1
|
Yu Q, Wang Q, Zhang L, Deng W, Cao X, Wang Z, Sun X, Yu J, Xu X. The applications of 3D printing in wound healing: the external delivery of stem cells and antibiosis. Adv Drug Deliv Rev 2023; 197:114823. [PMID: 37068658 DOI: 10.1016/j.addr.2023.114823] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
As the global number of chronic wound patients rises, the financial burden and social pressure on patients increase daily. Stem cells have emerged as promising tissue engineering seed cells due to their enriched sources, multidirectional differentiation ability, and high proliferation rate. However, delivering them in vitro for the treatment of skin injury is still challenging. In addition, bacteria from the wound site and the environment can significantly impact wound healing. In the last decade, 3D bioprinting has dramatically enriched cell delivery systems. The produced scaffolds by this technique can be precisely localized within cells and perform antibacterial actions. In this review, we summarized the 3D bioprinting-based external delivery of stem cells and their antibiosis to improve wound healing.
Collapse
Affiliation(s)
- Qingtong Yu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Qilong Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Linzhi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenwen Deng
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Xia Cao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhe Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Xuan Sun
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiangnan Yu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Ximing Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
2
|
França CG, Leme KC, Luzo ÂCM, Hernandez-Montelongo J, Santana MHA. Oxidized hyaluronic acid/adipic acid dihydrazide hydrogel as cell microcarriers for tissue regeneration applications. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Hyaluronic acid (HA) is a biopolymer present in various human tissues, whose degradation causes tissue damage and diseases. The oxidized hyaluronic acid/adipic acid dihydrazide (oxi-HA/ADH) hydrogels have attracted attention due to their advantages such as thermosensitivity, injectability, in situ gelation, and sterilization. However, studies are still scarce in the literature as microcarriers. In that sense, this work is a study of oxi-HA/ADH microparticles of 215.6 ± 2.7 µm obtained by high-speed shearing (18,000 rpm at pH 7) as cell microcarriers. Results showed that BALB/c 3T3 fibroblasts and adipose mesenchymal stem cells (h-AdMSC) cultured on the oxi-HA/ADH microcarriers presented a higher growth of both cells in comparison with the hydrogel. Moreover, the extrusion force of oxi-HA/ADH microparticles was reduced by 35% and 55% with the addition of 25% and 75% HA fluid, respectively, thus improving its injectability. These results showed that oxi-HA/ADH microcarriers can be a potential injectable biopolymer for tissue regeneration applications.
Collapse
Affiliation(s)
- Carla Giometti França
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas , 13083-852 , Campinas , SP , Brazil
| | - Krissia Caroline Leme
- Haematology & Hemotherapy Center, Umbilical Cord Blood Bank, University of Campinas , 13083-878 , Campinas , SP , Brazil
| | - Ângela Cristina Malheiros Luzo
- Haematology & Hemotherapy Center, Umbilical Cord Blood Bank, University of Campinas , 13083-878 , Campinas , SP , Brazil
| | | | - Maria Helena Andrade Santana
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas , 13083-852 , Campinas , SP , Brazil
| |
Collapse
|
3
|
Preparation and Characterization of Nanofibrous Membranes Electro-Spun from Blended Poly(l-lactide-co-ε-caprolactone) and Recombinant Spider Silk Protein as Potential Skin Regeneration Scaffold. Int J Mol Sci 2022; 23:ijms232214055. [PMID: 36430534 PMCID: PMC9698895 DOI: 10.3390/ijms232214055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Biomaterial scaffolding serves as an important strategy in skin tissue engineering. In this research, recombinant spider silk protein (RSSP) and poly(L-lactide-co-ε-caprolactone) (PLCL) were blended in different ratios to fabricate nanofibrous membranes as potential skin regeneration scaffolds with an electro-spinning process. Scanning electron microscopy (SEM), water contact angles measurement, Fourier transform infrared (FTIR) spectroscopy, wide angle X-ray diffraction (WAXD), tensile mechanical tests and thermo-gravimetric analysis (TGA) were carried out to characterize the nanofibrous membranes. The results showed that the blending of RSSP greatly decreased the nanofibers' average diameter, enhanced the hydrophilicity, changed the microstructure and thermal properties, and could enable tailored mechanical properties of the nanofibrous membranes. Among the blended membranes, the PLCL/RSSP (75/25) membrane was chosen for further investigation on biocompatibility. The results of hemolysis assays and for proliferation of human foreskin fibroblast cells (hFFCs) confirmed the membranes potential use as skin-regeneration scaffolds. Subsequent culture of mouse embryonic fibroblast cells (NIH-3T3) demonstrated the feasibility of the blended membranes as a human epidermal growth factor (hEGF) delivery matrix. The PLCL/RSSP (75/25) membrane possessed good properties comparable to those of human skin with high biocompatibility and the ability of hEGF delivery. Further studies can be carried out on such membranes with chemical or genetic modifications to make better scaffolds for skin regeneration.
