1
|
Wu J, Chen T, Zhang M, Li X, Fu R, Xu J, Nüssler A, Gu C. Atorvastatin exerts a preventive effect against steroid-induced necrosis of the femoral head by modulating Wnt5a release. Arch Toxicol 2024; 98:3365-3380. [PMID: 38971901 DOI: 10.1007/s00204-024-03817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH) is a prevalent form of osteonecrosis in young individuals. More efficacious clinical strategies must be used to prevent and treat this condition. One of the mechanisms through which SONFH operates is the disruption of normal differentiation in bone marrow adipocytes and osteoblasts due to prolonged and extensive use of glucocorticoids (GCs). In vitro, it was observed that atorvastatin (ATO) effectively suppressed the impact of dexamethasone (DEX) on bone marrow mesenchymal stem cells (BMSCs), specifically by augmenting their lipogenic differentiation while impeding their osteogenic differentiation. To investigate the underlying mechanisms further, we conducted transcriptome sequencing of BMSCs subjected to different treatments, leading to the identification of Wnt5a as a crucial gene regulated by ATO. The analyses showed that ATO exhibited the ability to enhance the expression of Wnt5a and modulate the MAPK pathway while regulating the Wnt canonical signaling pathway via the WNT5A/LRP5 pathway. Our experimental findings provide further evidence that the combined treatment of ATO and DEX effectively mitigates the effects of DEX, resulting in the upregulation of osteogenic genes (Runx2, Alpl, Tnfrsf11b, Ctnnb1, Col1a) and the downregulation of adipogenic genes (Pparg, Cebpb, Lpl), meanwhile leading to the upregulation of Wnt5a expression. So, this study offers valuable insights into the potential mechanism by which ATO can be utilized in the prevention of SONFH, thereby holding significant implications for the prevention and treatment of SONFH in clinical settings.
Collapse
Affiliation(s)
- Junfeng Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Minghang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou, China
| | - Rongkun Fu
- Department of Zhengzhou University Clinical Medicine, Zhengzhou, China
| | - Jianzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Andreas Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Chenxi Gu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Yu S, Liu XM, Liu Y, Tang L, Lei S, Geng C, Yuan Z, Chen X. Inflammatory microenvironment of moderate pulpitis enhances the osteo-/odontogenic potential of dental pulp stem cells by autophagy. Int Endod J 2024; 57:1465-1477. [PMID: 39031653 DOI: 10.1111/iej.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/17/2024] [Accepted: 06/02/2024] [Indexed: 07/22/2024]
Abstract
AIM This study investigated the effects of the inflammatory microenvironment of moderate pulpitis on biological properties of human dental pulp stem cells (DPSCs) and further explored the mechanism involved in osteo-/odontogenic induction of the inflammatory microenvironment. METHODOLOGY Healthy DPSCs (hDPSCs) and inflammatory DPSCs (iDPSCs) were isolated from human-impacted third molars free of caries and clinically diagnosed with moderate pulpitis, respectively. Healthy DPSCs were treated with lipopolysaccharides (LPS) to mimic iDPSCs in vitro. The surface markers expressed on hDPSCs and iDPSCs were detected by flow cytometry. A CCK-8 assay was performed to determine cell proliferation. Flow cytometric analysis was used to evaluate cell apoptosis. The osteo-/odontogenic differentiation of DPSCs was evaluated by western blot, alkaline phosphatase staining, and Alizarin Red S staining. The functions of the genes of differentially expressed mRNAs of hDPSCs and iDPSCs were analysed using gene set enrichment analysis. Transmission electron microscopy and western blot were used to evaluate the autophagy changes of LPS-treated DPSCs. RESULTS Compared with hDPSCs, iDPSCs showed no significant difference in proliferative capacity but had stronger osteo-/odontogenic potential. In addition, the mRNAs differentially expressed between iDPSCs and hDPSCs were considerably enriched in autophagosome formation and assembly-related molecules. In vitro mechanism studies further found that low concentrations of LPS could upregulate DPSC autophagy-related protein expression and autophagosome formation and promote its odontogenic/osteogenic differentiation, whereas the inhibition of DPSC autophagy led to the weakening of the odontogenic/osteogenic differentiation induced by LPS. CONCLUSIONS This explorative study showed that DPSCs isolated from teeth with moderate pulpitis possessed higher osteo-/odontogenic differentiation capacity, and the mechanism involved was related to the inflammatory microenvironment-mediated autophagy of DPSCs. This helps to better understand the repair potential of inflamed dental pulp and provides the biological basis for pulp preservation and hard tissue formation in minimally invasive endodontics.
Collapse
Affiliation(s)
- Si Yu
- Department of Paediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Xue-Mei Liu
- Department of Paediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Yao Liu
- Department of Paediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Lu Tang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Shuang Lei
- Department of Paediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Chang Geng
- Department of Paediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xu Chen
- Department of Paediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| |
Collapse
|
3
|
Shan Y, Zhang M, Tao E, Wang J, Wei N, Lu Y, Liu Q, Hao K, Zhou F, Wang G. Pharmacokinetic characteristics of mesenchymal stem cells in translational challenges. Signal Transduct Target Ther 2024; 9:242. [PMID: 39271680 PMCID: PMC11399464 DOI: 10.1038/s41392-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Over the past two decades, mesenchymal stem/stromal cell (MSC) therapy has made substantial strides, transitioning from experimental clinical applications to commercial products. MSC therapies hold considerable promise for treating refractory and critical conditions such as acute graft-versus-host disease, amyotrophic lateral sclerosis, and acute respiratory distress syndrome. Despite recent successes in clinical and commercial applications, MSC therapy still faces challenges when used as a commercial product. Current detection methods have limitations, leaving the dynamic biodistribution, persistence in injured tissues, and ultimate fate of MSCs in patients unclear. Clarifying the relationship between the pharmacokinetic characteristics of MSCs and their therapeutic effects is crucial for patient stratification and the formulation of precise therapeutic regimens. Moreover, the development of advanced imaging and tracking technologies is essential to address these clinical challenges. This review provides a comprehensive analysis of the kinetic properties, key regulatory molecules, different fates, and detection methods relevant to MSCs and discusses concerns in evaluating MSC druggability from the perspective of integrating pharmacokinetics and efficacy. A better understanding of these challenges could improve MSC clinical efficacy and speed up the introduction of MSC therapy products to the market.
Collapse
Affiliation(s)
- Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Mengying Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Enxiang Tao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Yi Lu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Liu
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Kun Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
4
|
Innuan P, Sirikul C, Anukul N, Rolin G, Dechsupa N, Kantapan J. Identifying transcriptomic profiles of iron-quercetin complex treated peripheral blood mononuclear cells from healthy volunteers and diabetic patients. Sci Rep 2024; 14:9441. [PMID: 38658734 PMCID: PMC11043337 DOI: 10.1038/s41598-024-60197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
Peripheral blood is an alternative source of stem/progenitor cells for regenerative medicine owing to its ease of retrieval and blood bank storage. Previous in vitro studies indicated that the conditioned medium derived from peripheral blood mononuclear cells (PBMCs) treated with the iron-quercetin complex (IronQ) contains potent angiogenesis and wound-healing properties. This study aims to unveil the intricate regulatory mechanisms governing the effects of IronQ on the transcriptome profiles of human PBMCs from healthy volunteers and those with diabetes mellitus (DM) using RNA sequencing analysis. Our findings revealed 3741 and 2204 differentially expressed genes (DEGs) when treating healthy and DM PBMCs with IronQ, respectively. Functional enrichment analyses underscored the biological processes shared by the DEGs in both conditions, including inflammatory responses, cell migration, cellular stress responses, and angiogenesis. A comprehensive exploration of these molecular alterations exposed a network of 20 hub genes essential in response to stimuli, cell migration, immune processes, and the mitogen-activated protein kinase (MAPK) pathway. The activation of these pathways enabled PBMCs to potentiate angiogenesis and tissue repair. Corroborating this, quantitative real-time polymerase chain reaction (qRT-PCR) and cell phenotyping confirmed the upregulation of candidate genes associated with anti-inflammatory, pro-angiogenesis, and tissue repair processes in IronQ-treated PBMCs. In summary, combining IronQ and PBMCs brings about substantial shifts in gene expression profiles and activates pathways that are crucial for tissue repair and immune response, which is promising for the enhancement of the therapeutic potential of PBMCs, especially in diabetic wound healing.
Collapse
Affiliation(s)
- Phattarawadee Innuan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chonticha Sirikul
- Division of Transfusion Science, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nampeung Anukul
- Division of Transfusion Science, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Gwenaël Rolin
- INSERM CIC-1431, CHU Besançon, 25000, Besançon, France
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
5
|
Wang Q, Li Y, Yuan H, Peng L, Dai Z, Sun Y, Liu R, Li W, Li J, Zhu C. Hypoxia preconditioning of human amniotic mesenchymal stem cells enhances proliferation and migration and promotes their homing via the HGF/C-MET signaling axis to augment the repair of acute liver failure. Tissue Cell 2024; 87:102326. [PMID: 38442547 DOI: 10.1016/j.tice.2024.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Transplantation of mesenchymal stem cells (MSCs) is a newly developed strategy for treating acute liver failure (ALF). Nonetheless, the low survival rate of MSCs after transplantation and their poor homing to damaged tissues limit the clinical application of MSCs. The research assessed whether hypoxic preconditioning (HPC) can improve the biological activity of human amniotic mesenchymal stem cells (hA-MSCs), promote their homing ability to the liver of mice with ALF, and influence liver tissue repair. METHODS Flow cytometry, CCK8, Transwell, and Western blotting assays were conducted to assess the effects of hypoxic preconditioning on the phenotype, proliferation, and migration of hA-MSCs and the changes in the c-Met and CXCR4 gene expression levels were studied. To evaluate the effects of the transplantation of hypoxic preconditioning of hA-MSCs on the homing and repair of D-galactosamine (D-GalN)/LPS-induced ALF, the mechanism was elucidated by adding c-Met, CXCR4-specific blockers (SU11274 and AMD3100). RESULTS After hypoxia pretreatment (1% oxygen volume fraction), hA-MSCs maintained the morphological characteristics of adherence and vortex colony growth and showed high CD44, CD90, and CD105 and low CD31, CD34, and CD45 expression levels. Hypoxic preconditioning of hA-MSCs significantly increased their proliferation and migration and highly expressed the c-Met and CXCR4 genes. In vivo and in vitro, this migration-promoting effect was suppressed by the c-Met specific blocker SU11274. In the acute liver failure mouse model, the HGF expression level was considerably elevated in the liver than that in the serum, lungs and kidneys. The transplantation of hypoxic preconditioned hA-MSCs introduced a remarkable improvement in the liver function and survival rate of mice with ALF and enhanced the anti-apoptosis ability of liver cells. The anti-apoptotic enhancing effect of hypoxic preconditioning was suppressed by the c-Met specific blocker SU11274. Hypoxic hA-MSCs administration was observed to have considerably increased the fluorescent cells in the liver than that recorded after administering normal oxygen-hA-MSCs. The number of hepatic fluorescent cells decreased remarkably after adding the c-Met inhibitor SU11274, compared to that recorded after hypoxic pretreatment, whereas the effect of c-Met inhibitor SU11274 on normal oxygen-hA-MSCs was not significant. CONCLUSIONS Hypoxic preconditioning depicted no impact on the morphology and phenotype features of the human amniotic mesenchymal stem cells, but it can promote their proliferation, migration, anti-apoptotic effect, and homing rate and improve the repair of acute liver failure, which might be mediated by the HGF/c-Met signaling axis.
Collapse
Affiliation(s)
- Qian Wang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuwen Li
- Department of Pediatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Yuan
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Linya Peng
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zixing Dai
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Sun
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Jun Li
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Chuanlong Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China.
| |
Collapse
|
6
|
Wei H, Liu S, Wang T, Li Y, Liu K, Guo Q, Li L. FNDC5 inhibits autophagy of bone marrow mesenchymal stem cells and promotes their survival after transplantation by downregulating Sp1. Cell Death Discov 2023; 9:336. [PMID: 37673870 PMCID: PMC10482879 DOI: 10.1038/s41420-023-01634-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
Regenerative therapy based on mesenchymal stem cells (MSCs) has great promise to achieve functional recovery in cerebral infarction patients. However, the survival rate of transplanted MSCs is extremely low because of destructive autophagy caused by the harsh ischemic microenvironment in cerebral infarct tissue. The mechanism by which fibronectin type III domain protein 5 (FNDC5) regulates autophagy of transplanted bone marrow-MSCs (BMSCs) following ischemic injury needs to be elucidated. In this study, we confirmed that FNDC5 promotes the survival of transplanted BMSCs in a rat cerebral infarction model. Furthermore, bioinformatic analysis and verification experiments revealed the transcription factor, Sp1, to be a key mediator of autophagy regulation by FNDC5. FNDC5 significantly inhibited BMSC autophagy by down-regulating Sp1 and the autophagy-related Sp1-target gene, ULK2. Transplanted BMSCs overexpressing FNDC5 (BMSCs-OE-FNDC5) promoted neurovascular proliferation and alleviated ischemic brain injury in cerebral infarct model rats. However, the increased survival and enhanced neuroprotective effect of transplanted BMSCs-OE-FNDC5 were reversed by simultaneous overexpression of Sp1. Our data indicate a role for FNDC5 in BMSC survival and reveal a novel mechanism of transcription regulation through Sp1 for the autophagy-related gene ULK2. Modulation of FNDC5 may promote survival capacity and improve the therapeutic effect of BMSCs in various tissues following ischemia.
