1
|
Ahmad N, Anker A, Klein S, Dean J, Knoedler L, Remy K, Pagani A, Kempa S, Terhaag A, Prantl L. Autologous Fat Grafting-A Panacea for Scar Tissue Therapy? Cells 2024; 13:1384. [PMID: 39195271 DOI: 10.3390/cells13161384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Scars may represent more than a cosmetic concern for patients; they may impose functional limitations and are frequently associated with the sensation of itching or pain, thus impacting both psychological and physical well-being. From an aesthetic perspective, scars display variances in color, thickness, texture, contour, and their homogeneity, while the functional aspect encompasses considerations of functionality, pliability, and sensory perception. Scars located in critical anatomic areas have the potential to induce profound impairments, including contracture-related mobility restrictions, thereby significantly impacting daily functioning and the quality of life. Conventional approaches to scar management may suffice to a certain extent, yet there are cases where tailored interventions are warranted. Autologous fat grafting emerges as a promising therapeutic avenue in such instances. Fundamental mechanisms underlying scar formation include chronic inflammation, fibrogenesis and dysregulated wound healing, among other contributing factors. These mechanisms can potentially be alleviated through the application of adipose-derived stem cells, which represent the principal cellular component utilized in the process of lipofilling. Adipose-derived stem cells possess the capacity to secrete proangiogenic factors such as fibroblast growth factor, vascular endothelial growth factor and hepatocyte growth factor, as well as neurotrophic factors, such as brain-derived neurotrophic factors. Moreover, they exhibit multipotency, remodel the extracellular matrix, act in a paracrine manner, and exert immunomodulatory effects through cytokine secretion. These molecular processes contribute to neoangiogenesis, the alleviation of chronic inflammation, and the promotion of a conducive milieu for wound healing. Beyond the obvious benefit in restoring volume, the adipose-derived stem cells and their regenerative capacities facilitate a reduction in pain, pruritus, and fibrosis. This review elucidates the regenerative potential of autologous fat grafting and its beneficial and promising effects on both functional and aesthetic outcomes when applied to scar tissue.
Collapse
Affiliation(s)
- Nura Ahmad
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Alexandra Anker
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Silvan Klein
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Katya Remy
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrea Pagani
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Sally Kempa
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Amraj Terhaag
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Hekimoglu ER, Esrefoglu M, Karakaya Cimen FB, Elibol B, Dedeakayogullari H, Pasin Ö. Beneficial effects of adipose-derived stromal vascular fraction on testicular injury caused by busulfan. Drug Chem Toxicol 2024:1-15. [PMID: 38465409 DOI: 10.1080/01480545.2024.2324332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
The use of stem cells can attenuate testicular injury and promote sperm production. The adipose-derived stromal vascular fraction (SVF) has become an attractive cell source for cell-based therapies. In this study, we aimed to investigate the therapeutic efficacy of SVF on busulfan-induced testicular damage in rats. Twenty-four male rats were randomly divided into control, busulfan, SVF, and busulfan + SVF groups. Testicular damage was induced by intraperitoneal administration of busulfan (35 mg/kg). SVF obtained from human adipose tissue using Lipocube SVF™ was injected into rats 5 weeks after busulfan administration. At the end of the 8th week, rats were sacrificed, and histopathological, biochemical, and western blotting analyses were performed. No harmful effects of SVF on healthy testis tissue and sperm parameters were detected. SVF improved busulfan-induced oxidative stress in both testis tissue and serum. SVF injection to damaged testicular tissue resulted in increases in the healthy spermatozoon numbers and decreases in the abnormal tail numbers. Additionally, SVF increased bax/Bcl, DAZL, and TGF-β1 levels whereas decreased ATG5 and NF-kB levels. According to the results we obtained in this study, we suggest that SVF is beneficial in restoring damaged tissue by primarily being a multipotent cell source, by inhibiting oxidative stress and converting necrotic cell death to apoptotic cell death. In the future, clinical applications should bring higher benefits. Since SVF is the patient's own tissue, being harmless, it will offer an advantageous supportive treatment option for patients already weakened by cancer and anticancer therapy.
Collapse
Affiliation(s)
- E Rumeysa Hekimoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Mukaddes Esrefoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Fatma Bedia Karakaya Cimen
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Huri Dedeakayogullari
- Department of Medical Biochemistry, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Özge Pasin
- Department of Biostatistics, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
3
|
Zhang Y, Du C, Wang W, Qiao W, Li Y, Zhang Y, Sheng S, Zhou X, Zhang L, Fan H, Yu Y, Chen Y, Liao Y, Chen S, Chang Y. Glucocorticoids increase adiposity by stimulating Krüppel-like factor 9 expression in macrophages. Nat Commun 2024; 15:1190. [PMID: 38331933 PMCID: PMC10853261 DOI: 10.1038/s41467-024-45477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
The mechanisms underlying glucocorticoid (GC)-induced obesity are poorly understood. Macrophages are the primary targets by which GCs exert pharmacological effects and perform critical functions in adipose tissue homeostasis. Here, we show that macrophages are essential for GC-induced obesity. Dexamethasone (Dex) strongly induced Krüppel-like factor 9 (Klf9) expression in macrophages. Similar to Dex, lentivirus-mediated Klf9 overexpression inhibits M1 and M2a markers expression, causing macrophage deactivation. Furthermore, the myeloid-specific Klf9 transgene promotes obesity. Conversely, myeloid-specific Klf9-knockout (mKlf9KO) mice are lean. Moreover, myeloid Klf9 knockout largely blocks obesity induced by chronic GC treatment. Mechanistically, GC-inducible KLF9 recruits the SIN3A/HDAC complex to the promoter regions of Il6, Ptgs2, Il10, Arg1, and Chil3 to inhibit their expression, subsequently reducing thermogenesis and increasing lipid accumulation by inhibiting STAT3 signaling in adipocytes. Thus, KLF9 in macrophages integrates the beneficial anti-inflammatory and adverse metabolic effects of GCs and represents a potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Yinliang Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Chunyuan Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Wei Wang
- Key Laboratory of Biotechnology of Hubei Province, Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan, China
| | - Wei Qiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Yuhui Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Yujie Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Sufang Sheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Xuenan Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Lei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Heng Fan
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Ningxia, China
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yong Chen
- Key Laboratory of Biotechnology of Hubei Province, Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan, China
| | - Yunfei Liao
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shihong Chen
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, China.
| | - Yongsheng Chang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
4
|
Kuziel G, Moore BN, Haugstad GP, Arendt LM. Fibrocytes enhance mammary gland fibrosis in obesity. FASEB J 2023; 37:e23049. [PMID: 37342915 PMCID: PMC10316715 DOI: 10.1096/fj.202300399rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Obesity rates continue to rise, and obese individuals are at higher risk for multiple types of cancer, including breast cancer. Obese mammary fat is a site of chronic, macrophage-driven inflammation, which enhances fibrosis within adipose tissue. Elevated fibrosis within the mammary gland may contribute to risk for obesity-associated breast cancer. To understand how inflammation due to obesity enhanced fibrosis within mammary tissue, we utilized a high-fat diet model of obesity and elimination of CCR2 signaling in mice to identify changes in immune cell populations and their impact on fibrosis. We observed that obesity increased a population of CD11b+ cells with the ability to form myofibroblast-like colonies in vitro. This population of CD11b+ cells is consistent with fibrocytes, which have been identified in wound healing and chronic inflammatory diseases but have not been examined in obesity. In CCR2-null mice, which have limited ability to recruit myeloid lineage cells into obese adipose tissue, we observed reduced mammary fibrosis and diminished fibrocyte colony formation in vitro. Transplantation of myeloid progenitor cells, which are the cells of origin for fibrocytes, into the mammary glands of obese CCR2-null mice resulted in significantly increased myofibroblast formation. Gene expression analyses of the myeloid progenitor cell population from obese mice demonstrated enrichment for genes associated with collagen biosynthesis and extracellular matrix remodeling. Together these results show that obesity enhances recruitment of fibrocytes to promote obesity-induced fibrosis in the mammary gland.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Program, University of Wisconsin-Madison,
Madison WI 53706, U.S.A
| | - Brittney N. Moore
- Department of Comparative Biosciences, University of
Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Grace P. Haugstad
- Department of Comparative Biosciences, University of
Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Lisa M. Arendt
- Cancer Biology Program, University of Wisconsin-Madison,
Madison WI 53706, U.S.A
- Department of Comparative Biosciences, University of
Wisconsin-Madison, Madison WI 53706, U.S.A
| |
Collapse
|
5
|
Kuziel G, Moore BN, Arendt LM. Obesity and Fibrosis: Setting the Stage for Breast Cancer. Cancers (Basel) 2023; 15:cancers15112929. [PMID: 37296891 DOI: 10.3390/cancers15112929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity is a rising health concern and is linked to a worsened breast cancer prognosis. Tumor desmoplasia, which is characterized by elevated numbers of cancer-associated fibroblasts and the deposition of fibrillar collagens within the stroma, may contribute to the aggressive clinical behavior of breast cancer in obesity. A major component of the breast is adipose tissue, and fibrotic changes in adipose tissue due to obesity may contribute to breast cancer development and the biology of the resulting tumors. Adipose tissue fibrosis is a consequence of obesity that has multiple sources. Adipocytes and adipose-derived stromal cells secrete extracellular matrix composed of collagen family members and matricellular proteins that are altered by obesity. Adipose tissue also becomes a site of chronic, macrophage-driven inflammation. Macrophages exist as a diverse population within obese adipose tissue and mediate the development of fibrosis through the secretion of growth factors and matricellular proteins and interactions with other stromal cells. While weight loss is recommended to resolve obesity, the long-term effects of weight loss on adipose tissue fibrosis and inflammation within breast tissue are less clear. Increased fibrosis within breast tissue may increase the risk for tumor development as well as promote characteristics associated with tumor aggressiveness.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Graduate Program, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA
| | - Brittney N Moore
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Lisa M Arendt
- Cancer Biology Graduate Program, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
6
|
Takahashi A, Nakajima H, Kubota A, Watanabe S, Matsumine A. Adipose-Derived Mesenchymal Stromal Cell Transplantation for Severe Spinal Cord Injury: Functional Improvement Supported by Angiogenesis and Neuroprotection. Cells 2023; 12:1470. [PMID: 37296591 PMCID: PMC10252677 DOI: 10.3390/cells12111470] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Mesenchymal stromal cell transplantation alone is insufficient when motor dysfunction is severe; combination therapy with rehabilitation could improve motor function. Here, we aimed to analyze the characteristics of adipose-derived MSCs (AD-MSCs) and determine their effectiveness in severe spinal cord injury (SCI) treatment. A severe SCI model was created and motor function were compared. The rats were divided into AD-MSC-transplanted treadmill exercise-combined (AD-Ex), AD-MSC-transplanted non-exercise (AD-noEx), PBS-injected exercise (PBS-Ex), and no PBS-injected exercise (PBS-noEx) groups. In cultured cell experiments, AD-MSCs were subjected to oxidative stress, and the effects on the extracellular secretion of AD-MSCs were investigated using multiplex flow cytometry. We assessed angiogenesis and macrophage accumulation in the acute phase. Spinal cavity or scar size and axonal preservation were assessed histologically in the subacute phase. Significant motor function improvement was observed in the AD-Ex group. Vascular endothelial growth factor and C-C motif chemokine 2 expression in AD-MSC culture supernatants increased under oxidative stress. Enhanced angiogenesis and decreased macrophage accumulation were observed at 2 weeks post-transplantation, whereas spinal cord cavity or scar size and axonal preservation were observed at 4 weeks. Overall, AD-MSC transplantation combined with treadmill exercise training improved motor function in severe SCI. AD-MSC transplantation promoted angiogenesis and neuroprotection.
Collapse
Affiliation(s)
| | - Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, University of Fukui, Fukui 910-1193, Japan; (A.T.)
| | | | | | | |
Collapse
|
7
|
Integrin-specific hydrogels for growth factor-free vasculogenesis. NPJ Regen Med 2022; 7:57. [PMID: 36167724 PMCID: PMC9515164 DOI: 10.1038/s41536-022-00253-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Integrin-binding biomaterials have been extensively evaluated for their capacity to enable de novo formation of capillary-like structures/vessels, ultimately supporting neovascularization in vivo. Yet, the role of integrins as vascular initiators in engineered materials is still not well understood. Here, we show that αvβ3 integrin-specific 3D matrices were able to retain PECAM1+ cells from the stromal vascular fraction (SVF) of adipose tissue, triggering vasculogenesis in vitro in the absence of extrinsic growth factors. Our results suggest that αvβ3-RGD-driven signaling in the formation of capillary-like structures prevents the activation of the caspase 8 pathway and activates the FAK/paxillin pathway, both responsible for endothelial cells (ECs) survival and migration. We also show that prevascularized αvβ3 integrin-specific constructs inosculate with the host vascular system fostering in vivo neovascularization. Overall, this work demonstrates the ability of the biomaterial to trigger vasculogenesis in an integrin-specific manner, by activating essential pathways for EC survival and migration within a self-regulatory growth factor microenvironment. This strategy represents an improvement to current vascularization routes for Tissue Engineering constructs, potentially enhancing their clinical applicability.