Collapse
|
4
|
Gopalakrishnan Usha P, Jalajakumari S, Babukuttan Sheela U, Mohan D, Meena Gopalakrishnan A, Sreeranganathan M, Kuttan Pillai R, Berry C, Maiti KK, Therakathinal Thankappan S. Porous polysaccharide scaffolds: Proof of concept study on wound healing and stem cell differentiation. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115211073156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The combination of desirable polymer properties and methods for synthesis, utilizing materials with various architectures, could be adopted for diverse clinical applications such as wound healing as well as stem cell differentiation. Natural polymers, particularly polysaccharides, are biocompatible and are reported to have structural similarities with extracellular matrix components. In this scenario, the present study fabricated a porous scaffold using a polysaccharide, galactoxyloglucan, isolated from Tamarind seed kernel, and studied its applications in stem cell attachment and wound healing. In-growth of human mesenchymal stem cells (hMSCs) presented a rounded morphology with increased proliferation. Scaffolds were surface-functionalized with silver nanoparticles to increase the antibacterial activity and the wound healing potential evaluated in preclinical mouse models. The current study provides an insight into how stem cells attach and grow in a naturally derived low-cost polysaccharide scaffold with antibacterial, biocompatible, and biodegradable properties.
Collapse
Affiliation(s)
- Preethi Gopalakrishnan Usha
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, India (Research Centre, University of Kerala)
| | - Sreekutty Jalajakumari
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, India (Research Centre, University of Kerala)
| | - Unnikrishnan Babukuttan Sheela
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, India (Research Centre, University of Kerala)
| | - Deepa Mohan
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, India (Research Centre, University of Kerala)
| | - Archana Meena Gopalakrishnan
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, India (Research Centre, University of Kerala)
| | - Maya Sreeranganathan
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, India (Research Centre, University of Kerala)
| | | | - Catherine Berry
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division, Organic Chemistry Section, Council of Scientific and Industrial Research–National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
| | - Sreelekha Therakathinal Thankappan
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, India (Research Centre, University of Kerala)
| |
Collapse
|
5
|
Chen Y, Shen J, Ma C, Cao M, Yan J, Liang J, Ke K, Cao M, Xiaosu G. Skin-derived precursor Schwann cells protect SH-SY5Y cells against 6-OHDA-induced neurotoxicity by PI3K/AKT/Bcl-2 pathway. Brain Res Bull 2020; 161:84-93. [PMID: 32360763 DOI: 10.1016/j.brainresbull.2020.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/22/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023]
Abstract
Skin-derived precursors (SKPs) are self-renewing and pluripotent adult stem cell sources that have been successfully obtained and cultured from adult tissues of rodents and humans. Skin-derived precursor Schwann cells (SKP-SCs), derived from SKPs when cultured in a neuro stromal medium supplemented with some appropriate neurotrophic factors, have been reported to play a neuroprotective effect in the peripheral nervous system. This proves our previous studies that SKP-SCs' function to bridge sciatic nerve gap in rats. However, the function of SKP-SCs in Parkinson disease (PD) remains unknown. This study was aimed to investigate the possible neuroprotective effects of SKP-SCs in 6-OHDA-induced Parkinson's disease (PD) model. Our results showed that the treatment with SKP-SCs prevented SH-SY5Y cells from 6-OHDA-induced apoptosis, accompanied by modulation of apoptosis-related proteins (Bcl-2 and Bax) and the decreased expression of active caspase-3. Furthermore, we confirmed that SKP-SCs might exert protective effects and increase the mitochondrial membrane potential (MMP) through PI3K/AKT/Bcl-2 pathway. Taken together, our results demonstrated that SKP-SCs protect against 6-OHDA-induced cytotoxicity through PI3K/AKT/Bcl-2 pathway in PD model in vitro, which provides a new theoretical basis for the treatment of PD.
Collapse
Affiliation(s)
- Ying Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Chengxiao Ma
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Maosheng Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jianan Yan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jingjing Liang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Gu Xiaosu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
6
|
Namgoong S, Lee H, Lee JS, Jeong SH, Han SK, Dhong ES. Comparative Biological Effects of Human Amnion and Chorion Membrane Extracts on Human Adipose-Derived Stromal Cells. J Craniofac Surg 2019; 30:947-954. [PMID: 30817541 DOI: 10.1097/scs.0000000000005393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although therapies with human amnion/chorion are used to ameliorate acute and chronic wounds, it is unclear which component of the amnion/chorion tissue promotes wound healing. To characterize the comparative effects of amnion and chorion in wound healing, we used human adipose-derived stromal cells to assess cell viability, migration, and gel contraction after treatment with amnion membrane extract (AME) or chorion membrane extract (CME). We then correlated the possible effectors via AME and CME protein profiling, and compared them by enzyme-linked immunosorbent assay (ELISA), western blotting, and immunocytochemistry. Cell viability was significantly increased with 50 and 100 μg/mL AME treatment, but with CME treatment, a significant increase was only observed with 100 μg/mL. With CME treatment, cell migration was 2.22-fold greater than the control, and collagen gels showed 20% greater contraction. Compared to control, the expression levels of α-smooth muscle actin (SMA) and smooth muscle protein 22-alpha (SM22α) increased both with AME and CME treatments, whereas calponin expression decreased. Protein profiling revealed significantly higher tissue inhibitor of metalloproteinase-1 (TIMP-1), interleukin-8, exotoxin, and adiponectin levels in CME than in AME, and ELISA revealed 8-fold higher adiponectin levels in cells treated with CME than those treated with AME. Immunocytochemistry revealed that α-SMA, SM22α, and calponin were significantly higher in CME- than AME-treated cells; however, adiponectin treatment did not enhance α-SMA, SM22α, or calponin expression. In conclusion, amnion and chorion membrane extracts exerted differential effects on proliferation and contraction of human adipose-derived stromal cells. Amnion extract was superior at inducing cell proliferation and migration, whereas CME was superior at inducing cell contraction.
