1
|
Chaibakhsh S, Azimi F, Shoae-Hassani A, Niknam P, Ghamari A, Dehghan S, Nilforushan N. Evaluating the impact of mesenchymal stem cell therapy on visual acuity and retinal nerve fiber layer thickness in optic neuropathy patients: a comprehensive systematic review and meta-analysis. BMC Ophthalmol 2024; 24:316. [PMID: 39075477 PMCID: PMC11287858 DOI: 10.1186/s12886-024-03588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Stem cell therapy has emerged as a potential therapeutic avenue for optic neuropathy patients. To assess its safety and efficacy, we conducted a systematic review and meta-analysis, focusing on the latest evidence pertaining to the improvement of visual acuity (VA) through stem cell therapy. METHODS We analyzed Each database from its inception until June 2024. PubMed, Scopus, and Google Scholar were systematically searched to identify the included studies. Data were extracted regarding the year of publication, the name of the first author, sample size, VA (Log Mar), and Retinal Nerve Fiber Layer (RNFL) thickness. PRISMA protocol was used as a guide to perform this meta-analysis. STATA 16 was used for statistical analysis. RESULTS A total of 66 eyes were examined in seven papers. Based on the meta-analysis, the mean VA (Log MAR) of patients with optic neuropathy improved from 0.90 to 0.65 following stem cell therapy intervention (p-value = 0.001). The thickness of the RNFLs did not demonstrate a significant change (p-value was 0.174). CONCLUSION According to this systematic review and meta-analysis, stem cell therapy may improve the visual acuity of patients with optic neuropathy. Aside from the traditional therapy that can be provided to patients with optic neuropathy, stem cell therapy may also be beneficial.
Collapse
Affiliation(s)
- Samira Chaibakhsh
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Azimi
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Shoae-Hassani
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Stem Cells and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Parvin Niknam
- Department of Ophthalmology, Mayo clinic, Rochester, MN, USA
| | - Ali Ghamari
- Pediatric Cell and Gene Therapy Research Center, Cell & Tissue Research Institute, Tehran university of Medical Sciences, Gene, Tehran, Iran
| | - Samaneh Dehghan
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
- Stem Cells and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Naveed Nilforushan
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Tang Y, Wang Z, Teng H, Ni H, Chen H, Lu J, Chen Z, Wang Z. Safety and efficacy of bone marrow mononuclear cell therapy for ischemic stroke recovery: a systematic review and meta-analysis of randomized controlled trials. Neurol Sci 2024; 45:1885-1896. [PMID: 38172413 PMCID: PMC11021295 DOI: 10.1007/s10072-023-07274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Cell-based therapy represents a potential treatment for ischemic stroke (IS). Here, we performed a systematic review and meta-analysis to summarize the evidence provided by randomized controlled trials (RCTs) for the transplantation of bone marrow mononuclear cells (BMMNCs) in patients with IS in any phase after stroke. METHODS We searched several databases for relevant articles up to the 10th of March 2023, including MEDLINE, EMBASE, the Cochrane Library, and ClinicalTrials.gov. Subgroup analyses were implemented to evaluate the dose and route of BMMNC administration. Statistical data were analyzed by Review Manager version 5.3 software. RESULTS Six RCTs were included in this article, including 177 patients who were treated by the transplantation of BMMNCs and 166 patients who received medical treatment. The three-month National Institutes of Health Stroke Scale (NIHSS) score indicated a favorable outcome for the BMMNC transplantation group (standardized mean difference (SMD), - 0.34; 95% confidence interval (CI), - 0.57 to - 0.11; P = 0.004). There were no significant differences between the two groups at six months post-transplantation with regards to NIHSS score (SMD 0.00; 95% CI - 0.26 to 0.27; P = 0.97), modified Rankin Scale (risk ratio (RR) 1.10; 95% CI 0.75 to 1.63; P = 0.62), Barthel Index change (SMD 0.68; 95% CI - 0.59 to 1.95; P = 0.29), and infarct volume change (SMD - 0.08; 95% CI - 0.42 to 0.26; P = 0.64). In addition, there was no significant difference between the two groups in terms of safety outcome (RR 1.24; 95% CI 0.80 to 1.91; P = 0.33). CONCLUSION Our meta-analysis demonstrated that the transplantation of BMMNCs was safe; however, the efficacy of this procedure requires further validation in larger RTCs.
Collapse
Affiliation(s)
- Yanbing Tang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, 215002, Jiangsu Province, China
| | - Zilan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haiying Teng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Hanyu Ni
- Suzhou Medical College of Soochow University, Suzhou, 215002, Jiangsu Province, China
| | - Huiru Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Jiaye Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
3
|
The Role of Extracellular Vesicles in Optic Nerve Injury: Neuroprotection and Mitochondrial Homeostasis. Cells 2022; 11:cells11233720. [PMID: 36496979 PMCID: PMC9738450 DOI: 10.3390/cells11233720] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Stem cell therapies hold great promise as alternative treatments for incurable optic nerve disorders. Although mesenchymal stem cells exhibit various tissue regeneration and recovery capabilities that may serve as valuable therapies, the clinical applications remain limited. Thus, we investigated the utility of extracellular vesicles (EVs) from human placenta-derived mesenchymal stem cells (hPSCs) in this context. Hypoxically preconditioned hPSCs (HPPSCs) were prepared via short-term incubation under 2.2% O2 and 5.5% CO2. The EVs were then isolated. R28 cells (retinal precursor cells) were exposed to CoCl2 and treated with EVs for 24 h. Cell proliferation and regeneration were measured using a BrdU assay and immunoblotting; ATP quantification revealed the extent of the mitochondrial function. The proteome was determined via liquid chromatography-tandem mass spectroscopy. Differentially expressed proteins (DEPs) were detected and their interactions identified. HPPSC_EVs functions were explored using animal models of optic nerve compression. HPPSC_EVs restored cell proliferation and mitochondrial quality control in R28 cells damaged by CoCl2. We identified DEPs (p < 0.05) that aided recovery. The mitochondrial DEPs included LONP1; PARK7; VDAC1, 2, and 3; HSPD1; and HSPA9. EVs regulated the levels of mitophagic proteins in R28 cells injured by hypoxia; the protein levels did not increase in LONP1 knockdown cells. LONP1 is a key mediator of the mitophagy that restores mitochondrial function after hypoxia-induced optic nerve injury.
Collapse
|
4
|
Kaviannejad R, Karimian SM, Riahi E, Ashabi G. The neuroprotective effects of transcranial direct current stimulation on global cerebral ischemia and reperfusion via modulating apoptotic pathways. Brain Res Bull 2022; 186:70-78. [PMID: 35654262 DOI: 10.1016/j.brainresbull.2022.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cerebral ischemia-reperfusion, subsequent hyperthermia, and hyperglycemia lead to neural damage. This study aimed to investigate the effects of using cathodal and/or anodal transcranial direct current stimulation (tDCS) in different stages of ischemia-reperfusion on apoptosis and controlling hyperthermia and hyperglycemia. MATERIALS AND METHODS A total of 78 male Wistar rats were randomly assigned into six groups (n=13), including sham, ischemia/reperfusion (I/R), anodal-tDCS (a-tDCS), cathodal-tDCS (c-tDCS), anodal/cathodal-tDCS (a/c-tDCS), and cathodal/anodal-tDCS (c/a-tDCS) groups. Global cerebral I/R was induced in all of the groups except for sham group. In a-tDCS and c-tDCS groups, the rats received anodal and cathodal currents in both I/R stages, respectively. In a/c-tDCS group, the rats received anodal current during the ischemia and cathodal current during the reperfusion. The c/a-tDCS group received the currents in the reverse order. The current intensity of 400µA was applied in ischemia phase (15min) and reperfusion phase (30min, twice a day). Body temperature and plasma blood sugar were measured daily. Rats were also tested for novel object recognition and passive avoidance memory. The apoptosis of hippocampal tissue was evaluated by measuring Bax, Bcl-2, Caspase-3, and TUNEL staining. RESULTS All tDCS significantly reduced hyperthermia and hyperglycemia, as well as Bax and Caspase-3 levels, it also increased Bcl-2 expression. The preliminary results from c/a-tDCS mode could improve the expression of apoptotic markers, memory function, hyperthermia, and hyperglycemia control and reduce DNA fragmentation compared to other stimulatory therapies. CONCLUSION All tDCS modes could save neurons by suppressing apoptotic and enhancing anti-apoptotic pathways, especially in the c/a tDCS mode.
Collapse
Affiliation(s)
- Rasoul Kaviannejad
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Anesthesiology, School of Allied Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Human Pluripotent Stem Cell-Derived Neural Progenitor Cells Promote Retinal Ganglion Cell Survival and Axon Recovery in an Optic Nerve Compression Animal Model. Int J Mol Sci 2021; 22:ijms222212529. [PMID: 34830410 PMCID: PMC8622638 DOI: 10.3390/ijms222212529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022] Open
Abstract
Human pluripotent stem cell-derived neural progenitor cells (NPCs) have the potential to recover from nerve injury. We previously reported that human placenta-derived mesenchymal stem cells (PSCs) have neuroprotective effects. To evaluate the potential benefit of NPCs, we compared them to PSCs using R28 cells under hypoxic conditions and a rat model of optic nerve injury. NPCs and PSCs (2 × 106 cells) were injected into the subtenon space. After 1, 2, and 4 weeks, we examined changes in target proteins in the retina and optic nerve. NPCs significantly induced vascular endothelial growth factor (Vegf) compared to age-matched shams and PSC groups at 2 weeks; they also induced neurofilaments in the retina compared to the sham group at 4 weeks. In addition, the expression of brain-derived neurotrophic factor (Bdnf) was high in the retina in the NPC group at 2 weeks, while expression in the optic nerve was high in both the NPC and PSC groups. The low expression of ionized calcium-binding adapter molecule 1 (Iba1) in the retina had recovered at 2 weeks after NPC injection and at 4 weeks after PSC injection. The expression of the inflammatory protein NLR family, pyrin domain containing 3 (Nlrp3) was significantly reduced at 1 week, and that of tumor necrosis factor-α (Tnf-α) in the optic nerves of the NPC group was lower at 2 weeks. Regarding retinal ganglion cells, the expressions of Brn3a and Tuj1 in the retina were enhanced in the NPC group compared to sham controls at 4 weeks. NPC injections increased Gap43 expression from 2 weeks and reduced Iba1 expression in the optic nerves during the recovery period. In addition, R28 cells exposed to hypoxic conditions showed increased cell survival when cocultured with NPCs compared to PSCs. Both Wnt/β-catenin signaling and increased Nf-ĸb could contribute to the rescue of damaged retinal ganglion cells via upregulation of neuroprotective factors, microglial engagement, and anti-inflammatory regulation by NPCs. This study suggests that NPCs could be useful for the cellular treatment of various optic neuropathies, together with cell therapy using mesenchymal stem cells.