Collapse
Affiliation(s)
- Huan Wei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
- Department of Neurology, Yan'an Hospital of Kunming City; The Affiliated Yan'an Hospital of Kunming Medical University, Kunming, China
| | - Shuaiye Liu
- Department of Cardiovascular Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Tingting Wang
- Department of Geriatrics, Yan'an Hospital of Kunming City; The Affiliated Yan'an Hospital of Kunming Medical University, Kunming, China
| | - Yanping Li
- Department of Neurology, Yan'an Hospital of Kunming City; The Affiliated Yan'an Hospital of Kunming Medical University, Kunming, China
| | - Kangmei Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Qunying Guo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Ling Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China.
| |
Collapse
|
7
|
Liu C, Chen H, Hu B, Shi J, Chen Y, Huang K. New insights into the therapeutic potentials of statins in cancer. Front Pharmacol 2023; 14:1188926. [PMID: 37484027 PMCID: PMC10359995 DOI: 10.3389/fphar.2023.1188926] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
The widespread clinical use of statins has contributed to significant reductions of cardiovascular morbidity and mortality. Increasing preclinical and epidemiological evidences have revealed that dyslipidemia is an important risk factor for carcinogenesis, invasion and metastasis, and that statins as powerful inhibitor of HMG-CoA reductase can exert prevention and intervention effects on cancers, and promote sensitivity to anti-cancer drugs. The anti-cancer mechanisms of statins include not only inhibition of cholesterol biosynthesis, but also their pleiotropic effects in modulating angiogenesis, apoptosis, autophagy, tumor metastasis, and tumor microenvironment. Moreover, recent clinical studies have provided growing insights into the therapeutic potentials of statins and the feasibility of combining statins with other anti-cancer agents. Here, we provide an updated review on the application potential of statins in cancer prevention and treatment and summarize the underneath mechanisms, with focuses on data from clinical studies.
Collapse
Affiliation(s)
- Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Bicheng Hu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajian Shi
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Tongji-RongCheng Biomedical Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Li Z, Li D, Chen R, Gao S, Xu Z, Li N. Cell death regulation: A new way for natural products to treat osteoporosis. Pharmacol Res 2023; 187:106635. [PMID: 36581167 DOI: 10.1016/j.phrs.2022.106635] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
Osteoporosis is a common metabolic bone disease that results from the imbalance of homeostasis within the bone. Intra-bone homeostasis is dependent on a precise dynamic balance between bone resorption by osteoclasts and bone formation by mesenchymal lineage osteoblasts, which comprises a series of complex and highly standardized steps. Programmed cell death (PCD) (e.g., apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis) is a cell death process that involves a cascade of gene expression events with tight structures. These events play a certain role in regulating bone metabolism by determining the fate of bone cells. Moreover, existing research has suggested that natural products derived from a wide variety of dietary components and medicinal plants modulate the PCDs based on different mechanisms, which show great potential for the prevention and treatment of osteoporosis, thus revealing the emergence of more acceptable complementary and alternative drugs with lower costs, fewer side effects and more long-term application. Accordingly, this review summarizes the common types of PCDs in the field of osteoporosis. Moreover, from the perspective of targeting PCDs, this review also discussed the roles of currently reported natural products in the treatment of osteoporosis and the involved mechanisms. Based on this, this review provides more insights into new molecular mechanisms of osteoporosis and provides a reference for developing more natural anti-osteoporosis drugs in the future.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Renchang Chen
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Shang Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
9
|
Jeske R, Chen X, Mulderrig L, Liu C, Cheng W, Zeng OZ, Zeng C, Guan J, Hallinan D, Yuan X, Li Y. Engineering Human Mesenchymal Bodies in a Novel 3D-Printed Microchannel Bioreactor for Extracellular Vesicle Biogenesis. Bioengineering (Basel) 2022; 9:795. [PMID: 36551001 PMCID: PMC9774207 DOI: 10.3390/bioengineering9120795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Human Mesenchymal Stem Cells (hMSCs) and their derived products hold potential in tissue engineering and as therapeutics in a wide range of diseases. hMSCs possess the ability to aggregate into "spheroids", which has been used as a preconditioning technique to enhance their therapeutic potential by upregulating stemness, immunomodulatory capacity, and anti-inflammatory and pro-angiogenic secretome. Few studies have investigated the impact on hMSC aggregate properties stemming from dynamic and static aggregation techniques. hMSCs' main mechanistic mode of action occur through their secretome, including extracellular vesicles (EVs)/exosomes, which contain therapeutically relevant proteins and nucleic acids. In this study, a 3D printed microchannel bioreactor was developed to dynamically form hMSC spheroids and promote hMSC condensation. In particular, the manner in which dynamic microenvironment conditions alter hMSC properties and EV biogenesis in relation to static cultures was assessed. Dynamic aggregation was found to promote autophagy activity, alter metabolism toward glycolysis, and promote exosome/EV production. This study advances our knowledge on a commonly used preconditioning technique that could be beneficial in wound healing, tissue regeneration, and autoimmune disorders.
Collapse
Affiliation(s)
- Richard Jeske
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| | - Logan Mulderrig
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- Aero-Propulsion, Mechatronics and Energy Center, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
| | - Chang Liu
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Wenhao Cheng
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Olivia Z. Zeng
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Changchun Zeng
- High Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Jingjiao Guan
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Daniel Hallinan
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
10
|
Hu Y, Shao J, Shen L, Wang S, Xu K, Mao J, Shen J, Chen W. Protection of adipose-derived mesenchymal stromal cells during acute lung injury requires autophagy maintained by mTOR. Cell Death Dis 2022; 8:481. [PMID: 36470863 PMCID: PMC9722689 DOI: 10.1038/s41420-022-01267-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/15/2022] [Accepted: 11/18/2022] [Indexed: 12/10/2022]
Abstract
Previous studies suggest that mesenchymal stem cells may represent a promising cellular therapy for acute lung injury (ALI); however, the underlying relevant molecular mechanisms remain unclear. Adipose-derived mesenchymal stem cells (ADSCs) were isolated and characterized by alizarin red staining, oil red staining, and flow cytometry. Lung injury and inflammatory cell infiltration were determined using the Evans blue method, wet/dry weight ratio, and H&E staining. An ELISA was used to detect the concentrations of IFN-γ, IL-2, and TNF-α. Autophagy was detected with an mRFP-GFP-LC3 dual-fluorescence autophagy indicator system, Western blotting, and electron microscopy. We first demonstrated that ADSCs did alleviate the inflammatory responses and tissue damage in lipopolysaccharide (LPS)-induced ALI. Next, we further demonstrated in vivo that autophagy plays a key role in the maintenance of ADSC therapeutic efficacy. In vitro experiments demonstrated that ADSCs co-cultured with alveolar epithelial cells depend on autophagy for significant anti-inflammatory functions. Moreover, the mammalian target of rapamycin (mTOR) is a key regulator of autophagy. Taken together, our findings demonstrate that the effect of ADSC on ALI, especially on alveolar epithelial cells, is dependent on mTOR-mediated autophagy maintenance. The significance of our study for ALI therapy is discussed with respect to a more complete understanding of the therapeutic strategy paradigm.
Collapse
Affiliation(s)
- Yue Hu
- grid.412465.0Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang China
| | - Jing Shao
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, 310012 Hangzhou, Zhejiang China
| | - Lanying Shen
- grid.412465.0Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang China
| | - Shengchao Wang
- grid.13402.340000 0004 1759 700XDepartment of Gynecological Oncology, Women’s Hospital, Zhejiang University School of Medicine, 310006 Hangzhou, Zhejiang China
| | - Kaiyan Xu
- grid.412465.0Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang China
| | - Jiayan Mao
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, 310012 Hangzhou, Zhejiang China
| | - Jian Shen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, 310012 Hangzhou, Zhejiang China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, 310012 Hangzhou, Zhejiang China
| |
Collapse
|
11
|
Li Z, Li D, Su H, Xue H, Tan G, Xu Z. Autophagy: An important target for natural products in the treatment of bone metabolic diseases. Front Pharmacol 2022; 13:999017. [PMID: 36467069 PMCID: PMC9716086 DOI: 10.3389/fphar.2022.999017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/08/2022] [Indexed: 12/28/2024] Open
Abstract
Bone homeostasis depends on a precise dynamic balance between bone resorption and bone formation, involving a series of complex and highly regulated steps. Any imbalance in this process can cause disturbances in bone metabolism and lead to the development of many associated bone diseases. Autophagy, one of the fundamental pathways for the degradation and recycling of proteins and organelles, is a fundamental process that regulates cellular and organismal homeostasis. Importantly, basic levels of autophagy are present in all types of bone-associated cells. Due to the cyclic nature of autophagy and the ongoing bone metabolism processes, autophagy is considered a new participant in bone maintenance. Novel therapeutic targets have emerged as a result of new mechanisms, and bone metabolism can be controlled by interfering with autophagy by focusing on certain regulatory molecules in autophagy. In parallel, several studies have reported that various natural products exhibit a good potential to mediate autophagy for the treatment of metabolic bone diseases. Therefore, we briefly described the process of autophagy, emphasizing its function in different cell types involved in bone development and metabolism (including bone marrow mesenchymal stem cells, osteoblasts, osteocytes, chondrocytes, and osteoclasts), and also summarized research advances in natural product-mediated autophagy for the treatment of metabolic bone disease caused by dysfunction of these cells (including osteoporosis, rheumatoid joints, osteoarthritis, fracture nonunion/delayed union). The objective of the study was to identify the function that autophagy serves in metabolic bone disease and the effects, potential, and challenges of natural products for the treatment of these diseases by targeting autophagy.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hui Su
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Xue
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqing Tan
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanwang Xu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
12
|
Liu M, Zheng X, Sun C, Zhou Q, Liu B, Xu P. Tea Tree Oil Mediates Antioxidant Factors Relish and Nrf2-Autophagy Axis Regulating the Lipid Metabolism of Macrobrachium rosenbergii. Antioxidants (Basel) 2022; 11:2260. [PMID: 36421446 PMCID: PMC9686997 DOI: 10.3390/antiox11112260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 10/29/2023] Open
Abstract
Both oxidative stress and autophagy refer to regulating fat metabolism, and the former affects autophagy, but the role and mechanism of the antioxidant-autophagy axis in regulating lipid metabolism remains unclear. As an antioxidant, tea tree oil (TTO) has little research on the regulatory mechanism of lipid metabolism in crustaceans. This study investigated whether TTO could alter hepatopancreatic lipid metabolism by affecting the antioxidant-autophagy axis. Feed Macrobrachium rosenbergii with three different levels of TTO diets for 8 weeks: CT (0 mg/kg TTO), 100TTO (100 mg/kg TTO), and 1000TTO (1000 mg/kg TTO). The results showed that 100TTO treatment reduced the hemolymph lipids level and hepatopancreatic lipid deposition compared to CT. In contrast, 1000TTO treatment increased hepatopancreatic lipid deposition, damaging both morphology and function in the hepatopancreas. The 100TTO treatment promoted lipolysis and reduced liposynthesis at the transcriptional level compared to the CT group. Meanwhile, it improved the hepatopancreas antioxidant capacity and maintained mitochondrial structural and ROS homeostasis. In addition, it simultaneously activated the expression of transcription factors Keap1-Nrf2 and Imd-Relish. By contrast, the 1000TTO group significantly enhanced the ROS level, which considerably activated the Keap1-Nrf2 signaling expression but had no significant effects on the expression of Imd-Relish. The 100TTO group supplementation significantly enhanced lipid droplet breakdown and autophagy-related genes and protein expression. On the contrary, the 1000TTO group significantly inhibited the expression of genes and proteins related to autophagy. Pearson analysis revealed that Nrf2 has a positive correlation to lipid anabolism-related genes (Fasn, Srebp1, Pparγ) and autophagy regulators (mtor, akt, p62), and were negatively correlated with lipolysis-related genes (Cpt1, Hsl, Ampkα) and autophagy markers (Ulk1, Lc3). Relish was positively correlated with Atgl, Cpt1, Ampkα, Ulk1, and Lc3, and negatively correlated with Pparγ and p62. Moreover, Keap1 and Imd were negatively correlated with p62 and mtor, respectively. In sum, 100 mg/kg TTO enhanced antioxidant activity and increased autophagy intensity through the Relish-Imd pathway to enhance lipid droplet breakdown, while 1000 mg/kg TTO overexpressed Nrf2, thus inhibiting autophagy and ultimately causing excessive lipid deposition and peroxidation. Our study gives a fresh perspective for deciphering the bidirectional regulation mechanism of lipid metabolism by different doses of TTO based on the antioxidant-autophagy axis.