Collapse
Affiliation(s)
- Sik Namgoong
- Department of Plastic Surgery, Korea University Guro Hospital, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
7
|
Yu JR, Navarro J, Coburn JC, Mahadik B, Molnar J, Holmes JH, Nam AJ, Fisher JP. Current and Future Perspectives on Skin Tissue Engineering: Key Features of Biomedical Research, Translational Assessment, and Clinical Application. Adv Healthc Mater 2019; 8:e1801471. [PMID: 30707508 PMCID: PMC10290827 DOI: 10.1002/adhm.201801471] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/04/2019] [Indexed: 12/20/2022]
Abstract
The skin is responsible for several important physiological functions and has enormous clinical significance in wound healing. Tissue engineered substitutes may be used in patients suffering from skin injuries to support regeneration of the epidermis, dermis, or both. Skin substitutes are also gaining traction in the cosmetics and pharmaceutical industries as alternatives to animal models for product testing. Recent biomedical advances, ranging from cellular-level therapies such as mesenchymal stem cell or growth factor delivery, to large-scale biofabrication techniques including 3D printing, have enabled the implementation of unique strategies and novel biomaterials to recapitulate the biological, architectural, and functional complexity of native skin. This progress report highlights some of the latest approaches to skin regeneration and biofabrication using tissue engineering techniques. Current challenges in fabricating multilayered skin are addressed, and perspectives on efforts and strategies to meet those limitations are provided. Commercially available skin substitute technologies are also examined, and strategies to recapitulate native physiology, the role of regulatory agencies in supporting translation, as well as current clinical needs, are reviewed. By considering each of these perspectives while moving from bench to bedside, tissue engineering may be leveraged to create improved skin substitutes for both in vitro testing and clinical applications.
Collapse
Affiliation(s)
- Justine R Yu
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742, USA
- NIH/NBIB Center for Engineering Complex Tissues, University of Maryland, College Park, College Park, MD, 20742, USA
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Javier Navarro
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742, USA
- NIH/NBIB Center for Engineering Complex Tissues, University of Maryland, College Park, College Park, MD, 20742, USA
| | - James C Coburn
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742, USA
- Division of Biomedical Physics, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, 20903, USA
| | - Bhushan Mahadik
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742, USA
- NIH/NBIB Center for Engineering Complex Tissues, University of Maryland, College Park, College Park, MD, 20742, USA
| | - Joseph Molnar
- Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - James H Holmes
- Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Arthur J Nam
- Division of Plastic, Reconstructive and Maxillofacial Surgery, R. Adams Cowley Shock Trauma Center, University of Maryland, Baltimore, Baltimore, MD, 21201, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742, USA
- NIH/NBIB Center for Engineering Complex Tissues, University of Maryland, College Park, College Park, MD, 20742, USA
| |
Collapse
|
8
|
Uluer ET, Vatansever HS, Aydede H, Ozbilgin MK. Keratinocytes derived from embryonic stem cells induce wound healing in mice. Biotech Histochem 2018; 94:189-198. [PMID: 30460873 DOI: 10.1080/10520295.2018.1541479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The skin plays an important role in defending the body against the environment. Treatments for burns and skin injuries that use autologous or allogenic skin grafts derived from adult or embryonic stem cells are promising. Embryonic stem cells are candidates for regenerative and reparative medicine. We investigated the utility of keratinocyte-like cells, which are differentiated from mouse embryonic stem cells, for wound healing using a mouse surgical wound model. Mice were allocated to the following groups: experimental, in which dressing and differentiated cells were applied after the surgical wound was created; control, in which only the surgical wound was created; sham, in which only the dressing was applied after the surgical wound was created; and untreated animal controls with healthy skin. Biopsies were taken from each group on days 3, 5 and 7 after cell transfer. Samples were fixed in formalin, then stained with Masson's trichrome and primary antibodies to interleukin-8 (IL-8), fibroblast growth factor-2 (FGF-2), monocyte chemoattractant protein-1 (MCP-1), collagen-1 and epidermal growth factor (EGF) using the indirect immunoperoxidase technique for light microscopy. Wound healing was faster in the experimental group compared to the sham and control groups. The experimental group exhibited increased expression of IL-8, FGF-2 and MCP-1 during early stages of wound healing (inflammation) and collagen-1 and EGF expression during late stages of wound healing (proliferation and remodeling). Keratinocytes derived from embryonic stem cells improved wound healing and influenced the wound healing stages.