Collapse
|
6
|
Plants Secondary Metabolites as Blood Glucose-Lowering Molecules. Molecules 2021; 26:molecules26144333. [PMID: 34299610 PMCID: PMC8307461 DOI: 10.3390/molecules26144333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, significant advances in modern medicine and therapeutic agents have been achieved. However, the search for effective antidiabetic drugs is continuous and challenging. Over the past decades, there has been an increasing body of literature related to the effects of secondary metabolites from botanical sources on diabetes. Plants-derived metabolites including alkaloids, phenols, anthocyanins, flavonoids, stilbenoids, saponins, tannins, polysaccharides, coumarins, and terpenes can target cellular and molecular mechanisms involved in carbohydrate metabolism. In addition, they can grant protection to pancreatic beta cells from damage, repairing abnormal insulin signaling, minimizing oxidative stress and inflammation, activating AMP-activated protein kinase (AMPK), and inhibiting carbohydrate digestion and absorption. Studies have highlighted many bioactive naturally occurring plants' secondary metabolites as candidates against diabetes. This review summarizes the current knowledge compiled from the latest studies published during the past decade on the mechanism-based action of plants-derived secondary metabolites that can target various metabolic pathways in humans against diabetes. It is worth mentioning that the compiled data in this review will provide a guide for researchers in the field, to develop candidates into environment-friendly effective, yet safe antidiabetics.
Collapse
|
7
|
Jiao Y, Liu YW, Chen WG, Liu J. Neuroregeneration and functional recovery after stroke: advancing neural stem cell therapy toward clinical application. Neural Regen Res 2021; 16:80-92. [PMID: 32788451 PMCID: PMC7818886 DOI: 10.4103/1673-5374.286955] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stroke is a main cause of death and disability worldwide. The ability of the brain to self-repair in the acute and chronic phases after stroke is minimal; however, promising stem cell-based interventions are emerging that may give substantial and possibly complete recovery of brain function after stroke. Many animal models and clinical trials have demonstrated that neural stem cells (NSCs) in the central nervous system can orchestrate neurological repair through nerve regeneration, neuron polarization, axon pruning, neurite outgrowth, repair of myelin, and remodeling of the microenvironment and brain networks. Compared with other types of stem cells, NSCs have unique advantages in cell replacement, paracrine action, inflammatory regulation and neuroprotection. Our review summarizes NSC origins, characteristics, therapeutic mechanisms and repair processes, then highlights current research findings and clinical evidence for NSC therapy. These results may be helpful to inform the direction of future stroke research and to guide clinical decision-making.
Collapse
Affiliation(s)
- Yang Jiao
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Yu-Wan Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Wei-Gong Chen
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
8
|
Kwon H, Park M, Nepali S, Lew H. Hypoxia-Preconditioned Placenta-Derived Mesenchymal Stem Cells Rescue Optic Nerve Axons Via Differential Roles of Vascular Endothelial Growth Factor in an Optic Nerve Compression Animal Model. Mol Neurobiol 2020; 57:3362-3375. [PMID: 32524519 DOI: 10.1007/s12035-020-01965-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Human placenta-derived stem cells (hPSCs) with the therapeutic potential to recover from optic nerve injury have been reported. We have recently demonstrated that hPSCs have protective abilities against hypoxic damage. To improve the capacity of hPSCs, we established a hypoxia-preconditioned strain (HPPCs) using a hypoxic chamber. The hPSCs were exposed to short-term hypoxic conditions of 2.2% O2 and 5.5% CO2. We also performed in vivo experiments to demonstrate the recovery effects of HPPCs using an optic nerve injury rat model. Naïve hPSCs (and HPPCs) were injected into the optic nerve. After 1, 2, or 4 weeks, we analyzed changes in target proteins in the optic nerve tissues. In the retina, GAP43 expression was higher in both groups of naïve hPSCs and HPPCs versus sham controls. Two weeks after injection, all hPSC-injected groups showed recovery of tuj1 expression in damaged retinas. We also determined GFAP expression in retinas using the same model. In optic nerve tissues, HIF-1α levels were significantly lower in the HPPC-injected group 1 week after injury, and Thy-1 levels were higher in the hPSC-injected group at 4 weeks. There was also an enhanced recovery of Thy-1 expression after HPPC injection. In addition, R28 cells exposed to hypoxic conditions showed improved viability through enhanced recovery of HPPCs than naïve hPSCs. VEGF protein was a mediator in the recovery pathway via upregulation of target proteins regulated by HPPCs. Our results suggest that HPPCs may be candidates for cell therapy for the treatment of traumatic optic nerve injury.
Collapse
Affiliation(s)
- Heejung Kwon
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Mira Park
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sarmila Nepali
- Department of Ophthalmology, University of Miami, Coral Gables, FL, USA
| | - Helen Lew
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
9
|
Link TW, Santillan A, Patsalides A. Intra-arterial neuroprotective therapy as an adjunct to endovascular intervention in acute ischemic stroke: A review of the literature and future directions. Interv Neuroradiol 2020; 26:405-415. [PMID: 32423272 DOI: 10.1177/1591019920925677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mechanical thrombectomy for acute ischemic stroke due to large vessel occlusion has been shown to significantly improve outcomes. However, despite efficient rates of recanalization (60-90%), the rates of functional independence remain suboptimal (14-58%), most likely due to pathways of cell death in the brain that have already committed despite successful reperfusion. Pharmacologic neuroprotection provides a potential means of preventing this inevitable damage through targeting excitotoxicity, reactive oxygen species, cellular apoptosis, and inflammation. Numerous clinical trials using various neuroprotective agents have failed, but the majority of these trials did not include endovascular reperfusion, and thus the drugs were not reaching the therapeutic target. Intra-arterial delivery of neuroprotective agents via the guide catheter already in place for mechanical thrombectomy could provide a way to deliver high doses directly to the affected territory while limiting systemic exposure. Agents that have shown promise via the intra-arterial route in preclinical as well as some clinical models include magnesium sulfate, verapamil, cold saline, stem cells, and various combined approaches. Targeted hypothermia, achieved with intra-carotid infusion of cold saline, may provide an effective means of achieving hypothermia of the ischemic tissue while avoiding the systemic effects that have limited its use previously. Combination therapy of targeted hypothermia and a cocktail of drugs that provide anti-excitotoxic, anti-oxidant, anti-apopototic, and anti-inflammatory effects may provide an ideal approach that deserves further study in clinical trials.
Collapse
Affiliation(s)
- Thomas W Link
- Department of Neurosurgery, Weill Cornell Medical Institution New York Presbyterian Hospital, New York, NY, USA
| | - Alejandro Santillan
- Department of Neurosurgery, Weill Cornell Medical Institution New York Presbyterian Hospital, New York, NY, USA
| | - Athos Patsalides
- Department of Neurology, Weill Cornell Medical Institution New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
10
|
Mello TG, Rosado-de-Castro PH, Campos RMP, Vasques JF, Rangel-Junior WS, Mattos RSDARD, Puig-Pijuan T, Foerster BU, Gutfilen B, Souza SAL, Boltze J, Paiva FF, Mendez-Otero R, Pimentel-Coelho PM. Intravenous Human Umbilical Cord-Derived Mesenchymal Stromal Cell Administration in Models of Moderate and Severe Intracerebral Hemorrhage. Stem Cells Dev 2020; 29:586-598. [PMID: 32160799 DOI: 10.1089/scd.2019.0176] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is as a life-threatening condition that can occur in young adults, often causing long-term disability. Recent preclinical data suggest mesenchymal stromal cell (MSC)-based therapies as promising options to minimize brain damage after ICH. However, therapeutic evidence and mechanistic insights are still limited, particularly when compared with other disorders such as ischemic stroke. Herein, we employed a model of collagenase-induced ICH in young adult rats to investigate the potential therapeutic effects of an intravenous injection of human umbilical cord Wharton's jelly-derived MSCs (hUC-MSCs). Two doses of collagenase were used to cause moderate or severe hemorrhages. Magnetic resonance imaging showed that animals treated with hUC-MSCs after moderate ICH had smaller residual hematoma volumes than vehicle-treated rats, whereas the cell therapy failed to decrease the hematoma volume in animals with a severe ICH. Functional assessments (rotarod and elevated body swing tests) were performed for up to 21 days after ICH. Enduring neurological impairments were seen only in animals subjected to severe ICH, but the cell therapy did not induce statistically significant improvements in the functional recovery. The biodistribution of Technetium-99m-labeled hUC-MSCs was also evaluated, showing that most cells were found in organs such as the spleen and lungs 24 h after transplantation. Nevertheless, it was possible to detect a weak signal in the brain, which was higher in the ipsilateral hemisphere of rats subjected to a severe ICH. These data indicate that hUC-MSCs have moderately beneficial effects in cases of less severe brain hemorrhages in rats by decreasing the residual hematoma volume, and that optimization of the therapy is still necessary.
Collapse
Affiliation(s)
- Tanira Giara Mello
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Engenharia Nuclear, Comissão Nacional de Energia Nuclear, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Paulo Henrique Rosado-de-Castro
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil.,Departamento de Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Juliana Ferreira Vasques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | | | | | - Teresa Puig-Pijuan
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Bernd Uwe Foerster
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Bianca Gutfilen
- Departamento de Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio Augusto Lopes Souza
- Departamento de Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Pedro Moreno Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Preconditioning of Rat Bone Marrow-Derived Mesenchymal Stromal Cells with Toll-Like Receptor Agonists. Stem Cells Int 2019; 2019:7692973. [PMID: 31531025 PMCID: PMC6721436 DOI: 10.1155/2019/7692973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are dynamic cells that can sense the environment, adapting their regulatory functions to different conditions. Accordingly, the therapeutic potential of BM-MSCs can be modulated by preconditioning strategies aimed at modifying their paracrine action. Although rat BM-MSCs (rBM-MSCs) have been widely tested in preclinical research, most preconditioning studies have employed human and mouse BM-MSCs. Herein, we investigated whether rBM-MSCs modify their phenotype and paracrine functions in response to Toll-like receptor (TLR) agonists. The data showed that rBM-MSCs expressed TLR3, TLR4, and MDA5 mRNA and were able to internalize polyinosinic-polycytidylic acid (Poly(I:C)), a TLR3/MDA5 agonist. rBM-MSCs were then stimulated with Poly(I:C) or with lipopolysaccharide (LPS, a TLR4 agonist) for 1 h and were grown under normal culture conditions. LPS or Poly(I:C) stimulation did not affect the viability or the morphology of rBM-MSCs and did not modify the expression pattern of key cell surface markers. Poly(I:C) did not induce statistically significant changes in the release of several inflammatory mediators and VEGF by rBM-MSCs, although it tended to increase IL-6 and MCP-1 secretion, whereas LPS increased the release of IL-6, MCP-1, and VEGF, three factors that were constitutively secreted by unstimulated cells. The neurotrophic activity of the conditioned medium from unstimulated and LPS-preconditioned rBM-MSCs was investigated using dorsal root ganglion explants, showing that soluble factors produced by unstimulated and LPS-preconditioned rBM-MSCs can stimulate neurite outgrowth similarly, in a VEGF-dependent manner. LPS-preconditioned cells, however, were slightly more efficient in increasing the number of regrowing axons in a model of sciatic nerve transection in rats. In conclusion, LPS preconditioning boosted the production of constitutively secreted factors by rBM-MSCs, without changing their mesenchymal identity, an effect that requires further investigation in exploratory preclinical studies.