Collapse
Affiliation(s)
- Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Xiaochuan Zheng
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Cunxin Sun
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Qunlan Zhou
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Bo Liu
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| |
Collapse
|
13
|
Rai R, Singh KB, Khanka S, Maurya R, Singh D. Cladrin alleviates dexamethasone-induced apoptosis of osteoblasts and promotes bone formation through autophagy induction via AMPK/mTOR signaling. Free Radic Biol Med 2022; 190:339-350. [PMID: 35998794 DOI: 10.1016/j.freeradbiomed.2022.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 12/09/2022]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is a common clinical consequence that arises due to the extensive usage of glucocorticoids. Cladrin (Clad), a methoxylated isoflavone has been reported to have a bone protecting effect by enhancing osteoblast proliferation and differentiation. However, its consequences on GIOP are not reported yet. This study investigates whether Clad protects against the deleterious effects of Dexamethasone (Dex) on osteoblast and bone. Mice calvarial osteoblasts were treated with Clad and then exposed to Dex to study the effect on osteoblast differentiation, proliferation, and survival. Further, GIOP mice were treated with Clad (5 and 10 mg/kg) doses along with reference standard alendronate (ALN 3 mg/kg) for evaluation of bone protecting effect of Clad. We analyzed bone and vertebral microarchitecture, mechanical strength, and biochemical parameters. We observed that Clad at 10 nM concentration mitigated Dex-induced cytotoxicity and defend osteoblasts against apoptosis. Subsequent results demonstrate that Clad suppressed apoptosis of osteoblast in the presence of Dex by enhancing autophagy in a way that was reliant on the AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) pathway. Furthermore, micro-CT scanning, eco MRI results, and serum CTX levels revealed that 12 weeks of Clad treatment prevented bone loss and preserved trabecular bone mass in GIOP animals. We also observed that Clad treated osteoblasts had a lower rate of apoptosis and a greater LC3-II/LC3-I ratio than the Dex group. Our findings show that Clad can protect osteoblasts against glucocorticoids by inducing autophagy via the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Reena Rai
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Krishna Bhan Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR) Ghaziabad, Uttar Pradesh, 201002, India
| | - Sonu Khanka
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR) Ghaziabad, Uttar Pradesh, 201002, India
| | - Rakesh Maurya
- Division of Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Divya Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR) Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
14
|
Atorvastatin Attenuates Radiotherapy-Induced Intestinal Damage through Activation of Autophagy and Antioxidant Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7957255. [PMID: 36092168 PMCID: PMC9459441 DOI: 10.1155/2022/7957255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/06/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Abdominal or pelvic radiotherapy (RT) often results in small intestinal injury, such as apoptosis of epithelial cells and shortening of the villi. Atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, has many biological effects including cholesterol reduction, protection from cell damage, and autophagy activation. To reduce the extent of radiotherapy- (RT-) induced enteritis, we investigated the protective effects of atorvastatin against RT-induced damage of the intestinal tract. In this study, C57BL/6 mice were randomly distributed into the following groups (n = 8 per group): (1) control group: mice were fed water only, (2) atorvastatin group (Ator): mice were administered atorvastatin, (3) irradiation group (IR): mice received abdominal RT, (4) Ator+IR group: mice received abdominal RT following atorvastatin administration, and (5) Ator+IR+3-MA group: abdominal RT following atorvastatin and 3-methyladenine (an autophagy inhibitor) administration. Based on the assessment of modified Chiu's injury score and villus/crypt ratio, we found that atorvastatin administration significantly reduced intestinal mucosal damage induced by RT. Atorvastatin treatment reduced apoptosis (cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase), DNA damage (γH2AX and 53BP1), oxidative stress (OS, 4-hydroxynonenal), inflammatory molecules (phospho-NF-κB p65 and TGF-β), fibrosis (collagen I and collagen III), barrier leakage (claudin-2 and fluorescein isothiocyanate-dextran), disintegrity (fatty acid-binding protein 2), and dysfunction (lipopolysaccharide) caused by RT in small intestinal tissue. In addition, atorvastatin upregulated the expression of autophagy-active molecules (LC3B), antioxidants (heme oxygenase 1 and thioredoxin 1), and tight junction proteins (occludin and zonula occludens 1). However, the biological functions of atorvastatin in decreasing RT-induced enteritis were reversed after the administration of 3-MA; the function of antioxidant molecules and activity of thioredoxin reductase were independent of autophagy activation. Our results indicate that atorvastatin can effectively relieve RT-induced enteritis through autophagy activation and associated biological functions, including maintaining integrity and function and decreasing apoptosis, DNA damage, inflammation, OS, and fibrosis. It also acts via its antioxidative capabilities.
Collapse
|
15
|
Regenerative and Anti-Inflammatory Potential of Regularly Fed, Starved Cells and Extracellular Vesicles In Vivo. Cells 2022; 11:cells11172696. [PMID: 36078106 PMCID: PMC9455002 DOI: 10.3390/cells11172696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Mesenchymal stem/stromal cells (MSC) have been employed successfully in immunotherapy and regenerative medicine, but their therapeutic potential is reduced considerably by the ischemic environment that exists after transplantation. The assumption that preconditioning MSC to promote quiescence may result in increased survival and regenerative potential upon transplantation is gaining popularity. Methods: The purpose of this work was to evaluate the anti-inflammatory and regenerative effects of human bone marrow MSC (hBM-MSC) and their extracellular vesicles (EVs) grown and isolated in a serum-free medium, as compared to starved hBM-MSC (preconditioned) in streptozotocin-induced diabetic fractured male C57BL/6J mice. Results: Blood samples taken four hours and five days after injection revealed that cells, whether starved or not, generated similar plasma levels of inflammatory-related cytokines but lower levels than animals treated with EVs. Nonetheless, starved cells prompted the highest production of IL-17, IL-6, IL-13, eotaxin and keratinocyte-derived chemokines and induced an earlier soft callus formation and mineralization of the fracture site compared to EVs and regularly fed cells five days after administration. Conclusions: Preconditioning may be crucial for refining and defining new criteria for future MSC therapies. Additionally, the elucidation of mechanisms underpinning an MSC’s survival/adaptive processes may result in increased cell survival and enhanced therapeutic efficacy following transplantation.
Collapse
|
16
|
Ahrabi B, Abbaszadeh HA, Piryaei A, Shekari F, Ahmady Roozbahany N, Rouhollahi M, Azam Sayahpour F, Ahrabi M, Azimi H, Moghadasali R. Autophagy-induced mesenchymal stem cell-derived extracellular vesicles ameliorated renal fibrosis in an in vitro model. BIOIMPACTS : BI 2022; 13:359-372. [PMID: 37736337 PMCID: PMC10509741 DOI: 10.34172/bi.2022.24256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 09/23/2023]
Abstract
Introduction Chronic and progressive damage to the kidney by inflammatory processes, may lead to an increase in the extracellular matrix production, a condition known as renal fibrosis. The current study aims to evaluate if the extracellular vesicles (EVs) derived from autophagic adipose-derived mesenchymal stem cells (ADMSCs) can reduce the inflammation and extracellular matrix accumulation in damaged kidney tissue. Methods Autophagy was induced in ADMSCs using 2µM concentration curcumin and was confirmed by evaluating LC3B, ATG7, and Beclin1 using real-time polymerase chain reaction (PCR) and Western blot. An in vitro renal fibrotic model was established in HEK-293 cells exposed to H2O2 (0.8mM) for 24 and 72 hours. The fibrotic model was confirmed through evaluation of collagen I, transforming growth factor-beta 1 (TGF-β1), E-cadherin, and vimentin genes expression using real-time PCR, collagen I protein by ELISA. After induction of fibrosis for 24 and 72 hours, the HEK cells were treated with NEVs (non-autophagy EVs) (50µM) or AEVs (autophagy EVs) (50µM) at 48, 96, and 124 hours, and then the samples were collected at 72 and 148 hours. Expression of collagen I, TGF-β1, E-cadherin, and vimentin Genes was evaluated via RT-PCR, and protein levels of IL1, TNF-α, IL4, IL10 using ELISA. Results Induction of autophagy using curcumin (2µM) for 24 hours significantly increased LC3B, Beclin1, and ATG7 in the ADMSCs. Upregulation in anti-fibrotic (E-cadherin) and anti-inflammatory (IL4, IL10) gene expression was significantly different in the fibrotic model treated by AEVs compared to NEVs. Also, the downregulation of fibrotic (TGF-β1, vimentin, collagen I) and pro-inflammatory (IL1, TNFα) gene expression was significantly different in AEVs compared with those treated by NEVs. Conclusion Our findings suggest that AEVs can be considered as a therapeutic modality for renal fibrosis in the future.
Collapse
Affiliation(s)
- Behnaz Ahrabi
- Department of Biology and Anatomical Sciences, school of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Department of Biology and Anatomical Sciences, school of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, school of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | | | - Mahya Rouhollahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahnaz Ahrabi
- Department of Endodontics, Dental Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Azimi
- Department of English Language Teaching, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
17
|
Chen G, Yin S, Zeng H, Li H, Wan X. Regulation of Embryonic Stem Cell Self-Renewal. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081151. [PMID: 36013330 PMCID: PMC9410528 DOI: 10.3390/life12081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Embryonic stem cells (ESCs) are a type of cells capable of self-renewal and multi-directional differentiation. The self-renewal of ESCs is regulated by factors including signaling pathway proteins, transcription factors, epigenetic regulators, cytokines, and small molecular compounds. Similarly, non-coding RNAs, small RNAs, and microRNAs (miRNAs) also play an important role in the process. Functionally, the core transcription factors interact with helper transcription factors to activate the expression of genes that contribute to maintaining pluripotency, while suppressing the expression of differentiation-related genes. Additionally, cytokines such as leukemia suppressor factor (LIF) stimulate downstream signaling pathways and promote self-renewal of ESCs. Particularly, LIF binds to its receptor (LIFR/gp130) to trigger the downstream Jak-Stat3 signaling pathway. BMP4 activates the downstream pathway and acts in combination with Jak-Stat3 to promote pluripotency of ESCs in the absence of serum. In addition, activation of the Wnt-FDZ signaling pathway has been observed to facilitate the self-renewal of ESCs. Small molecule modulator proteins of the pathway mentioned above are widely used in in vitro culture of stem cells. Multiple epigenetic regulators are involved in the maintenance of ESCs self-renewal, making the epigenetic status of ESCs a crucial factor in this process. Similarly, non-coding RNAs and cellular energetics have been described to promote the maintenance of the ESC's self-renewal. These factors regulate the self-renewal and differentiation of ESCs by forming signaling networks. This review focused on the role of major transcription factors, signaling pathways, small molecular compounds, epigenetic regulators, non-coding RNAs, and cellular energetics in ESC's self-renewal.
Collapse
Affiliation(s)
- Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Shasha Yin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, China;
| | - Haisen Li
- School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| |
Collapse
|
18
|
Novel Effects of Statins on Cancer via Autophagy. Pharmaceuticals (Basel) 2022; 15:ph15060648. [PMID: 35745567 PMCID: PMC9228383 DOI: 10.3390/ph15060648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is one of the main causes of death globally. Most of the molecular mechanisms underlying cancer are marked by complex aberrations that activate the critical cell-signaling pathways that play a pivotal role in cell metabolism, tumor development, cytoskeletal reorganization, and metastasis. The phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of the rapamycin (PI3K/AKT/mTOR) pathway is one of the main signaling pathways involved in carcinogenesis and metastasis. Autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation, plays a dual role in cancer, as either a tumor promoter or a tumor suppressor, depending on the stage of the carcinogenesis. Statins are the group of drugs of choice to lower the level of low-density lipoprotein (LDL) cholesterol in the blood. Experimental and clinical data suggest the potential of statins in the treatment of cancer. In vitro and in vivo studies have demonstrated the molecular mechanisms through which statins inhibit the proliferation and metastasis of cancer cells in different types of cancer. The anticancer properties of statins have been shown to result in the suppression of tumor growth, the induction of apoptosis, and autophagy. This literature review shows the dual role of the autophagic process in cancer and the latest scientific evidence related to the inducing effect exerted by statins on autophagy, which could explain their anticancer potential.
Collapse
|
19
|
El Harane S, Durual S, Braschler T, André-Lévigne D, Brembilla N, Krause KH, Modarressi A, Preynat-Seauve O. Adipose-derived stem cell spheroids are superior to single-cell suspensions to improve fat autograft long-term survival. J Cell Mol Med 2022; 26:1421-1433. [PMID: 35150064 PMCID: PMC8899177 DOI: 10.1111/jcmm.17082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022] Open
Abstract
Autologous fat transplantation is a widely used procedure for surgical reconstruction of tissues. The resorption rate of this transplantation remains high and unpredictable, reinforcing the need of adjuvant treatments that increase the long‐term stability of grafts. Adipose‐derived stem cells (ASC) introduced as single cells in fat has been shown clinically to reduce the resorption of fat grafts. On the other hand, the formulation of ASC into cell spheroids results in the enhancement of their regenerative potential. In this study, we developed a novel method to produce highly homogeneous ASC spheroids and characterized their features and efficacy on fat transplantation. Spheroids conserved ASC markers and multipotency. A regenerative gene expression profile was maintained, and genes linked to autophagy were upregulated whereas proliferation was decreased. Their secreted proteome was enriched in comparison with single‐cell ASC suspension. Addition of spheroids to fat graft in an animal model of transplantation resulted in a better graft long‐term stability when compared to single ASC suspension. In conclusion, we provide a novel method to manufacture homogenous ASC spheroids. These ASC spheroids are superior to ASC in single‐cell suspension to improve the stability of fat transplants, reinforcing their potential in reconstructive surgery.