Collapse
Affiliation(s)
- E T Uluer
- a Departments of Histology and Embryology, Faculty of Medicine , Manisa Celal Bayar University , Manisa , Turkey
| | - H S Vatansever
- a Departments of Histology and Embryology, Faculty of Medicine , Manisa Celal Bayar University , Manisa , Turkey
| | - H Aydede
- b Departments of General Surgery, Faculty of Medicine , Manisa Celal Bayar University , Manisa , Turkey
| | - M K Ozbilgin
- a Departments of Histology and Embryology, Faculty of Medicine , Manisa Celal Bayar University , Manisa , Turkey
| |
Collapse
|
9
|
The Human Skin-Derived Precursors for Regenerative Medicine: Current State, Challenges, and Perspectives. Stem Cells Int 2018; 2018:8637812. [PMID: 30123295 PMCID: PMC6079335 DOI: 10.1155/2018/8637812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/29/2018] [Accepted: 06/13/2018] [Indexed: 02/05/2023] Open
Abstract
Skin-derived precursors (SKPs) are an adult stem cell source with self-renewal and multipotent differentiation. Although rodent SKPs have been discussed in detail in substantial studies, human SKPs (hSKPs) are rarely reported. Understanding the biological properties and possible mechanisms underlying hSKPs has important implications for regenerative medicine particularly clinical applications, as human-derived sources are more suitable for clinical transplantation. The finding that hSKPs derivatives, such as neural and mesodermal progeny, have both in vitro and in vivo function without any genetical modification makes hSKPs a trustable, secure, and accessible resource for cell-based therapy. Here, we provide an overview of hSKPs, describing their characteristics, originations and niches, and potential applications. A comparison between traditional and innovative culture methods used for hSKPs is also introduced. Furthermore, we discuss the challenges and the future perspectives towards the field of hSKPs. With this review, we hope to point out the current stage of hSKPs and highlight the problems that remain in this field.
Collapse
|
10
|
Martinello T, Gomiero C, Perazzi A, Iacopetti I, Gemignani F, DeBenedictis GM, Ferro S, Zuin M, Martines E, Brun P, Maccatrozzo L, Chiers K, Spaas JH, Patruno M. Allogeneic mesenchymal stem cells improve the wound healing process of sheep skin. BMC Vet Res 2018; 14:202. [PMID: 29940954 PMCID: PMC6019727 DOI: 10.1186/s12917-018-1527-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Skin wound healing includes a system of biological processes, collectively restoring the integrity of the skin after injury. Healing by second intention refers to repair of large and deep wounds where the tissue edges cannot be approximated and substantial scarring is often observed. The objective of this study was to evaluate the effects of mesenchymal stem cells (MSCs) in second intention healing using a surgical wound model in sheep. MSCs are known to contribute to the inflammatory, proliferative, and remodeling phases of the skin regeneration process in rodent models, but data are lacking for large animal models. This study used three different approaches (clinical, histopathological, and molecular analysis) to assess the putative action of allogeneic MSCs at 15 and 42 days after lesion creation. RESULTS At 15 days post-lesion, the wounds treated with MSCs showed a higher degree of wound closure, a higher percentage of re-epithelialization, proliferation, neovascularization and increased contraction in comparison to a control group. At 42 days, the wounds treated with MSCs had more mature and denser cutaneous adnexa compared to the control group. The MSCs-treated group showed an absence of inflammation and expression of CD3+ and CD20+. Moreover, the mRNA expression of hair-keratine (hKER) was observed in the MSCs-treated group 15 days after wound creation and had increased significantly by 42 days post-wound creation. Collagen1 gene (Col1α1) expression was also greater in the MSCs-treated group compared to the control group at both days 15 and 42. CONCLUSION Peripheral blood-derived MSCs may improve the quality of wound healing both for superficial injuries and deep lesions. MSCs did not induce an inflammatory response and accelerated the appearance of granulation tissue, neovascularization, structural proteins, and skin adnexa.
Collapse
Affiliation(s)
- T. Martinello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020, Legnaro – Agripolis, Padua, Italy
| | - C. Gomiero
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020, Legnaro – Agripolis, Padua, Italy
| | - A. Perazzi
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - I. Iacopetti
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - F. Gemignani
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - G. M. DeBenedictis
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - S. Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020, Legnaro – Agripolis, Padua, Italy
| | | | | | - P. Brun
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - L. Maccatrozzo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020, Legnaro – Agripolis, Padua, Italy
| | - K. Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, University of Gent, Ghent, Belgium
| | - J. H. Spaas
- Global Stem cell Technology-ANACURA group, Noorwegenstraat 4, 9940 Evergem, Belgium
| | - M. Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020, Legnaro – Agripolis, Padua, Italy
| |
Collapse
|
11
|
Bayati V, Abbaspour MR, Neisi N, Hashemitabar M. Skin-derived precursors possess the ability of differentiation into the epidermal progeny and accelerate burn wound healing. Cell Biol Int 2016; 41:187-196. [PMID: 27981666 DOI: 10.1002/cbin.10717] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/10/2016] [Indexed: 12/31/2022]
Abstract
Skin-derived precursors (SKPs) are remnants of the embryonic neural crest stem cells that reside in the dermis until adulthood. Although they possess a wide range of differentiation potentials, their differentiation into keratinocyte-like cells and their roles in skin wound healing are obscure. The present study aimed to investigate the differentiation of SKPs into keratinocyte-like cells and evaluate their role in healing of third degree burn wounds. To this aim, SKPs were differentiated into keratinocyte-like cells on tissue culture plate and collagen-chitosan scaffold prepared by freeze-drying. Their differentiation capability was detected by real-time RT-PCR and immunofluorescence. Thereafter, they were cultured on scaffold and implanted in a rat model of burn wound. Histopathological and immunohistochemical analyses were employed to examine the reconstituted skin. The research findings revealed that SKPs were able to differentiate along the epidermal lineage and this ability can be enhanced on a suitable scaffold. Additionally, the results indicated that SKPs apparently promoted wound healing process and accelerate its transition from proliferating stage to maturational phase, especially if they were differentiated into keratinocyte-like cells. Regarding the results, it is concluded that SKPs are able to differentiate into keratinocyte-like cells, particularly when they are cultured on collagen-chitosan scaffold. Moreover, they can regenerate epidermal and dermal layers including thick collagen bundles, possibly through differentiation into keratinocyte-like cells.