Collapse
|
8
|
Shao J, Ge T, Tang C, Wang G, Pang L, Chen Z. Synergistic anti-inflammatory effect of gut microbiota and lithocholic acid on liver fibrosis. Inflamm Res 2022; 71:1389-1401. [DOI: 10.1007/s00011-022-01629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
|
9
|
Lana JFSD, Lana AVSD, da Fonseca LF, Coelho MA, Marques GG, Mosaner T, Ribeiro LL, Azzini GOM, Santos GS, Fonseca E, de Andrade MAP. Stromal Vascular Fraction for Knee Osteoarthritis - An Update. J Stem Cells Regen Med 2022; 18:11-20. [PMID: 36003656 DOI: 10.46582/jsrm.1801003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022]
Abstract
Orthobiologics never cease to cause popularity within the medical science field, distinctly in regenerative medicine. Recently, adipose tissue has been an object of interest for many researchers and medical experts due to the fact that it represents a novel and potential cell source for tissue engineering and regenerative medicine purposes. Stromal vascular fraction (SVF), for instance, which is an adipose tissue-derivative, has generated optimistic results in many scenarios. Its biological potential can be harnessed and administered into injured tissues, particularly areas in which standard healing is disrupted. This is a typical feature of osteoarthritis (OA), a common degenerative joint disease which is outlined by persistent inflammation and destruction of surrounding tissues. SVF is known to carry a large amount of stem and progenitor cells, which are able to perform self-renewal, differentiation, and proliferation. Furthermore, they also secrete several cytokines and several growth factors, effectively sustaining immune modulatory effects and halting the escalated pro-inflammatory status of OA. Although SVF has shown interesting results throughout the medical community, additional research is still highly desirable in order to further elucidate its potential regarding musculoskeletal disorders, especially OA.
Collapse
Affiliation(s)
| | | | - Lucas Furtado da Fonseca
- Orthopaedic Department - Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo - SP, Brazil
| | - Marcelo Amaral Coelho
- IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Indaiatuba - SP, Brazil
| | | | - Tomas Mosaner
- IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Indaiatuba - SP, Brazil
| | | | | | - Gabriel Silva Santos
- IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Indaiatuba - SP, Brazil
| | - Eduardo Fonseca
- IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Indaiatuba - SP, Brazil
| | | |
Collapse
|
10
|
Dong G, Wu H, Hu J, Teng L. Stromal Vascular Fraction Promotes Viability of Co-grafted Axial Skin Flaps in Rats Model. Aesthetic Plast Surg 2022; 46:1950-1963. [PMID: 35794244 DOI: 10.1007/s00266-022-02812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Stromal vascular fraction (SVF) has been proved in promoting the vascularization of fascial flap through cell differentiation and paracrine effect and can be autologous transplanted without culture after isolation in vitro. We intend to establish a novel co-grafted flap model of rats to investigate the efficacy and mechanism of SVF on flaps and skinsin facilitating angiogenesis and immune regulation. METHOD 60 female Sprague Dawley rats were divided into the SVF group and the control group. A pedicled fascial flap combined with a free skin model was established, and 4×106 CM-DIl labeled SVF cells were transplanted into the fascia flap; the rats were executed on days 1, 2, 3, 7, 10 postoperatively (n = 6). Flow cytometry was carried out to determine the cell proportion and surface marker of SVFs. The therapeutic effects of SVF were evaluated via Doppler blood perfusion imager, flap survival rates, histology, immunohistochemistry and immunofluorescence. The bioinformatic mechanism analysis was achieved by high-throughput RNAseq of mRNA and LncRNA. RESULT Flow cytometry confirmed SVF contains heterogeneous cellular composition, especially hematopoietic cells. Doppler blood perfusion imager showed SVF significantly improved flap survival with higher blood perfusion and survival rates. Immunohistochemistry of CD31 displayed higher level of angiogenesis in SVF-treated group, and CM-DIL-labeled SVF cells could survive and participate in revascularization, and RNA sequencing results revealed SVF promoted wound healing by facilitating intercellular adhesion, cell migration and positive immune response. CONCLUSION SVF could reduce skin flap necrosis and activated neovascularization in rats by facilitating intercellular adhesion, cell migration and regulate positive immune response. LEVEL OF EVIDENCE N/A This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
Affiliation(s)
- Guoxuan Dong
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Badachu Road, Shijingshan District, No. 33, Beijing, 100144, China
| | - Huanhuan Wu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Badachu Road, Shijingshan District, No. 33, Beijing, 100144, China.
| | - JunLong Hu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Badachu Road, Shijingshan District, No. 33, Beijing, 100144, China
| | - Li Teng
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Badachu Road, Shijingshan District, No. 33, Beijing, 100144, China.
| |
Collapse
|
11
|
Mashiko T, Tsukada K, Takada H, Wu SH, Kanayama K, Asahi R, Mori M, Kurisaki A, Oka S, Yoshimura K. Genetic and cytometric analyses of subcutaneous adipose tissue in patients with hemophilia and HIV-associated lipodystrophy. AIDS Res Ther 2022; 19:14. [PMID: 35246167 PMCID: PMC8895510 DOI: 10.1186/s12981-022-00432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
Background The authors recently performed plastic surgeries for a small number of patients with hemophilia, HIV infection, and morphologic evidence of lipodystrophy. Because the pathophysiological mechanism of HIV-associated lipodystrophy remains to be elucidated, we analyzed subcutaneous adipose tissues from the patients. Methods All six patients had previously been treated with older nucleoside analogue reverse-transcriptase inhibitors (NRTIs; stavudine, didanosine or zidovudine). Abdominal and inguinal subcutaneous fat samples were obtained from the HIV+ patients with hemophilia and HIV− healthy volunteers (n = 6 per group), and analyzed via DNA microarray, real-time PCR, flow cytometry and immunohistochemistry. Results The time from initial NRTI treatment to collecting samples were 21.7 years in average. Cytometric analysis revealed infiltration of inflammatory M1 macrophages into HIV-infected adipose tissue and depletion of adipose-derived stem cells, possibly due to exhaustion following sustained adipocyte death. Genetic analysis revealed that adipose tissue from HIV+ group had increased immune activation, mitochondrial toxicity, chronic inflammation, progressive fibrosis and adipocyte dysfunction (e.g. insulin resistance, inhibited adipocyte differentiation and accelerated apoptosis). Of note, both triglyceride synthesis and lipolysis were inhibited in adipose tissue from patients with HIV. Conclusions Our findings provide important insights into the pathogenesis of HIV-associated lipodystrophy, suggesting that fat redistribution may critically depend on adipocytes’ sensitivity to drug-induced mitochondrial toxicity, which may lead either to atrophy or metabolic complications. Supplementary Information The online version contains supplementary material available at 10.1186/s12981-022-00432-9.
Collapse
|
12
|
Ding P, Lu E, Li G, Sun Y, Yang W, Zhao Z. Research progress on preparation, mechanism, and clinical application of nanofat. J Burn Care Res 2022; 43:1140-1144. [PMID: 35015870 PMCID: PMC9435497 DOI: 10.1093/jbcr/irab250] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Autologous adipose tissue is an ideal soft tissue filling material in theory, which has the advantages of easy access, comprehensive source, and high biocompatibility and is now widely used in clinical practice. Based on the above benefits of autologous fat, autologous fat grafting is an essential technique in plastic surgery. Conventional macrofat is used to improve structural changes after soft tissue damage or loss caused by various causes such as disease, trauma, or aging. Due to the large diameter of particles and to avoid serious complications such as fat embolism, blunt needles with larger diameters (2 mm) are required, making the macrofat grafting difficult to the deep dermis and subdermis. Nanofat grafting is a relatively new technology that has gained popularity in cosmetic surgery in recent years. Nanofat is produced by mechanical shuffling and filtration of microfat, which is harvested by liposuction. The harvesting and processing of nanofat are cost-effective as it does not require additional equipment or culture time. Unlike microfat, nanofat particles are too small to provide a notable volumizing effect. Studies have shown that nanofat contains abundant stromal vascular fraction cells and adipose-derived stem cells, which help reconstruct dermal support structures, such as collagen, and regenerate healthier, younger-looking skin. Moreover, the fluid consistency of nanofat allows application in tissue regeneration, such as scars, chronic wounds, and facial rejuvenation. This article reviews the current research progress on the preparation, mechanism, and clinical application of nanofat.
Collapse
Affiliation(s)
- Pengbing Ding
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Enhang Lu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Guan Li
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Yidan Sun
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Wenhui Yang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
13
|
Reinhardt JW, Breuer CK. Fibrocytes: A Critical Review and Practical Guide. Front Immunol 2021; 12:784401. [PMID: 34975874 PMCID: PMC8718395 DOI: 10.3389/fimmu.2021.784401] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023] Open
Abstract
Fibrocytes are hematopoietic-derived cells that directly contribute to tissue fibrosis by producing collagen following injury, during disease, and with aging. The lack of a fibrocyte-specific marker has led to the use of multiple strategies for identifying these cells in vivo. This review will detail how past studies were performed, report their findings, and discuss their strengths and limitations. The motivation is to identify opportunities for further investigation and promote the adoption of best practices during future study design.
Collapse
Affiliation(s)
- James W. Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
14
|
Liu YJ, Zhang TY, Tan PC, Zhang PQ, Xie Y, Li QF, Zhou SB. Superiority of Adipose-derived CD34 + Cells over Adipose-derived Stem Cells in Promoting Ischemic Tissue Survival. Stem Cell Rev Rep 2021; 18:660-671. [PMID: 34787794 DOI: 10.1007/s12015-021-10276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Tissue ischemia usually leads to necrosis and is a threatening condition associated with reconstructive surgery. Promoting the survival of ischemic tissue is critical for improving clinical outcomes. Although various solutions based on stem cells have been reported, there are still limitations to clinical translation. The aim of this study was to develop an effective method to promote the survival of ischemic tissue. METHODS Adipose-derived CD34 + and CD34- cells were obtained by magnetic bead sorting from the stromal vascular faction (SVF). Adipose-derived stem cells (ADSCs) were collected by subculture. The angiogenic capacities of CD34 + cells, CD34- cells and ADSCs were evaluated in vitro by comparing mRNA and protein expression. Random axial flaps in nude mice were used to evaluate the efficacy of these cells in protecting tissue from necrosis. The effect of these cells in preventing inflammation was also evaluated. RESULTS Our data suggest that CD34 + cells expressed higher levels of angiogenetic factors and lower levels of inflammatory factors than the other cell types. More vessel branches were formed when human umbilical vein endothelial cells (HUVECs) were treated with conditioned medium from CD34 + cells than conditioned medium from the other cell types. Compared to ADSCs, CD34 + cells showed significantly higher efficacy in promoting tissue survival. More CD31 + cells and higher levels of angiogenic factors were observed in tissues from the CD34 + group than in those from the other groups. Lower levels of the proinflammatory factors TNF-α and IL-1b and higher levels of anti-inflammatory factors were found in the CD34 + group than in the other groups. CONCLUSION Adipose-derived CD34 + cells showed better efficacy in improving ischemic tissue survival than ADSCs by reducing tissue inflammation and promoting angiogenesis. CD34 + cells can be obtained easily and may be suitable for clinical applications.