Collapse
Affiliation(s)
- Sanae El Harane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Durual
- Laboratory of Biomaterials, Faculty of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Thomas Braschler
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominik André-Lévigne
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Nicolo Brembilla
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Laboratory of Therapy and Stem Cells, Geneva University Hospitals, Geneva, Switzerland
| | - Ali Modarressi
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Olivier Preynat-Seauve
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
Yang J, Sun M, Cheng R, Tan H, Liu C, Chen R, Zhang J, Yang Y, Gao X, Huang L. Pitavastatin activates mitophagy to protect EPC proliferation through a calcium-dependent CAMK1-PINK1 pathway in atherosclerotic mice. Commun Biol 2022; 5:124. [PMID: 35145192 PMCID: PMC8831604 DOI: 10.1038/s42003-022-03081-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/28/2022] [Indexed: 01/08/2023] Open
Abstract
Statins play a major role in reducing circulating cholesterol levels and are widely used to prevent coronary artery disease. Although they are recently confirmed to up-regulate mitophagy, little is known about the molecular mechanisms and its effect on endothelial progenitor cell (EPC). Here, we explore the role and mechanism underlying statin (pitavastatin, PTV)-activated mitophagy in EPC proliferation. ApoE−/− mice are fed a high-fat diet for 8 weeks to induce atherosclerosis. In these mice, EPC proliferation decreases and is accompanied by mitochondrial dysfunction and mitophagy impairment via the PINK1-PARK2 pathway. PTV reverses mitophagy and reduction in proliferation. Pink1 knockout or silencing Atg7 blocks PTV-induced proliferation improvement, suggesting that mitophagy contributes to the EPC proliferation increase. PTV elicits mitochondrial calcium release into the cytoplasm and further phosphorylates CAMK1. Phosphorylated CAMK1 contributes to PINK1 phosphorylation as well as mitophagy and mitochondrial function recover in EPCs. Together, our findings describe a molecular mechanism of mitophagy activation, where mitochondrial calcium release promotes CAMK1 phosphorylation of threonine177 before phosphorylation of PINK1 at serine228, which recruits PARK2 and phosphorylates its serine65 to activate mitophagy. Our results further account for the pleiotropic effects of statins on the cardiovascular system and provide a promising and potential therapeutic target for atherosclerosis. Endothelial progenitor cell (EPCs) proliferation decreased, accompanied by mitochondrial dysfunction and mitophagy impairment via the PINK1-PARK2 pathway in atherosclerosis. Statins induce mitophagy to protect EPCs by mitochondrial calcium release and CAMK1-mediated PINK1 phosphorylation.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengjia Sun
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ran Cheng
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hu Tan
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chuan Liu
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Renzheng Chen
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jihang Zhang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuanqi Yang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xubin Gao
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Huang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China. .,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
21
|
Zhong L, Fang S, Wang AQ, Zhang ZH, Wang T, Huang W, Zhou HX, Zhang H, Yin ZS. Identification of the Fosl1/AMPK/autophagy axis involved in apoptotic and inflammatory effects following spinal cord injury. Int Immunopharmacol 2022; 103:108492. [PMID: 34973528 DOI: 10.1016/j.intimp.2021.108492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/04/2021] [Accepted: 12/18/2021] [Indexed: 12/15/2022]
Abstract
Strategies for reducing spinal cord injury (SCI) have become a research focus because an effective treatment of SCI is unavailable. The objective of this study was to explore the underlying mechanisms of Fosl1 following SCI. Based on the analysis of the Gene Expression Omnibus (GEO) database, Fosl1 was found to be highly enhanced in SCI. This result was confirmed in our animal model, and Fosl1 was found to be obviously expressed in neurons. Next, we treated PC-12 cells with H2O2 to mimic injured neurons and further verified that Fosl1 silencing upregulated AMPK expression, promoted autophagy and inhibited inflammation and apoptosis. Subsequently, a special inhibitor of AMPK was used to examine the role of AMPK, and we learned that the inhibition of AMPK suppressed autophagy and promoted inflammation and apoptosis following Fosl1 silencing. These changes completely reversed the beneficial effects of Fosl1 silencing on injured PC-12 cells. Moreover, treatment with an AMPK activator resulted in effects that were opposite those of the inhibitor. Finally, rats were injected intrathecally with si-Fosl1 to detect its role in vivo. The results showed that si-Fosl1 improved neurological function and decreased apoptosis and inflammation at 14 d postoperation, and the activator further benefited the rats of si-Fosl1 treatment. In conclusion, Fosl1 inhibits autophagy and promotes inflammation and apoptosis through the AMPK signaling pathway following SCI in vivo and in vitro.
Collapse
Affiliation(s)
- Lin Zhong
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China; Department of Orthopedics, the Third Affiliated Hospital of Anhui Medical University, #390 Huaihe Road, Hefei, 230061, China
| | - Sheng Fang
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China
| | - An-Quan Wang
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China
| | - Zhen-Hua Zhang
- Department of Orthopedics, Anhui Provincial Armed Police Corps Hospital, #78 Changfeng Road, Hefei, 230041, China
| | - Tao Wang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, #415 Fengyang Road, Shanghai, 200003 China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, #17 Lujiang Road, Hefei, 230001, China
| | - Hong-Xiang Zhou
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China.
| | - Hui Zhang
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China.
| | - Zong-Sheng Yin
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China.
| |
Collapse
|
22
|
Wagle R, Song YH. Sensitive-stage embryo irradiation affects embryonic neuroblasts and adult motor function. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Background
Cranial radiation therapy for treating childhood malignancies in the central nervous system or accidental radiation exposure may result in neurological side effects in surviving adults. As tissue homeostasis is maintained by stem cells, understanding the effect of radiation on neural stem cells will provide clues for managing the neurological effects. Drosophila embryos were used as a model system whose sensitivity to irradiation-induced cell death changes from the sensitive to resistant stage during development.
Objective
Drosophila embryos at the radiation-sensitive stage were irradiated at various doses and the radiation sensitivity was tested regarding the appearance of apoptotic cells in the embryos and the embryonic lethality. Cell fates of the neural stem cells called neuroblasts (NBs) and adult motor function after irradiation were also investigated.
Result
Irradiation of Drosophila embryos at the radiation-sensitive stage resulted in a dose-dependent increase in the number of embryos containing apoptotic cells 75 min after treatment starting at 3 Gy. Embryonic lethality assayed by hatch rate was induced by 1 Gy irradiation, which did not induce cell death. Notably, no apoptosis was detected in NBs up to 2 h after irradiation at doses as high as 40 Gy. At 3 h after irradiation, as low as 3 Gy, the number of NBs marked by Dpn and Klu was decreased by an unidentified mechanism regardless of the cell death status of the embryo. Furthermore, embryonic irradiation at 3 Gy, but not 1 Gy, resulted in locomotor defects in surviving adults.
Conclusion
Embryonic NBs survived irradiation at doses as high as 40 Gy, while cells in other parts of the embryos underwent apoptosis at doses higher than 3 Gy within 2 h after treatment. Three hours after exposure to a minimum dose of 3 Gy, the number of NBs marked by Dpn and Klu decreased, and the surviving adults exhibited defects in locomotor ability.
Collapse
|
23
|
Zhu X, Huang L, Wu K, Sun Z, Wang K, Ru J, Zhuge Q, Ruan L. Shikonin regulates autophagy via the AMPK/mTOR pathway and reduces apoptosis of human umbilical cord mesenchymal stem cells to improve survival in tissues surrounding brain contusion. Exp Ther Med 2021; 22:1475. [PMID: 34765016 PMCID: PMC8576632 DOI: 10.3892/etm.2021.10910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 03/24/2021] [Indexed: 12/22/2022] Open
Abstract
Shikonin has been reported to regulate autophagy via the AMP-activated protein kinase (AMPK)/mTOR signalling pathway and decrease apoptosis in transplanted human umbilical cord mesenchymal stem cells (HUMSCs). In the present study, HUMSCs were exposed to oxygen glucose deprivation (OGD) in vitro for 12 h, and TUNEL fluorescence staining was used to detect apoptosis. Differences in autophagy and AMPK/mTOR pathway-related protein expression following treatment with shikonin were quantitatively analyzed by western blotting. Green fluorescent protein-labelled stem cells were implanted into traumatic brain injury-model mice and the survival of HUMSCs was observed after 7 days. Shikonin increased the number of cells in brain tissue surrounding the contusion 7 days after transplantation. Furthermore, shikonin treatment decreased apoptosis, increased the expression of autophagy-related proteins, increased phosphorylated AMPK expression and downregulated phosphorylated mTOR expression. In addition, the autophagy inhibitor 3-methyladenine attenuated these effects and aggravated apoptosis. Subsequently, shikonin upregulated autophagy and protected HUMSCs in the area surrounding contused brain tissue. Shikonin may regulate autophagy via the AMPK/mTOR signalling pathway and protect transplanted HUMSCs from apoptosis induced by hypoxia/ischemia.
Collapse
Affiliation(s)
- Xiaohong Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lijie Huang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ke Wu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhezhe Sun
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Kankai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Junnan Ru
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qichuan Zhuge
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Linhui Ruan
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
24
|
Potential Roles of Sestrin2 in Alzheimer's Disease: Antioxidation, Autophagy Promotion, and Beyond. Biomedicines 2021; 9:biomedicines9101308. [PMID: 34680426 PMCID: PMC8533411 DOI: 10.3390/biomedicines9101308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disease. It presents with progressive memory loss, worsens cognitive functions to the point of disability, and causes heavy socioeconomic burdens to patients, their families, and society as a whole. The underlying pathogenic mechanisms of AD are complex and may involve excitotoxicity, excessive generation of reactive oxygen species (ROS), aberrant cell cycle reentry, impaired mitochondrial function, and DNA damage. Up to now, there is no effective treatment available for AD, and it is therefore urgent to develop an effective therapeutic regimen for this devastating disease. Sestrin2, belonging to the sestrin family, can counteract oxidative stress, reduce activity of the mammalian/mechanistic target of rapamycin (mTOR), and improve cell survival. It may therefore play a crucial role in neurodegenerative diseases like AD. However, only limited studies of sestrin2 and AD have been conducted up to now. In this article, we discuss current experimental evidence to demonstrate the potential roles of sestrin2 in treating neurodegenerative diseases, focusing specifically on AD. Strategies for augmenting sestrin2 expression may strengthen neurons, adapting them to stressful conditions through counteracting oxidative stress, and may also adjust the autophagy process, these two effects together conferring neuronal resistance in cases of AD.
Collapse
|
25
|
Autophagy Promotes the Survival of Adipose Mesenchymal Stem/Stromal Cells and Enhances Their Therapeutic Effects in Cisplatin-Induced Liver Injury via Modulating TGF-β1/Smad and PI3K/AKT Signaling Pathways. Cells 2021; 10:cells10092475. [PMID: 34572126 PMCID: PMC8470434 DOI: 10.3390/cells10092475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a key metabolic process where cells can recycle its proteins and organelles to regenerate its own cellular building blocks. Chemotherapy is indispensable for cancer treatment but associated with various side-effects, including organ damage. Stem cell-based therapy is a promising approach for reducing chemotherapeutic side effects, however, one of its main culprits is the poor survival of transplanted stem cells in damaged tissues. Here, we aimed to test the effects of activating autophagy in adipose-derived mesenchymal stem/stromal cells (ADSCs) on the survival of ADSCs, and their therapeutic value in cisplatin-induced liver injury model. Autophagy was activated in ADSCs by rapamycin (50 nM/L) for two hours before transplantation and were compared to non-preconditioned ADSCs. Rapamycin preconditioning resulted in activated autophagy and improved survival of ADSCs achieved by increased autophagosomes, upregulated autophagy-specific LC3-II gene, decreased protein degradation/ubiquitination by downregulated p62 gene, downregulated mTOR gene, and finally, upregulated antiapoptotic BCL-2 gene. In addition, autophagic ADSCs transplantation in the cisplatin liver injury model, liver biochemical parameters (AST, ALT and albumin), lipid peroxidation (MDA), antioxidant profile (SOD and GPX) and histopathological picture were improved, approaching near-normal conditions. These promising autophagic ADSCs effects were achieved by modulation of components in TGF-β1/Smad and PI3K-AKT signaling pathways, besides reducing NF-κB gene expression (marker for inflammation), reducing TGF-β1 levels (marker for fibrosis) and increasing SDF-1 levels (liver regeneration marker) in liver. Therefore, current results highlight the importance of autophagy in augmenting the therapeutic potential of stem cell therapy in alleviating cisplatin-associated liver damage and opens the path for improved cell-based therapies, in general, and with chemotherapeutics, in particular.
Collapse
|
26
|
Khalighfard S, Khori V, Alizadeh AM, Vahabzadeh G, Tajaldini M, Sedighi S, Nozarian Z, Khodayari H, Khodayari S, Ganji F, Veisi Malekshahi Z, Mirmajidi T. Dual effects of atorvastatin on angiogenesis pathways in the differentiation of mesenchymal stem cells. Eur J Pharmacol 2021; 907:174281. [PMID: 34217710 DOI: 10.1016/j.ejphar.2021.174281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Atorvastatin (ATO) can improve the transplantation efficacy of mesenchymal stem cells (MSCs) after acute myocardial infarction. The present study aimed at ATO effects on the angiogenesis-signaling pathways from MSCs' differentiation to tissue angiogenesis. MSCs were first prepared from BALB/c mouse bone marrow. MTT assay was then done for the biodegradability of MSCs with the extracellular matrix. After that, the differentiation of cells into the bone and fat tissues was confirmed by Alizarin and Oil Red O staining. The extracellular matrix was then combined with the cells to the implant. Animals were intraperitoneally treated with ATO (2 and 40 mg/kg, daily) three days before cell transplantation to one week after. Finally, the assays were carried out by electron microscopy, immunocytochemistry, ELISA, Western blot, and RT-qPCR techniques. A phase-contrast microscope confirmed the morphology of cells. The cell differentiation into bone and fat tissues was confirmed by Alizarin red staining and flow cytometry, and the cell proliferation was confirmed by MTT assay. Unlike ATO 40 mg/kg group, ATO 2 mg/kg was significantly increased the CD31, eNOS, podocalyxin, von Willibrand factor, and alpha-smooth muscle actin proteins levels compared to the control group in vitro experiment. The expression of CD31 and VEGF proteins, as angiogenesis markers, and Ki-67 protein, as a proliferation marker, was significantly higher in a low dose of ATO (2 mg/kg) than that of the control group in vivo experiment. Unlike ATO 40 mg/kg, the expression levels of ERK, AKT, NF-ҝB, Rho, STAT3, Ets-1, HIF-1α, and VEGF proteins and genes were significantly increased in ATO 2 mg/kg compared to the control. A low dose of ATO can be a beneficial tool in the function of MSCs and their differentiation to tissue angiogenesis.