Collapse
Affiliation(s)
- Vahid Bayati
- Cellular and Molecular Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran.,Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran
| | - Mohammad Reza Abbaspour
- Targeted Drug Delivery Research Centre, Mashhad University of Medical Sciences, Mashhad, 91775-1365, Iran
| | - Niloofar Neisi
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran
| | - Mahmoud Hashemitabar
- Cellular and Molecular Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran.,Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran
| |
Collapse
|
12
|
Rao Y, Cui J, Yin L, Liu W, Liu W, Sun M, Yan X, Wang L, Chen F. Preclinical study of mouse pluripotent parthenogenetic embryonic stem cell derivatives for the construction of tissue-engineered skin equivalent. Stem Cell Res Ther 2016; 7:156. [PMID: 27770834 PMCID: PMC5075200 DOI: 10.1186/s13287-016-0407-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/04/2016] [Accepted: 09/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Embryonic stem cell (ESC) derivatives hold great promise for the construction of tissue-engineered skin equivalents (TESE). However, harvesting of ESCs destroys viable embryos and may lead to political and ethical concerns over their application. In the current study, we directed mouse parthenogenetic embryonic stem cells (pESCs) to differentiate into fibroblasts, constructed TESE, and evaluated its function in vivo. METHODS The stemness marker expression and the pluripotent differentiation ability of pESCs were tested. After embryoid body (EB) formation and adherence culture, mesenchymal stem cells (MSCs) were enriched and directed to differentiate into fibroblastic lineage. Characteristics of derived fibroblasts were assessed by quantitative real-time PCR and ELISA. Functional ability of the constructed TESE was tested by a mouse skin defects repair model. RESULTS Mouse pESCs expressed stemness marker and could form teratoma containing three germ layers. MSCs could be enriched from outgrowths of EBs and directed to differentiate into fibroblastic lineage. These cells express a high level of growth factors including FGF, EGF, VEGF, TGF, PDGF, and IGF1, similar to those of ESC-derived fibroblasts and mouse fibroblasts. Seeded into collagen gels, the fibroblasts derived from pESCs could form TESE. Mouse skin defects could be successfully repaired 15 days after transplantation of TESE constructed by fibroblasts derived from pESCs. CONCLUSIONS pESCs could be induced to differentiate into fibroblastic lineage, which could be applied to the construction of TESE and skin defect repair. Particularly, pESC derivatives avoid the limitations of political and ethical concerns, and provide a promising source for regenerative medicine.
Collapse
Affiliation(s)
- Yang Rao
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Taibai North Rd 229, Xi’an, Shaanxi Province 710069 People’s Republic of China
| | - Jihong Cui
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Taibai North Rd 229, Xi’an, Shaanxi Province 710069 People’s Republic of China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Taibai North Rd 229, Xi’an, Shaanxi Province 710069 People’s Republic of China
| | - Lu Yin
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Taibai North Rd 229, Xi’an, Shaanxi Province 710069 People’s Republic of China
| | - Wei Liu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Taibai North Rd 229, Xi’an, Shaanxi Province 710069 People’s Republic of China
| | - Wenguang Liu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Taibai North Rd 229, Xi’an, Shaanxi Province 710069 People’s Republic of China
| | - Mei Sun
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Taibai North Rd 229, Xi’an, Shaanxi Province 710069 People’s Republic of China
| | - Xingrong Yan
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Taibai North Rd 229, Xi’an, Shaanxi Province 710069 People’s Republic of China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Taibai North Rd 229, Xi’an, Shaanxi Province 710069 People’s Republic of China
| | - Ling Wang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Taibai North Rd 229, Xi’an, Shaanxi Province 710069 People’s Republic of China
| | - Fulin Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Taibai North Rd 229, Xi’an, Shaanxi Province 710069 People’s Republic of China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Taibai North Rd 229, Xi’an, Shaanxi Province 710069 People’s Republic of China
| |
Collapse
|
13
|
Liang H, Sun Q, Zhen Y, Li F, Xu Y, Liu Y, Zhang X, Qin M. The differentiation of amniotic fluid stem cells into sweat glandlike cells is enhanced by the presence of Sonic hedgehog in the conditioned medium. Exp Dermatol 2016; 25:714-20. [PMID: 27120089 DOI: 10.1111/exd.13062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 11/30/2022]
Abstract
After patients suffer severe full-thickness burn injuries, the current treatments cannot lead to the complete self-regeneration of the sweat gland structure and function. Therefore, it is important to identify new methods for acquiring sufficient functional sweat gland cells to restore skin function. In this study, we induced CD117+ human amniotic fluid stem (hAFS) cells to differentiate into sweat glandlike (hAFS-SG) cells based on the use of conditioned medium (CM) from the human sweat gland (hSG) cells. Real-time PCR and immunofluorescent staining were used to confirm the expression of the sweat gland-related genes Ectodysplasin-A (EDA), Ectodysplasin-A receptor (EDAR), keratin 8 (K8) and carcino-embryonic antigen (CEA). Transmission electron microscopy analysis shows that microvilli, the cellular structures that are typical for hSG cells, can also be observed on the membrane of the hAFS-SG cells. Our test for the calcium response to acetylcholine (Ach) proved that hAFS-SG cells have the potential to respond to Ach in a manner similar to normal sweat glands. A three-dimensional culture is an effective approach that stimulates the hAFS-SG cells to form tubular structures and drives hAFS-SG cells to mature into higher stage. We also found that epidermal growth factor enhances the efficiency of differentiation and that Sonic hedgehog is an important factor of the CM that influences sweat gland differentiation. Our study provides the basis for further investigations into novel methods of inducing stem cells to differentiate into sweat glandlike cells.