Collapse
|
12
|
Namgoong S, Lee H, Lee JS, Jeong SH, Han SK, Dhong ES. Comparative Biological Effects of Human Amnion and Chorion Membrane Extracts on Human Adipose-Derived Stromal Cells. J Craniofac Surg 2019; 30:947-954. [PMID: 30817541 DOI: 10.1097/scs.0000000000005393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although therapies with human amnion/chorion are used to ameliorate acute and chronic wounds, it is unclear which component of the amnion/chorion tissue promotes wound healing. To characterize the comparative effects of amnion and chorion in wound healing, we used human adipose-derived stromal cells to assess cell viability, migration, and gel contraction after treatment with amnion membrane extract (AME) or chorion membrane extract (CME). We then correlated the possible effectors via AME and CME protein profiling, and compared them by enzyme-linked immunosorbent assay (ELISA), western blotting, and immunocytochemistry. Cell viability was significantly increased with 50 and 100 μg/mL AME treatment, but with CME treatment, a significant increase was only observed with 100 μg/mL. With CME treatment, cell migration was 2.22-fold greater than the control, and collagen gels showed 20% greater contraction. Compared to control, the expression levels of α-smooth muscle actin (SMA) and smooth muscle protein 22-alpha (SM22α) increased both with AME and CME treatments, whereas calponin expression decreased. Protein profiling revealed significantly higher tissue inhibitor of metalloproteinase-1 (TIMP-1), interleukin-8, exotoxin, and adiponectin levels in CME than in AME, and ELISA revealed 8-fold higher adiponectin levels in cells treated with CME than those treated with AME. Immunocytochemistry revealed that α-SMA, SM22α, and calponin were significantly higher in CME- than AME-treated cells; however, adiponectin treatment did not enhance α-SMA, SM22α, or calponin expression. In conclusion, amnion and chorion membrane extracts exerted differential effects on proliferation and contraction of human adipose-derived stromal cells. Amnion extract was superior at inducing cell proliferation and migration, whereas CME was superior at inducing cell contraction.
Collapse
Affiliation(s)
- Sik Namgoong
- Department of Plastic Surgery, Korea University Guro Hospital, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
13
|
Mesentier-Louro LA, Teixeira-Pinheiro LC, Gubert F, Vasques JF, Silva-Junior AJ, Chimeli-Ormonde L, Nascimento-Dos-Santos G, Mendez-Otero R, Santiago MF. Long-term neuronal survival, regeneration, and transient target reconnection after optic nerve crush and mesenchymal stem cell transplantation. Stem Cell Res Ther 2019; 10:121. [PMID: 30995945 PMCID: PMC6472105 DOI: 10.1186/s13287-019-1226-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023] Open
Abstract
Background Retina and/or optic nerve injury may cause irreversible blindness, due to degeneration of retinal ganglion cells. We and others have previously shown that the intravitreal injection of mesenchymal stem cells (MSCs) protects injured retinal ganglion cells and stimulates their regeneration after optic nerve injury, but the long-term effects of this therapy are still unknown. Methods We injected rat MSC (rMSC) intravitreally in adult (3–5 months) Lister Hooded rats of either sex after optic nerve crush. Retinal ganglion cell survival, axonal regeneration, and reconnection were analyzed 60 and 240 days after crush by immunohistochemistry for Tuj1, anterograde labeling with cholera-toxin B and by immunohistochemistry for nerve growth factor-induced gene A (NGFI-A, driven by light stimulation) in the superior colliculus after a cycle of light deprivation-stimulation. Visual behaviors (optokinetic reflex, looming response, and preference for dark) were analyzed 70 days after crush. Results rMSC treatment doubled the number of surviving retinal ganglion cells, preferentially of a larger subtype, and of axons regenerating up to 0.5 mm. Some axons regenerated to the lateral geniculate nucleus and superior colliculus. NGFI-A+ cells were doubled in rMSC-treated animals 60 days after crush, but equivalent to vehicle-injected animals 240 days after crush, suggesting that newly formed synapses degenerated. Animals did not recover visual behaviors. Conclusions We conclude that rMSC-induced neuroprotection is sustained at longer time points. Although rMSCs promoted long-term neuroprotection and long-distance axon regeneration, the reconnection of retinal ganglion cells with their targets was transitory, indicating that they need additional stimuli to make stable reconnections. Electronic supplementary material The online version of this article (10.1186/s13287-019-1226-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louise A Mesentier-Louro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Leandro C Teixeira-Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fernanda Gubert
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Juliana F Vasques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERE, Rio de Janeiro, Brazil
| | - Almir J Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERE, Rio de Janeiro, Brazil
| | - Luiza Chimeli-Ormonde
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERE, Rio de Janeiro, Brazil
| | - Gabriel Nascimento-Dos-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERE, Rio de Janeiro, Brazil
| | - Marcelo F Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
14
|
Gubert F, Bonacossa-Pereira I, Decotelli AB, Furtado M, Vasconcelos-Dos-Santos A, Mendez-Otero R, Santiago MF. Bone-marrow mononuclear cell therapy in a mouse model of amyotrophic lateral sclerosis: Functional outcomes from different administration routes. Brain Res 2019; 1712:73-81. [PMID: 30735638 DOI: 10.1016/j.brainres.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic degenerative disease that mainly affects motor neurons, leading to progressive paralysis and death. Recently, cell therapy has emerged as a therapeutic alternative for several neurological diseases, including ALS, and bone-marrow cells are one of the major cell sources. Considering the importance of pre-clinical trials to determine the best therapeutic protocol and the hope of translating this protocol to the clinical setting, we tested bone-marrow mononuclear cell (BMMC) therapy administered by different routes in the SOD1G93A model of ALS. BMMCs were isolated from non-transgenic, age matched animals and administered intravenously (IV), intramuscularly (IM), and intravenously and intramuscular concomitantly (IV + IM). BMMC therapy had no significant beneficial effects when injected IV or IM, but delayed disease progression when these two routes were used concomitantly. BMMC IV + IM treatment reduced the number of microglia cells in the spinal cord and partially protected of neuromuscular-junction innervation, but had no effect in preventing motor-neuron loss. This study showed that injection of BMMC IV + IM had better results when compared to each route in isolation, highlighting the importance of targeting multiple anatomical regions in the treatment of ALS.
Collapse
Affiliation(s)
- Fernanda Gubert
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Igor Bonacossa-Pereira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Ana B Decotelli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Michelle Furtado
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marcelo F Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Savitz SI, Yavagal D, Rappard G, Likosky W, Rutledge N, Graffagnino C, Alderazi Y, Elder JA, Chen PR, Budzik RF, Tarrel R, Huang DY, Hinson JM. A Phase 2 Randomized, Sham-Controlled Trial of Internal Carotid Artery Infusion of Autologous Bone Marrow–Derived ALD-401 Cells in Patients With Recent Stable Ischemic Stroke (RECOVER-Stroke). Circulation 2019; 139:192-205. [DOI: 10.1161/circulationaha.117.030659] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sean I. Savitz
- Institute for Stroke and Cerebrovascular Disease, UTHealth, Houston, TX (S.I.S., Y.A.)
| | | | - George Rappard
- The Brain and Spine Research Institute, Los Angeles, CA (G.R.)
| | | | | | | | - Yazan Alderazi
- Institute for Stroke and Cerebrovascular Disease, UTHealth, Houston, TX (S.I.S., Y.A.)
| | | | - Peng R. Chen
- Department of Neurosurgery, McGovern Medical School, Houston, TX (P.R.C.)
| | | | | | - David Y. Huang
- Department of Neurology, University of North Carolina, Chapel Hill (D.Y.H.)
| | | | | |
Collapse
|
16
|
Cui L, Moisan A, Jolkkonen J. Intravascular cell therapy in stroke: predicting the future trends. Regen Med 2018; 14:63-68. [PMID: 30561248 DOI: 10.2217/rme-2018-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This short review examines the trends that have taken place during the last two decades in selecting delivery route and cell product in confirmatory preclinical stroke research. If there had been a major change, this might indicate a strategy with a high potential to enter early-phase clinical studies. The retrospective data show that intravenous cell delivery of mesenchymal stem cells remains the most popular approach in experimental research, clearly dominating early phase clinical studies. The advantages and risks of current practices are discussed in the hope that these will improve translational success and accelerate clinical development of safe and efficient cell products.
Collapse
Affiliation(s)
- Lili Cui
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anaïck Moisan
- Inserm U1216, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,Cell Therapy and Engineering Unit, French Blood Company, Etablissement Français du Sang, Saint-Ismier, France
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
17
|
Wang L, Neumann M, Fu T, Li W, Cheng X, Su BL. Porous and responsive hydrogels for cell therapy. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Yoon JS, Jo D, Lee HS, Yoo SW, Lee TY, Hwang WS, Choi JM, Kim E, Kim SS, Suh-Kim H. Spatiotemporal Protein Atlas of Cell Death-Related Molecules in the Rat MCAO Stroke Model. Exp Neurobiol 2018; 27:287-298. [PMID: 30181691 PMCID: PMC6120968 DOI: 10.5607/en.2018.27.4.287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 01/04/2023] Open
Abstract
Ischemic stroke and cerebral infarction triggered by the blockage of blood supply can cause damage to the brain via a complex series of pathological changes. Recently, diverse therapies have emerged as promising candidates for the treatment of stroke. These treatments exert therapeutic effects by acting on diverse target molecules and cells in different time windows from the acute to chronic phases. Here, using immunohistochemistry, we show pathophysiological changes in the brain microenvironment at the hyperacute (within 6 h), acute (1~3 days), subacute (7 days), and chronic (1 month) phases following ischemic injury. Ischemic injury in rats was induced by occluding the middle cerebral artery and was validated by magnetic resonance imaging. The progression of damage to the brain was evaluated by immunohistochemistry for NeuN+ neurons, GFAP+ astrocytes, and Iba1+ microglia, and by the emergence of the cell death-related molecules such as AIF, FAF1, and activated caspase-3. Our data regarding the spatial and temporal information on pathophysiological changes may warrant the investigation of the timing of administration of therapeutic treatments in preclinical studies with an animal model of stroke.