Collapse
Affiliation(s)
- Solmaz Khalighfard
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Gelareh Vahabzadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mahboubeh Tajaldini
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sima Sedighi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zohreh Nozarian
- Department of Pathology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Khodayari
- International Center for Personalized Medicine, Düsseldorf, Germany
| | - Saeed Khodayari
- International Center for Personalized Medicine, Düsseldorf, Germany
| | - Fatemeh Ganji
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Mirmajidi
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Liu J, He J, Ge L, Xiao H, Huang Y, Zeng L, Jiang Z, Lu M, Hu Z. Hypoxic preconditioning rejuvenates mesenchymal stem cells and enhances neuroprotection following intracerebral hemorrhage via the miR-326-mediated autophagy. Stem Cell Res Ther 2021; 12:413. [PMID: 34294127 PMCID: PMC8296710 DOI: 10.1186/s13287-021-02480-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a major public health concern, and mesenchymal stem cells (MSCs) hold great potential for treating ICH. However, the quantity and quality of MSCs decline in the cerebral niche, limiting the potential efficacy of MSCs. Hypoxic preconditioning is suggested to enhance the survival of MSCs and augment the therapeutic efficacy of MSCs in ICH. MicroRNAs (miRNAs) are known to mediate cellular senescence. However, the precise mechanism by which miRNAs regulate the senescence of hypoxic MSCs remains to be further studied. In the present study, we evaluated whether hypoxic preconditioning enhances the survival and therapeutic effects of olfactory mucosa MSC (OM-MSC) survival and therapeutic effects in ICH and investigated the mechanisms by which miRNA ameliorates hypoxic OM-MSC senescence. METHODS In the in vivo model, ICH was induced in mice by administration of collagenase IV. At 24 h post-ICH, 5 × 105 normoxia or hypoxia OM-MSCs or saline was administered intracerebrally. The behavioral outcome, neuronal apoptosis, and OM-MSC survival were evaluated. In the in vitro model, OM-MSCs were exposed to hemin. Cellular senescence was examined by evaluating the expressions of P16INK4A, P21, P53, and by β-galactosidase staining. Microarray and bioinformatic analyses were performed to investigate the differences in the miRNA expression profiles between the normoxia and hypoxia OM-MSCs. Autophagy was confirmed using the protein expression levels of LC3, P62, and Beclin-1. RESULTS In the in vivo model, transplanted OM-MSCs with hypoxic preconditioning exhibited increased survival and tissue-protective capability. In the in vitro model, hypoxia preconditioning decreased the senescence of OM-MSCs exposed to hemin. Bioinformatic analysis identified that microRNA-326 (miR-326) expression was significantly increased in the hypoxia OM-MSCs compared with that of normoxia OM-MSCs. Upregulation of miR-326 alleviated normoxia OM-MSC senescence, whereas miR-326 downregulation increased hypoxia OM-MSC senescence. Furthermore, we showed that miR-326 alleviated cellular senescence by upregulating autophagy. Mechanistically, miR-326 promoted the autophagy of OM-MSCs via the PI3K signaling pathway by targeting polypyrimidine tract-binding protein 1 (PTBP1). CONCLUSIONS Our study shows that hypoxic preconditioning delays OM-MSC senescence and augments the therapeutic efficacy of OM-MSCs in ICH by upregulating the miR-326/PTBP1/PI3K-mediated autophagy.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lite Ge
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Han Xiao
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Liuwang Zeng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Jiang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Lu
- Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China. .,Hunan Provincial Key Laboratory of Neurorestoratology, Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
28
|
Rapamycin-Preactivated Autophagy Enhances Survival and Differentiation of Mesenchymal Stem Cells After Transplantation into Infarcted Myocardium. Stem Cell Rev Rep 2021; 16:344-356. [PMID: 31927699 PMCID: PMC7152587 DOI: 10.1007/s12015-020-09952-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stem cell transplantation has been limited by poor survival of the engrafted cells in hostile microenvironment of the infarcted myocardium. This study investigated cytoprotective effect of rapamycin-preactivated autophagy on survival of the transplanted mesemchymal stem cells (MSCs). MSCs isolated from rat bone marrow were treated with 50 nmol/L rapamycin for 2 h, and then the cytoprotective effect of rapamycin was examined. After intramyocardial transplantation in rat ischemia/reperfusion models, the survival and differentiation of the rapamycin-pretreated calls were accessed. After treatment with rapamycin, autophagic activities and lysososme production of the cells were increased significantly. In the condition of short-term or long-term hypoxia and serum deprivation, the apoptotic cells in rapamycin-pretreated cells were less, and secretion of HGF, IGF-1, SCF, SDF-1 and VEGF was increased. After transplantation of rapamycin-pretreated cells, repair of the infarcted myocardium and restoration of cardial function were enhanced dramatically. Expression of HGF, IGF-1, SCF, SDF-1, VEGF, HIF-1α and IL-10 in the myocardium was upregulated, while expression of IL-1β and TNF-α was downregulated. Tracing of GFP and Sry gene showed that the survival of rapamycin-pretreated cells was increased. Cardiomyogenesis and angiogenesis in the infarcted myocardium were strengthened. Some rapamycin-pretreated cells differentiated into cardiomyocytes or endothelial cells. These results demonstrate that moderate preactivation of autophagy with rapamycin enhances the survival and differentiation of the transplanted MSCs. Rapamycin-primed MSCs can promote repair of the infarcted myocardium and improvement of cardiac function effectively.
Collapse
|
29
|
Rapamycin and 3-Methyladenine Influence the Apoptosis, Senescence, and Adipogenesis of Human Adipose-Derived Stem Cells by Promoting and Inhibiting Autophagy: An In Vitro and In Vivo Study. Aesthetic Plast Surg 2021; 45:1294-1309. [PMID: 33427891 DOI: 10.1007/s00266-020-02101-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/13/2020] [Indexed: 01/18/2023]
Abstract
OBJECTIVE We aimed to clarify the changes in apoptosis, proliferation, senescence, and adipogenesis after promoting and inhibiting autophagy in adipose-derived stem cells (ADSCs) by rapamycin and 3-methyladenine in vitro and in vivo. METHODS After rapamycin and 3-methyladenine pretreatment, ADSC autophagy was detected by immunofluorescence for LC3, RT-PCR for ATG genes, and western blotting (WB) for the LC3 II/I and p62 proteins. TUNEL staining, PCR of BAX, and WB of Caspase-3 were preformed to assess ADSC apoptosis. The adipogenesis of ADSCs was evaluated by Oil red O staining and PCR of PPAR-γ. CCK8 assays were conducted to detect proliferation. Senescence was tested by Sa-β-gal staining and PCR of the P16/ 19/21 genes. Moreover, the mass and volume retention rate were determined, and perilipin and CD31 staining were performed in vivo. RESULTS Rapamycin and 3-methyladenine pretreatment increased and decreased autophagy of ADSCs, respectively, under normal and oxygen-glucose deprivation conditions. Apoptosis and senescence of ADSCs were decreased, and adipogenesis was increased along with the upregulation of autophagy. However, the proliferation of ADSCs was inhibited after either rapamycin or 3-methyladenine pretreatment. In vivo, the volume and mass retention rate and the angiogenesis of the grafts were also improved after rapamycin pretreatment. CONCLUSIONS Rapamycin pretreatment reduced apoptosis, delayed senescence, and promoted adipogenesis of ADSCs. These effects were inhibited by 3-methyladenine, indicating that the changes may be mediated by autophagy. Moreover, the survival rate and angiogenesis of the grafts were increased after upregulation of ADSC autophagy in vivo, which may help improve the efficiency of clinical fat transplantation. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
30
|
Liu K, Fan R, Zhou Z. Endoplasmic reticulum stress, chondrocyte apoptosis and oxidative stress in cartilage of broilers affected by spontaneous femoral head necrosis. Poult Sci 2021; 100:101258. [PMID: 34175798 PMCID: PMC8242058 DOI: 10.1016/j.psj.2021.101258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/20/2022] Open
Abstract
With the promotion of the intensive breeding model, the incidence of leg diseases has risen in fast-growing commercial broilers with higher body weight, seriously affecting their feed efficiency and causing animal welfare problems. Femoral head necrosis (FHN) is the most common leg disease in broilers. Previous studies reported that hormone-induced FHN is related to endoplasmic reticulum (ER) stress, apoptosis, and oxidative stress, but no detailed study has been conducted in broilers with spontaneous FHN. In the study, the articular cartilage of 5-wk-old Ross 308 broilers with spontaneous FHN was used to investigate the pathogenesis of the disease. According to the degree of femoral head injury, the birds participating in the experiment were divided into 3 groups, namely a control group, femoral head separation group and femoral head separation with growth plate lacerations group. The morphological changes in articular cartilage were observed by hematoxylin and eosin, toluidine blue, alcian blue and safranine O-solid green staining, and the expressions of genes related to cartilage homeostasis, ER stress, autophagy, apoptosis and oxidative stress was detected using Real-Time Quantitative PCR. In the results, the expression of aggrecan and collagen-2 mRNA levels decreased in the articular cartilage of spontaneous FHN broilers, and the same changes were observed in the tissue staining results, indicating the disordered nature of articular cartilage homeostasis. At the same time, FHN in broilers causes ER stress in articular chondrocytes and regulates oxidative stress by activating the nuclear factor erythroid 2-related factor 2/antioxidant response element pathway through protein kinase RNA-like ER kinase. Autophagy can be activated through the protein kinase RNA-like ER kinase-activating transcription factor-4 pathway, and apoptosis can even be activated through CCAAT-enhancer-binding protein homologous protein. Therefore, the secretory activity of articular chondrocytes in spontaneous FHN broilers is negatively affected, which leads to the disorder of cartilage homeostasis and results in FHN due to ER-stress-mediated chondrocyte apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Kangping Liu
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Rubin Fan
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenlei Zhou
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
31
|
Zheng S, Du Y, Ye Q, Zha K, Feng J. Atorvastatin Enhances Foam Cell Lipophagy and Promotes Cholesterol Efflux Through the AMP-Activated Protein Kinase/Mammalian Target of Rapamycin Pathway. J Cardiovasc Pharmacol 2021; 77:508-518. [PMID: 33136767 DOI: 10.1097/fjc.0000000000000942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/15/2020] [Indexed: 12/25/2022]
Abstract
ABSTRACT Foam cells are the main pathological components of atherosclerosis. Therapies reducing foam cell formation can effectively prevent atherosclerotic diseases and cardiovascular events. Beyond lowering plasma cholesterol levels, the pleiotropic functions of statins in atherosclerosis have not been fully elucidated. In the present study, atorvastatin reduced cholesterol content and increased cholesterol efflux from foam cells in a concentration-dependent manner. Atorvastatin (10 μM) inhibited foam cell formation within 48 hours. Furthermore, we found that atorvastatin inhibited foam cell formation by promoting lipophagy, which was manifested by increased autophagy-related gene 5 (Atg5) expression, elevated ratio of microtubule-associated protein1 light chain 3 (LC3) II to LC3I, reduced p62 expression, and increased LC3 and lipid droplets colocalization in foam cells treated with atorvastatin. The autophagy inducer, rapamycin (Rap), did not increase the lipophagy enhancement effect of atorvastatin, but the autophagy inhibitor, 3-methyladenine, suppressed the effect of atorvastatin on Atg5 expression and the LC3II/LC3I ratio, as well as the increased p62 expression, suppressed lipophagy, attenuated cholesterol efflux and increased cholesterol content in foam cells. Further analysis revealed that atorvastatin promoted lipophagy by upregulating adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation, and downregulating mammalian target of rapamycin phosphorylation, whereas the AMPK inhibiter, compound C, attenuated these effects. In conclusion, atorvastatin reduced lipid accumulation and promoted cholesterol efflux by enhancing lipophagy in foam cells and thereby inhibited foam cell formation. The enhanced lipophagy of foam cells was exerted through the AMPK/mammalian target of rapamycin signaling pathway.
