reprod 2013; 29:41-8. [DOI: 10.1093/humrep/det400] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
9
|
Vossaert L, O'Leary T, Van Neste C, Heindryckx B, Vandesompele J, De Sutter P, Deforce D. Reference loci for RT-qPCR analysis of differentiating human embryonic stem cells. BMC Mol Biol 2013; 14:21. [PMID: 24028740 PMCID: PMC3848990 DOI: 10.1186/1471-2199-14-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Selecting stably expressed reference genes is essential for proper reverse transcription quantitative polymerase chain reaction gene expression analysis. However, this choice is not always straightforward. In the case of differentiating human embryonic stem (hES) cells, differentiation itself introduces changes whereby reference gene stability may be influenced. RESULTS In this study, we evaluated the stability of various references during retinoic acid-induced (2 microM) differentiation of hES cells. Out of 12 candidate references, beta-2-microglobulin, ribosomal protein L13A and Alu repeats are found to be the most stable for this experimental set-up. CONCLUSIONS Our results show that some of the commonly used reference genes are actually not amongst the most stable loci during hES cell differentiation promoted by retinoic acid. Moreover, a novel normalization strategy based on expressed Alu repeats is validated for use in hES cell experiments.
Collapse
Affiliation(s)
- Liesbeth Vossaert
- Laboratory for Pharmaceutical Biotechnology, Ghent University, Harelbekestraat 72, Ghent 9000, Belgium.
| | | | | | | | | | | | | |
Collapse
|
10
|
Duggal G, Heindryckx B, Warrier S, O'Leary T, Van der Jeught M, Lierman S, Vossaert L, Deroo T, Deforce D, Chuva de Sousa Lopes SM, De Sutter P. Influence of activin A supplementation during human embryonic stem cell derivation on germ cell differentiation potential. Stem Cells Dev 2013; 22:3141-55. [PMID: 23829223 DOI: 10.1089/scd.2013.0024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human embryonic stem cells (hESCs) are more similar to "primed" mouse epiblast stem cells (mEpiSCs). mEpiSCs, which are derived in Activin A, show an increased propensity to form primordial germ cell (PGC)-like cells in response to bone morphogenic protein 4 (BMP4). Hence, we hypothesized that hESCs derived in the presence of Activin A may be more competent in differentiating towards PGC-like cells after supplementation with BMP4 compared to standard hESC lines. We were able to successfully derive two hESC lines in the presence of Activin A, which were pluripotent and showed higher base levels of STELLA and cKIT compared to standard hESC lines derived without Activin A addition. Furthermore, upon differentiation as embryoid bodies in the presence of BMP4, we observed upregulation of VASA at day 7, both at the transcript and protein level compared to standard hESC lines, which appeared to take longer time for PGC specification. Unlike other hESC lines, nuclear pSMAD2/3 presence confirmed that Activin signalling was switched on in Activin A-derived hESC lines. They were also responsive to BMP4 based on nuclear detection of pSMAD1/5/8 and showed endodermal differentiation as a result of GATA-6 expression. Hence, our results provide novel insights into the impact of hESC derivation in the presence of Activin A and its subsequent influence on germ cell differentiation potential in vitro.
Collapse
Affiliation(s)
- Galbha Duggal
- 1 Department for Reproductive Medicine, Ghent University Hospital , Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jiang C, Cai L, Huang B, Dong J, Chen A, Ning S, Cui Y, Qin L, Liu J. Normal human embryonic stem cell lines were derived from microsurgical enucleated tripronuclear zygotes. J Cell Biochem 2013; 114:2016-23. [PMID: 23564289 DOI: 10.1002/jcb.24547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/12/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Chunyan Jiang
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | - Lingbo Cai
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | | | - Juan Dong
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | - Aiqin Chen
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | - Song Ning
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | | |
Collapse
|
12
|
O'Leary T, Heindryckx B, Lierman S, Van der Jeught M, Duggal G, De Sutter P, Chuva de Sousa Lopes SM. Derivation of human embryonic stem cells using a post–inner cell mass intermediate. Nat Protoc 2013; 8:254-64. [DOI: 10.1038/nprot.2012.157] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Campbell JM, Lane M, Vassiliev I, Nottle MB. Epiblast cell number and primary embryonic stem cell colony generation are increased by culture of cleavage stage embryos in insulin. J Reprod Dev 2012; 59:131-8. [PMID: 23171593 PMCID: PMC3934205 DOI: 10.1262/jrd.2012-103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Human embryos for hESC derivation are often donated at the cleavage stage and of reduced
quality. Poor quality embryos have lower efficiency for hESC derivation. However, cleavage
stage mouse embryos develop into higher quality expanded blastocysts if they are cultured
with insulin, suggesting that this approach could be used to improve hESC derivation from
poor quality cleavage stage embryos. The present study used a mouse model to examine this
approach. In particular we examined the effect of insulin on the number of epiblast cells
in blastocysts on days 4, 5 and 6 using Oct4 and Nanog co-expression. Second we examined
the effect of insulin on the frequency with which outgrowths can be derived from these.