Collapse
Affiliation(s)
- Jeong Seon Yoon
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Darong Jo
- Department of Biomedical Sciences, Ajou Graduate School, Suwon 16499, Korea
| | - Hye-Sun Lee
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Seung-Wan Yoo
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Tae-Young Lee
- Department of Biomedical Sciences, Ajou Graduate School, Suwon 16499, Korea
| | - Woo Sup Hwang
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Jung-Mi Choi
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Eunhee Kim
- Department of Biological Sciences and Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Korea
| | - Sung-Soo Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Haeyoung Suh-Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Ajou Graduate School, Suwon 16499, Korea
| |
Collapse
|
19
|
Yamaguchi S, Horie N, Satoh K, Ishikawa T, Mori T, Maeda H, Fukuda Y, Ishizaka S, Hiu T, Morofuji Y, Izumo T, Nishida N, Matsuo T. Age of donor of human mesenchymal stem cells affects structural and functional recovery after cell therapy following ischaemic stroke. J Cereb Blood Flow Metab 2018; 38:1199-1212. [PMID: 28914133 PMCID: PMC6434451 DOI: 10.1177/0271678x17731964] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell transplantation therapy offers great potential to improve impairments after stroke. However, the importance of donor age on therapeutic efficacy is unclear. We investigated the regenerative capacity of transplanted cells focusing on donor age (young vs. old) for ischaemic stroke. The quantities of human mesenchymal stem cell (hMSC) secreted brain-derived neurotrophic factor in vitro and of monocyte chemotactic protein-1 at day 7 in vivo were both significantly higher for young hMSC compared with old hMSC. Male Sprague-Dawley rats subjected to transient middle cerebral artery occlusion that received young hMSC (trans-arterially at 24 h after stroke) showed better behavioural recovery with prevention of brain atrophy compared with rats that received old hMSC. Histological analysis of the peri-infarct cortex showed that rats treated with young hMSC had significantly fewer microglia and more vessels covered with pericytes. Interestingly, migration of neural stem/progenitor cells expressing Musashi-1 positively correlated with astrocyte process alignment, which was more pronounced for young hMSC. Aging of hMSC may be a critical factor that affects cell therapy outcomes, and transplantation of young hMSC appears to provide better functional recovery through anti-inflammatory effects, vessel maturation, and neurogenesis potentially by the dominance of trophic factor secretion.
Collapse
Affiliation(s)
- Susumu Yamaguchi
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Nobutaka Horie
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Katsuya Satoh
- 2 Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takeshi Ishikawa
- 2 Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tsuyoshi Mori
- 2 Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hajime Maeda
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuhtaka Fukuda
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shunsuke Ishizaka
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takeshi Hiu
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoichi Morofuji
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tsuyoshi Izumo
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Noriyuki Nishida
- 2 Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takayuki Matsuo
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
20
|
Intrathecal Injection of Allogenic Bone Marrow-Derived Mesenchymal Stromal Cells in Treatment of Patients with Severe Ischemic Stroke: Study Protocol for a Randomized Controlled Observer-Blinded Trial. Transl Stroke Res 2018; 10:170-177. [DOI: 10.1007/s12975-018-0634-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022]
|
21
|
Xue P, Wang M, Yan G. Mesenchymal stem cell transplantation as an effective treatment strategy for ischemic stroke in Asia: a meta-analysis of controlled trials. Ther Clin Risk Manag 2018; 14:909-928. [PMID: 29785117 PMCID: PMC5957058 DOI: 10.2147/tcrm.s161326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective The aim of this study was to evaluate the efficacy and safety of the mesenchymal stem cell (MSC) therapy in patients with ischemic stroke (IS). Materials and methods Clinical trials involved in this research were searched from PubMed, Web of Science, Cochrane Library, Embase, Wanfang and CNKI database. Therapeutic effects of MSC therapy were assessed according to National Institutes of Health Stroke Scale (NIHSS), Barthel index (BI), Fugl-Meyer Assessment (FMA) and Functional Independence Measure (FIM), and its safety was evaluated based on adverse events. Results This research covered 23 trials including 1,279 IS patients. Based on our analysis, the overall condition of IS patients significantly improved after MSC therapy, indicated by decreased NIHSS and increased BI, FMA and FIM scores. Our analysis also showed that the treatment effects in the MSC transplantation group were superior to those in the control group (routine medication therapy) with statistical significance for NIHSS (1 month after therapy: odds ratio [OR]=-1.92, CI=-3.49 to -0.34, P=0.02; 3 months after therapy: OR=-2.65, CI=-3.40 to -1.90, P<0.00001), BI (1 month after therapy: OR=0.99, CI=0.19-1.79, P=0.02; 6 months after therapy: OR=10.10, CI=3.07-17.14, P=0.005), FMA (3 months after therapy: OR=10.20, CI=3.70-16.70, P=0.002; 6 months after therapy: OR=10.82, CI=6.45-15.18, P<0.00001) and FIM (1 month after therapy: OR=15.61, CI=-0.02 to 31.24, P=0.05; 6 months after therapy: OR=16.56, CI=9.06-24.06, P<0.0001). No serious adverse events were reported during MSC therapy. Conclusion MSC therapy is safe and effective in treating IS by improving the neurological deficits, motor function and daily life quality of patients.
Collapse
Affiliation(s)
- Ping Xue
- Department of Neurology, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, People's Republic of China
| | - Min Wang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, People's Republic of China
| | - Guanhua Yan
- Department of Neurology, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, People's Republic of China
| |
Collapse
|
22
|
Amer MH, Rose FRAJ, Shakesheff KM, White LJ. A biomaterials approach to influence stem cell fate in injectable cell-based therapies. Stem Cell Res Ther 2018; 9:39. [PMID: 29467014 PMCID: PMC5822649 DOI: 10.1186/s13287-018-0789-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
Background Numerous stem cell therapies use injection-based administration to deliver high-density cell preparations. However, cell retention rates as low as 1% have been observed within days of transplantation. This study investigated the effects of varying administration and formulation parameters of injection-based administration on cell dose recovery and differentiation fate choice of human mesenchymal stem cells. Methods The impact of ejection rate via clinically relevant Hamilton micro-syringes and biomaterial-assisted delivery was investigated. Cell viability, the percentage of cell dose delivered as viable cells, proliferation capacity as well as differentiation behaviour in bipotential media were assessed. Characterisation of the biomaterial-based cell carriers was also carried out. Results A significant improvement of in-vitro dose recovery in cells co-ejected with natural biomaterials was observed, with ejections within 2% (w/v) gelatin resulting in 87.5 ± 14% of the cell dose being delivered as viable cells, compared to 32.2 ± 19% of the dose ejected in the commonly used saline vehicle at 10 μl/min. Improvement in cell recovery was not associated with the rheological properties of biomaterials utilised, as suggested by previous studies. The extent of osteogenic differentiation was shown to be substantially altered by choice of ejection rate and cell carrier, despite limited contact time with cells during ejection. Collagen type I and bone-derived extracellular matrix cell carriers yielded significant increases in mineralised matrix deposited at day 21 relative to PBS. Conclusions An enhanced understanding of how administration protocols and biomaterials influence cell recovery, differentiation capacity and choice of fate will facilitate the development of improved administration and formulation approaches to achieve higher efficacy in stem cell transplantation. Electronic supplementary material The online version of this article (10.1186/s13287-018-0789-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mahetab H Amer
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Felicity R A J Rose
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Kevin M Shakesheff
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Lisa J White
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK.
| |
Collapse
|
23
|
Cell Therapy in Stroke-Cautious Steps Towards a Clinical Treatment. Transl Stroke Res 2017; 9:321-332. [PMID: 29150739 DOI: 10.1007/s12975-017-0587-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 01/01/2023]
Abstract
In the future, stroke patients may receive stem cell therapy as this has the potential to restore lost functions. However, the development of clinically deliverable therapy has been slower and more challenging than expected. Despite recommendations by STAIR and STEPS consortiums, there remain flaws in experimental studies such as lack of animals with comorbidities, inconsistent approaches to experimental design, and concurrent rehabilitation that might lead to a bias towards positive results. Clinical studies have typically been small, lacking control groups as well as often without clear biological hypotheses to guide patient selection. Furthermore, they have used a wide range of cell types, doses, and delivery methods, and outcome measures. Although some ongoing and recent trial programs offer hints that these obstacles are now being tackled, the Horizon2020 funded RESSTORE trial will be given as an example of inconsistent regulatory requirements and challenges in harmonized cell production, logistic, and clinical criteria in an international multicenter study. The PISCES trials highlight the complex issues around intracerebral cell transplantation. Therefore, a better understanding of translational challenges is expected to pave the way to more successful help for stroke patients.
Collapse
|
24
|
Amer MH, Rose FRAJ, Shakesheff KM, Modo M, White LJ. Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges. NPJ Regen Med 2017; 2:23. [PMID: 29302358 PMCID: PMC5677964 DOI: 10.1038/s41536-017-0028-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
Significant progress has been made during the past decade towards the clinical adoption of cell-based therapeutics. However, existing cell-delivery approaches have shown limited success, with numerous studies showing fewer than 5% of injected cells persisting at the site of injection within days of transplantation. Although consideration is being increasingly given to clinical trial design, little emphasis has been given to tools and protocols used to administer cells. The different behaviours of various cell types, dosing accuracy, precise delivery, and cell retention and viability post-injection are some of the obstacles facing clinical translation. For efficient injectable cell transplantation, accurate characterisation of cellular health post-injection and the development of standardised administration protocols are required. This review provides an overview of the challenges facing effective delivery of cell therapies, examines key studies that have been carried out to investigate injectable cell delivery, and outlines opportunities for translating these findings into more effective cell-therapy interventions.