Collapse
Affiliation(s)
- Hansi Liang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, China
| | - Qing Sun
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, China
| | - Yunfang Zhen
- The Center of Diagnosis and Treatment for Children's Bone Diseases, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Fang Li
- The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, China.,Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - YunYun Xu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yao Liu
- The Center of Diagnosis and Treatment for Children's Bone Diseases, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, China
| | - Mingde Qin
- The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
14
|
Sánchez M, Ceci ML, Gutiérrez D, Anguita-Salinas C, Allende ML. Mechanosensory organ regeneration in zebrafish depends on a population of multipotent progenitor cells kept latent by Schwann cells. BMC Biol 2016; 14:27. [PMID: 27055439 PMCID: PMC4823859 DOI: 10.1186/s12915-016-0249-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/22/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Regenerating damaged tissue is a complex process, requiring progenitor cells that must be stimulated to undergo proliferation, differentiation and, often, migratory behaviors and morphological changes. Multiple cell types, both resident within the damaged tissue and recruited to the lesion site, have been shown to participate. However, the cellular and molecular mechanisms involved in the activation of progenitor cell proliferation and differentiation after injury, and their regulation by different cells types, are not fully understood. The zebrafish lateral line is a suitable system to study regeneration because most of its components are fully restored after damage. The posterior lateral line (PLL) is a mechanosensory system that develops embryonically and is initially composed of seven to eight neuromasts distributed along the trunk and tail, connected by a continuous stripe of interneuromastic cells (INCs). The INCs remain in a quiescent state owing to the presence of underlying Schwann cells. They become activated during development to form intercalary neuromasts. However, no studies have described if INCs can participate in a regenerative event, for example, after the total loss of a neuromast. RESULTS We used electroablation in transgenic larvae expressing fluorescent proteins in PLL components to completely ablate single neuromasts in larvae and adult fish. This injury results in discontinuity of the INCs, Schwann cells, and the PLL nerve. In vivo imaging showed that the INCs fill the gap left after the injury and can regenerate a new neuromast in the injury zone. Further, a single INC is able to divide and form all cell types in a regenerated neuromast and, during this process, it transiently expresses the sox2 gene, a neural progenitor cell marker. We demonstrate a critical role for Schwann cells as negative regulators of INC proliferation and neuromast regeneration, and that this inhibitory property is completely dependent on active ErbB signaling. CONCLUSIONS The potential to regenerate a neuromast after damage requires that progenitor cells (INCs) be temporarily released from an inhibitory signal produced by nearby Schwann cells. This simple yet highly effective two-component niche offers the animal robust mechanisms for organ growth and regeneration, which can be sustained throughout life.
Collapse
Affiliation(s)
- Mario Sánchez
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile
| | - Maria Laura Ceci
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile
| | - Daniela Gutiérrez
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile
| | - Consuelo Anguita-Salinas
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile
| | - Miguel L Allende
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile.
| |
Collapse
|
15
|
Cerqueira MT, Pirraco RP, Marques AP. Stem Cells in Skin Wound Healing: Are We There Yet? Adv Wound Care (New Rochelle) 2016; 5:164-175. [PMID: 27076994 PMCID: PMC4817598 DOI: 10.1089/wound.2014.0607] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 03/27/2015] [Indexed: 12/17/2022] Open
Abstract
Significance: Cutaneous wound healing is a serious problem worldwide that affects patients with various wound types, resulting from burns, traumatic injuries, and diabetes. Despite the wide range of clinically available skin substitutes and the different therapeutic alternatives, delayed healing and scarring are often observed. Recent Advances: Stem cells have arisen as powerful tools to improve skin wound healing, due to features such as effective secretome, self-renewal, low immunogenicity, and differentiation capacity. They represent potentially readily available biological material that can particularly target distinct wound-healing phases. In this context, mesenchymal stem cells have been shown to promote cell migration, angiogenesis, and a possible regenerative rather than fibrotic microenvironment at the wound site, mainly through paracrine signaling with the surrounding cells/tissues. Critical Issues: Despite the current insights, there are still major hurdles to be overcome to achieve effective therapeutic effects. Limited engraftment and survival at the wound site are still major concerns, and alternative approaches to maximize stem cell potential are a major demand. Future Directions: This review emphasizes two main strategies that have been explored in this context. These comprise the exploration of hypoxic conditions to modulate stem cell secretome, and the use of adipose tissue stromal vascular fraction as a source of multiple cells, including stem cells and factors requiring minimal manipulation. Nonetheless, the attainment of these approaches to target successfully skin regeneration will be only evident after a significant number of in vivo works in relevant pre-clinical models.