Finally, we tested whether prior culture in the presence of insulin results in blastocysts
with increased capacity to generate ESC colonies. Culture of cleavage stage embryos with
insulin increased the number of Oct4 and Nanog positive cells in blastocysts at all time
points examined. Prior culture with insulin had no effect on outgrowths generated from
blastocysts plated on days 4 or 5. However, insulin treatment of blastocysts plated on day
6 resulted in increased numbers of outgrowths with larger epiblasts compared with
controls. 13% of insulin treated day 6 blastocysts produced primary ESC colonies compared
with 6% of controls. In conclusion, treatment with insulin can improve epiblast cell
number in mice leading to an increase with which primary ESC colonies can be generated and
may improve hESC isolation from reduced quality embryos donated at the cleavage stage.
Collapse
Affiliation(s)
- Jared M Campbell
- School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, Adelaide, SA 5005, Australia
| | | | | | | |
Collapse
|
14
|
Van der Jeught M, O'Leary T, Ghimire S, Lierman S, Duggal G, Versieren K, Deforce D, Chuva de Sousa Lopes S, Heindryckx B, De Sutter P. The combination of inhibitors of FGF/MEK/Erk and GSK3β signaling increases the number of OCT3/4- and NANOG-positive cells in the human inner cell mass, but does not improve stem cell derivation. Stem Cells Dev 2012; 22:296-306. [PMID: 22784186 DOI: 10.1089/scd.2012.0256] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In embryonic stem cell culture, small molecules can be used to alter key signaling pathways to promote self-renewal and inhibit differentiation. In mice, small-molecule inhibition of both the FGF/MEK/Erk and the GSK3β pathways during preimplantation development suppresses hypoblast formation, and this results in more pluripotent cells of the inner cell mass (ICM). In this study, we evaluated the effects of different small-molecule inhibitors of the FGF/MEK/Erk and GSK3β pathway on embryo preimplantation development, early lineage segregation, and subsequent embryonic stem cell derivation in the humans. We did not observe any effect on blastocyst formation, but small-molecule inhibition did affect the number of OCT3/4- and NANOG-positive cells in the human ICM. We found that combined inhibition of the FGF/MEK/Erk and GSK3β pathways by PD0325901 and CHIR99021, respectively, resulted in ICMs containing significantly more OCT3/4-positive cells. Inhibition of FGF/MEK/Erk alone as well as in combination with inhibition of GSK3β significantly increased the number of NANOG-positive cells in blastocysts possessing good-quality ICMs. Secondly, we verified the influence of this increased pluripotency after 2i culture on the efficiency of stem cell derivation. Similar human embryonic stem cell (hESC) derivation rates were observed after 2i compared to control conditions, resulting in 2 control hESC lines and 1 hESC line from an embryo cultured in 2i conditions. In conclusion, we demonstrated that FGF/MEK/Erk and GSK3β signaling increases the number of OCT3/4- and NANOG-positive cells in the human ICM, but does not improve stem cell derivation.
Collapse
Affiliation(s)
- Margot Van der Jeught
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Poor correlation between polar bodies and blastomere mutation load in a patient with m.3243A>G tRNALeu(UUR) point mutation. Mitochondrion 2012; 12:477-9. [DOI: 10.1016/j.mito.2012.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/03/2012] [Accepted: 04/26/2012] [Indexed: 01/28/2023]
|
16
|
Vitrified blastocysts from Preimplantation Genetic Diagnosis (PGD) as a source for human Embryonic Stem Cell (hESC) derivation. J Assist Reprod Genet 2012; 29:1013-20. [PMID: 22735930 DOI: 10.1007/s10815-012-9820-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022] Open
Abstract
Embryos diagnosed as abnormal in Preimplantation Genetic Diagnosis (PGD) cycles are useful for the establishment of human Embryonic Stem Cells (hESC) lines with genetic disorders. These lines can be helpful for drug screening and for the development of new treatments. Vitrification has proved to be an efficient method to preserve human blastocysts. One hundred and three abnormal or undiagnosed vitrified blastocysts from the PGD programme at Institut Universitari Dexeus were donated for human embryonic stem cell derivation. The overall survival rate after warming was 70.6 %. Our results showed better survival rates when blastocysts have not started the hatching process (initial/expanded 87.8 %, hatching 68.3 % and hatched 27.3 %). Thirty-five blastocysts and 12 partially surviving embryos were seeded. One hESC line with the multiple exostoses type 2 paternal mutation was obtained.