Collapse
Affiliation(s)
- Mahetab H. Amer
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| | | | | | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA USA
| | - Lisa J. White
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| |
Collapse
|
25
|
Raik S, Kumar A, Bhattacharyya S. Insights into cell-free therapeutic approach: Role of stem cell "soup-ernatant". Biotechnol Appl Biochem 2017; 65:104-118. [PMID: 28321921 DOI: 10.1002/bab.1561] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/02/2017] [Indexed: 12/16/2022]
Abstract
Current advances in medicine have revolutionized the field of regenerative medicine dramatically with newly evolved therapies for repair or replacement of degenerating or injured tissues. Stem cells (SCs) can be harvested from different sources for clinical therapeutics, which include fetal tissues, umbilical cord blood, embryos, and adult tissues. SCs can be isolated and differentiated into desired lineages for tissue regeneration and cell replacement therapy. However, several loopholes need to be addressed properly before this can be extended for large-scale therapeutic application. These include a careful approach for patient safety during SC treatments and tolerance of recipients. SC treatments are associated with a number of risk factors and require successful integration and survival of transplanted cells in the desired microenvironment with concurrent tissue regeneration. Recent studies have focused on developing alternatives that can replace the cell-based therapy using paracrine factors. The development of stem "cell free" therapies can be devoted mainly to the use of soluble factors (secretome), extracellular vesicles, and mitochondrial transfer. The present review emphasizes on the paradigms related to the use of SC-based therapeutics and the potential applications of a cell-free approach as an alternative to cell-based therapy in the area of regenerative medicine.
Collapse
Affiliation(s)
- Shalini Raik
- Department of Biophysics, PGIMER, Chandigarh, India
| | - Ajay Kumar
- Department of Biophysics, PGIMER, Chandigarh, India
| | | |
Collapse
|
26
|
Bhasin A, Kumaran SS, Bhatia R, Mohanty S, Srivastava MVP. Safety and Feasibility of Autologous Mesenchymal Stem Cell Transplantation in Chronic Stroke in Indian patients. A four-year follow up. J Stem Cells Regen Med 2017. [PMID: 28684893 PMCID: PMC5494434 DOI: 10.46582/jsrm.1301003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Stem cell (SC) therapy has been envisioned as a therapeutic vehicle to promote recovery in resistant neurological diseases. Knowing the logistics and paradigms in recovery processes after Stroke, clinicians have pioneered the transplantation therapy. This study presents four-year follow up of our previous trial transplanting bone-marrow-derived animal-free culture expanded intravenous mesenchymal stem cells (MSCs) in chronic stroke which was published in 2010. Methods: We performed an open-label, pilot trial on 12 patients with chronic stroke. Patients were allocated to two groups, those who received intravenous autologous ex vivo cultured mesenchymal stem cells (MSC group) or those who did not (control group), all followed for four years from the day of cell transplantation. Results: The reports have been optimistic regarding safety as we did not find any cell related side effects / mortality till 208th week. We observed that modified Barthel Index showed statistical significant improvement at 156 and 208 weeks of transplantation (95 % CI : -10.27 to 0.07; p =0.041) follow up in the MSC group as compared to controls. The 2nd and 3rd quartile for mBI in MSC group was 89 & 90 respectively suggesting good performance of patients in the stem cell group. The impairment scales i.e., Fugl Meyer, Ashworth tone scale, strength of hand muscles (MRC) did not show any significant improvement at 208th week which is similar to our previous published report. Conclusion: This follow up study primarily indicates safety, tolerance and applicability of autologous mesenchymal stem cells in Stroke. MSCs may act as "chaperones" or work through paracrine mechanisms leading to functional recovery post stroke.
Collapse
|
27
|
Babadjouni RM, Walcott BP, Liu Q, Tenser MS, Amar AP, Mack WJ. Neuroprotective delivery platforms as an adjunct to mechanical thrombectomy. Neurosurg Focus 2017; 42:E4. [PMID: 28366053 DOI: 10.3171/2017.1.focus16514] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite the success of numerous neuroprotective strategies in animal and preclinical stroke models, none have effectively translated to clinical medicine. A multitude of influences are likely responsible. Two such factors are inefficient recanalization strategies for large vessel occlusions and suboptimal delivery methods/platforms for neuroprotective agents. The recent endovascular stroke trials have established a new paradigm for large vessel stroke treatment. The associated advent of advanced mechanical revascularization devices and new stroke technologies help address each of these existing gaps. A strategy combining effective endovascular revascularization with administration of neuroprotective therapies is now practical and could have additive, if not synergistic, effects. This review outlines past and current neuroprotective strategies assessed in acute stroke trials. The discussion focuses on delivery platforms and their potential applicability to endovascular stoke treatment.
Collapse
Affiliation(s)
| | - Brian P Walcott
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - Matthew S Tenser
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Arun P Amar
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - William J Mack
- Zilkha Neurogenetic Institute and.,Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
28
|
Mesenchymal Stromal Cell Therapy for Neonatal Hypoxic-Ischemic Encephalopathy. STEM CELLS IN CLINICAL APPLICATIONS 2017. [DOI: 10.1007/978-3-319-33720-3_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Goldman SA. Stem and Progenitor Cell-Based Therapy of the Central Nervous System: Hopes, Hype, and Wishful Thinking. Cell Stem Cell 2016; 18:174-88. [PMID: 26849304 DOI: 10.1016/j.stem.2016.01.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A variety of neurological disorders are attractive targets for stem and progenitor cell-based therapy. Yet many conditions are not, whether by virtue of an inhospitable disease environment, poorly understood pathophysiology, or poor alignment of donor cell capabilities with patient needs. Moreover, some disorders may be medically feasible targets but are not practicable, in light of already available treatments, poor risk-benefit and cost-benefit profiles, or resource limitations. This Perspective seeks to define those neurological conditions most appropriate for cell replacement therapy by considering its potential efficacy and clinical feasibility in those disorders, as well as potential impediments to its application.
Collapse
Affiliation(s)
- Steven A Goldman
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Basic and Translational Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen 2200, Denmark.
| |
Collapse
|
30
|
Abstract
The immune response to acute cerebral ischemia is a major factor in stroke pathobiology and outcome. While the immune response starts locally in occluded and hypoperfused vessels and the ischemic brain parenchyma, inflammatory mediators generated in situ propagate through the organism as a whole. This "spillover" leads to a systemic inflammatory response first, followed by immunosuppression aimed at dampening the potentially harmful proinflammatory milieu. In this overview we will outline the inflammatory cascade from its starting point in the vasculature of the ischemic brain to the systemic immune response elicited by brain ischemia. Potential immunomodulatory therapeutic approaches, including preconditioning and immune cell therapy will also be discussed.
Collapse
Affiliation(s)
- Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
31
|
Review of Preclinical and Clinical Studies of Bone Marrow-Derived Cell Therapies for Intracerebral Hemorrhage. Stem Cells Int 2016; 2016:4617983. [PMID: 27698671 PMCID: PMC5028871 DOI: 10.1155/2016/4617983] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 06/01/2016] [Indexed: 12/22/2022] Open
Abstract
Stroke is the second leading cause of mortality worldwide, causing millions of deaths annually, and is also a major cause of disability-adjusted life years. Hemorrhagic stroke accounts for approximately 10 to 27% of all cases and has a fatality rate of about 50% in the first 30 days, with limited treatment possibilities. In the past two decades, the therapeutic potential of bone marrow-derived cells (particularly mesenchymal stem cells and mononuclear cells) has been intensively investigated in preclinical models of different neurological diseases, including models of intracerebral hemorrhage and subarachnoid hemorrhage. More recently, clinical studies, most of them small, unblinded, and nonrandomized, have suggested that the therapy with bone marrow-derived cells is safe and feasible in patients with ischemic or hemorrhagic stroke. This review discusses the available evidence on the use of bone marrow-derived cells to treat hemorrhagic strokes. Distinctive properties of animal studies are analyzed, including study design, cell dose, administration route, therapeutic time window, and possible mechanisms of action. Furthermore, clinical trials are also reviewed and discussed, with the objective of improving future studies in the field.
Collapse
|
32
|
de Oliveira Bravo M, Carvalho JL, Saldanha-Araujo F. Adenosine production: a common path for mesenchymal stem-cell and regulatory T-cell-mediated immunosuppression. Purinergic Signal 2016; 12:595-609. [PMID: 27557887 DOI: 10.1007/s11302-016-9529-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022] Open
Abstract
Adenosine is an important molecule that exerts control on the immune system, by signaling through receptors lying on the surface of immune cells. This nucleotide is produced, in part, by the action of the ectoenzymes CD39 and CD73. Interestingly, these proteins are expressed on the cell surface of regulatory T-cells (Tregs) and mesenchymal stromal cells (MSCs)-two cell populations that have emerged as potential therapeutic tools in the field of cell therapy. In fact, the production of adenosine constitutes a mechanism used by both cell types to control the immune response. Recently, great scientific progress was obtained regarding the role of adenosine in the inflammatory environment. In this context, the present review focuses on the advances related to the impact of adenosine production over the immune modulatory activity of Tregs and MSCs, and how this nucleotide controls the biological functions of these cells. Finally, we mention the main challenges and hurdles to bring such molecule to clinical settings.
Collapse
Affiliation(s)
| | - Juliana Lott Carvalho
- Genomic Sciences and Biotechnology Center, Catholic University of Brasilia, Brasilia, Brazil
| | | |
Collapse
|
33
|
Rodríguez-Frutos B, Otero-Ortega L, Gutiérrez-Fernández M, Fuentes B, Ramos-Cejudo J, Díez-Tejedor E. Stem Cell Therapy and Administration Routes After Stroke. Transl Stroke Res 2016; 7:378-87. [PMID: 27384771 DOI: 10.1007/s12975-016-0482-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 12/23/2022]
Abstract
Cell-based therapy has demonstrated safety and efficacy in experimental animal models of stroke, as well as safety in stroke patients. However, various questions remain regarding the therapeutic window, dosage, route of administration, and the most appropriate cell type and source, as well as mechanisms of action and immune-modulation to optimize treatment based on stem cell therapy. Various delivery routes have been used in experimental stroke models, including intracerebral, intraventricular, subarachnoid, intra-arterial, intraperitoneal, intravenous, and intranasal routes. From a clinical point of view, it is necessary to demonstrate which is the most feasible, safest, and most effective for use with stroke patients. Therefore, further experimental studies concerning the safety, efficacy, and mechanisms of action involved in these therapeutic effects are required to determine their optimal clinical use.