Collapse
Affiliation(s)
- Yan-Jun Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizhaoju Road, Shanghai, People's Republic of China, 200011
| | - Tian-Yu Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizhaoju Road, Shanghai, People's Republic of China, 200011.,College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Poh-Ching Tan
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizhaoju Road, Shanghai, People's Republic of China, 200011
| | - Pei-Qi Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizhaoju Road, Shanghai, People's Republic of China, 200011
| | - Yun Xie
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizhaoju Road, Shanghai, People's Republic of China, 200011
| | - Qing-Feng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizhaoju Road, Shanghai, People's Republic of China, 200011
| | - Shuang-Bai Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizhaoju Road, Shanghai, People's Republic of China, 200011.
| |
Collapse
|
15
|
Froehlich H, Simari RD, Boilson BA. Differential phenotype and behavior in culture of CD34 positive cells from peripheral blood and adipose tissue. Heliyon 2021; 7:e07779. [PMID: 34458617 PMCID: PMC8377488 DOI: 10.1016/j.heliyon.2021.e07779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/14/2021] [Accepted: 08/10/2021] [Indexed: 01/31/2023] Open
Abstract
The localization and quantification of endothelial progenitor cells (EPCs) are controversial. Circulating CD34 + cells in blood have been identified as EPCs and as biomarkers of cardiovascular disease. We discuss in this paper the current data describing differential phenotype and behavior in vitro of CD34 positive cells from the circulation and adipose tissue (AT). We also describe in brief our own findings from CD34 + cells isolated from leukopheresis cones derived from healthy platelet donors and from patients undergoing bariatric surgery. We conclude that CD34 + cells in blood and in AT are different in antigenic profile and behavior in culture. The findings described assert that CD34 + cells detected in blood previously identified as biomarkers of cardiovascular disease are predominantly HPCs rather than EPCs, and that true CD34 + EPCs can be readily identified and extracted from AT, supportive of the current evidence which suggests EPCs are resident in the tissue vasculature.
Collapse
Affiliation(s)
- Harald Froehlich
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA.,Department of Internal Medicine and Emergency Medicine, LKH Graz II, Graz, Austria
| | - Robert D Simari
- Department of Cardiovascular Medicine, University of Kansas School of Medicine, USA
| | - Barry A Boilson
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Crawford L, Wyatt M, Bryers J, Ratner B. Biocompatibility Evolves: Phenomenology to Toxicology to Regeneration. Adv Healthc Mater 2021; 10:e2002153. [PMID: 33829678 PMCID: PMC8221530 DOI: 10.1002/adhm.202002153] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Indexed: 12/20/2022]
Abstract
The word "biocompatibility," is inconsistent with the observations of healing for so-called biocompatible biomaterials. The vast majority of the millions of medical implants in humans today, presumably "biocompatible," are walled off by a dense, avascular, crosslinked collagen capsule, hardly suggestive of life or compatibility. In contrast, one is now seeing examples of implant biomaterials that lead to a vascularized reconstruction of localized tissue, a biological reaction different from traditional biocompatible materials that generate a foreign body capsule. Both the encapsulated biomaterials and the reconstructive biomaterials qualify as "biocompatible" by present day measurements of biocompatibility. Yet, this new generation of materials would seem to heal "compatibly" with the living organism, where older biomaterials are isolated from the living organism by the dense capsule. This review/perspective article will explore this biocompatibility etymological conundrum by reviewing the history of the concepts around biocompatibility, today's standard methods for assessing biocompatibility, a contemporary view of the foreign body reaction and finally, a compendium of new biomaterials that heal without the foreign body capsule. A new definition of biocompatibility is offered here to address advances in biomaterials design leading to biomaterials that heal into the body in a facile manner.
Collapse
Affiliation(s)
- Lars Crawford
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Meghan Wyatt
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - James Bryers
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Buddy Ratner
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
17
|
Abstract
One of the earliest reported cases of autologous fat grafting (AFG) was by Neuber in 1893 and consisted of the transfer of small lobules of fat from the upper arm for cicatrical depression of the face. He advocated the use of smaller grafts, noting that pieces larger than the size of a bean would form cysts. In 1895, Czerny excised a lumbar lipoma and transplanted it to the chest for breast reconstruction. Since these early reports, the knowledge base around AFG has expanded exponentially, as illustrated by the other papers within this special topic. As we embark on the next phase of AFG in the clinical setting, there are several directions which are near-clinical translation. This paper discusses future directions in fat grafting that build on optimization of our current techniques as clinical indications expand, such as supplementing purified lipoaspirate and the associated regulatory burden, or deconstructing adipose tissue to selectively use adipose graft components for a variety of regenerative indications.
Collapse
Affiliation(s)
- Summer E Hanson
- Department of Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| |
Collapse
|
18
|
Schreiter JS, Langer S, Klöting N, Kurow O. Leptin promotes adipocytes survival in non-vascularized fat grafting via perfusion increase. Microvasc Res 2021; 135:104131. [PMID: 33421432 DOI: 10.1016/j.mvr.2021.104131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Though autologous fat transplantation is regularly and successfully performed in plastic surgery, little is known about the factors that contribute to the rise of preadipocytes and how the viability of adipocytes is regulated. As sufficient blood supply is a key parameter for the transplant's survival, we opted to analyse the development of preadipocytes within the fat transplant via stimulation of tissue perfusion with the angiogenesis enhancing hormone leptin. METHODS In a murine (C57BL/6N) model inguinal fat was autologously transplanted into a dorsal skinfold chamber. In the intervention group the fat transplant was treated with local administration of leptin (3 μg/ml) at days 3, 7 and 10 after transplantation. Saline solution was administered respectively in the control group. On the postoperative days 3, 7, 10, and 15 intra vital microscopy was done to assess the functional vessel density, vessel diameter, adipocyte survival and preadipocyte development. The study was completed by histological tissue analysis on days 15 after transplantation. RESULTS Leptin administration leads to an increase of angiogenesis, which starts from day 7 after implantation and elevates perfusion as well as functional vessel density FVD at days 10 and 15 after transplantation. Perfusion develops first from the border zones of the transplant. Histological evaluation showed that the percentage of perilipin positive adipocytes increased markedly in the study group of mice. Moreover, fat transplants of mice of the leptin group disclosed significantly higher Pref-1 positive cells than fat transplants of the control group. The findings reported in this study indicate that the leptin can enhance the survival and the quality of grafted fat tissue, which may be due to induction of angiogenesis. CONCLUSION Leptin administration to fat transplants induced an increase in angiogenesis in the transplanted tissue and may play a role in reducing the resorption rate of lipoaspirates.
Collapse
Affiliation(s)
- Jeannine S Schreiter
- Department of Orthopaedics, Trauma Surgery and Plastic Surgery, University Hospital Leipzig, Germany.
| | - Stefan Langer
- Department of Orthopaedics, Trauma Surgery and Plastic Surgery, University Hospital Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Olga Kurow
- Department of Orthopaedics, Trauma Surgery and Plastic Surgery, University Hospital Leipzig, Germany
| |
Collapse
|
19
|
Cannula Size Effect on Stromal Vascular Fraction Content of Fat Grafts. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3471. [PMID: 33907655 PMCID: PMC8062151 DOI: 10.1097/gox.0000000000003471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022]
Abstract
Background Fat is an active and dynamic tissue composed of adipocytes supported by a structural framework known as the stromal vascular fraction (SVF). SVF is traditionally isolated by enzymatic processing, but new methods are being investigated to isolate it mechanically. Recent studies propose that fat harvested with larger cannulas has a higher survival rate, most likely due to a higher concentration of SVF. Methods Lipoaspirates were obtained from 10 patients who underwent elective liposuction using a 5-mm and a 1-mm cannula attached to a syringe using standard pressure. The fat was aspirated from the same area at adjacent sites. An estimated 5-mm fat particles were also cut down to 1-mm using a micronizer (Marina Medical). A 5-cm3 volume of each sample was compressed through a 0.5-mm opening strainer and rinsed with normal saline to extrude the oil. The resultant SVF left on the strainer was then measured in a 1-cm3 syringe. Results The volume extracted from a 5-mm cannula (mean, 0.23 cm3; SD, 0.10) versus a 1-mm cannula (mean, 0.11 cm3; SD, 0.06) was statistically significant (P = 0.009). An H&E-stained slide from the SVF was obtained for confirmation. Finally, 5-mm fat particles cut down to 1-mm particles using the micronizer resulted in an average volume of 0.20 cm3, which was higher than the average volume harvested with a 1-mm cannula. Conclusions Harvesting with a 5-mm cannula resulted in significantly more SVF than harvesting with a 1-mm cannula. Resizing fat particles harvested with a larger cannula down to 1-mm resulted in higher SVF than SVF obtained with a 1-mm cannula directly.
Collapse
|
20
|
Harasymowicz NS, Rashidi N, Savadipour A, Wu CL, Tang R, Bramley J, Buchser W, Guilak F. Single-cell RNA sequencing reveals the induction of novel myeloid and myeloid-associated cell populations in visceral fat with long-term obesity. FASEB J 2021; 35:e21417. [PMID: 33566380 PMCID: PMC8743141 DOI: 10.1096/fj.202001970r] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/29/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Macrophages and other immune cells are important contributors to obesity-associated inflammation; however, the cellular identities of these specific populations remain unknown. In this study, we identified individual populations of myeloid cells found in mouse epididymal/visceral adipose tissue by single-cell RNA sequencing, immunofluorescence, and flow cytometry. Multiple canonical correlation analysis identified 11 unique myeloid and myeloid-associate cell populations. In obese mice, we detected an increased percentage of monocyte-derived pro-inflammatory cells expressing Cd9 and Trem2, as well as significantly decreased percentages of multiple cell populations, including tissue-resident cells expressing Lyve1, Mafb, and Mrc1. We have identified and validated a novel myeloid/macrophage population defined by Ly6a expression, exhibiting both myeloid and mesenchymal characteristics, which increased with obesity and showed high pro-fibrotic characteristics in vitro. Our mouse adipose tissue myeloid cell atlas provides an important resource to investigate obesity-associated inflammation and fibrosis.
Collapse
Affiliation(s)
- Natalia S. Harasymowicz
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Neda Rashidi
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Alireza Savadipour
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Ruhang Tang
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - John Bramley
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - William Buchser
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
21
|
Jones VM, Suarez-Martinez AD, Hodges NA, Murfee WL, Llull R, Katz AJ. A clinical perspective on adipose-derived cell therapy for enhancing microvascular health and function: Implications and applications for reconstructive surgery. Microcirculation 2020; 28:e12672. [PMID: 33174272 DOI: 10.1111/micc.12672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/18/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022]
Abstract
Restoration of form and function requires apposition of tissues in the form of flaps to reconstitute local perfusion. Successful reconstruction relies on flap survival and its integration with the recipient bed. The flap's precariously perfused hypoxic areas undergo adaptive microvascular changes both internally and in connection with the recipient bed. A cell-mediated, coordinated response to hypoxia drives these adaptive processes, restoring a tissue's normoxic homeostasis via de novo vasculogenesis, sprouting angiogenesis, and stabilizing arterialization. As cells exert prolonged and coordinated effects on site, their use as biological agents merit translational consideration of sourcing angio-competent cells and delivering them to territories enduring microcirculatory acclimatization. Angio-competent cells abound in adipose tissue: a reliable, accessible, and expendable source of adipose-derived cells (ADC). When subject to enzymatic digestion and centrifugation, adipose tissue separates its various ADC: A subset of buoyant oil-dense adipocytes (the tissue's parenchymal component) accumulates on a supra-natant layer, whereas the mesenchymal component remains in the infra-natant sediment, containing the tissue's stromal vascular fraction (SVF), where angio-component cells abound. The SVF can be further manipulated, selected, or culture expanded into more specific stromal subsets (herein defined as adipose stromal cells, ASC). While promising clinical applications for ADC await clinical proof and regulatory authorization, basic science investigation is needed to elucidate the specific ADC mechanisms that influence microvascular growth, remodeling, and function following flap surgery. The objective of this article is to share the clinical perspectives of reconstructive plastic surgeons regarding the use of ADC-based therapies to help with flap tissue integration, revascularization, and wound healing. Specifically, the focus will be on considering the potential for ADC as therapeutic agents and how their clinical application motivates basic science opportunities.
Collapse
Affiliation(s)
- V Morgan Jones
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ariana D Suarez-Martinez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Nicholas A Hodges
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Ramon Llull
- Department of Plastic Surgery, Hospital Quiron Salud PalmaPlanas, Palma, Spain
| | - Adam J Katz
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
22
|
Zhao X, Guo J, Zhang F, Zhang J, Liu D, Hu W, Yin H, Jin L. Therapeutic application of adipose-derived stromal vascular fraction in diabetic foot. Stem Cell Res Ther 2020; 11:394. [PMID: 32928305 PMCID: PMC7488783 DOI: 10.1186/s13287-020-01825-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/15/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic foot is one of the severest complications of diabetes. In severe cases, this disease may be lead to amputation or even death due to secondary infection and ischemic necrosis. Since the ineffectiveness of traditional therapy, autologous stem cell transplantation has been used to treat diabetic foot. This simple, safe, and effective therapy is expected to be applied and promoted in the future.In this review, we described the detailed pathogenesis of diabetic foot and the common clinical treatments currently used. We also revealed vascular remodeling as the potential mechanism of therapeutic functions of adipose-derived stromal vascular fraction (SVF) in treating diabetic foot.