Collapse
|
17
|
O'Leary T, Duggal G, Lierman S, Van den Abbeel E, Heindryckx B, De Sutter P. The influence of patient and cohort parameters on the incidence and developmental potential of embryos with poor quality traits for use in human embryonic stem cell derivation. Hum Reprod 2012; 27:1581-9. [PMID: 22442247 DOI: 10.1093/humrep/des040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human embryonic stem cells (hESCs) are most commonly derived from the inner cell mass (ICM) of blastocyst stage embryos. While the majority of hESC lines originate from good-quality embryos donated after cryogenic storage, poor-quality embryos (PQEs) not suitable for clinical use have also been shown to generate hESC. This provides a newfound function for embryos that would otherwise be discarded following IVF or ICSI. Owing to their lack of clinical importance, however, data on the poorest embryos in a cohort go largely unreported in the literature. It is therefore of interest to better understand the availability of PQEs from IVF/ICSI cycles and to determine their ability to develop into blastocysts with good-quality ICMs for use in hESC derivation. In this study, we investigate the influence of patient parameters and embryo cohort on PQE incidence, blastocyst development, ICM quality and successful hESC derivation from donated PQEs. METHODS PQEs from 736 patient cycles that did not meet our clinical criteria for transfer or cryopreservation were cultured until Day 6 of development and assessed for blastocyst formation and ICM quality. A subset of blastocysts with good-quality ICMs were then used for hESC derivation attempts. Anonymous patient data such as maternal age, embryo history and cohort parameters were then retrospectively compiled and analysed. RESULTS PQEs made up 46.8% of two pronucleate embryos created from IVF/ICSI. Including embryos with abnormal fertilization, a mean of 3.6 ± 2.8 embryos were donated per cycle with 32.6% developing to the blastocyst stage. Good-quality ICM were produced in 13.9% of PQEs cultured. Of good-quality ICM, 15.4% of those used in hESC derivation attempts resulted in a novel line. The PQEs that originated from older patients (>37 year) or from cycles that did not result in pregnancy had significantly diminished blastocyst development and ICM quality. Maternal age was also shown to further influence the ability of good-quality ICMs to generate hESC. CONCLUSIONS PQEs are an abundant source of embryos capable of developing to blastocysts with good-quality ICMs and subsequently generating novel hESC. We have shown that prognostic variables used to predict IVF/ICSI outcome can also help predict which PQEs have the best hESC developmental potential. Owing to the diversity of PQE origin, experiments designed to compare hESC derivation techniques or efficiency using PQEs should consider clinical IVF/ICSI parameters to establish groups with equal developmental competence. Additional investigation is needed to determine if these results are applicable to hESC derivation using good-quality embryos.
Collapse
Affiliation(s)
- T O'Leary
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
18
|
Teklenburg G, Weimar CHE, Fauser BCJM, Macklon N, Geijsen N, Heijnen CJ, Chuva de Sousa Lopes SM, Kuijk EW. Cell lineage specific distribution of H3K27 trimethylation accumulation in an in vitro model for human implantation. PLoS One 2012; 7:e32701. [PMID: 22412909 PMCID: PMC3296731 DOI: 10.1371/journal.pone.0032701] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/30/2012] [Indexed: 11/18/2022] Open
Abstract
Female mammals inactivate one of their two X-chromosomes to compensate for the difference in gene-dosage with males that have just one X-chromosome. X-chromosome inactivation is initiated by the expression of the non-coding RNA Xist, which coats the X-chromosome in cis and triggers gene silencing. In early mouse development the paternal X-chromosome is initially inactivated in all cells of cleavage stage embryos (imprinted X-inactivation) followed by reactivation of the inactivated paternal X-chromosome exclusively in the epiblast precursors of blastocysts, resulting temporarily in the presence of two active X-chromosomes in this specific lineage. Shortly thereafter, epiblast cells randomly inactivate either the maternal or the paternal X-chromosome. XCI is accompanied by the accumulation of histone 3 lysine 27 trimethylation (H3K27me3) marks on the condensed X-chromosome. It is still poorly understood how XCI is regulated during early human development. Here we have investigated lineage development and the distribution of H3K27me3 foci in human embryos derived from an in-vitro model for human implantation. In this system, embryos are co-cultured on decidualized endometrial stromal cells up to day 8, which allows the culture period to be extended for an additional two days. We demonstrate that after the co-culture period, the inner cell masses have relatively high cell numbers and that the GATA4-positive hypoblast lineage and OCT4-positive epiblast cell lineage in these embryos have segregated. H3K27me3 foci were observed in ∼25% of the trophectoderm cells and in ∼7.5% of the hypoblast cells, but not in epiblast cells. In contrast with day 8 embryos derived from the co-cultures, foci of H3K27me3 were not observed in embryos at day 5 of development derived from regular IVF-cultures. These findings indicate that the dynamics of H3K27me3 accumulation on the X-chromosome in human development is regulated in a lineage specific fashion.