Collapse
Affiliation(s)
- Berta Rodríguez-Frutos
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, Neuroscience Area of IdiPAZ (Health Research Institute), Autonomous University of Madrid, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Laura Otero-Ortega
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, Neuroscience Area of IdiPAZ (Health Research Institute), Autonomous University of Madrid, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - María Gutiérrez-Fernández
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, Neuroscience Area of IdiPAZ (Health Research Institute), Autonomous University of Madrid, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Blanca Fuentes
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, Neuroscience Area of IdiPAZ (Health Research Institute), Autonomous University of Madrid, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Jaime Ramos-Cejudo
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, Neuroscience Area of IdiPAZ (Health Research Institute), Autonomous University of Madrid, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Exuperio Díez-Tejedor
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, Neuroscience Area of IdiPAZ (Health Research Institute), Autonomous University of Madrid, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain.
| |
Collapse
|
34
|
Gubert F, Decotelli AB, Bonacossa-Pereira I, Figueiredo FR, Zaverucha-do-Valle C, Tovar-Moll F, Hoffmann L, Urmenyi TP, Santiago MF, Mendez-Otero R. Intraspinal bone-marrow cell therapy at pre- and symptomatic phases in a mouse model of amyotrophic lateral sclerosis. Stem Cell Res Ther 2016; 7:41. [PMID: 26979533 PMCID: PMC4791786 DOI: 10.1186/s13287-016-0293-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/06/2015] [Accepted: 02/09/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurological disease that selectively affects the motor neurons. The details of the mechanisms of selective motor-neuron death remain unknown and no effective therapy has been developed. We investigated the therapy with bone-marrow mononuclear cells (BMMC) in a mouse model of ALS (SOD1(G93A) mice). METHODS We injected 10(6) BMMC into the lumbar portion of the spinal cord of SOD1(G93A) mice in presymptomatic (9 weeks old) and symptomatic (14 weeks old) phases. In each condition, we analyzed the progression of disease and the lifespan of the animals. RESULTS We observed a mild transitory delay in the disease progression in the animals injected with BMMC in the presymptomatic phase. However, we observed no increase in the lifespan. When we injected BMMC in the symptomatic phase, we observed no difference in the animals' lifespan or in the disease progression. Immunohistochemistry for NeuN showed a decrease in the number of motor neurons during the course of the disease, and this decrease was not affected by either treatment. Using different strategies to track the BMMC, we noted that few cells remained in the spinal cord after transplantation. This observation could explain why the BMMC therapy had only a transitory effect. CONCLUSION This is the first report of intraspinal BMMC therapy in a mouse model of ALS. We conclude this cellular therapy has only a mild transitory effect when performed in the presymptomatic phase of the disease.
Collapse
Affiliation(s)
- Fernanda Gubert
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Sala G2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, RJ 21941-902, Rio de Janeiro, Brazil.
| | - Ana B Decotelli
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Sala G2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, RJ 21941-902, Rio de Janeiro, Brazil
| | - Igor Bonacossa-Pereira
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Sala G2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, RJ 21941-902, Rio de Janeiro, Brazil
| | - Fernanda R Figueiredo
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Sala G2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, RJ 21941-902, Rio de Janeiro, Brazil
| | - Camila Zaverucha-do-Valle
- Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation, Avenida Brasil 4365, Maguinhos, RJ 21040-900, Rio de Janeiro, Brazil
| | - Fernanda Tovar-Moll
- Institute of Biomedical Sciences and National Center of Structural Biology and Bioimaging, CENABIO, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, RJ 21941-902, Rio de Janeiro, Brazil.,Instituto D'Or de Pesquisa e Educação (IDOR), Rua Diniz Cordeiro 30, Botafogo, RJ 22281-100, Rio de Janeiro, Brazil
| | - Luísa Hoffmann
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Sala G2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, RJ 21941-902, Rio de Janeiro, Brazil
| | - Turan P Urmenyi
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Sala G2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, RJ 21941-902, Rio de Janeiro, Brazil
| | - Marcelo F Santiago
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Sala G2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, RJ 21941-902, Rio de Janeiro, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Sala G2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, RJ 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Amer MH, Rose FRAJ, White LJ, Shakesheff KM. A Detailed Assessment of Varying Ejection Rate on Delivery Efficiency of Mesenchymal Stem Cells Using Narrow-Bore Needles. Stem Cells Transl Med 2016; 5:366-78. [PMID: 26826162 DOI: 10.5966/sctm.2015-0208] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022] Open
Abstract
As the number of clinical trials exploring cell therapy rises, a thorough understanding of the limits of cell delivery is essential. We used an extensive toolset comprising various standard and multiplex assays for the assessment of cell delivery postejection. Primary human mesenchymal stem cell (hMSC) suspensions were drawn up into 100-µl Hamilton syringes with 30- and 34-gauge needles attached, before being ejected at rates ranging from 10 to 300 µl/minute. Effects of ejection rate, including changes in viability, apoptosis, senescence, and other key aspects of cellular health, were evaluated. Ejections at slower flow rates resulted in a lower percentage of the cell dose being delivered, and apoptosis measurements of samples ejected at 10 µl/minute were significantly higher than control samples. Immunophenotyping also revealed significant downregulation of CD105 expression in samples ejected at 10 µl/minute (p < .05). Differentiation of ejected hMSCs was investigated using qualitative markers of adipogenesis, osteogenesis, and chondrogenesis, which revealed that slower ejection rates exerted a considerable effect upon the differentiation capacity of ejected cells, thereby possibly influencing the success of cell-based therapies. The findings of this study demonstrate that ejection rate has substantial impact on the percentage of cell dose delivered and cellular health postejection.
Collapse
Affiliation(s)
- Mahetab H Amer
- School of Pharmacy, Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling, University of Nottingham, Nottingham, United Kingdom
| | - Felicity R A J Rose
- School of Pharmacy, Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling, University of Nottingham, Nottingham, United Kingdom
| | - Lisa J White
- School of Pharmacy, Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling, University of Nottingham, Nottingham, United Kingdom
| | - Kevin M Shakesheff
- School of Pharmacy, Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
36
|
Wei X, Liu C, Wang H, Wang L, Xiao F, Guo Z, Zhang H. Surface Phosphatidylserine Is Responsible for the Internalization on Microvesicles Derived from Hypoxia-Induced Human Bone Marrow Mesenchymal Stem Cells into Human Endothelial Cells. PLoS One 2016; 11:e0147360. [PMID: 26808539 PMCID: PMC4726621 DOI: 10.1371/journal.pone.0147360] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022] Open
Abstract
Background Previous data have proven that microvesicles derived from hypoxia-induced mesenchymal stem cells (MSC-MVs) can be internalized into endothelial cells, enhancing their proliferation and vessel structure formation and promoting in vivo angiogenesis. However, there is a paucity of information about how the MSC-MVs are up-taken by endothelial cells. Methods MVs were prepared from the supernatants of human bone marrow MSCs that had been exposed to a hypoxic and/or serum-deprivation condition. The incorporation of hypoxia-induced MSC-MVs into human umbilical cord endothelial cells (HUVECs) was observed by flow cytometry and confocal microscopy in the presence or absence of recombinant human Annexin-V (Anx-V) and antibodies against human CD29 and CD44. Further, small interfering RNA (siRNA) targeted at Anx-V and PSR was delivered into HUVECs, or HUVECs were treated with a monoclonal antibody against phosphatidylserine receptor (PSR) and the cellular internalization of MVs was re-assessed. Results The addition of exogenous Anx-V could inhibit the uptake of MVs isolated from hypoxia-induced stem cells by HUVECs in a dose- and time-dependent manner, while the anti-CD29 and CD44 antibodies had no effect on the internalization process. The suppression was neither observed in Anx-V siRNA-transfected HUVECs, however, addition of anti-PSR antibody and PSR siRNA-transfected HUVECs greatly blocked the incorporation of MVs isolated from hypoxia-induced stem cells into HUVECs. Conclusion PS on the MVs isolated from hypoxia-induced stem cells is the critical molecule in the uptake by HUVECs.
Collapse
Affiliation(s)
- Xiaojuan Wei
- Department of Cardiology Surgery, General Hospital of Air Force, Beijing, China
| | - Chaozhong Liu
- Department of Cardiology Surgery, General Hospital of Air Force, Beijing, China
| | - Hengxiang Wang
- Department of Hematology, General Hospital of Air Force, Beijing, China
| | - Lisheng Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fengjun Xiao
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zikuan Guo
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hongchao Zhang
- Department of Cardiology Surgery, General Hospital of Air Force, Beijing, China
- * E-mail:
| |
Collapse
|
37
|
Bone Marrow-Derived Cells as a Therapeutic Approach to Optic Nerve Diseases. Stem Cells Int 2015; 2016:5078619. [PMID: 26649049 PMCID: PMC4663341 DOI: 10.1155/2016/5078619] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/10/2015] [Indexed: 12/16/2022] Open
Abstract
Following optic nerve injury associated with acute or progressive diseases, retinal ganglion cells (RGCs) of adult mammals degenerate and undergo apoptosis. These diseases have limited therapeutic options, due to the low inherent capacity of RGCs to regenerate and due to the inhibitory milieu of the central nervous system. Among the numerous treatment approaches investigated to stimulate neuronal survival and axonal extension, cell transplantation emerges as a promising option. This review focuses on cell therapies with bone marrow mononuclear cells and bone marrow-derived mesenchymal stem cells, which have shown positive therapeutic effects in animal models of optic neuropathies. Different aspects of available preclinical studies are analyzed, including cell distribution, potential doses, routes of administration, and mechanisms of action. Finally, published and ongoing clinical trials are summarized.
Collapse
|
38
|
Cao W, Li P. Effectiveness and Safety of Autologous Bone Marrow Stromal Cells Transplantation After Ischemic Stroke: A Meta-Analysis. Med Sci Monit 2015. [PMID: 26215395 PMCID: PMC4523068 DOI: 10.12659/msm.895081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Autologous bone marrow stromal cells (BM-SCs) transplantation might be a potential therapy for stroke. Although a series of clinical trials were performed to assess the effectiveness and safety of BM-SCs transplantation after ischemic stroke, the results are still conflicting. This study aimed to pool previous controlled trials to assess the effectiveness of BM-SCs-based cell therapy after ischemic stroke. MATERIAL AND METHODS Relevant studies were searched among online databases. Barthel index (BI) or modified Barthel index (mBI), National Institutes of Health Stroke Scale (NIHSS), and Rankin Score (mRS) were used to assess therapeutic effects. The frequencies of adverse events were extracted for assessing safety of stem cell therapy. Data analysis was performed by using Review Manager 5.3. RESULTS Patients who received cell therapy had significantly lower NIHSS score (-1.85) than the controls. In addition, there might be some benefits in daily activity measured by mBI, but this meta-analysis failed to demonstrate significant benefits of BM-SCs-based cell therapy in increasing the proportion of mRS ≤2 patients. We did not find any severe adverse events associated with BM-SCs-based cell therapy. CONCLUSIONS Although BM-MNCs/MSCs transplantation might generate some benefits in lowering the grade of impairment caused by ischemic stroke, large RCTs are required to further confirm the effectiveness of BM-MSCs/MNCs-based cell therapy and to optimize the conditions require for best therapeutic effects.