Collapse
Affiliation(s)
- Xiansheng Zhao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, China
| | - Jiamin Guo
- Irell & Manella Graduate School of Biological Sciences, City of Hope National Medical Center, California, 91010, USA
| | - Fangfang Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, China
| | - Jue Zhang
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Delin Liu
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Wenjun Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, China.
| | - Han Yin
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China.
| | - Liang Jin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, China.
| |
Collapse
|
23
|
Tada K, Nakada M, Matsuta M, Murai A, Hayashi K, Tsuchiya H. Enhanced nerve autograft using stromal vascular fraction. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2020; 31:183-188. [DOI: 10.1007/s00590-020-02758-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/01/2020] [Indexed: 01/08/2023]
|
24
|
Jia Q, Morgan-Bathke ME, Jensen MD. Adipose tissue macrophage burden, systemic inflammation, and insulin resistance. Am J Physiol Endocrinol Metab 2020; 319:E254-E264. [PMID: 32484712 PMCID: PMC7473914 DOI: 10.1152/ajpendo.00109.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adipose tissue inflammation, as defined by macrophage accumulation, is proposed to cause insulin resistance and systemic inflammation. Because the strength of this relationship for humans is unclear, we tested whether adipose tissue macrophage (ATM) burden is correlated with these health indicators. Using immunohistochemistry, we measured abdominal subcutaneous CD68+ (total ATM), CD14+ (proinflammatory/M1), and CD206+ (anti-inflammatory/M2) ATM in 97 volunteers (BMI 20-38 kg/m2, in addition to body composition, adipocyte size, homeostasis model assessment of insulin resistance, ADIPO-IR, adipose tissue insulin resistance measured by palmitate, plasma lipids, TNF, and IL-6 concentrations. There were several significant univariate correlations between metabolic parameters to IL-6 and ATM per 100 adipocytes, but not ATM per gram tissue; adipocyte size was a confounding variable. We used matching strategies and multivariate regression analyses to investigate the relationships between ATM and inflammatory/metabolic parameters independent of adipocyte size. Matching approaches revealed that the groups discordant for CD206 but concordant for adipocyte size had significantly different fasting insulin and IL-6 concentrations. However, groups discordant for adipocyte size but concordent for ATM differeded in that visceral fat, plasma triglyceride, glucose, and TNF concentrations were greater in those with large adipocytes. Multivariate regression analysis indicated that indexes of insulin resistance and fasting triglycerides were predicted by body composition; the predictive value of ATM per 100 adipocytes or per gram tissue was variable between males and females. We conclude that the relationship between ATM burden and metabolic/inflammatory variables is confounded by adipocyte size/body composition and that ATM do not predict insulin resistance, systemic inflammation, or dyslipidemia. ATM may primarily play a role in tissue remodeling rather than in metabolic pathology.
Collapse
Affiliation(s)
- Qingyi Jia
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Maria E Morgan-Bathke
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
- Nutrition and Dietetics Department, Viterbo University, La Crosse, Wisconsin
| | | |
Collapse
|
25
|
Stromal CCL2 Signaling Promotes Mammary Tumor Fibrosis through Recruitment of Myeloid-Lineage Cells. Cancers (Basel) 2020; 12:cancers12082083. [PMID: 32731354 PMCID: PMC7465971 DOI: 10.3390/cancers12082083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is correlated with breast tumor desmoplasia, leading to diminished chemotherapy response and disease-free survival. Obesity causes chronic, macrophage-driven inflammation within breast tissue, initiated by chemokine ligand 2 (CCL2) signaling from adipose stromal cells. To understand how CCL2-induced inflammation alters breast tumor pathology, we transplanted oncogenically transformed human breast epithelial cells with breast stromal cells expressing CCL2 or empty vector into murine mammary glands and examined tumor formation and progression with time. As tumors developed, macrophages were rapidly recruited, followed by the emergence of cancer-associated fibroblasts (CAFs) and collagen deposition. Depletion of CD11b + myeloid lineage cells early in tumor formation reduced tumor growth, CAF numbers, and collagen deposition. CCL2 expression within developing tumors also enhanced recruitment of myeloid progenitor cells from the bone marrow into the tumor site. The myeloid progenitor cell population contained elevated numbers of fibrocytes, which exhibited platelet-derived growth factor receptor-alpha (PDGFRα)-dependent colony formation and growth in vitro. Together, these results suggest that chronic inflammation induced by CCL2 significantly enhances tumor growth and promotes the formation of a desmoplastic stroma through early recruitment of macrophages and fibrocytes into the tumor microenvironment. Fibrocytes may be a novel target in the tumor microenvironment to reduce tumor fibrosis and enhance treatment responses for obese breast cancer patients.
Collapse
|
26
|
Dang D, Taheri S, Das S, Ghosh P, Prince LS, Sahoo D. Computational Approach to Identifying Universal Macrophage Biomarkers. Front Physiol 2020; 11:275. [PMID: 32322218 PMCID: PMC7156600 DOI: 10.3389/fphys.2020.00275] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Macrophages engulf and digest microbes, cellular debris, and various disease-associated cells throughout the body. Understanding the dynamics of macrophage gene expression is crucial for studying human diseases. As both bulk RNAseq and single cell RNAseq datasets become more numerous and complex, identifying a universal and reliable marker of macrophage cell becomes paramount. Traditional approaches have relied upon tissue specific expression patterns. To identify universal biomarkers of macrophage, we used a previously published computational approach called BECC (Boolean Equivalent Correlated Clusters) that was originally used to identify conserved cell cycle genes. We performed BECC analysis using the known macrophage marker CD14 as a seed gene. The main idea behind BECC is that it uses massive database of public gene expression dataset to establish robust co-expression patterns identified using a combination of correlation, linear regression and Boolean equivalences. Our analysis identified and validated FCER1G and TYROBP as novel universal biomarkers for macrophages in human and mouse tissues.
Collapse
Affiliation(s)
- Dharanidhar Dang
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States.,Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Sahar Taheri
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States
| | - Soumita Das
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Pradipta Ghosh
- Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States.,Moores Cancer Center, San Diego, CA, United States
| | - Lawrence S Prince
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States.,Rady Children's Hospital, San Diego, CA, United States
| | - Debashis Sahoo
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States.,Department of Pediatrics, University of California, San Diego, San Diego, CA, United States.,Moores Cancer Center, San Diego, CA, United States
| |
Collapse
|
27
|
Yin S, Yang X, Bi H, Zhao Z. Combined Use of Autologous Stromal Vascular Fraction Cells and Platelet-Rich Plasma for Chronic Ulceration of the Diabetic Lower Limb Improves Wound Healing. INT J LOW EXTR WOUND 2020; 20:135-142. [PMID: 32131655 DOI: 10.1177/1534734620907978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discovery of stromal vascular fraction cells and platelet-rich plasma in promoting tissue regeneration has prompted a new idea for the treatment of chronic diabetic ulcer of the lower limb. The study aim was to evaluate the clinical efficacy of a new method that applied stromal vascular fraction cells and platelet-rich plasma together in the treatment of recalcitrant chronic diabetic ulcer. We conducted a single-center, prospective, open, noncontrolled study. Four patients (5 ulcers in total) who had received standard treatment for diabetic ulcer for at least 3 months that failed to heal was enrolled. All patients were treated with surgical debridement, cell suspension (stromal vascular fraction cells suspended by platelet-rich plasma) injection into the wound, and platelet-rich plasma gel coverage. Wounds were measured every week after treatment using a 2-dimensional digital camera and a 3-dimensional wound measurement device. All patients were followed-up for 4 months after the treatment. Four of the 5 ulcers healed completely within a mean of 71.75 ± 29.57 days. The average proportion of granulation tissue achieved 100% within 4 weeks for all cases. The wound size decreased to less than half of the original size for all cases 4 weeks after the treatment. Findings revealed that the new treatment is efficient to achieve wound healing in patients with recalcitrant chronic diabetic ulcer of lower limb.
Collapse
Affiliation(s)
- Shilu Yin
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Xin Yang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
28
|
Sun Y, Chen S, Zhang X, Pei M. Significance of Cellular Cross-Talk in Stromal Vascular Fraction of Adipose Tissue in Neovascularization. Arterioscler Thromb Vasc Biol 2020; 39:1034-1044. [PMID: 31018663 DOI: 10.1161/atvbaha.119.312425] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adult stem cell-based therapy has been regarded as a promising treatment for tissue ischemia because of its ability to promote new blood vessel formation. Bone marrow-derived mesenchymal stem cells are the most used angiogenic cells for therapeutic neovascularization, yet the side effects and low efficacy have limited their clinical application. Adipose stromal vascular fraction is an easily accessible, heterogeneous cell system comprised of endothelial, stromal, and hematopoietic cell lineages, which has been shown to spontaneously form robust, patent, and functional vasculatures in vivo. However, the characteristics of each cell population and their specific roles in neovascularization remain an area of ongoing investigation. In this review, we summarize the functional capabilities of various stromal vascular fraction constituents during the process of neovascularization and attempt to analyze whether the cross-talk between these constituents generates a synergetic effect, thus contributing to the development of new potential therapeutic strategies to promote neovascularization.
Collapse
Affiliation(s)
- Yuan Sun
- From the Department of Vascular Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Jiangsu, China (Y.S., X.Z.); Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics (Y.S., M.P.), Exercise Physiology (M.P.), and WVU Cancer Institute, Robert C. Byrd Health Sciences Center (M.P.), West Virginia University, Morgantown; and Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, Sichuan, China (S.C.)
| | - Song Chen
- From the Department of Vascular Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Jiangsu, China (Y.S., X.Z.); Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics (Y.S., M.P.), Exercise Physiology (M.P.), and WVU Cancer Institute, Robert C. Byrd Health Sciences Center (M.P.), West Virginia University, Morgantown; and Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, Sichuan, China (S.C.)
| | - Xicheng Zhang
- From the Department of Vascular Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Jiangsu, China (Y.S., X.Z.); Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics (Y.S., M.P.), Exercise Physiology (M.P.), and WVU Cancer Institute, Robert C. Byrd Health Sciences Center (M.P.), West Virginia University, Morgantown; and Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, Sichuan, China (S.C.)
| | - Ming Pei
- From the Department of Vascular Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Jiangsu, China (Y.S., X.Z.); Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics (Y.S., M.P.), Exercise Physiology (M.P.), and WVU Cancer Institute, Robert C. Byrd Health Sciences Center (M.P.), West Virginia University, Morgantown; and Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, Sichuan, China (S.C.)
| |
Collapse
|
29
|
Kyrgidis A, Yavropoulou MP, Zikos P, Lagoudaki R, Tilaveridis J, Zouloumis L. Changes in peripheral monocyte populations 48-72 hours after subcutaneous denosumab administration in women with osteoporosis. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2020; 20:339-346. [PMID: 32877971 PMCID: PMC7493451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To examine the effect of denosumab administration in the peripheral blood white cell population, to further elucidate a plausible pathophysiological link between denosumab and osteonecrosis of the jaw. METHODS Thirty women with osteoporosis, after denosumab treatment were included. Peripheral blood samples were obtained prior to and 48-72 hours following denosumab administration. Flow cytometry gated at the monocyte population for CD14/CD23/CD123/CD16 stainings were performed. RESULTS We were able to record a number of changes in the monocyte populations between baseline and after denosumab administration. Most importantly, in the monocyte populations we were able to detect statistically significant increased populations of CD14+/CD23+ (p=0.044), CD14-/CD23+ (p=0.044), CD14+/CD123+ (p=0.011), CD14+/CD123- (p=0.011) and CD14-/CD16+ (p=0.028). In contrast, statistically significant decreased populations of CD14-/CD123+ (p=0.034), CD14+/CD16+ (p=0.037) and CD14+/CD16- (p=0.014) were detected. CONCLUSIONS Our results provide evidence supporting the hypothesis that denosumab administration modifies the monocyte mediated immune response in a manner similar to that of bisphosphonates. This may partly explain the trivial immunity changes recorded with denosumab.