Collapse
Affiliation(s)
- Mariana Teixeira Cerqueira
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
| | - Rogério Pedro Pirraco
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
| | - Alexandra Pinto Marques
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
16
|
Abstract
Modern rehabilitation medicine is propelled by newfound knowledge aimed at offering solutions for an increasingly aging population afflicted by chronic debilitating conditions. Considered a core component of future health care, the rollout of regenerative medicine underscores a paradigm shift in patient management targeted at restoring physiologic function and restituting normative impact. Nascent regenerative technologies offer unprecedented prospects in achieving repair of degenerated, diseased, or damaged tissues. In this context, principles of regenerative science are increasingly integrated in rehabilitation practices as illustrated in the present Supplement. Encompassing a growing multidisciplinary domain, the emergent era of "regenerative rehabilitation" brings radical innovations at the forefront of healthcare blueprints.
Collapse
|
17
|
Adipose-derived stem cells inhibit epidermal melanocytes through an interleukin-6-mediated mechanism. Plast Reconstr Surg 2014; 134:470-480. [PMID: 25158706 DOI: 10.1097/prs.0000000000000431] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Several investigators have postulated that human adipose-derived stem cells can be used for skin rejuvenation, but there have been few reports about their direct effects on human epidermal melanocytes. The authors studied the effects on melanocytes, and the causative agent of those effects was further investigated in this study. METHODS Human epidermal melanocytes were divided into three groups and cultured in adipose-derived stem cell-conditioned medium, human dermal fibroblast-conditioned medium, or control medium. Concentrations of melanogenic cytokines in these media were measured using enzyme-linked immunosorbent assay kits. After 3 and 7 days of incubation, cell proliferation, melanin content, tyrosinase activity, and melanogenic gene expression were measured. Interleukin-6-neutralizing antibodies were mixed with adipose-derived stem cell-conditioned medium in which human epidermal melanocytes were cultured, and melanocyte growth and melanogenesis were measured again. RESULTS Interleukin-6 concentrations in adipose-derived stem cell- and human epidermal melanocyte-conditioned media were 1373 and 495 pg/ml, respectively. Both types of medium suppressed melanocyte proliferation and melanin synthesis (p < 0.05), but adipose-derived stem cell-conditioned medium was more effective than human dermal fibroblast-conditioned medium in inhibition of human epidermal melanocyte proliferation, melanin synthesis, and tyrosinase activity (p < 0.05). Interleukin-6-neutralizing antibody sufficiently reversed the antimelanogenic effects of adipose-derived stem cell-conditioned medium such that human epidermal melanocyte proliferation, melanin content, tyrosinase activity, and tyrosinase mRNA levels were restored (p < 0.05). CONCLUSIONS Adipose-derived stem cell-conditioned medium inhibited melanocyte proliferation and melanin synthesis by down-regulating melanogenic enzymes. Interleukin-6 plays a pivotal role in inhibition of melanocytes.
Collapse
|
18
|
Lin Q, Wesson RN, Maeda H, Wang Y, Cui Z, Liu JO, Cameron AM, Gao B, Montgomery RA, Williams GM, Sun Z. Pharmacological mobilization of endogenous stem cells significantly promotes skin regeneration after full-thickness excision: the synergistic activity of AMD3100 and tacrolimus. J Invest Dermatol 2014; 134:2458-2468. [PMID: 24682043 DOI: 10.1038/jid.2014.162] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/23/2014] [Accepted: 03/09/2014] [Indexed: 02/03/2023]
Abstract
Stem cell therapy has shown promise in treating a variety of pathologies including skin wounds, but practical applications remain elusive. Here, we demonstrate that endogenous stem cell mobilization produced by AMD3100 and low-dose tacrolimus is able to reduce by 25% the time of complete healing of full-thickness wounds created by surgical excision. Equally important, healing was accompanied by reduced scar formation and regeneration of hair follicles. Searching for mechanisms, we found that AMD3100 combined with low-dose tacrolimus mobilized increased number of lineage-negative c-Kit+, CD34+, and CD133+ stem cells. Low-dose tacrolimus also increased the number of SDF-1-bearing macrophages in the wound sites amplifying the "pull" of mobilized stem cells into the wound. Lineage tracing demonstrated the critical role of CD133 stem cells in enhanced capillary and hair follicle neogenesis, contributing to more rapid and perfect healing. Our findings offer a significant therapeutic approach to wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Qing Lin
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell N Wesson
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hiromichi Maeda
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yongchun Wang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhu Cui
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew M Cameron
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Robert A Montgomery
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - George M Williams
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
19
|
Coletti D, Teodori L, Lin Z, Beranudin JF, Adamo S. Restoration versus reconstruction: cellular mechanisms of skin, nerve and muscle regeneration compared. Regen Med Res 2013; 1:4. [PMID: 25984323 PMCID: PMC4375925 DOI: 10.1186/2050-490x-1-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/20/2013] [Indexed: 01/24/2023] Open
Abstract