Collapse
Affiliation(s)
- Wenying Cao
- Department of Neurology, The Ninth People's Hospital of Chongqing, Chongqing, China (mainland)
| | - Pan Li
- Department of Neurology, The Ninth People's Hospital of Chongqing, Chongqing, China (mainland)
| |
Collapse
|
39
|
Boltze J, Arnold A, Walczak P, Jolkkonen J, Cui L, Wagner DC. The Dark Side of the Force - Constraints and Complications of Cell Therapies for Stroke. Front Neurol 2015; 6:155. [PMID: 26257702 PMCID: PMC4507146 DOI: 10.3389/fneur.2015.00155] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/23/2015] [Indexed: 12/16/2022] Open
Abstract
Cell therapies are increasingly recognized as a promising option to augment the limited therapeutic arsenal available to fight ischemic stroke. During the last two decades, cumulating preclinical evidence has indicated a substantial efficacy for most cell treatment paradigms and first clinical trials are currently underway to assess safety and feasibility in patients. However, the strong and still unmet demand for novel stroke treatment options and exciting findings reported from experimental studies may have drawn our attention away from potential side effects related to cell therapies and the ways by which they are commonly applied. This review summarizes common and less frequent adverse events that have been discovered in preclinical and clinical investigations assessing cell therapies for stroke. Such adverse events range from immunological and neoplastic complications over seizures to cell clotting and cell-induced embolism. It also describes potential complications of clinically applicable administration procedures, detrimental interactions between therapeutic cells, and the pathophysiological environment that they are placed into, as well as problems related to cell manufacturing. Virtually each therapeutic intervention comes at a certain risk for complications. Side effects do therefore not generally compromise the value of cell treatments for stroke, but underestimating such complications might severely limit therapeutic safety and efficacy of cell treatment protocols currently under development. On the other hand, a better understanding will provide opportunities to further improve existing therapeutic strategies and might help to define those circumstances, under which an optimal effect can be realized. Hence, the review eventually discusses strategies and recommendations allowing us to prevent or at least balance potential complications in order to ensure the maximum therapeutic benefit at minimum risk for stroke patients.
Collapse
Affiliation(s)
- Johannes Boltze
- Department of Cell Therapy, Fraunhofer-Institute for Cell Therapy and Immunology , Leipzig , Germany ; Translational Center for Regenerative Medicine, University of Leipzig , Leipzig , Germany
| | - Antje Arnold
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Institute for Cell Engineering, Johns Hopkins University , Baltimore, MD , USA
| | - Piotr Walczak
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Institute for Cell Engineering, Johns Hopkins University , Baltimore, MD , USA
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland
| | - Lili Cui
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland
| | - Daniel-Christoph Wagner
- Department of Cell Therapy, Fraunhofer-Institute for Cell Therapy and Immunology , Leipzig , Germany
| |
Collapse
|
40
|
Qin J, Ma X, Qi H, Song B, Wang Y, Wen X, Wang QM, Sun S, Li Y, Zhang R, Liu X, Hou H, Gong G, Xu Y. Transplantation of Induced Pluripotent Stem Cells Alleviates Cerebral Inflammation and Neural Damage in Hemorrhagic Stroke. PLoS One 2015; 10:e0129881. [PMID: 26086994 PMCID: PMC4472717 DOI: 10.1371/journal.pone.0129881] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 05/15/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Little is known about the effects of induced pluripotent stem cell (iPSC) treatment on acute cerebral inflammation and injuries after intracerebral hemorrhage (ICH), though they have shown promising therapeutic potentials in ischemic stoke. METHODS An ICH model was established by stereotactic injection of collagenase VII into the left striatum of male Sprague-Dawley (SD) rats. Six hours later, ICH rats were randomly divided into two groups and received intracerebrally 10 μl of PBS with or without 1 × 10(6) of iPSCs. Subsequently, neural function of all ICH rats was assessed at days 1, 3, 7, 14, 28 and 42 after ICH. Inflammatory cells, cytokines and neural apoptosis in the rats' perihematomal regions, and brain water content were determined on day 2 or 3 post ICH. iPSC differentiation was determined on day 28 post ICH. Nissl(+) cells and glial fibrillary acidic protein (GFAP)(+) cells in the perihematoma and the survival rates of rats in two groups were determined on post-ICH day 42. RESULTS Compared with control animals, iPSCs treatment not only improved neurological function and survival rate, but also resulted in fewer intracephalic infiltrations of neutrophils and microglia, along with decreased interleukin (IL)-1β, IL-6 and tumour necrosis factor-alpha (TNF-α), and increased IL-10 in the perihematomal tissues of ICH rats. Furthermore, brain oedema formation, apoptosis, injured neurons and glial scar formation were decreased in iPSCs-transplanted rats. CONCLUSIONS Our findings indicate that iPSCs transplantation attenuate cerebral inflammatory reactions and neural injuries after ICH, and suggests that multiple mechanisms including inflammation modulation, neuroprotection and functional recovery might be involved simultaneously in the therapeutic benefit of iPSC treatment against hemorrhagic stroke.
Collapse
Affiliation(s)
- Jie Qin
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Xun Ma
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Haiyun Qi
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Bo Song
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Yanlin Wang
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA 23284, United States of America
| | - Qing Mei Wang
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Shilei Sun
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Yusheng Li
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Rui Zhang
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Xinjing Liu
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Haiman Hou
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Guangming Gong
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- * E-mail: (YX); (GG)
| | - Yuming Xu
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
- * E-mail: (YX); (GG)
| |
Collapse
|
41
|
Khabbal J, Kerkelä E, Mitkari B, Raki M, Nystedt J, Mikkonen V, Bergström K, Laitinen S, Korhonen M, Jolkkonen J. Differential Clearance of Rat and Human Bone Marrow-Derived Mesenchymal Stem Cells from the Brain after Intra-arterial Infusion in Rats. Cell Transplant 2015; 24:819-28. [DOI: 10.3727/096368914x679336] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intra-arterial (IA) delivery of bone marrow-derived mesenchymal stem cells (BM-MSCs) has shown potential as a minimally invasive therapeutic approach for stroke. The aim of the present study was to determine the whole-body biodistribution and clearance of technetium-99m (99mTc)-labeled rat and human BM-MSCs after IA delivery in a rat model of transient middle cerebral artery occlusion (MCAO) using single-photon emission computed tomography (SPECT). Our hypothesis was that xenotransplantation has a major impact on the behavior of cells. Male RccHan: Wistar rats were subjected to sham operation or MCAO. Twenty-four hours after surgery, BM-MSCs (2×106 cells/animal) labeled with 99mTc were infused into the external carotid artery. Whole-body SPECT images were acquired 20 min, 3 h, and 6 h postinjection, after which rats were sacrificed, and organs were collected and weighed for measurement of radioactivity. The results showed that the majority of the cells were located in the brain and especially in the ipsilateral hemisphere immediately after cell infusion both in sham-operated and MCAO rats. This was followed by fast disappearance, particularly in the case of human cells. At the same time, the radioactivity signal increased in the spleen, kidney, and liver, the organs responsible for destroying cells. Further studies are needed to demonstrate whether differential cell behavior has any functional impact.
Collapse
Affiliation(s)
- Joonas Khabbal
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Erja Kerkelä
- Finnish Red Cross Blood Service, Advanced Therapies and Product Development, Helsinki, Finland
| | - Bhimashankar Mitkari
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Mari Raki
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Johanna Nystedt
- Finnish Red Cross Blood Service, Advanced Therapies and Product Development, Helsinki, Finland
| | - Ville Mikkonen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Kim Bergström
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- HUS Medical Imaging Centre, Helsinki University Central Hospital, Helsinki, Finland
| | - Saara Laitinen
- Finnish Red Cross Blood Service, Advanced Therapies and Product Development, Helsinki, Finland
| | - Matti Korhonen
- Finnish Red Cross Blood Service, Advanced Therapies and Product Development, Helsinki, Finland
| | - Jukka Jolkkonen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
42
|
Fukuda Y, Horie N, Satoh K, Yamaguchi S, Morofuji Y, Hiu T, Izumo T, Hayashi K, Nishida N, Nagata I. Intra-arterial transplantation of low-dose stem cells provides functional recovery without adverse effects after stroke. Cell Mol Neurobiol 2015; 35:399-406. [PMID: 25398358 DOI: 10.1007/s10571-014-0135-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/29/2014] [Indexed: 11/28/2022]
Abstract
Cell transplantation therapy for cerebral infarction has emerged as a promising treatment to reduce brain damage and enhance functional recovery. We previously reported that intra-arterial delivery of bone marrow mesenchymal stem cells (MSCs) enables superselective cell administration to the infarct area and results in significant functional recovery after ischemic stroke in a rat model. However, to reduce the risk of embolism caused by the transplanted cells, an optimal cell number should be determined. At 24 h after middle cerebral artery occlusion and reperfusion, we administered human MSCs (low dose: 1 × 10(4) cells; high dose: 1 × 10(6) cells) and then assessed functional recovery, inflammatory responses, cell distribution, and mortality. Rats treated with high- or low-dose MSCs showed behavioral recovery. At day 8 post-stroke, microglial activation was suppressed significantly, and interleukin (IL)-1β and IL-12p70 were reduced in both groups. Although high-dose MSCs were more widely distributed in the cortex and striatum of rats, the degree of intravascular cell aggregation and mortality was significantly higher in the high-dose group. In conclusion, selective intra-arterial transplantation of low-dose MSCs has anti-inflammatory effects and reduces the adverse effects of embolic complication, resulting in sufficient functional recovery of the affected brain.
Collapse
Affiliation(s)
- Yuhtaka Fukuda
- Department of Neurosurgery, School of Medicine, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, School of Medicine, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan.
| | - Katsuya Satoh
- Department of Molecular Microbiology and Immunology, School of Medicine, Nagasaki University, Nagasaki, Japan
| | - Susumu Yamaguchi
- Department of Neurosurgery, School of Medicine, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| | - Youichi Morofuji
- Department of Neurosurgery, School of Medicine, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| | - Takeshi Hiu
- Department of Neurosurgery, School of Medicine, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| | - Tsuyoshi Izumo
- Department of Neurosurgery, School of Medicine, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| | - Kentaro Hayashi
- Department of Neurosurgery, School of Medicine, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, School of Medicine, Nagasaki University, Nagasaki, Japan
| | - Izumi Nagata
- Department of Neurosurgery, School of Medicine, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
43
|
Dulamea AO. The potential use of mesenchymal stem cells in stroke therapy--From bench to bedside. J Neurol Sci 2015; 352:1-11. [PMID: 25818674 DOI: 10.1016/j.jns.2015.03.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022]
Abstract
Stroke is the second main cause of morbidity and mortality worldwide. The rationale for the use of mesenchymal stem cells (MSCs) in stroke is based on the capacity of MSCs to secrete a large variety of bioactive molecules such as growth factors, cytokines and chemokines leading to reduction of inflammation, increased neurogenesis from the germinative niches of central nervous system, increased angiogenesis, effects on astrocytes, oligodendrocytes and axons. This review presents the data derived from experimental studies and the evidence available from clinical trials about the use of MSCs in stroke therapy.