Collapse
Affiliation(s)
- Shuzhan Zheng
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | | | | | | | | |
Collapse
|
32
|
Abstract
Objectives
This study aims to explore the mechanism by which osteoblast autophagy participated in glucocorticoid-induced femoral head necrosis (FHN). Materials and methods
Thirty male specific-pathogen-free C57 mice (age, one month; weighing 20-25 g) were randomly divided into blank control, dexamethasone and rapamycin-dexamethasone groups (n=10). After six weeks of intervention, right femoral head was obtained to observe morphology and to calculate percentage of empty lacunae. MC3T3-E1 cells were randomly divided into normal, dexamethasone, rapamycin and dexamethasone-rapamycin groups, and cultured for 24 h. Microtubule-associated protein 1 light chain 3 (LC3)-I, LC3-II, mammalian target of rapamycin (mTOR) and Beclin-1 protein expressions were detected by Western blot. Results
In rapamycin-dexamethasone group, some bone trabeculae in medullary cavity ruptured and atrophied, and subchondral bone underwent local necrosis. The total apoptosis rates of dexamethasone and rapamycin-dexamethasone groups surpassed that of blank control group, and the former two groups had significantly different rates (p<0.001). LC3-II/LC3-I of dexamethasone group was lower than those of rapamycin and dexamethasone-rapamycin groups (p<0.001), and the ratio of rapamycin group surpassed that of dexamethasone-rapamycin group (p<0.001). Dexamethasone group had higher mTOR protein expression than those of rapamycin and dexamethasone- rapamycin groups (p<0.001), and the expression of rapamycin group was lower than that of dexamethasone-rapamycin group (p<0.001). The Beclin-1 protein expression of dexamethasone group was lower than those of rapamycin and dexamethasone- rapamycin groups (p<0.001), and the expression of rapamycin group exceeded that of dexamethasone-rapamycin group (p<0.05). Conclusion Osteoblast autophagy may play a crucial protective role in dexamethasone-induced FHN. The attenuation of autophagy may be related to the affected expressions of key autophagy regulators mTOR and Beclin-1.
Collapse
|
33
|
Kim YJ, Kim WJ, Bae SW, Yang SM, Park SY, Kim SM, Jung JY. Mineral trioxide aggregate-induced AMPK activation stimulates odontoblastic differentiation of human dental pulp cells. Int Endod J 2020; 54:753-767. [PMID: 33277707 DOI: 10.1111/iej.13460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 01/07/2023]
Abstract
AIM To investigate the role of autophagy in MTA-induced odontoblastic differentiation of human dental pulp cells (HDPCs). METHODOLOGY In MTA-treated HDPCs, odontoblastic differentiation was assessed based on expression levels of dentine sialophosphoprotein (DSPP) and dentine matrix protein 1 (DMP1), alkaline phosphatase activity (ALP) activity by ALP staining and the formation of mineralized nodule by Alizarin red S staining. Expression of microtubule-associated protein 1A/1B-light chain3 (LC3), adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signalling molecules and autophagy-related genes was analysed by Western blot analysis and Acridine orange staining was used to detect autophagic lysosome. For in vivo experiments, tooth cavity preparation models on rat molars were established and the expression of proteins-related odontogenesis and autophagy markers was observed by Immunohistochemistry and Western blot analysis. Kruskal-Wallis with Dunn's multiple comparison was used for statistical analysis. RESULTS Mineral trioxide aggregate (MTA) promoted odontoblastic differentiation of HDPCs, accompanied by autophagy induction, including formation of autophagic lysosome and cleavage of LC3 to LC3II (P < 0.05). Conversely, inhibition of autophagy through 3MA significantly attenuated the expression level of DSPP (P < 0.05) and DMP1 (P < 0.05) as well as formation of mineralized nodules (P < 0.05), indicating the functional significance of autophagy in MTA-induced odontoblastic differentiation. Also, MTA increased the activity of AMPK (P < 0.01), whereas inhibition of AMPK by compound C downregulated DSPP (P < 0.01) and DMP1 (P < 0.05), but increased the phosphorylation of mTOR (P < 0.05), p70S6 (P < 0.01) and Unc-51-like kinases 1 (ULK1) (ser757) (P < 0.01), explaining the involvement of AMPK pathway in MTA-induced odontoblast differentiation. In vivo study, MTA treatment after tooth cavity preparation on rat molars upregulated DMP-1 and DSPP as well as autophagy-related proteins LC3II and p62, and enhanced the phosphorylation of AMPK. CONCLUSION MTA induced odontoblastic differentiation and mineralization by modulating autophagy with AMPK activation in HDPCs. Autophagy regulation is a new insight on regenerative endodontic therapy using MTA treatment.
Collapse
Affiliation(s)
- Yoon-Jung Kim
- Department of Oral Physiology, School of Dentistry, Hard Tissue Biointerface Research Center, Chonnam National University, Gwangju, Korea
| | - Won-Jae Kim
- Department of Oral Physiology, School of Dentistry, Hard Tissue Biointerface Research Center, Chonnam National University, Gwangju, Korea
| | - Sun-Woong Bae
- Department of Oral Physiology, School of Dentistry, Hard Tissue Biointerface Research Center, Chonnam National University, Gwangju, Korea
| | - Sun-Mi Yang
- Department of Pediatric Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | - Sam-Young Park
- Department of Oral Physiology, School of Dentistry, Hard Tissue Biointerface Research Center, Chonnam National University, Gwangju, Korea
| | - Seon-Mi Kim
- Department of Pediatric Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | - Ji-Yeon Jung
- Department of Oral Physiology, School of Dentistry, Hard Tissue Biointerface Research Center, Chonnam National University, Gwangju, Korea
| |
Collapse
|
34
|
Perrotta C, Cattaneo MG, Molteni R, De Palma C. Autophagy in the Regulation of Tissue Differentiation and Homeostasis. Front Cell Dev Biol 2020; 8:602901. [PMID: 33363161 PMCID: PMC7758408 DOI: 10.3389/fcell.2020.602901] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a constitutive pathway that allows the lysosomal degradation of damaged components. This conserved process is essential for metabolic plasticity and tissue homeostasis and is crucial for mammalian post-mitotic cells. Autophagy also controls stem cell fate and defective autophagy is involved in many pathophysiological processes. In this review, we focus on established and recent breakthroughs aimed at elucidating the impact of autophagy in differentiation and homeostasis maintenance of endothelium, muscle, immune system, and brain providing a suitable framework of the emerging results and highlighting the pivotal role of autophagic response in tissue functions, stem cell dynamics and differentiation rates.
Collapse
Affiliation(s)
- Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Maria Grazia Cattaneo
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
35
|
Regmi S, Raut PK, Pathak S, Shrestha P, Park PH, Jeong JH. Enhanced viability and function of mesenchymal stromal cell spheroids is mediated via autophagy induction. Autophagy 2020; 17:2991-3010. [PMID: 33206581 DOI: 10.1080/15548627.2020.1850608] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have received attention as promising therapeutic agents for the treatment of various diseases. However, poor post-transplantation viability is a major hurdle in MSC-based therapy, despite encouraging results in many inflammatory disorders. Recently, three dimensional (3D)-cultured MSCs (MSC3D) were shown to have higher cell survival and enhanced anti-inflammatory effects, although the underlying mechanisms have not yet been elucidated. In this study, we investigated the molecular mechanisms by which MSC3D gain the potential for enhanced cell viability. Herein, we found that macroautophagy/autophagy was highly induced and ROS production was suppressed in MSC3D as compared to 2D-cultured MSCs (MSC2D). Interestingly, inhibition of autophagy induction caused decreased cell viability and increased apoptotic activity in MSC3D. Furthermore, modulation of ROS production was closely related to the survival and apoptosis of MSC3D. We also observed that HMOX1 (heme oxygenase 1) was significantly up-regulated in MSC3D. In addition, gene silencing of HMOX1 caused upregulation of ROS production and suppression of the genes related to autophagy. Moreover, inhibition of HIF1A (hypoxia inducible factor 1 subunit alpha) caused suppression of HMOX1 expression in MSC3D, indicating that the HIF1A-HMOX1 axis plays a crucial role in the modulation of ROS production and autophagy induction in MSC3D. Finally, the critical role of autophagy induction on improved therapeutic effects of MSC3D was further verified in dextran sulfate sodium (DSS)-induced murine colitis. Taken together, these results indicated that autophagy activation and modulation of ROS production mediated via the HIF1A-HMOX1 axis play pivotal roles in enhancing the viability of MSC3D.List of abbreviations:3D: three dimensional; 3MA: 3 methlyadenine; AMPK: AMP-activated protein kinase; Baf A1: bafilomycin A1; CFSE: carboxyfluorescein succinimidyl ester; CoCl2: cobalt chloride; CoPP: cobalt protoporphyrin; DSS: dextran sulfate sodium; ECM: extracellular matrix; FOXO3/FOXO3A: forkhead box O3; HIF1A: hypoxia inducible factor 1 subunit alpha; HMOX1/HO-1: heme oxygenase 1; HSCs: hematopoietic stem cells; IL1A/IL-1α: interleukin 1 alpha; IL1B/IL-1β: interleukin 1 beta; IL8: interleukin 8; KEAP1: kelch like ECH associated protein 1; LAMP1: lysosomal associated membrane protein 1; LAMP2: lysosomal associated membrane protein 2; MSC2D: 2D-cultured MSCs; MSC3D: 3D-cultured MSCs; MSCs: mesenchymal stromal cells; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; PGE2: prostaglandin E2; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PINK1: PTEN induced kinase 1; ROS: reactive oxygen species; siRNA: small interfering RNA; SIRT1: sirtuin 1; SOD2: superoxide dismutase 2; SQSTM1/p62: sequestosome 1; TGFB/TGF-β: transforming growth factor beta.
Collapse
Affiliation(s)
- Shobha Regmi
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea.,Department of Radiology, Stanford Medicine, Palo Alto, CA, USA
| | - Pawan Kumar Raut
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea
| | - Shiva Pathak
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea.,Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Prakash Shrestha
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongbuk, Gyeongsan, South Korea
| |
Collapse
|
36
|
Deng J, Zhong L, Zhou Z, Gu C, Huang X, Shen L, Cao S, Ren Z, Zuo Z, Deng J, Yu S. Autophagy: a promising therapeutic target for improving mesenchymal stem cell biological functions. Mol Cell Biochem 2020; 476:1135-1149. [PMID: 33196943 DOI: 10.1007/s11010-020-03978-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are considered to be a promising therapeutic material due to their capacities for self-renewal, multilineage differentiation, and immunomodulation and have attracted great attention in regenerative medicine. However, MSCs may lose their biological functions because of donor age or disease and environmental pressure before and after transplantation, which hinders the application of MSC-based therapy. As a major intracellular lysosome-dependent degradative process, autophagy plays a pivotal role in maintaining cellular homeostasis and withstanding environmental pressure and may become a potential therapeutic target for improving MSC functions. Recent studies have demonstrated that the regulation of autophagy is a promising approach for improving the biological properties of MSCs. More in-depth investigations about the role of autophagy in MSC biology are required to contribute to the clinical application of MSCs. In this review, we focus on the role of autophagy regulation by various physical and chemical factors on the biological functions of MSCs in vitro and in vivo, and provide some strategies for enhancing the therapeutic efficacy of MSCs.
Collapse
Affiliation(s)
- Jiaqiang Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lijun Zhong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zihan Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Congwei Gu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Laboratory Animal Centre, Southwest Medical University, Luzhou, China
| | - Xiaoya Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Suizhong Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shumin Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
37
|
Bublitz K, Böckmann S, Peters K, Hinz B. Cannabinoid-Induced Autophagy and Heme Oxygenase-1 Determine the Fate of Adipose Tissue-Derived Mesenchymal Stem Cells under Stressful Conditions. Cells 2020; 9:cells9102298. [PMID: 33076330 PMCID: PMC7602569 DOI: 10.3390/cells9102298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 01/17/2023] Open
Abstract
The administration of adipose tissue-derived mesenchymal stem cells (ADMSCs) represents a promising therapeutic option after myocardial ischemia or myocardial infarction. However, their potential is reduced due to the high post-transplant cell mortality probably caused by oxidative stress and mitogen-deficient microenvironments. To identify protection strategies for ADMSCs, this study investigated the influence of the non-psychoactive phytocannabinoid cannabidiol (CBD) and the endocannabinoid analogue R(+)-methanandamide (MA) on the induction of heme oxygenase-1 (HO-1) and autophagy under serum-free conditions. At a concentration of 3 µM, CBD induced an upregulation of HO-1 mRNA and protein within 6 h, whereas for MA only a late and comparatively lower increase in the HO-1 protein could be detected after 48 h. In addition, both cannabinoids induced time- and concentration-dependent increases in LC3A/B-II protein, a marker of autophagy, and in metabolic activity. A participation of several cannabinoid-binding receptors in the effect on metabolic activity and HO-1 was excluded. Similarly, knockdown of HO-1 by siRNA or inhibition of HO-1 activity by tin protoporphyrin IX (SnPPIX) had no effect on CBD-induced autophagy and metabolic activity. On the other hand, the inhibition of autophagy by bafilomycin A1 led to a significant decrease in cannabinoid-induced metabolic activity and to an increase in apoptosis. Under these circumstances, a significant induction of HO-1 expression after 24 h could also be demonstrated for MA. Remarkably, inhibition of HO-1 by SnPPIX under conditions of autophagy deficit led to a significant reversal of apoptosis in cannabinoid-treated cells. In conclusion, the investigated cannabinoids increase metabolic viability of ADMSCs under serum-free conditions by inducing HO-1-independent autophagy but contribute to apoptosis under conditions of additional autophagy deficit via an HO-1-dependent pathway.
Collapse
Affiliation(s)
- Katharina Bublitz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock, Germany; (K.B.); (S.B.)
| | - Sabine Böckmann
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock, Germany; (K.B.); (S.B.)
| | - Kirsten Peters
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock, Germany;
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock, Germany; (K.B.); (S.B.)