Collapse
Affiliation(s)
- Athanassios Kyrgidis
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece,Department of Pharmacology, Clinical Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria P. Yavropoulou
- Endocrinology Unit 1st Propaedeutic Department of Internal Medicine, LAIKO General Hospital of Athens, National and Kapodistrian University of Athens, UOA, Athens, Greece
| | - Petros Zikos
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Roza Lagoudaki
- Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | - Jannis Tilaveridis
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lambros Zouloumis
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
30
|
Stefanis AJ, Groh T, Arenbergerova M, Arenberger P, Bauer PO. Stromal Vascular Fraction and its Role in the Management of Alopecia: A Review. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2019; 12:35-44. [PMID: 32038756 PMCID: PMC6937163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adipose cells organized in small clusters under the reticular dermis closely interact with hair follicular cells and regulate the hair cycle. Intradermal adipocyte progenitor cells are activated toward the end of the telogen phase to proliferate and differentiate into mature adipocytes. These cells, surrounding the hair follicles, secrete signaling molecules that control the progression of the hair cycle. Diseases associated with defects in adipocyte homeostasis, such as lipodystrophy and focal dermal hypoplasia, lead to alopecia. In this review, we discuss the potential influence of stromal vascular fraction from adipose tissue in the management of alopecia as well as its involvement in preclinical and clinical trials.
Collapse
Affiliation(s)
- Athanasios J Stefanis
- Drs. Stefanis, Arenbergerova, and Arenberger are with the Department of Dermatology and Venereology, Faculty Hospital Kralovske Vinohrady and Third Medical Faculty of Charles University in Prague, the Czech Republic
- Drs. Groh and Bauer are with Bioinova, Ltd. in Prague, the Czech Republic
| | - Tomas Groh
- Drs. Stefanis, Arenbergerova, and Arenberger are with the Department of Dermatology and Venereology, Faculty Hospital Kralovske Vinohrady and Third Medical Faculty of Charles University in Prague, the Czech Republic
- Drs. Groh and Bauer are with Bioinova, Ltd. in Prague, the Czech Republic
| | - Monika Arenbergerova
- Drs. Stefanis, Arenbergerova, and Arenberger are with the Department of Dermatology and Venereology, Faculty Hospital Kralovske Vinohrady and Third Medical Faculty of Charles University in Prague, the Czech Republic
- Drs. Groh and Bauer are with Bioinova, Ltd. in Prague, the Czech Republic
| | - Petr Arenberger
- Drs. Stefanis, Arenbergerova, and Arenberger are with the Department of Dermatology and Venereology, Faculty Hospital Kralovske Vinohrady and Third Medical Faculty of Charles University in Prague, the Czech Republic
- Drs. Groh and Bauer are with Bioinova, Ltd. in Prague, the Czech Republic
| | - Peter O Bauer
- Drs. Stefanis, Arenbergerova, and Arenberger are with the Department of Dermatology and Venereology, Faculty Hospital Kralovske Vinohrady and Third Medical Faculty of Charles University in Prague, the Czech Republic
- Drs. Groh and Bauer are with Bioinova, Ltd. in Prague, the Czech Republic
| |
Collapse
|
31
|
Dessels C, Ambele MA, Pepper MS. The effect of medium supplementation and serial passaging on the transcriptome of human adipose-derived stromal cells expanded in vitro. Stem Cell Res Ther 2019; 10:253. [PMID: 31412930 PMCID: PMC6694630 DOI: 10.1186/s13287-019-1370-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND For adipose-derived stromal cells (ASCs) to be safe for use in the clinical setting, they need to be prepared using good manufacturing practices (GMPs). Fetal bovine serum (FBS), used to expand ASCs in vitro in some human clinical trials, runs the risk of xenoimmunization and zoonotic disease transmission. To ensure that GMP standards are maintained, pooled human platelet lysate (pHPL) has been used as an alternative to FBS. ASCs proliferate more rapidly in pHPL than in FBS, with no significant change in immunophenotype and differentiation capacity. However, not much is known about how pHPL affects the transcriptome of these cells. METHODS This study investigated the effect of pHPL and FBS on the ASC transcriptome during in vitro serial expansion from passage 0 to passage 5 (P0 to P5). RNA was isolated from ASCs at each passage and hybridized to Affymetrix HuGene 2.0 ST arrays for gene expression analysis. RESULTS We observed that the transcriptome of ASCs expanded in pHPL (pHPL-ASCs) and FBS (FBS-ASCs) had the greatest change in gene expression at P2. Gene ontology revealed that genes upregulated in pHPL-ASCs were enriched for cell cycle, migration, motility, and cell-cell interaction processes, while those in FBS-ASCs were enriched for immune response processes. ASC transcriptomes were most homogenous from P2 to P5 in FBS and from P3 to P5 in pHPL. FBS- and pHPL-gene-specific signatures were observed, which could be used as markers to identify cells previously grown in either FBS or pHPL for downstream clinical/research applications. The number of genes constituting the FBS-specific effect was 3 times greater than for pHPL, suggesting that pHPL may be a milder supplement for cell expansion. A set of genes were expressed in ASCs at all passages and in both media. This suggests that a unique ASC in vitro transcriptomic profile exists that is independent of the passage number or medium used. CONCLUSIONS GO classification revealed that pHPL-ASCs are more involved in cell cycle processes and cellular proliferation when compared to FBS-ASCs, which are involved in more specialized or differentiation processes like cardiovascular and vascular development. This makes pHPL a potential superior supplement for expanding ASCs as they retain their proliferative capacity, remain untransformed and pHPL does not affect the genes involved in differentiation in specific developmental processes.
Collapse
Affiliation(s)
- Carla Dessels
- Department of Immunology, Institute for Cellular and Molecular Medicine, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa
| | - Melvin A Ambele
- Department of Immunology, Institute for Cellular and Molecular Medicine, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa
- Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, PO Box 1266, Pretoria, 0001, South Africa
| | - Michael S Pepper
- Department of Immunology, Institute for Cellular and Molecular Medicine, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa.
| |
Collapse
|
32
|
Lee JS, Eo P, Kim MC, Kim JB, Jin HK, Bae JS, Jeong JH, Park HY, Yang JD. Effects of Stromal Vascular Fraction on Breast Cancer Growth and Fat Engraftment in NOD/SCID Mice. Aesthetic Plast Surg 2019; 43:498-513. [PMID: 30635686 DOI: 10.1007/s00266-018-01304-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/23/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND To overcome unpredictable fat graft resorption, cell-assisted lipotransfer using stromal vascular fraction (SVF) has been introduced. However, its effect on cancer growth stimulation and its oncological safety are debatable. We investigated the effect of SVF on adjacent breast cancer and transplanted fat in a mouse model. METHODS A breast cancer xenograft model was constructed by injecting 2 × 106 MDA-MB-231-luc breast cancer cells into the right lower back of 40 NOD/SCID mice. Two weeks later, cancer size was sorted according to signal density using an in vivo optical imaging system, and 36 mice were included. Human fat was extracted from the abdomen, and SVFs were isolated using a component isolator. The mice were divided into four groups: A, controls; B, injected with 30 μl SVF; C, injected with 0.5 ml fat and 30 μl saline; group D, injected with 0.5 ml fat and 30 μl SVF. Magnetic resonance imaging and three-dimensional micro-computed tomography volumetric analysis were performed at 4 and 8 weeks. RESULTS Tumor volume was 43.6, 42.3, 48.7, and 42.4 mm3 at the initial time point and 6780, 5940, 6080, and 5570 mm3 at 8 weeks in groups A, B, C, and D, respectively. Fat graft survival volume after 8 weeks was 49.32% and 62.03% in groups C and D, respectively. At 2-month follow-up after fat grafting in the xenograft model, SVF injection showed an increased fat survival rate and did not increase the adjacent tumor growth significantly. CONCLUSION Fat grafting with SVF yields satisfactory outcome in patients who undergo breast reconstruction surgery. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
Affiliation(s)
- Joon Seok Lee
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, 130 Dongdeokro, Jung-gu, Daegu, 41944, South Korea
| | - PilSeon Eo
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, 130 Dongdeokro, Jung-gu, Daegu, 41944, South Korea
| | | | - Jae Bong Kim
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, 130 Dongdeokro, Jung-gu, Daegu, 41944, South Korea
| | - Hee Kyung Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Jae-Sung Bae
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Jae-Hwan Jeong
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Ho Yong Park
- Department of Surgery, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Jung Dug Yang
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, 130 Dongdeokro, Jung-gu, Daegu, 41944, South Korea.
| |
Collapse
|
33
|
Peñaranda MMD, Jensen I, Tollersrud LG, Bruun JA, Jørgensen JB. Profiling the Atlantic Salmon IgM + B Cell Surface Proteome: Novel Information on Teleost Fish B Cell Protein Repertoire and Identification of Potential B Cell Markers. Front Immunol 2019; 10:37. [PMID: 30761128 PMCID: PMC6362898 DOI: 10.3389/fimmu.2019.00037] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/08/2019] [Indexed: 01/04/2023] Open
Abstract
Fish immunology research is at a pivotal point with the increasing availability of functional immunoassays and major advances in omics approaches. However, studies on fish B cells and their distinct subsets remain a challenge due to the limited availability of differentially expressed surface markers. To address this constraint, cell surface proteome of Atlantic salmon IgM+ B cells were analyzed by mass spectrometry and compared to surface proteins detected from two adherent salmon head kidney cell lines, ASK and SSP-9. Out of 21 cluster of differentiation (CD) molecules identified on salmon IgM+ B cells, CD22 and CD79A were shortlisted as potential markers based on the reported B cell-specific surface expression of their mammalian homologs. Subsequent RT-qPCR analyses of flow cytometry-sorted subpopulations from head kidney leukocytes confirmed that both cd22 and cd79a genes were highly expressed in IgM+ lymphoid cells but were observed in barely detectable levels in IgM- non-lymphoid suspension and adherent cells. Similarly, significantly high cd22 and cd79a mRNA levels were observed in IgM+ or IgT+ lymphoid cells from the spleen and peritoneal cavity, but not in their corresponding IgM- IgT- non-lymphoid fractions. This suggests that the B cell restrictive expression of CD22 and CD79A extend down to the transcription level, which was consistent across different lymphoid compartments and immunoglobulin isotypes, thus strongly supporting the potential of CD22 and CD79A as pan-B cell markers for salmon. In addition, this study provides novel information on the salmon B cell surface protein repertoire, as well as insights on B cell evolution. Further investigation of the identified salmon CD molecules, including development of immunological tools for detection, will help advance our understanding of the dynamics of salmon B cell responses such as during infection, vaccination, or immunostimulation.
Collapse
Affiliation(s)
- Ma Michelle D Peñaranda
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ingvill Jensen
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Linn G Tollersrud
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jack-Ansgar Bruun
- Tromsø University Proteomics Platform, Institute of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
34
|
Boudreau A, Fuller S, Ribnicky DM, Richard AJ, Stephens JM. Groundsel Bush (Baccharis halimifolia) Extract Promotes Adipocyte Differentiation In Vitro and Increases Adiponectin Expression in Mature Adipocytes. BIOLOGY 2018; 7:biology7020022. [PMID: 29587377 PMCID: PMC6022969 DOI: 10.3390/biology7020022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
An ethanolic extract of Baccharis halimifolia (groundsel bush, GB), which is a native Louisiana plant with documented use in Creole folk medicine, has been shown to inhibit lipopolysaccharide (LPS)-induced inflammation in cultured macrophages. Here, we examine the effects of GB on adipocyte development and function, as these processes are attractive targets for intervention in insulin resistance. Oil Red O neutral lipid staining, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and immunoblotting were used to measure GB effects on lipid accumulation, gene expression, and protein abundance, respectively. In differentiating 3T3-L1 adipocytes, GB enhanced lipid accumulation and increased expression of several adipogenic genes (GLUT4, aP2, ADPN, CEBPα, FAS, and PPARγ). Protein levels of two of these adipogenic markers (aP2 and adiponectin) were examined and found to be induced by GB treatment. In mature adipocytes, GB reduced the gene expression of resistin, a pro-inflammatory endocrine factor, increased the adiponectin protein levels in a time-dependent manner, and substantially attenuated the TNF-alpha-induced reduction in adiponectin. In macrophages, GB reduced the expression of pro-inflammatory genes that were induced by LPS. GB produces metabolically favorable changes in differentiating adipocytes, mature adipocytes, and macrophages in vitro, suggesting its potential use as a dietary supplement or nutraceutical to support metabolic health and resiliency.
Collapse
Affiliation(s)
- Anik Boudreau
- Pennington Biomedical Research Center, Louisiana State University Baton Rouge, Baton Rouge, LA 70808, USA.
| | - Scott Fuller
- Pennington Biomedical Research Center, Louisiana State University Baton Rouge, Baton Rouge, LA 70808, USA.
| | - David M Ribnicky
- Biotech Center, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Allison J Richard
- Pennington Biomedical Research Center, Louisiana State University Baton Rouge, Baton Rouge, LA 70808, USA.