Collapse
Affiliation(s)
- Adriana Octaviana Dulamea
- U.M.F. "Carol Davila", Fundeni Clinical Institute, Department of Neurology, 258 Sos. Fundeni, Sector 2, Bucharest, Romania.
| |
Collapse
|
44
|
Amer MH, White LJ, Shakesheff KM. The effect of injection using narrow-bore needles on mammalian cells: administration and formulation considerations for cell therapies. ACTA ACUST UNITED AC 2015; 67:640-50. [PMID: 25623928 PMCID: PMC4964945 DOI: 10.1111/jphp.12362] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/09/2014] [Indexed: 12/12/2022]
Abstract
Objectives This study focuses on the effect of the injection administration process on a range of cell characteristics. Methods Effects of different ejection rates, needle sizes and cell suspension densities were assessed in terms of viability, membrane integrity, apoptosis and senescence of NIH 3T3 fibroblasts. For ratiometric measurements, a multiplex assay was used to verify cell viability, cytotoxicity and apoptosis independent of cell number. Co‐delivery with alginate hydrogels and viscosity‐modifying excipients was also assessed. Key findings Ejections at 150 μl/min resulted in the highest percentage of dose being delivered as viable cells among ejection rates tested. The difference in proportions of apoptotic cells became apparent 48 h after ejection, with proportions being higher in samples ejected at slower rates. Co‐delivery with alginate hydrogels demonstrated a protective action on the cell payload. Conclusions This study demonstrates the importance of careful consideration of administration protocols required for successful delivery of cell suspensions, according to their nature and cellular responses post‐ejection.
Collapse
Affiliation(s)
- Mahetab H Amer
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
45
|
Horie N, Hiu T, Nagata I. Stem cell transplantation enhances endogenous brain repair after experimental stroke. Neurol Med Chir (Tokyo) 2015; 55:107-12. [PMID: 25746304 PMCID: PMC4533406 DOI: 10.2176/nmc.ra.2014-0271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stem cell transplantation for stroke treatment has been a promising therapy in small and large animal models, and many clinical trials are ongoing to establish this strategy in a clinical setting. However, the mechanism underlying functional recovery after stem cell transplantation has not been fully established and there is still a need to determine the ideal subset of stem cells for such therapy. We herein reviewed the recent evidences showing the underlying mechanism of functional recovery after cell transplantation, focusing on endogenous brain repair. First, angiogenesis/neovascularization is promoted by trophic factors including vascular endothelial growth factor secreted from stem cells, and stem cells migrated to the lesion along with the vessels. Second, axonal sprouting, dendritic branching, and synaptogenesis were enhanced altogether in the both ipsilateral and contralateral hemisphere remapping the pyramidal tract across the board. Finally, endogenous neurogenesis was also enhanced although little is known how much these neurogenesis contribute to the functional recovery. Taken together, it is clear that stem cell transplantation provides functional recovery via endogenous repair enhancement from multiple ways. This is important to maximize the effect of stem cell therapy after stroke, although it is still undetermined which repair mechanism is mostly contributed.
Collapse
Affiliation(s)
- Nobutaka Horie
- Department of Neurosurgery, Nagasaki University School of Medicine
| | | | | |
Collapse
|
46
|
Mesentier-Louro LA, Zaverucha-do-Valle C, da Silva-Junior AJ, Nascimento-dos-Santos G, Gubert F, de Figueirêdo ABP, Torres AL, Paredes BD, Teixeira C, Tovar-Moll F, Mendez-Otero R, Santiago MF. Distribution of mesenchymal stem cells and effects on neuronal survival and axon regeneration after optic nerve crush and cell therapy. PLoS One 2014; 9:e110722. [PMID: 25347773 PMCID: PMC4210195 DOI: 10.1371/journal.pone.0110722] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 09/24/2014] [Indexed: 02/07/2023] Open
Abstract
Bone marrow-derived cells have been used in different animal models of neurological diseases. We investigated the therapeutic potential of mesenchymal stem cells (MSC) injected into the vitreous body in a model of optic nerve injury. Adult (3–5 months old) Lister Hooded rats underwent unilateral optic nerve crush followed by injection of MSC or the vehicle into the vitreous body. Before they were injected, MSC were labeled with a fluorescent dye or with superparamagnetic iron oxide nanoparticles, which allowed us to track the cells in vivo by magnetic resonance imaging. Sixteen and 28 days after injury, the survival of retinal ganglion cells was evaluated by assessing the number of Tuj1- or Brn3a-positive cells in flat-mounted retinas, and optic nerve regeneration was investigated after anterograde labeling of the optic axons with cholera toxin B conjugated to Alexa 488. Transplanted MSC remained in the vitreous body and were found in the eye for several weeks. Cell therapy significantly increased the number of Tuj1- and Brn3a-positive cells in the retina and the number of axons distal to the crush site at 16 and 28 days after optic nerve crush, although the RGC number decreased over time. MSC therapy was associated with an increase in the FGF-2 expression in the retinal ganglion cells layer, suggesting a beneficial outcome mediated by trophic factors. Interleukin-1β expression was also increased by MSC transplantation. In summary, MSC protected RGC and stimulated axon regeneration after optic nerve crush. The long period when the transplanted cells remained in the eye may account for the effect observed. However, further studies are needed to overcome eventually undesirable consequences of MSC transplantation and to potentiate the beneficial ones in order to sustain the neuroprotective effect overtime.
Collapse
Affiliation(s)
- Louise Alessandra Mesentier-Louro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Camila Zaverucha-do-Valle
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Almir Jordão da Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Gabriel Nascimento-dos-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Fernanda Gubert
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Ana Beatriz Padilha de Figueirêdo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Ana Luiza Torres
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Bruno D. Paredes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Camila Teixeira
- National Center of Structural Biology and Bioimaging (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Tovar-Moll
- National Center of Structural Biology and Bioimaging (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Institute of Biomedical Sciences (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Marcelo F. Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
47
|
Ikegame Y, Yamashita K, Nakashima S, Nomura Y, Yonezawa S, Asano Y, Shinoda J, Hara H, Iwama T. Fate of graft cells: what should be clarified for development of mesenchymal stem cell therapy for ischemic stroke? Front Cell Neurosci 2014; 8:322. [PMID: 25374506 PMCID: PMC4204523 DOI: 10.3389/fncel.2014.00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are believed to be promising for cell administration therapy after ischemic stroke. Because of their advantageous characteristics, such as ability of differentiation into neurovascular lineages, avoidance of immunological problems, and abundance of graft cells in mesodermal tissues, studies regarding MSC therapy have increased recently. However, several controversies are yet to be resolved before a worldwide consensus regarding a standard protocol is obtained. In particular, the neuroprotective effects, the rate of cell migration to the lesion, and differentiation direction differ depending on preclinical observations. Analyses of these differences and application of recent developments in stem cell biology or engineering in imaging modality may contribute to identification of criteria for optimal stem cell therapy in which reliable protocols, which control cell quality and include safe administration procedures, are defined for each recovery phase after cerebral ischemia. In this mini review, we examine controversies regarding the fate of grafts and the prospects for advanced therapy that could be obtained through recent developments in stem cell research as direct conversion to neural cells.
Collapse
Affiliation(s)
- Yuka Ikegame
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan ; Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine Gifu, Japan ; Department of Cell Signaling, Gifu University Graduate School of Medicine Gifu, Japan
| | - Kentaro Yamashita
- Department of Neurosurgery, Gifu University Graduate School of Medicine Gifu, Japan ; Department of Neurosurgery, Murakami Memorial Hospital, Asahi University Gifu, Japan
| | - Shigeru Nakashima
- Department of Cell Signaling, Gifu University Graduate School of Medicine Gifu, Japan
| | - Yuichi Nomura
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan
| | - Shingo Yonezawa
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan
| | - Yoshitaka Asano
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan ; Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine Gifu, Japan
| | - Jun Shinoda
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan ; Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine Gifu, Japan
| | - Hideaki Hara
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University Gifu, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine Gifu, Japan
| |
Collapse
|
48
|
Teasell R, Rice D, Richardson M, Campbell N, Madady M, Hussein N, Murie-Fernandez M, Page S. The next revolution in stroke care. Expert Rev Neurother 2014; 14:1307-14. [DOI: 10.1586/14737175.2014.968130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
49
|
Coelho BP, Giraldi-Guimarães A. Effect of age and gender on recovery after stroke in rats treated with bone marrow mononuclear cells. Neurosci Res 2014; 88:67-73. [PMID: 25176441 DOI: 10.1016/j.neures.2014.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/26/2014] [Accepted: 08/11/2014] [Indexed: 11/19/2022]
Abstract
Stroke is a disease of the elderly. However, most of the preclinical studies about the treatment of stroke with bone marrow-derived cells have used young animals. Here, it was assessed whether the sensorimotor recovery promoted by the treatment of the brain ischemia with the bone marrow mononuclear cells (BMMCs) is influenced by age and/or gender. Unilateral cortical ischemia by thermocoagulation was made in the primary motor and sensorimotor cortices in young and middle-aged rats of both genders. Twenty four hours after ischemia, animals received intravenous injection of BMMCs or vehicle. Each combination of age and gender received BMMCs from donor with the same combination. Survival rate and ischemic lesion size were quantified. Sensorimotor recovery was evaluated by the cylinder and adhesive tests. The results showed that the treatment with BMMCs resulted in sensorimotor recovery of both young and middle-aged ischemic rats. No important effect of gender was found, but age was a significant factor. Middle-aged animals had increased mortality and lesion sizes. In the adhesive test, middle-aged animals had lower BMMCs-induced sensorimotor recovery. The results suggest that the treatment of stroke with the BMMCs should be beneficial for males and females in the elderly.
Collapse
Affiliation(s)
- Bárbara Paula Coelho
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Arthur Giraldi-Guimarães
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
50
|
Ihara M, Kalaria RN. Understanding and preventing the development of post-stroke dementia. Expert Rev Neurother 2014; 14:1067-77. [PMID: 25105544 DOI: 10.1586/14737175.2014.947276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Post-stroke dementia (PSD) is a clinical entity but it now appears that most of PSD may be categorized as vascular dementia. The well-established relationship between vascular factors and dementia provides a rationale for the implementation of intervention and prevention efforts. Larger primary prevention trials related to lifestyle factors are warranted in association with dementia. Published clinical trials have not been promising and there is meager information on whether PSD can be prevented through the use of pharmacological agents. Control of vascular disease risk and prevention of recurrent strokes are obviously key to reducing the burden of cognitive decline and dementia after stroke. However, modern imaging and analysis techniques will help to elucidate the mechanism of PSD and establish better treatment.
Collapse
Affiliation(s)
- Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan
| | | |
Collapse
|