- Correspondence: ; Tel.: +49-381-494-5770
| |
Collapse
|
38
|
Sienko D, Klimczak-Tomaniak D, Kulesza A, Symonides H, Kuch M, Paczek L, Burdzinska A. The influence of oxygen deprivation and donor age on the effect of statins on human mesenchymal stromal cells. Tissue Cell 2020; 67:101427. [PMID: 32911449 DOI: 10.1016/j.tice.2020.101427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
To date, no study evaluated the effect of oxygen deprivation together with statins pretreatment on human mesenchymal stromal cells (MSCs). The aim of our study was to establish the influence of atorvastatin and rosuvastatin on MSC proliferation and cytotoxicity in different oxygenic conditions. Human MSCs isolated from the bone marrow (n = 12) were incubated with statins. The proliferation rate and cytotoxic effect were evaluated in normoxic (21 %O2) and hypoxic (2%O2) conditions, also in relation to donor age. The treatment with atorvastatin was associated with significantly higher proliferation rate compared to control, both in hypoxic (19 % median increase) and normoxic conditions (20 %), p = 0.02 and p = 0.04, respectively. Atorvastatin had no significant cytotoxic effect on MSCs. Treatment with rosuvastatin in hypoxia resulted in significantly higher proliferation rate (15 %, p = 0.02) comparing to control with no significant cytotoxicity. In atmospheric oxygen concentration, rosuvastatin was associated with no significant change in proliferation and higher cytotoxicity compared to untreated control (p = 0.042 and p = 0.015, for 0.04 μM and 1 μM solutions respectively). There were no differences in the effect of statins on MSC from young donors vs. aged donors. These results suggest that statins could support MSC-based therapy of acute myocardial infarction.
Collapse
Affiliation(s)
- Damian Sienko
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Dominika Klimczak-Tomaniak
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, Kondratowicza 8, 03-242, Warsaw, Poland
| | - Agnieszka Kulesza
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Helena Symonides
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Marek Kuch
- Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, Kondratowicza 8, 03-242, Warsaw, Poland
| | - Leszek Paczek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Anna Burdzinska
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland.
| |
Collapse
|
39
|
Li X, Xu J, Dai B, Wang X, Guo Q, Qin L. Targeting autophagy in osteoporosis: From pathophysiology to potential therapy. Ageing Res Rev 2020; 62:101098. [PMID: 32535273 DOI: 10.1016/j.arr.2020.101098] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Osteoporosis is a highly prevalent disorder characterized by the loss of bone mass and microarchitecture deterioration of bone tissue, attributed to various factors, including menopause (primary), aging (primary) and adverse effects of relevant medications (secondary). In recent decades, knowledge regarding the etiological mechanisms underpinning osteoporosis emphasizes that bone cellular homeostasis, including the maintenance of cell functions, differentiation, and the response to stress, is tightly regulated by autophagy, which is a cell survival mechanism for eliminating and recycling damaged proteins and organelles. With the important roles in the maintenance of cellular homeostasis and organ function, autophagy has emerged as a potential target for the prevention and treatment of osteoporosis. In this review, we update and discuss the pathophysiology of autophagy in normal bone cell life cycle and metabolism. Then, the alternations of autophagy in primary and secondary osteoporosis, and the accompanied pathological process are discussed. Finally, we discuss current strategies, limitations, and challenges involved in targeting relevant pathways and propose strategies by which such hurdles may be circumvented in the future for their translation into clinical validations and applications for the prevention and treatment of osteoporosis.
Collapse
|
40
|
Chen XD, Tan JL, Feng Y, Huang LJ, Zhang M, Cheng B. Autophagy in fate determination of mesenchymal stem cells and bone remodeling. World J Stem Cells 2020; 12:776-786. [PMID: 32952858 PMCID: PMC7477662 DOI: 10.4252/wjsc.v12.i8.776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/17/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely exploited as promising candidates in clinical settings for bone repair and regeneration in view of their self-renewal capacity and multipotentiality. However, little is known about the mechanisms underlying their fate determination, which would illustrate their effectiveness in regenerative medicine. Recent evidence has shed light on a fundamental biological role of autophagy in the maintenance of the regenerative capability of MSCs and bone homeostasis. Autophagy has been implicated in provoking an immediately available cytoprotective mechanism in MSCs against stress, while dysfunction of autophagy impairs the function of MSCs, leading to imbalances of bone remodeling and a wide range of aging and degenerative bone diseases. This review aims to summarize the up-to-date knowledge about the effects of autophagy on MSC fate determination and its role as a stress adaptation response. Meanwhile, we highlight autophagy as a dynamic process and a double-edged sword to account for some discrepancies in the current research. We also discuss the contribution of autophagy to the regulation of bone cells and bone remodeling and emphasize its potential involvement in bone disease.
Collapse
Affiliation(s)
- Xiao-Dan Chen
- Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China
| | - Jia-Li Tan
- Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China
| | - Yi Feng
- Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China
| | - Li-Jia Huang
- Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China
| | - Mei Zhang
- Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China
| |
Collapse
|
41
|
Sun Z, Gu L, Wu K, Wang K, Ru J, Yang S, Wang Z, Zhuge Q, Huang L, Huang S. VX-765 enhances autophagy of human umbilical cord mesenchymal stem cells against stroke-induced apoptosis and inflammatory responses via AMPK/mTOR signaling pathway. CNS Neurosci Ther 2020; 26:952-961. [PMID: 32459063 PMCID: PMC7415204 DOI: 10.1111/cns.13400] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/09/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION To investigate the protective effect of VX-765 on human umbilical mesenchymal stem cells (HUMSCs) in stroke and its mechanism. MATERIALS AND METHODS Mouse models of ischemic stroke were established using the distal middle cerebral artery occlusion (dMCAO) method. The dMCAO mice were accordingly transplanted with HUMSCs, VX-765-treated HUMSCs, or VX-765 + MHY185-treated HUMSCs. The HUMSCs were inserted with green fluorescent protein (GFP) for measurement of transplantation efficiency which was determined by immunofluorescence assay. Oxygen-glucose deprivation (OGD) was applied to mimic ischemic environment in vitro experiments, and the HUMSCs herein were transfected with AMPK inhibitor Compound C or autophagy inhibitor 3-MA. MTT assay was used to test the toxicity of VX-765. TUNEL staining and ELISA were applied to measure the levels of apoptosis and inflammatory cytokines (IL-1β, IL-6, and IL-10), respectively. The expressions of autophagy-associated proteins, AMPK, and mTOR were detected by Western blotting. TTC staining was applied to reveal the infarct lesions in the brain of dMCAO mice. RESULTS The pro-inflammatory cytokines, TUNEL-positive cells, and p-mTOR were decreased while the anti-inflammatory cytokine, autophagy-related proteins, and p-AMPK were increased in HUMSCs treated with VX-765 under OGD condition. Different expression patterns were found with the above factors after transfection of 3-MA or Compound C. The pro-inflammatory cytokines, TUNEL-positive cells, and infarct sections were decreased while the anti-inflammatory cytokine and autophagy-related proteins were increased in dMCAO mice transplanted with VX-765-treated HUMSCs compared to those transplanted with HUMSCs only. The autophagy was inhibited while p-mTOR was up-regulated after transfection of MHY. CONCLUSION VX-765 protects HUMSCs against stroke-induced apoptosis and inflammatory responses by activating autophagy via the AMPK/mTOR signaling pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Zhezhe Sun
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China
| | - Lei Gu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China.,Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ke Wu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China
| | - Kankai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China
| | - Junnan Ru
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China
| | - Su Yang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China
| | - Zhenzhong Wang
- Department of Neurosurgery, Yuyao people's Hospital, Ningbo, China
| | - Qichuan Zhuge
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China
| | - Lijie Huang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China
| | - Shengwei Huang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
42
|
Yang YJ, Qian HY, Song L, Geng YJ, Gao RL, Li N, Wang H, Tian XQ, Huang J, Huang PS, Xu J, Shen R, Lu MJ, Zhao SH, Wu WC, Wu Y, Zhang J, Qian J, Xu JY, Xiong YY. Strengthening effects of bone marrow mononuclear cells with intensive atorvastatin in acute myocardial infarction. Open Heart 2020; 7:e001139. [PMID: 32393654 PMCID: PMC7223465 DOI: 10.1136/openhrt-2019-001139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/20/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To test whether intensive atorvastatin (ATV) increases the efficacy of transplantation with autologous bone marrow mononuclear cells (MNCs) in patients suffering from anterior ST-elevated myocardial infarction (STEMI). METHODS This clinical trial was under a 2×2 factorial design, enrolling 100 STEMI patients, randomly into four groups of regular (RA) or intensive ATV (IA) with MNCs or placebo. The primary endpoint was the change of left ventricular ejection fraction (LVEF) at 1-year follow-up from baseline, primarily assessed by MRI. The secondary endpoints included other parameters of cardiac function, remodelling and regeneration determined by MRI, echocardiography, positron emission tomography (PET) and biomarkers. RESULTS All the STEMI patients with transplantation of MNCs showed significantly increased LVEF change values than those with placebo (p=0.01) with only in the IA+MNCs patients group demonstrating significantly elevation of LVEF than in the IA+placebo group (+12.6% (95%CI 10.4 to 19.3) vs +5.0% (95%CI 4.0 to 10.0), p=0.001), pointing to a better synergy between ATV and MNCs (p=0.019). PET analysis revealed significantly increased viable areas of myocardium (p=0.015), while the scar sizes (p=0.026) and blood aminoterminal pro-B-type natriuretic peptide (p<0.034) reduced. All these above benefits of MNCs were also attributed to IA+MNCs instead of RA+MNCs group of patients with STEMI. CONCLUSIONS Intensive ATV treatment augments the therapeutic efficacy of MNCs in patients with anterior STEMI at the convalescent stage. The treatment with the protocol of intensive ATV and MNC combination offers a clinically essential approach for myocardial infarction. TRIAL REGISTRATION NUMBER NCT00979758.
Collapse
Affiliation(s)
- Yue-Jin Yang
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai-Yan Qian
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Song
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong-Jian Geng
- The Center for Cardiovascular Biology and Atherosclerosis, Department of Internal Medicine, University of Texas McGovern School of Medicine at Houston, Houston, Texas, USA
| | - Run-Lin Gao
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Li
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hong Wang
- Center for Cardiac Critical Care, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Xia-Qiu Tian
- Center for Cardiac Critical Care, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Ji Huang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Pei-Sen Huang
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Xu
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Shen
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min-Jie Lu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shi-Hua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Chun Wu
- Department of Echocardiography, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Wu
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Zhang
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Qian
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Yan Xu
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Yan Xiong
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
43
|
Zeyghami MA, Hesam E, Khadivar P, Hesam HK, Ahmadnia A, Amini A. Effects of atorvastatin and metformin on development of pentylenetetrazole-induced seizure in mice. Heliyon 2020; 6:e03761. [PMID: 32382676 PMCID: PMC7203078 DOI: 10.1016/j.heliyon.2020.e03761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
Recent studies have shown that statins and Metformin may have beneficial effects on seizure through different mechanisms. In the current study, we investigated whether Metformin, Atorvastatin, and concomitant uses of them have beneficial effects on pentylenetetrazole (PTZ)-induced kindling. Adult male C57BL/6 mice were randomly divided into four experimental groups with seven mice in each group. Group 1, control group; group 2, received Metformin (200 mg/kg, i.p); group 3, received Atorvastatin (10 mg/kg, i.p.); group 4, received Atorvastatin (10 mg/kg, i.p.) plus Metformin (200 mg/kg, i.p.). Twenty minutes after injection of the mentioned drugs, the experimented mice received 37/5 mg/kg of PTZ intraperitoneally on alternating days. Then the convulsive behavior signs were evaluated for 20 min after each PTZ injection. There were significant differences in the stage 2 latency parameter among group 2 (p = 0.033, F = 8.46)/group 3 (p = 0.032, F = 10.42)/group 4 (p = 0.008, F = 24.57) as compared to the control group, while no significant differences were found comparing only group 2,3, and 4 with eachother excluding the control group. Pretreatment with Atorvastatin (p = 0.002, F = 33), Atorvastatin + Metformin (p = 0.006, F = 20.77), and Metformin alone increased stage 5 latency as compared to the PTZ group, significantly. Also, our results have shown that pretreatment with Atorvastatin (p = 0.013, F = 14.48), Metformin (p = 0.015, F = 16.67), and concomitant usage of them significantly decreased stage 5 duration as compared to the control group. Our findings clearly demonstrate that concomitant use of Metformin and Atorvastatin has no more protective effect against the development of kindling as compare to these drugs alone. Thus, we concluded that, these drugs may inhibit kindling via a similar mechanism and we suggested that it is probably through regulation of autophagy.