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Louisiana State University Baton Rouge, Baton Rouge, LA 70808, USA.
| |
Collapse
|
35
|
Zimmermann S, Fakin RM, Giovanoli P, Calcagni M. Outcome of Stromal Vascular Fraction-Enriched Fat Grafting Compared to Intramuscular Transposition in Painful End-Neuromas of Superficial Radial Nerve: Preliminary Results. Front Surg 2018; 5:10. [PMID: 29503822 PMCID: PMC5820332 DOI: 10.3389/fsurg.2018.00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/01/2018] [Indexed: 12/02/2022] Open
Abstract
Introduction The management of painful end-neuromas of the superficial branch of the radial nerve (SBRN) remains challenging due to high levels of pain relapse. The novel technique of stromal vascular fraction (SVF)-enriched fat grafting showed continuous pain relief, although failed to prove statistically significant. Besides acting as a mechanical barrier, SVF-enriched fat grafting might also affect the cellular level. The aim of this study was to compare clinical outcomes of SVF to the widely popular intramuscular transposition technique. Patients and methods In this cohort study, 10 consecutive patients treated for painful end-neuromas of the SBRN between 2010 and 2013 were analyzed retrospectively. Microsurgical resection of end-neuromas was performed in all patients. Five patients were treated with subsequent intramuscular transposition into the brachioradialis muscle and five patients received SVF-enriched fat grafting. Five different pain modalities and various predictors were compared pre- and up to 36 months post-operatively. Results In the transposition group, sustained pain reduction was not observed after an initial significant reduction 2 months’ post-surgery, resulting in pain relapse at 36 months and comparable to the preoperative assessment. In the graft group, some degree of pain reduction was observed at 2 months after the surgery and proved to be constant in the long-term outcome, although not statistically significant compared to preoperative levels. Conclusion Both SVF-enriched fat grafting and intramuscular transposition failed to prove statistical significant pain reduction in treating symptomatic neuromas of peripheral nerves.
Collapse
Affiliation(s)
- Simon Zimmermann
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Richard M Fakin
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Pietro Giovanoli
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Maurizio Calcagni
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Kilinc MO, Santidrian A, Minev I, Toth R, Draganov D, Nguyen D, Lander E, Berman M, Minev B, Szalay AA. The ratio of ADSCs to HSC-progenitors in adipose tissue derived SVF may provide the key to predict the outcome of stem-cell therapy. Clin Transl Med 2018; 7:5. [PMID: 29417261 PMCID: PMC5803165 DOI: 10.1186/s40169-018-0183-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/21/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stromal vascular fraction (SVF) represents an attractive source of adult stem cells and progenitors, holding great promise for numerous cell therapy approaches. In 2017, it was reported that 1524 patients received autologous SVF following the enzymatic digestion of liposuction fat. The treatment was safe and effective and patients showed significant clinical improvement. In a collaborative study, we analyzed SVF obtained from 58 patients having degenerative, inflammatory, autoimmune diseases, and advanced stage cancer. RESULTS Flow analysis showed that freshly isolated SVF was very heterogeneous and harbored four major subsets specific to adipose tissue; CD34high CD45- CD31- CD146- adipose-derived stromal/stem cells (ADSCs), CD34low CD45+ CD206+CD31- CD146- hematopoietic stem cell-progenitors (HSC-progenitors), CD34high CD45- CD31+CD146+ adipose tissue-endothelial cells and CD45-CD34-CD31-CD146+ pericytes. Culturing and expanding of SVF revealed a homogenous population lacking hematopoietic lineage markers CD45 and CD34, but were positive for CD90, CD73, CD105, and CD44. Flow cytometry sorting of viable individual subpopulations revealed that ADSCs had the capacity to grow in adherent culture. The identity of the expanded cells as mesenchymal stem cells (MSCs) was further confirmed based on their differentiation into adipogenic and osteogenic lineages. To identify the potential factors, which may determine the beneficial outcome of treatment, we followed 44 patients post-SVF treatment. The gender, age, clinical condition, certain SVF-dose and route of injection, did not play a role on the clinical outcome. Interestingly, SVF yield seemed to be affected by patient's characteristic to various extents. Furthermore, the therapy with adipose-derived and expanded-mesenchymal stem cells (ADE-MSCs) on a limited number of patients, did not suggest increased efficacies compared to SVF treatment. Therefore, we tested the hypothesis that a certain combination, rather than individual subset of cells may play a role in determining the treatment efficacy and found that the combination of ADSCs to HSC-progenitor cells can be correlated with overall treatment efficacy. CONCLUSIONS We found that a 2:1 ratio of ADSCs to HSC-progenitors seems to be the key for a successful cell therapy. These findings open the way to future rational design of new treatment regimens for individuals by adjusting the cell ratio before the treatment.
Collapse
Affiliation(s)
- Mehmet Okyay Kilinc
- Department of Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97070 Würzburg, Germany
- StemImmune Inc., San Diego, CA 92122 USA
| | | | | | | | | | | | - Elliot Lander
- Cell Surgical Network and California Stem Cell Treatment Center, Rancho Mirage, CA 92270 USA
| | - Mark Berman
- Cell Surgical Network and California Stem Cell Treatment Center, Rancho Mirage, CA 92270 USA
| | - Boris Minev
- StemImmune Inc., San Diego, CA 92122 USA
- Radiation Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037 USA
| | - Aladar A. Szalay
- Department of Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97070 Würzburg, Germany
- StemImmune Inc., San Diego, CA 92122 USA
- Radiation Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037 USA
| |
Collapse
|
37
|
Investigating the mincing method for isolation of adipose-derived stem cells from pregnant women fat. Cytotechnology 2017; 70:55-66. [PMID: 29234944 DOI: 10.1007/s10616-017-0162-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 01/16/2023] Open
Abstract
The success of stem cell application in regenerative medicine, usually require a stable source of stem or progenitor cells. Fat tissue represents a good source of stem cells because it is rich in stem cells and there are fewer ethical issues related to the use of such stem cells, unlike embryonic stem cells. Therefore, there has been increased interest in adipose-derived stem cells (ADSCs) for tissue engineering applications. Here, we aim to provide an easy processing method for isolating adult stem cells from human adipose tissue harvested from the subcutaneous fat of the abdominal wall during gynecologic surgery. We used a homogenizer to mince fat and compared the results with those obtained from the traditional cut method involving a sterile scalpel and forceps. Our results showed that our method provides another stable and quality source of stem cells that could be used in cases with a large quantity of fat. Furthermore, we found that pregnancy adipose-derived stem cells (P-ADSCs) could be maintained in vitro for extended periods with a stable population doubling and low senescence levels. P-ADSCs could also differentiate in vitro into adipogenic, osteogenic, chondrogenic, and insulin-producing cells in the presence of lineage-specific induction factors. In conclusion, like human lipoaspirates, adipose tissues obtained from pregnant women contain multipotent cells with better proliferation and showed great promise for use in both stem cell banking studies as well as in stem cell therapy.
Collapse
|
38
|
Morgan-Bathke M, Harteneck D, Jaeger P, Sondergaard E, Karwoski R, De Ycaza AE, Carranza-Leon BG, Faubion WA, Oliveira AM, Jensen MD. Comparison of Methods for Analyzing Human Adipose Tissue Macrophage Content. Obesity (Silver Spring) 2017; 25:2100-2107. [PMID: 28985040 PMCID: PMC5705319 DOI: 10.1002/oby.22012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 08/18/2017] [Accepted: 08/19/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The relationship between inflammation, obesity, and adverse metabolic conditions is associated with adipose tissue macrophages (ATM). This study compared the measurements of human ATM using flow cytometry, immunohistochemistry (IHC), and real-time polymerase chain reaction (RT-PCR) of ATM markers. METHODS A new software program (AMCounter) was evaluated to help measure ATM using IHC, and this was compared to flow cytometry and RT-PCR. RESULTS IHC had good intraindividual reproducibility for total (CD68), proinflammatory (CD14), and anti-inflammatory (CD206) ATM. The AMCounter improved interreader agreement and was more time efficient. Flow cytometry had acceptable intraindividual reproducibility for the percentage of CD68+ cells that were CD14+ or CD206+ , but not for ATMs per gram of tissue. ATMs per gram of tissue was much greater using IHC than flow cytometry. The flow cytometry and IHC measures of ATM from the same biopsies were not correlated. There were statistically significant correlations between RT-PCR CD68 and IHC CD68, CD14, and CD206 ATMs per 100 adipocytes. Also of interest were statistically significant correlations between RT-PCR CD68 and IHC CD68, CD14, and adipose flow cytometry measures of CD68+ , CD68+ /CD14+ , and CD68+ /CD206+ ATMs per gram of tissue. CONCLUSIONS The AMCounter software helps provide reproducible and efficient measures of IHC ATMs. Flow cytometry, IHC, and RT-PCR measures of adipose inflammation provide somewhat different information.
Collapse
Affiliation(s)
| | - Debra Harteneck
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota USA
| | - Philippa Jaeger
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota USA
| | - Esben Sondergaard
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota USA
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus DENMARK
| | - Ron Karwoski
- Biomedical Imaging Resources, Mayo Clinic, Rochester, Minnesota USA
| | | | | | | | | | - Michael D. Jensen
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota USA
- Corresponding Author: Michael D. Jensen, Mayo Clinic, Endocrine Research Unit, 200 1 St SW, Rm 5-194 Joseph, Rochester, MN 55905, 507-255-6515 (tel), 507-255-4828 (fax),
| |
Collapse
|
39
|
Zimmermann S, Fakin RM, Giesen T, Giovanoli P, Calcagni M. Stromal Vascular Fraction-enriched Fat Grafting for the Treatment of Symptomatic End-neuromata. J Vis Exp 2017. [PMID: 29286436 DOI: 10.3791/55962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The purpose of this study was to methodically illustrate and highlight the crucial steps of stromal vascular fraction (SVF)-enriched fat grafting as a novel treatment of symptomatic end-neuromata of peripheral sensory nerves, and in this study, specifically of the superficial branch of the radial nerve (SBRN). Despite a multitude of existing treatments, persistent postoperative pain and common pain relapse are still very common, independent of the procedure assessed. The neuroma is microsurgically excised accordingly to standardized protocol. Instead of the relocation of the regenerating nerve stump in neighboring anatomical structures, such as muscle or bone, a fat graft is applied perifocally and acts as a mechanical barrier. In order to reduce the fat resorption rate and boost the regenerative potential of the graft, the highly concentrated SVF is integrated in the grafting. The SVF is isolated from subcutaneous fat by enzymatic and mechanic separation of the lipoaspirate by a specific commercial isolation system. The SVF-enriched fat graft provides both a mechanical barrier and various biological effects at the cellular level, including improving angiogenesis, inflammation, and fibrosis. Both mechanical and biologic effects help to reduce the disorganized axonal outgrowth of the nerve stump during nerve regeneration and hence prevent the recurrence of painful end-neuromata.
Collapse
Affiliation(s)
- Simon Zimmermann
- Division of Plastic and Hand Surgery, University Hospital Zurich
| | - Richard M Fakin
- Division of Plastic and Hand Surgery, University Hospital Zurich;
| | - Thomas Giesen
- Division of Plastic and Hand Surgery, University Hospital Zurich
| | - Pietro Giovanoli
- Division of Plastic and Hand Surgery, University Hospital Zurich
| | | |
Collapse
|
40
|
Nseir I, Delaunay F, Latrobe C, Bonmarchand A, Coquerel-Beghin D, Auquit-Auckbur I. Use of adipose tissue and stromal vascular fraction in hand surgery. Orthop Traumatol Surg Res 2017. [PMID: 28645702 DOI: 10.1016/j.otsr.2017.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Adipose tissue is an abundant source of various cell types including not only adipocytes, but also progenitor and endothelial cells from thestroma. Interest in adipose tissue has surged since the identification in 2001 of adipose-derived stem cells (ADSCs) and of the stromal vascular fraction (SVF) obtained from adipose tissue by enzymatic digestion and centrifugation. SVF has been proven effective in ensuring tissue regeneration, thus improving tissue trophicityand vascularisation. These effects have generated strong interest among both physicians and surgeons, particularly in the field of hand surgery. Several applications have been developed and used, for instance to treat Dupuytren's contracture, systemic sclerosis-related hand lesions, and skin ageing at the hand. Other uses are being evaluated in clinical or animal studies. The objective of this article is to review the capabilities of adipose tissue and their current and potential applications in hand surgery.