Collapse
Affiliation(s)
- Gijs Teklenburg
- Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Charlotte H. E. Weimar
- Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart C. J. M. Fauser
- Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nick Macklon
- Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Obstetrics and Gynaecology, Division of Developmental Origins of Adult Disease, University of Southampton, Princess Anne Hospital, Southampton, United Kingdom
| | - Niels Geijsen
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences of Companion Animals, Utrecht University School for Veterinary Medicine, Utrecht, The Netherlands
| | - Cobi J. Heijnen
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ewart W. Kuijk
- Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, Utrecht, The Netherlands
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
19
|
Tracking the progression of the human inner cell mass during embryonic stem cell derivation. Nat Biotechnol 2012; 30:278-82. [PMID: 22371082 DOI: 10.1038/nbt.2135] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/22/2012] [Indexed: 01/08/2023]
Abstract
The different pluripotent states of mouse embryonic stem cells (ESCs) in vitro have been shown to correspond to stages of mouse embryonic development. For human cells, little is known about the events that precede the generation of ESCs or whether they correlate with in vivo developmental stages. Here we investigate the cellular and molecular changes that occur during the transition from the human inner cell mass (ICM) to ESCs in vitro. We demonstrate that human ESCs originate from a post-ICM intermediate (PICMI), a transient epiblast-like structure that has undergone X-inactivation in female cells and is both necessary and sufficient for ESC derivation. The PICMI is the result of progressive and defined ICM organization in vitro and has a distinct state of cell signaling. The PICMI can be cryopreserved without compromising ESC derivation capacity. As a closer progenitor of ESCs than the ICM, the PICMI provides insight into the pluripotent state of human stem cells.
Collapse
|
20
|
T'Joen V, De Grande L, Declercq H, Cornelissen M. An efficient, economical slow-freezing method for large-scale human embryonic stem cell banking. Stem Cells Dev 2011; 21:721-8. [PMID: 21635216 DOI: 10.1089/scd.2011.0192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human embryonic stem cells (hESCs) are one of the most interesting cell types for tissue engineering, cell therapy, basic scientific research, and drug screening. Fast advancement in these areas requires the availability of large amounts of safe and well-characterized hESCs from hESC banks. Therefore, optimized freezing protocols, allowing the cryopreservation of large amounts of hESC without direct contact with liquid nitrogen, need to be established. In this study, 6 different cryoprotector combinations [dimethylsulfoxide (DMSO), ethylene glycol, and hydroxyethylstarch (HES)] combined with 2 different application methods were screened with the VUB01 cell line, to establish a new slow-freezing protocol with high recovery rates and a good expansion capacity. Our best conditions were confirmed in 4 other hESC lines: H1, H9, 181, and UGent2. To our knowledge, this is the first time that HES is evaluated as a cryoprotector for hESCs. The use of 5% DMSO+5% HES combined with a new detachment protocol leads to efficient hESC cryopreservation. This protocol involves treating the hESC colonies with cell dissociation solution, a mild dissociation solution uncommonly used for hESC culture. A recovery ratio ranging from 45.5% to 168.2% was obtained, and these were significantly different from the other tested conditions (Student's t-test, P<0.05). The cryopreserved hESCs were morphologically comparable to control cells, exhibited a good expansion profile, were positive for pluripotent expression markers, and could still differentiate into the 3 germ layers. This new protocol allows efficient and economical hESC cryopreservation, ideal for hESC banking.
Collapse
Affiliation(s)
- Veronique T'Joen
- Tissue Engineering Group, Department of Basic Medical Science, Faculty of Medicine and Health Science, Ghent University-UGent, Gent, Belgium.
| | | | | | | |
Collapse
|