Collapse
Affiliation(s)
- Mohammad Ali Zeyghami
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Dept. Pharmacology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Hesam
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Dept. Physiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parand Khadivar
- Dept. Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Halimeh Khaton Hesam
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Ahmadnia
- Dept. Molecular Medicine, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abolfazl Amini
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
44
|
Gorabi AM, Kiaie N, Pirro M, Bianconi V, Jamialahmadi T, Sahebkar A. Effects of statins on the biological features of mesenchymal stem cells and therapeutic implications. Heart Fail Rev 2020; 26:1259-1272. [PMID: 32008148 DOI: 10.1007/s10741-020-09929-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Statins are well-known lipid-lowering drugs. The pleiotropic effects of statins have brought about some beneficial effects on improving the therapeutic outcomes of cell therapy and tissue engineering approaches. In this review, the impact of statins on mesenchymal stem cell behaviors including differentiation, apoptosis, proliferation, migration, and angiogenesis, as well as molecular pathways which are responsible for such phenomena, are discussed. A better understanding of pathways and mechanisms of statin-mediated effects on mesenchymal stem cells will pave the way for the expansion of statin applications. Furthermore, since designing a suitable carrier for statins is required to maintain a sufficient dose of active statins at the desired site of the body, different systems for local delivery of statins are also reviewed.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran. .,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
45
|
Çelik H, Karahan H, Kelicen-Uğur P. Effect of atorvastatin on Aβ 1-42 -induced alteration of SESN2, SIRT1, LC3II and TPP1 protein expressions in neuronal cell cultures. ACTA ACUST UNITED AC 2019; 72:424-436. [PMID: 31846093 DOI: 10.1111/jphp.13208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Sestrins (SESNs) and sirtuins (SIRTs) are antioxidant and antiapoptotic genes and crucial mediators for lysosomal autophagy regulation that play a pivotal role in the Alzheimer's disease (AD). Recently, statins have been linked to the reduced prevalence of AD in statin-prescribed populations yet molecular basis for the neuroprotective action of statins is still under debate. METHODS This study was undertaken whether Aβ-induced changes of SESN2 and SIRT1 protein expression, autophagy marker LC3II and lysosomal enzyme TPP1 affected by atorvastatin (Western blot) and its possible role in Aβ neurotoxicity (ELISA). KEY FINDINGS/RESULTS We showed that SESN2 and LC3II expressions were elevated, whereas SIRT1 and TPP1 expressions were decreased in the Aβ1-42 -exposed human neuroblastoma cells (SH-SY5Y). Co-administration of atorvastatin with Aβ1-42 compensates SESN2 increase and recovers SIRT1 decline by reducing oxidative stress, decreasing SESN2 expression and increasing SIRT1 expression by its neuroprotective action. Atorvastatin induced LC3II but not TPP1 level in the Aβ1-42 -exposed cells suggested that atorvastatin is effective in the formation of autophagosome but not on the expression of the specific lysosomal enzyme TPP1. DISCUSSION AND CONCLUSION Together, these results indicate that atorvastatin induced SESN2, SIRT1 and LC3II levels play a protective role against Aβ1-42 neurotoxicity.
Collapse
Affiliation(s)
- Hande Çelik
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Ankara, Turkey.,Acıbadem Molecular Pathology Laboratory, İstanbul, Turkey
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pelin Kelicen-Uğur
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
46
|
Tian J, Popal MS, Zhao Y, Liu Y, Chen K, Liu Y. Interplay between Exosomes and Autophagy in Cardiovascular Diseases: Novel Promising Target for Diagnostic and Therapeutic Application. Aging Dis 2019; 10:1302-1310. [PMID: 31788341 PMCID: PMC6844582 DOI: 10.14336/ad.2018.1020] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022] Open
Abstract
Exosome, is identified as a nature nanocarrier and intercellular messenger that regulates cell to cell communication. Autophagy is critical in maintenance of protein homeostasis by degradation of damaged proteins and organelles. Autophagy and exosomes take pivotal roles in cellular homeostasis and cardiovascular disease. Currently, the coordinated mechanisms for exosomes and autophagy in the maintenance of cellular fitness are now garnering much attention. In the present review, we discussed the interplay of exosomes and autophagy in the context of physiology and pathology of the heart, which might provide novel insights for diagnostic and therapeutic application of cardiovascular diseases.
Collapse
Affiliation(s)
- Jinfan Tian
- 1Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,2Cardiovascular disease center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mohammad Sharif Popal
- 1Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yingke Zhao
- 3Li Ka Shing Faculty of Medicine, The University of HongKong, Pokfulam, Hong Kong
| | - Yanfei Liu
- 4Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Keji Chen
- 2Cardiovascular disease center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- 2Cardiovascular disease center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
47
|
Ramesh M, Campos JC, Lee P, Song Y, Hernandez G, Sin J, Tucker KC, Saadaeijahromi H, Gurney M, Ferreira JCB, Andres AM. Mitophagy protects against statin-mediated skeletal muscle toxicity. FASEB J 2019; 33:11857-11869. [PMID: 31365836 PMCID: PMC6902735 DOI: 10.1096/fj.201900807rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
The deleterious effects of statins on skeletal muscle are well known, but the mechanism associated with these effects remains unresolved. Statins are associated with mitochondrial damage, which may contribute to muscle myopathy. Here we demonstrate that simvastatin induces mitophagy in skeletal muscle cells and hypothesized that attenuating this process by silencing the mitophagy adapter p62/sequestosome-1 (SQSTM1) might mitigate myotoxicity. Surprisingly, silencing p62/SQSTM1 in differentiated C2C12 muscle cells exacerbated rather than attenuated myotoxicity. This inhibition of mitophagy in the face of statin challenge correlated with increased release of cytochrome c to the cytosol, activation of caspase-3, and lactate dehydrogenase (LDH) release. Correspondingly, targeted knockdown of Parkin, a canonical E3 ubiquitin ligase important for mitophagy, mirrored the effects of p62/SQSTM1 silencing. To corroborate these findings in vivo, we treated Parkin knockout mice with simvastatin for 2 wk. In line with our findings in vitro, these mitophagy-compromised mice displayed reduced spontaneous activity, loss of grip strength, and increased circulating levels of muscle damage marker LDH. Our findings demonstrate that mitophagy is an important mechanism to resist statin-induced skeletal muscle damage.-Ramesh, M., Campos, J. C., Lee, P., Song, Y., Hernandez, G., Sin, J., Tucker, K. C., Saadaeijahromi, H., Gurney, M., Ferreira, J. C. B., Andres, A. M. Mitophagy protects against statin-mediated skeletal muscle toxicity.
Collapse
Affiliation(s)
- Mridula Ramesh
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, USA
| | - Juliane C. Campos
- Cedars-Sinai Medical Center, Los Angeles, California, USA
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Pamela Lee
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, USA
| | - Yang Song
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Genaro Hernandez
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, USA
| | - Jon Sin
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kyle C. Tucker
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Michael Gurney
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, USA
| | | | | |
Collapse
|
48
|
Shi L, Li B, Zhang B, Zhen C, Zhou J, Tang S. Mouse embryonic palatal mesenchymal cells maintain stemness through the PTEN-Akt-mTOR autophagic pathway. Stem Cell Res Ther 2019; 10:217. [PMID: 31358051 PMCID: PMC6664599 DOI: 10.1186/s13287-019-1340-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/21/2019] [Accepted: 07/14/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Both genetic and environmental factors are implicated in the pathogenesis of cleft palate. However, the molecular and cellular mechanisms that regulate the development of palatal shelves, which are composed of mesenchymal cells, have not yet been fully elucidated. This study aimed to determine the stemness and multilineage differentiation potential of mouse embryonic palatal mesenchyme (MEPM) cells in palatal shelves and to explore the underlying regulatory mechanism associated with cleft palate formation. METHODS Palatal shelves excised from mice models were cultured in vitro to ascertain whether MEPM are stem cells through immunofluorescence and flow cytometry. The osteogenic, adipogenic, and chondrogenic differentiation potential of MEPM cells were also determined to characterize MEPM stemness. In addition, the role of the PTEN-Akt-mTOR autophagic pathway was investigated using quantitative RT-PCR, Western blotting, and transmission electron microscopy. RESULTS MEPM cells in culture exhibited cell surface marker expression profiles similar to that of mouse bone marrow stem cells and exhibited positive staining for vimentin (mesodermal marker), nestin (ectodermal marker), PDGFRα, Efnb1, Osr2, and Meox2 (MEPM cells markers). In addition, exposure to PDGFA stimulated chemotaxis of MEPM cells. MEPM cells exhibited stronger potential for osteogenic differentiation as compared to that for adipogenic and chondrogenic differentiation. Undifferentiated MEPM cells displayed a high concentration of autophagosomes, which disappeared after differentiation (at passage four), indicating the involvement of PTEN-Akt-mTOR signaling. CONCLUSIONS Our findings suggest that MEPM cells are ectomesenchymal stem cells with a strong osteogenic differentiation potential and that maintenance of their stemness via PTEN/AKT/mTOR autophagic signaling prevents cleft palate development.
Collapse
Affiliation(s)
- Lungang Shi
- Department of Plastic Surgery and Burn Center, the Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041 Guangdong China
| | - Binchen Li
- Shantou University Medical College, No. 22 Xinling road, Shantou, 515041 Guangdong China
| | - Binna Zhang
- Center for Translational Medicine, the Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041 Guangdong China
| | - Congyuan Zhen
- Shantou University Medical College, No. 22 Xinling road, Shantou, 515041 Guangdong China
| | - Jianda Zhou
- Department of Plastic Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, the Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041 Guangdong China
| |
Collapse
|
49
|
Li X, Hu X, Tian GG, Cheng P, Li Z, Zhu M, Zhou H, Wu J. C89 Induces Autophagy of Female Germline Stem Cells via Inhibition of the PI3K-Akt Pathway In Vitro. Cells 2019; 8:cells8060606. [PMID: 31216656 PMCID: PMC6627605 DOI: 10.3390/cells8060606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/22/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022] Open
Abstract
Postnatal female germline stem cells (FGSCs) are a type of germline stem cell with self-renewal ability and the capacity of differentiation toward oocyte. The proliferation, differentiation, and apoptosis of FGSCs have been researched in recent years, but autophagy in FGSCs has not been explored. This study investigated the effects of the small-molecule compound 89 (C89) on FGSCs and the underlying molecular mechanism in vitro. Cytometry, Cell Counting Kit-8 (CCK8), and 5-ethynyl-2'-deoxyuridine (EdU) assay showed that the number, viability, and proliferation of FGSCs were significantly reduced in C89-treated groups (0.5, 1, and 2 µM) compared with controls. C89 had no impact on FGSC apoptosis or differentiation. However, C89 treatment induced the expression of light chain 3 beta II (LC3BII) and reduced the expression of sequestosome-1 (SQSTM1) in FGSCs, indicating that C89 induced FGSC autophagy. To investigate the mechanism of C89-induced FGSC autophagy, RNA-seq technology was used to compare the transcriptome differences between C89-treated FGSCs and controls. Bioinformatics analysis of the sequencing data indicated a potential involvement of the phosphatidylinositol 3 kinase and kinase Akt (PI3K-Akt) pathway in the effects of C89's induction of autophagy in FGSCs. Western blot confirmed that levels of p-PI3K and p-Akt were significantly reduced in the C89- or LY294002 (PI3K inhibitor)-treated groups compared with controls. Moreover, we found cooperative functions of C89 and LY294002 in inducing FGSC autophagy through suppressing the PI3K-Akt pathway. Taken together, this research demonstrates that C89 can reduce the number, viability, and proliferation of FGSCs by inducing autophagy. Furthermore, C89 induced FGSC autophagy by inhibiting the activity of PI3K and Akt. The PI3K-Akt pathway may be a target to regulate FGSC proliferation and death.
Collapse
Affiliation(s)
- Xinyue Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaopeng Hu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Geng G Tian
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ping Cheng
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Zezhong Li
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingyan Zhu
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Huchen Zhou
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
50
|
Weiss DJ, English K, Krasnodembskaya A, Isaza-Correa JM, Hawthorne IJ, Mahon BP. The Necrobiology of Mesenchymal Stromal Cells Affects Therapeutic Efficacy. Front Immunol 2019; 10:1228. [PMID: 31214185 PMCID: PMC6557974 DOI: 10.3389/fimmu.2019.01228] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Rapid progress is occurring in understanding the mechanisms underlying mesenchymal stromal cell (MSC)-based cell therapies (MSCT). However, the results of clinical trials, while demonstrating safety, have been varied in regard to efficacy. Recent data from different groups have shown profound and significant influences of the host inflammatory environment on MSCs delivered systemically or through organ-specific routes, for example intratracheal, with subsequent actions on potential MSC efficacies. Intriguingly in some models, it appears that dead or dying cells or subcellular particles derived from them, may contribute to therapeutic efficacy, at least in some circumstances. Thus, the broad cellular changes that accompany MSC death, autophagy, pre-apoptotic function, or indeed the host response to these processes may be essential to therapeutic efficacy. In this review, we summarize the existing literature concerning the necrobiology of MSCs and the available evidence that MSCs undergo autophagy, apoptosis, transfer mitochondria, or release subcellular particles with effector function in pathologic or inflammatory in vivo environments. Advances in understanding the role of immune effector cells in cell therapy, especially macrophages, suggest that the reprogramming of immunity associated with MSCT has a weighty influence on therapeutic efficacy. If correct, these data suggest novel approaches to enhancing the beneficial actions of MSCs that will vary with the inflammatory nature of different disease targets and may influence the choice between autologous or allogeneic or even xenogeneic cells as therapeutics.
Collapse
Affiliation(s)
- Daniel J. Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Karen English
- Cellular Immunology Laboratory, Biology Department, Human Health Research Institute, Maynooth University, Maynooth, Ireland
| | - Anna Krasnodembskaya
- School of Medicine, Dentistry and Biomedical Sciences, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Johana M. Isaza-Correa
- Immunology & Cell Biology Laboratory, Biology Department, Human Health Research Institute, Maynooth University, Maynooth, Ireland
| | - Ian J. Hawthorne
- Cellular Immunology Laboratory, Biology Department, Human Health Research Institute, Maynooth University, Maynooth, Ireland
| | - Bernard P. Mahon
- Immunology & Cell Biology Laboratory, Biology Department, Human Health Research Institute, Maynooth University, Maynooth, Ireland
| |
Collapse
|