Collapse
Affiliation(s)
- I Nseir
- Service de chirurgie plastique et chirurgie de la main, CHU de Rouen, 1, rue de Germont, 76000 Rouen, France.
| | - F Delaunay
- Service de chirurgie plastique et chirurgie de la main, CHU de Rouen, 1, rue de Germont, 76000 Rouen, France.
| | - C Latrobe
- Service de chirurgie orthopédique et traumatologique, CHU de Rouen, 1, rue de Germont, 76000 Rouen, France.
| | - A Bonmarchand
- Service de chirurgie plastique et chirurgie de la main, CHU de Rouen, 1, rue de Germont, 76000 Rouen, France.
| | - D Coquerel-Beghin
- Service de chirurgie plastique et chirurgie de la main, CHU de Rouen, 1, rue de Germont, 76000 Rouen, France.
| | - I Auquit-Auckbur
- Service de chirurgie plastique et chirurgie de la main, CHU de Rouen, 1, rue de Germont, 76000 Rouen, France.
| |
Collapse
|
41
|
Nasti A, Sakai Y, Seki A, Buffa GB, Komura T, Mochida H, Yamato M, Yoshida K, Ho TTB, Takamura M, Usui S, Wada T, Honda M, Kaneko S. The CD45 + fraction in murine adipose tissue derived stromal cells harbors immune-inhibitory inflammatory cells. Eur J Immunol 2017; 47:2163-2174. [PMID: 28891216 DOI: 10.1002/eji.201646835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/10/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022]
Abstract
Stromal cells in adipose tissue are useful for repair/regenerative therapy as they harbor a substantial number of mesenchymal stem cells; therefore, freshly isolated autologous uncultured adipose tissue derived stromal cells (u-ADSCs) are useful for regenerative therapy, and obviate the need for mesenchymal stem cells. We evaluated the therapeutic effect of murine u-ADSCs and sorted subsets of u-ADSCs in a concanavalin A (ConA) induced murine model of hepatitis, as well as their characteristics. We found that 10-20% of u-ADSCs expressed the CD45 leukocyte-related antigen. CD68, which is a marker of macrophages (MΦs), was expressed by 50% of CD45+ u-ADSCs. About 90% of CD68+ CD45+ cells expressed CD206 antigen, which is a marker of inhibitory M2-type MΦs. Genes related to M2-type MUs were especially more highly expressed by CD45+ CD206+ u-ADSCs than by CD45- u-ADSCs. CD45+ u-ADSCs inhibited the expression of cytokines/chemokines and suppressed the proliferation of splenocytes stimulated with ConA. We observed that not only whole u-ADSCs, but also the CD45+ subset of u-ADSCs ameliorated the ConA-induced hepatitis in mice. In conclusion, we show that freshly isolated murine u-ADSCs were effective against acute hepatitis, and CD45+ u-ADSCs acting phenotypically and functionally like M2-type MΦs, contributed to the repair of liver tissue undergoing inflammation.
Collapse
Affiliation(s)
- Alessandro Nasti
- Disease Control and Homeostasis, Graduate School of Medical Sciences, Kanazawa University, Japan
| | - Yoshio Sakai
- School of Medicine, College of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Japan.,Department of Gastroenterology, Kanazawa University Hospital, Japan
| | - Akihiro Seki
- Disease Control and Homeostasis, Graduate School of Medical Sciences, Kanazawa University, Japan
| | - Geraldine Belen Buffa
- Disease Control and Homeostasis, Graduate School of Medical Sciences, Kanazawa University, Japan
| | - Takuya Komura
- School of Medicine, College of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Japan
| | - Hatsune Mochida
- Disease Control and Homeostasis, Graduate School of Medical Sciences, Kanazawa University, Japan
| | - Masatoshi Yamato
- Disease Control and Homeostasis, Graduate School of Medical Sciences, Kanazawa University, Japan
| | - Keiko Yoshida
- Disease Control and Homeostasis, Graduate School of Medical Sciences, Kanazawa University, Japan
| | - Tuyen T B Ho
- Department of Gastroenterology, Kanazawa University Hospital, Japan
| | | | - Soichiro Usui
- School of Medicine, College of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Japan
| | - Takashi Wada
- School of Medicine, College of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Hospital, Japan
| | - Shuichi Kaneko
- Disease Control and Homeostasis, Graduate School of Medical Sciences, Kanazawa University, Japan.,School of Medicine, College of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Japan.,Department of Gastroenterology, Kanazawa University Hospital, Japan
| |
Collapse
|
42
|
Sugimoto C, Merino KM, Hasegawa A, Wang X, Alvarez XA, Wakao H, Mori K, Kim WK, Veazey RS, Didier ES, Kuroda MJ. Critical Role for Monocytes/Macrophages in Rapid Progression to AIDS in Pediatric Simian Immunodeficiency Virus-Infected Rhesus Macaques. J Virol 2017; 91:e00379-17. [PMID: 28566378 PMCID: PMC5553179 DOI: 10.1128/jvi.00379-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/22/2017] [Indexed: 12/23/2022] Open
Abstract
Infant humans and rhesus macaques infected with the human or simian immunodeficiency virus (HIV or SIV), respectively, express higher viral loads and progress more rapidly to AIDS than infected adults. Activated memory CD4+ T cells in intestinal tissues are major primary target cells for SIV/HIV infection, and massive depletion of these cells is considered a major cause of immunodeficiency. Monocytes and macrophages are important cells of innate immunity and also are targets of HIV/SIV infection. We reported previously that a high peripheral blood monocyte turnover rate was predictive for the onset of disease progression to AIDS in SIV-infected adult macaques. The purpose of this study was to determine if earlier or higher infection of monocytes/macrophages contributes to the more rapid progression to AIDS in infants. We observed that uninfected infant rhesus macaques exhibited higher physiologic baseline monocyte turnover than adults. Early after SIV infection, the monocyte turnover further increased, and it remained high during progression to AIDS. A high percentage of terminal deoxynucleotidyltransferase dUTP nick end label (TUNEL)-positive macrophages in the lymph nodes (LNs) and intestine corresponded with an increasing number of macrophages derived from circulating monocytes (bromodeoxyuridine positive [BrdU+] CD163+), suggesting that the increased blood monocyte turnover was required to rapidly replenish destroyed tissue macrophages. Immunofluorescence analysis further demonstrated that macrophages were a significant portion of the virus-producing cells found in LNs, intestinal tissues, and lungs. The higher baseline monocyte turnover in infant macaques and subsequent macrophage damage by SIV infection may help explain the basis of more rapid disease progression to AIDS in infants.IMPORTANCE HIV infection progresses much more rapidly in pediatric cases than in adults; however, the mechanism for this difference is unclear. Using the rhesus macaque model, this work was performed to address why infants infected with SIV progress more quickly to AIDS than do adults. Earlier we reported that in adult rhesus macaques, increasing monocyte turnover reflected tissue macrophage damage by SIV and was predictive of terminal disease progression to AIDS. Here we report that uninfected infant rhesus macaques exhibited a higher physiological baseline monocyte turnover rate than adults. Furthermore, once infected with SIV, infants displayed further increased monocyte turnover that may have facilitated the accelerated progression to AIDS. These results support a role for monocytes and macrophages in the pathogenesis of SIV/HIV and begin to explain why infants are more prone to rapid disease progression.
Collapse
Affiliation(s)
- Chie Sugimoto
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Kristen M Merino
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Atsuhiko Hasegawa
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Xiaolei Wang
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Xavier A Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Hiroshi Wakao
- Department of Hygiene and Cellular Preventive Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Kazuyasu Mori
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Ronald S Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Elizabeth S Didier
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Marcelo J Kuroda
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana, USA
| |
Collapse
|
43
|
Gavin KM, Majka SM, Kohrt WM, Miller HL, Sullivan TM, Klemm DJ. Hematopoietic-to-mesenchymal transition of adipose tissue macrophages is regulated by integrin β1 and fabricated fibrin matrices. Adipocyte 2017; 6:234-249. [PMID: 28441086 DOI: 10.1080/21623945.2017.1314403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Some bona fide adult adipocytes arise de novo from a bone marrow-derived myeloid lineage. These studies further demonstrate that adipose tissue stroma contains a resident population of myeloid cells capable of adipocyte and multilineage mesenchymal differentiation. These resident myeloid cells lack hematopoietic markers and express mesenchymal and progenitor cell markers. Because bone marrow mesenchymal progenitor cells have not been shown to enter the circulation, we hypothesized that myeloid cells acquire mesenchymal differentiation capacity in adipose tissue. We fabricated a 3-dimensional fibrin matrix culture system to define the adipose differentiation potential of adipose tissue-resident myeloid subpopulations, including macrophages, granulocytes and dendritic cells. Our data show that multilineage mesenchymal potential was limited to adipose tissue macrophages, characterized by the acquisition of adipocyte, osteoblast, chondrocyte and skeletal muscle myocyte phenotypes. Fibrin hydrogel matrices stimulated macrophage loss of hematopoietic cell lineage determinants and the expression of mesenchymal and progenitor cell markers, including integrin β1. Ablation of integrin β1 in macrophages inhibited adipocyte specification. Therefore, some bona fide adipocytes are specifically derived from adipose tissue-resident macrophages via an integrin β1-dependent hematopoietic-to-mesenchymal transition, whereby they become capable of multipotent mesenchymal differentiation. The requirement for integrin β1 highlights this molecule as a potential target for controlling the production of marrow-derived adipocytes and their contribution to adipose tissue development and function.
Collapse
Affiliation(s)
- Kathleen M. Gavin
- Geriatric Research, Education and Clinical Center, VA Eastern Colorado Health Care System, Denver, CO
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO
| | - Susan M. Majka
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Wendy M. Kohrt
- Geriatric Research, Education and Clinical Center, VA Eastern Colorado Health Care System, Denver, CO
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO
| | - Heidi L. Miller
- Division of Pulmonary and Critical Care Medicine, University of Colorado Anschutz Medical Center, Aurora, CO
| | - Timothy M. Sullivan
- Division of Pulmonary and Critical Care Medicine, University of Colorado Anschutz Medical Center, Aurora, CO
| | - Dwight J. Klemm
- Geriatric Research, Education and Clinical Center, VA Eastern Colorado Health Care System, Denver, CO
- Division of Pulmonary and Critical Care Medicine, University of Colorado Anschutz Medical Center, Aurora, CO
| |
Collapse
|
44
|
Costa M, Cerqueira MT, Santos TC, Sampaio-Marques B, Ludovico P, Marques AP, Pirraco RP, Reis RL. Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy. Acta Biomater 2017; 55:131-143. [PMID: 28347862 DOI: 10.1016/j.actbio.2017.03.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
Current vascularization strategies for Tissue Engineering constructs, in particular cell sheet-based, are limited by time-consuming and expensive endothelial cell isolation and/or by the complexity of using extrinsic growth factors. Herein, we propose an alternative strategy using angiogenic cell sheets (CS) obtained from the stromal vascular fraction (SVF) of adipose tissue that can be incorporated into more complex constructs. Cells from the SVF were cultured in normoxic and hypoxic conditions for up to 8days in the absence of extrinsic growth factors. Immunocytochemistry against CD31 and CD146 revealed spontaneous organization in capillary-like structures, more complex after hypoxic conditioning. Inhibition of HIF-1α pathway hindered capillary-like structure formation in SVF cells cultured in hypoxia, suggesting a role of HIF-1α. Moreover, hypoxic SVF cells showed a trend for increased secretion of angiogenic factors, which was reflected in increased network formation by endothelial cells cultured on matrigel using that conditioned medium. In vivo implantation of SVF CS in a mouse hind limb ischemia model revealed that hypoxia-conditioned CS led to improved restoration of blood flow. Both in vitro and in vivo data suggest that SVF CS can be used as simple and cost-efficient tools to promote functional vascularization of TE constructs. STATEMENT OF SIGNIFICANCE Neovascularization after implantation is a major obstacle for producing clinically viable cell sheet-based tissue engineered constructs. Strategies using endothelial cells and extrinsic angiogenic growth factors are expensive and time consuming and may raise concerns of tumorigenicity. In this manuscript, we describe a simplified approach using angiogenic cell sheets fabricated from the stromal vascular fraction of adipose tissue. The strong angiogenic behavior of these cell sheets, achieved without the use of external growth factors, was further stimulated by low oxygen culture. When implanted in an in vivo model of hind limb ischemia, the angiogenic cell sheets contributed to blood flux recovery. These cell sheets can therefore be used as a straightforward tool to increase the neovascularization of cell sheet-based thick constructs.