In tissues characterized by a high turnover or following acute injury, regeneration replaces damaged cells and is involved in adaptation to external cues, leading to homeostasis of many tissues during adult life. An understanding of the mechanics underlying tissue regeneration is highly relevant to regenerative medicine-based interventions. In order to investigate the existence a leitmotif of tissue regeneration, we compared the cellular aspects of regeneration of skin, nerve and skeletal muscle, three organs characterized by different types of anatomical and functional organization. Epidermis is a stratified squamous epithelium that migrates from the edge of the wound on the underlying dermis to rebuild lost tissue. Peripheral neurons are elongated cells whose neurites are organized in bundles, within an endoneurium of connective tissue; they either die upon injury or undergo remodeling and axon regrowth. Skeletal muscle is characterized by elongated syncytial cells, i.e. muscle fibers, that can temporarily survive in broken pieces; satellite cells residing along the fibers form new fibers, which ultimately fuse with the old ones as well as with each other to restore the previous organization. Satellite cell asymmetrical division grants a reservoir of undifferentiated cells, while other stem cell populations of muscle and non-muscle origin participate in muscle renewal. Following damage, all the tissues analyzed here go through three phases: inflammation, regeneration and maturation. Another common feature is the occurrence of cellular de-differentiation and/or differentiation events, including gene transcription, which are typical of embryonic development. Nonetheless, various strategies are used by different tissues to replace their lost parts. The epidermis regenerates ex novo, whereas neurons restore their missing parts; muscle fibers use a mixed strategy, based on the regrowth of missing parts through reconstruction by means of newborn fibers. The choice of either strategy is influenced by the anatomical, physical and chemical features of the cells as well as by the extracellular matrix typical of a given tissue, which points to the existence of differential, evolutionary-based mechanisms for specific tissue regeneration. The shared, ordered sequence of steps that characterize the regeneration processes examined suggests it may be possible to model this extremely important phenomenon to reproduce multicellular organisms.
Collapse
Affiliation(s)
- Dario Coletti
- UPMC Univ Paris 06, UR4 Ageing, Stress, Inflammation, 75005 Paris, France ; Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, 00161 Rome, Italy ; Interuniversity Institute of Myology, Kragujevac, Italy
| | - Laura Teodori
- ENEA-Frascati, UTAPRAD-DIM, Diagnostics and Metrology Laboratory, 00044 Rome, Italy
| | - Zhenlin Lin
- UPMC Univ Paris 06, UR4 Ageing, Stress, Inflammation, 75005 Paris, France
| | | | - Sergio Adamo
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, 00161 Rome, Italy ; Interuniversity Institute of Myology, Kragujevac, Italy
| |
Collapse
|
20
|
Wong VW, Gurtner GC, Longaker MT. Wound healing: a paradigm for regeneration. Mayo Clin Proc 2013; 88:1022-31. [PMID: 24001495 DOI: 10.1016/j.mayocp.2013.04.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/12/2013] [Indexed: 02/07/2023]
Abstract
Human skin is a remarkably plastic organ that sustains insult and injury throughout life. Its ability to expeditiously repair wounds is paramount to survival and is thought to be regulated by wound components such as differentiated cells, stem cells, cytokine networks, extracellular matrix, and mechanical forces. These intrinsic regenerative pathways are integrated across different skin compartments and are being elucidated on the cellular and molecular levels. Recent advances in bioengineering and nanotechnology have allowed researchers to manipulate these microenvironments in increasingly precise spatial and temporal scales, recapitulating key homeostatic cues that may drive regeneration. The ultimate goal is to translate these bench achievements into viable bedside therapies that address the growing global burden of acute and chronic wounds. In this review, we highlight current concepts in cutaneous wound repair and propose that many of these evolving paradigms may underlie regenerative processes across diverse organ systems.
Collapse
Affiliation(s)
- Victor W Wong
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
21
|
Side-by-side comparison of the biological characteristics of human umbilical cord and adipose tissue-derived mesenchymal stem cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:438243. [PMID: 23936800 PMCID: PMC3722850 DOI: 10.1155/2013/438243] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 12/20/2022]
Abstract
Both human adipose tissue-derived mesenchymal stem cells (ASCs) and umbilical cord-derived mesenchymal stem cells (UC-MSCs) have been explored as attractive mesenchymal stem cells (MSCs) sources, but very few parallel comparative studies of these two cell types have been made. We designed a side-by-side comparative study by isolating MSCs from the adipose tissue and umbilical cords from mothers delivering full-term babies and thus compared the various biological aspects of ASCs and UC-MSCs derived from the same individual, in one study. Both types of cells expressed cell surface markers characteristic of MSCs. ASCs and UC-MSCs both could be efficiently induced into adipocytes, osteoblasts, and neuronal phenotypes. While there were no significant differences in their osteogenic differentiation, the adipogenesis of ASCs was more prominent and efficient than UC-MSCs. In the meanwhile, ASCs responded better to neuronal induction methods, exhibiting the higher differentiation rate in a relatively shorter time. In addition, UC-MSCs exhibited a more prominent secretion profile of cytokines than ASCs. These results indicate that although ASCs and UC-MSCs share considerable similarities in their immunological phenotype and pluripotentiality, certain biological differences do exist, which might have different implications for future cell-based therapy.
Collapse
|