Collapse
Affiliation(s)
- Marina Costa
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| | - Mariana T Cerqueira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tírcia C Santos
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Belém Sampaio-Marques
- Institute of Life and Health Sciences, School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paula Ludovico
- Institute of Life and Health Sciences, School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
45
|
Caggiati A, Germani A, Di Carlo A, Borsellino G, Capogrossi MC, Picozza M. Naturally Adipose Stromal Cell-Enriched Fat Graft: Comparative Polychromatic Flow Cytometry Study of Fat Harvested by Barbed or Blunt Multihole Cannula. Aesthet Surg J 2017; 37:591-602. [PMID: 28052909 DOI: 10.1093/asj/sjw211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Fat grafts enriched with cells of the stromal vascular fraction (SVF), especially adipose-derived stromal cells (ASCs), exhibit significantly improved retention over non enriched, plain fat. Different types of liposuction cannulae may yield lipoaspirates with different subpopulations of cells. Moreover, preparation of adipose tissue for transplantation typically involves centrifugation, which creates a density gradient of fat. Objectives The authors sought to determine whether liposuction with a barbed or smooth cannula altered the enrichment of the SVF, and specifically ASCs, in low-density (LD) and high-density (HD) fractions of centrifuged adipose tissue. Methods Fat was harvested from 2 abdominal sites of 5 healthy women with a barbed or smooth multihole blunt-end cannula. After centrifugation, LD and HD fat fractions were digested with collagenase and analyzed by polychromatic flow cytometry to identify and enumerate distinct populations of cells. Results Overall cell yield and the number of immune cells were consistently higher in HD fractions than in LD fractions, regardless of the cannula employed. More living cells, and specifically more ASCs, populated the HD fractions of lipoaspirates obtained with a barbed cannula than with a smooth cannula. Conclusions In this study, lipoaspiration with a barbed cannula and isolation of the HD layer of centrifuged adipose tissue yielded maximal amounts of SVF cells, including ASCs.
Collapse
Affiliation(s)
- Alessio Caggiati
- Director of the Plastic Surgery Unit, Istituto Dermopatico dell'Immacolata-IRCCS-FLMM, Rome, Italy
| | - Antonia Germani
- Consultant, Istituto Dermopatico dell'Immacolata-IRCCS Scientific Board, Rome, Italy
| | - Anna Di Carlo
- Research Fellow, Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Giovanna Borsellino
- Research Associate, Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, Rome, Italy
| | - Maurizio C Capogrossi
- Head, Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Mario Picozza
- Research Fellow, Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| |
Collapse
|
46
|
Ramakrishnan VM, Boyd NL. The Adipose Stromal Vascular Fraction as a Complex Cellular Source for Tissue Engineering Applications. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:289-299. [PMID: 28316259 DOI: 10.1089/ten.teb.2017.0061] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A major challenge in tissue engineering is the generation of sufficient volumes of viable tissue for organ transplant. The development of a stable, mature vasculature is required to sustain the metabolic and functional activities of engineered tissues. Adipose stromal vascular fraction (SVF) cells are an easily accessible, heterogeneous cell system comprised of endothelial cells, macrophages, pericytes, and various stem cell populations. Collectively, SVF has been shown to spontaneously form vessel-like networks in vitro and robust, patent, and functional vasculatures in vivo. Capitalizing on this ability, we and others have demonstrated adipose SVF's utility in generating and augmenting engineered liver, cardiac, and vascular tissues, to name a few. This review highlights the scientific origins of SVF, the use of SVF as a clinically relevant vascular source, various SVF constituents and their roles, and practical considerations associated with isolating SVF for various tissue engineering applications.
Collapse
Affiliation(s)
- Venkat M Ramakrishnan
- Cardiovascular Innovation Institute, Department of Physiology, University of Louisville School of Medicine , Louisville, Kentucky
| | - Nolan L Boyd
- Cardiovascular Innovation Institute, Department of Physiology, University of Louisville School of Medicine , Louisville, Kentucky
| |
Collapse
|
47
|
Tashiro K, Feng J, Wu SH, Mashiko T, Kanayama K, Narushima M, Uda H, Miyamoto S, Koshima I, Yoshimura K. Pathological changes of adipose tissue in secondary lymphoedema. Br J Dermatol 2017; 177:158-167. [PMID: 28000916 DOI: 10.1111/bjd.15238] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND The pathophysiology of lymphoedema is poorly understood. Current treatment options include compression therapy, resection, liposuction and lymphatic microsurgery, but determining the optimal treatment approach for each patient remains challenging. OBJECTIVES We characterized skin and adipose tissue alterations in the setting of secondary lymphoedema. METHODS Morphological and histopathological evaluations were conducted for 70 specimens collected from 26 female patients with lower-extremity secondary lymphoedema following surgical intervention for gynaecological cancers. Indocyanine green lymphography was performed for each patient to assess lymphoedema severity. RESULTS Macroscopic and ultrasound findings revealed that lymphoedema adipose tissue had larger lobules of adipose tissue, with these lobules surrounded by thick collagen fibres and interstitial lymphatic fluid. In lymphoedema specimens, adipocytes displayed hypertrophic changes and more collagen fibre deposits when examined using electron microscopy, whole-mount staining and immunohistochemistry. The number of capillary lymphatic channels was also found to be increased in the dermis of lymphoedema limbs. Crown-like structures (dead adipocytes surrounded by M1 macrophages) were less frequently seen in lymphoedema samples. Flow cytometry revealed that, among the cellular components of adipose tissue, adipose-derived stem/stromal cells and M2 macrophages were decreased in number in lymphoedema adipose tissue compared with normal controls. CONCLUSIONS These findings suggest that long-term lymphatic volume overload can induce chronic tissue inflammation, progressive fibrosis, impaired homeostasis, altered remodelling of adipose tissue, impaired regenerative capacity and immunological dysfunction. Further elucidation of the pathophysiological mechanisms underlying lymphoedema will lead to more reliable therapeutic strategies.
Collapse
Affiliation(s)
- K Tashiro
- Department of Plastic Surgery, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.,Department of Plastic Surgery, National Cancer Center, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - J Feng
- Department of Plastic Surgery, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.,Department of Plastic Surgery, Southern Medical University Nanfang Hospital, 1838 Guangzhou South Ave., Guangzhou, 510515, China
| | - S-H Wu
- Department of Plastic Surgery, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - T Mashiko
- Department of Plastic Surgery, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - K Kanayama
- Department of Plastic Surgery, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - M Narushima
- Department of Plastic Surgery, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - H Uda
- Department of Plastic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - S Miyamoto
- Department of Plastic Surgery, National Cancer Center, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - I Koshima
- Department of Plastic Surgery, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - K Yoshimura
- Department of Plastic Surgery, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.,Department of Plastic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
48
|
Calcagni M, Zimmermann S, Scaglioni MF, Giesen T, Giovanoli P, Fakin RM. The novel treatment of SVF-enriched fat grafting for painful end-neuromas of superficial radial nerve. Microsurgery 2016; 38:264-269. [PMID: 27731522 DOI: 10.1002/micr.30122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/11/2016] [Accepted: 09/23/2016] [Indexed: 12/25/2022]
Abstract
INTRODUCTION None of the existing treatments in the management of painful end-neuromas of the superficial branch of the radial nerve (SBRN) has been proven superior due to high levels of pain relapse. Fat grafts enriched with the stromal vascular fraction (SVF) could act as a mechanic barrier with biological effects decreasing the resorption rate and boosting the graft's regenerative potential. This study describes the novel surgical treatment technique of SVF-enriched fat grafting. PATIENTS AND METHODS In this clinical study, five consecutive patients treated for painful end-neuromas of the SBRN between 2012 and 2013 were analyzed retrospectively. Microsurgical resection of end-neuromas followed by SVF-enriched fat grafting around the nerve stump was performed in all patients. Five different pain modalities and various predictors were compared pre- and up to 36 months postoperatively. RESULTS Pain reduction observed at 2 months after surgery was constant over time, though not statistically significant compared to preoperative levels. Spontaneous pain could be reduced from 1.6 ± 0.55 to 1.2 ± 1.1 (p = 0.414), spikes from 2.2 ± 1.3 to 1.4 ± 1.34 (p = 0.180), hyperaesthesia from 1.6 ± 1.14 to 1.2 ± 1.64 (p = 0.713), tap pain from 2.8 ± 0.45 to 1.8 ± 1.3 (p = 0.197) and motion pain from 2.8 ± 0.45 to 1.4 ± 1.34 (p = 0.066). An improvement in overall pain reduction could be observed from 2.2 ± 0.97 to 1.4 ± 1.26 3 years after the surgery (p = 0.104). CONCLUSION SVF-enriched fat grafting represents another alternative to numerous available treatments of painful end-neuromas of the SBRN. Our preliminary results could not show any significant difference in pain reduction following SVF-enriched fat grafting. Further larger trials are required in order to evaluate the therapeutic potential of SVF-enriched fat grafting.
Collapse
Affiliation(s)
- Maurizio Calcagni
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Simon Zimmermann
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Mario F Scaglioni
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Giesen
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Pietro Giovanoli
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Richard M Fakin
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
Pérez LM, Pareja-Galeano H, Sanchis-Gomar F, Emanuele E, Lucia A, Gálvez BG. 'Adipaging': ageing and obesity share biological hallmarks related to a dysfunctional adipose tissue. J Physiol 2016; 594:3187-207. [PMID: 26926488 DOI: 10.1113/jp271691] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/21/2016] [Indexed: 12/15/2022] Open
Abstract
The increasing ageing of our societies is accompanied by a pandemic of obesity and related cardiometabolic disorders. Progressive dysfunction of the white adipose tissue is increasingly recognized as an important hallmark of the ageing process, which in turn contributes to metabolic alterations, multi-organ damage and a systemic pro-inflammatory state ('inflammageing'). On the other hand, obesity, the paradigm of adipose tissue dysfunction, shares numerous biological similarities with the normal ageing process such as chronic inflammation and multi-system alterations. Accordingly, understanding the interplay between accelerated ageing related to obesity and adipose tissue dysfunction is critical to gain insight into the ageing process in general as well as into the pathophysiology of obesity and other related conditions. Here we postulate the concept of 'adipaging' to illustrate the common links between ageing and obesity and the fact that, to a great extent, obese adults are prematurely aged individuals.
Collapse
Affiliation(s)
- Laura M Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Helios Pareja-Galeano
- Universidad Europea de Madrid, Spain.,Research Institute Hospital 12 de Octubre ('i+12'), Madrid, Spain
| | | | | | - Alejandro Lucia
- Universidad Europea de Madrid, Spain.,Research Institute Hospital 12 de Octubre ('i+12'), Madrid, Spain
| | - Beatriz G Gálvez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Universidad Europea de Madrid, Spain
| |
Collapse
|
50
|
Nguyen A, Guo J, Banyard DA, Fadavi D, Toranto JD, Wirth GA, Paydar KZ, Evans GRD, Widgerow AD. Stromal vascular fraction: A regenerative reality? Part 1: Current concepts and review of the literature. J Plast Reconstr Aesthet Surg 2015; 69:170-9. [PMID: 26565755 DOI: 10.1016/j.bjps.2015.10.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/25/2015] [Accepted: 10/13/2015] [Indexed: 12/21/2022]
Abstract
Stromal Vascular Fraction (SVF) is a heterogeneous collection of cells contained within adipose tissue that is traditionally isolated using enzymes such as collagenase. With the removal of adipose cells, connective tissue and blood from lipoaspirate, comes the SVF, a mix including mesenchymal stem cells, endothelial precursor cells, T regulatory cells, macrophages, smooth muscle cells, pericytes and preadipocytes. In part 1 of our 2-part series, we review the literature with regards to the intensifying interest that has shifted toward this mixture of cells, particularly due to its component synergy and translational potential. Trials assessing the regenerative potential of cultured Adipose Derived Stem Cells (ADSCs) and SVF demonstrate that SVF is comparably effective in treating conditions ranging from radiation injuries, burn wounds and diabetes, amongst others. Aside from their use in chronic conditions, SVF enrichment of fat grafts has proven a major advance in maintaining fat graft volume and viability. Many SVF studies are currently in preclinical phases or are moving to human trials. Overall, regenerative cell therapy based on SVF is at an early investigative stage but its potential for clinical application is enormous.
Collapse
Affiliation(s)
- Andrew Nguyen
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, USA
| | - James Guo
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, USA
| | - Derek A Banyard
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, USA
| | - Darya Fadavi
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, USA
| | - Jason D Toranto
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, USA
| | - Garrett A Wirth
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, USA
| | - Keyianoosh Z Paydar
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, USA
| | - Gregory R D Evans
- Department of Plastic Surgery, University of California, Irvine, USA
| | - Alan D Widgerow
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, USA.
| |
Collapse
|