1
|
Bartels HC, Hameed S, Young C, Nabhan M, Downey P, Curran KM, McCormack J, Fabre A, Kolch W, Zhernovkov V, Brennan DJ. Spatial proteomics and transcriptomics of the maternal-fetal interface in placenta accreta spectrum. Transl Res 2024; 274:67-80. [PMID: 39349165 DOI: 10.1016/j.trsl.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/21/2024] [Accepted: 09/21/2024] [Indexed: 10/02/2024]
Abstract
In severe Placenta Accreta Spectrum (PAS), trophoblasts gain deep access in the myometrium (placenta increta). This study investigated alterations at the fetal-maternal interface in PAS cases using a systems biology approach consisting of immunohistochemistry, spatial transcriptomics and proteomics. We identified spatial variation in the distribution of CD4+, CD3+ and CD8+ T-cells at the maternal-interface in placenta increta cases. Spatial transcriptomics identified transcription factors involved in promotion of trophoblast invasion such as AP-1 subunits ATF-3 and JUN, and NFKB were upregulated in regions with deep myometrial invasion. Pathway analysis of differentially expressed genes demonstrated that degradation of extracellular matrix (ECM) and class 1 MHC protein were increased in increta regions, suggesting local tissue injury and immune suppression. Spatial proteomics demonstrated that increta regions were characterised by excessive trophoblastic proliferation in an immunosuppressive environment. Expression of inhibitors of apoptosis such as BCL-2 and fibronectin were increased, while CTLA-4 was decreased and increased expression of PD-L1, PD-L2 and CD14 macrophages. Additionally, CD44, which is a ligand of fibronectin that promotes trophoblast invasion and cell adhesion was also increased in increta regions. We subsequently examined ligand receptor interactions enriched in increta regions, with interactions with ITGβ1, including with fibronectin and ADAMS, emerging as central in increta. These ITGβ1 ligand interactions are involved in activation of epithelial-mesenchymal transition and remodelling of ECM suggesting a more invasive trophoblast phenotype. In PAS, we suggest this is driven by fibronectin via AP-1 signalling, likely as a secondary response to myometrial scarring.
Collapse
Affiliation(s)
- Helena C Bartels
- Dept of UCD Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Holles Street, Dublin 2, Ireland
| | - Sodiq Hameed
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - Constance Young
- Department of Histopathology, National Maternity Hospital, Dublin, Ireland
| | - Myriam Nabhan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - Paul Downey
- Department of Histopathology, National Maternity Hospital, Dublin, Ireland
| | | | - Janet McCormack
- Research Pathology Core, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Aurelie Fabre
- School of Medicine, University College Dublin, Dublin, Ireland; Research Pathology Core, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; Histopathology, St Vincent's University Hospital, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Vadim Zhernovkov
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - Donal J Brennan
- Dept of UCD Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Holles Street, Dublin 2, Ireland; Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland; University College Dublin Gynaecological Oncology Group (UCD-GOG), Mater Misericordiae University Hospital and St Vincent's University Hospital, Dublin, Ireland.
| |
Collapse
|
2
|
Kayashima Y, Townley-Tilson WHD, Vora NL, Boggess K, Homeister JW, Maeda-Smithies N, Li F. Insulin Elevates ID2 Expression in Trophoblasts and Aggravates Preeclampsia in Obese ASB4-Null Mice. Int J Mol Sci 2023; 24:ijms24032149. [PMID: 36768469 PMCID: PMC9917068 DOI: 10.3390/ijms24032149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Obesity is a risk factor for preeclampsia. We investigated how obesity influences preeclampsia in mice lacking ankyrin-repeat-and-SOCS-box-containing-protein 4 (ASB4), which promotes trophoblast differentiation via degrading the inhibitor of DNA-binding protein 2 (ID2). Asb4-/- mice on normal chow (NC) develop mild preeclampsia-like phenotypes during pregnancy, including hypertension, proteinuria, and reduced litter size. Wild-type (WT) and Asb4-/- females were placed on a high-fat diet (HFD) starting at weaning. At the age of 8-9 weeks, they were mated with WT or Asb4-/- males, and preeclamptic phenotypes were assessed. HFD-WT dams had no obvious adverse outcomes of pregnancy. In contrast, HFD-Asb4-/- dams had significantly more severe preeclampsia-like phenotypes compared to NC-Asb4-/- dams. The HFD increased white fat weights and plasma leptin and insulin levels in Asb4-/- females. In the HFD-Asb4-/- placenta, ID2 amounts doubled without changing the transcript levels, indicating that insulin likely increases ID2 at a level of post-transcription. In human first-trimester trophoblast HTR8/SVneo cells, exposure to insulin, but not to leptin, led to a significant increase in ID2. HFD-induced obesity markedly worsens the preeclampsia-like phenotypes in the absence of ASB4. Our data indicate that hyperinsulinemia perturbs the timely removal of ID2 and interferes with proper trophoblast differentiation, contributing to enhanced preeclampsia.
Collapse
Affiliation(s)
- Yukako Kayashima
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - W. H. Davin Townley-Tilson
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Neeta L. Vora
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kim Boggess
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathon W. Homeister
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nobuyo Maeda-Smithies
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Feng Li
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +1-919-966-6915; Fax: +1-919-966-8800
| |
Collapse
|
3
|
Roles of TGF- β in cancer hallmarks and emerging onco-therapeutic design. Expert Rev Mol Med 2022; 24:e42. [PMID: 36345661 DOI: 10.1017/erm.2022.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transforming growth factor-beta (TGF-β) is a double-edged sword in cancer treatment because of its pivotal yet complex and roles played during cancer initiation/development. Current anti-cancer strategies involving TGF-β largely view TGF-β as an onco-therapeutic target that not only substantially hinders its full utilisation for cancer control, but also considerably restricts innovations in this field. Thereby, how to take advantages of therapeutically favourable properties of TGF-β for cancer management represents an interesting and less investigated problem. Here, by categorising cancer hallmarks into four critical transition events and one enabling characteristic controlling cancer initiation and progression, and delineating TGF-β complexities according to these cancer traits, we identify the suppressive role of TGF-β in tumour initiation and early-stage progression and its promotive functionalities in cancer metastasis as well as other cancer hallmarks. We also propose the feasibility and possible scenarios of combining cold atmospheric plasma (CAP) with onco-therapeutics utilising TGF-β for cancer control given the intrinsic properties of CAP against cancer hallmarks.
Collapse
|
4
|
Induction of Rosette-to-Lumen stage embryoids using reprogramming paradigms in ESCs. Nat Commun 2021; 12:7322. [PMID: 34916498 PMCID: PMC8677818 DOI: 10.1038/s41467-021-27586-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 11/19/2021] [Indexed: 01/01/2023] Open
Abstract
Blastocyst-derived stem cell lines were shown to self-organize into embryo-like structures in 3D cell culture environments. Here, we provide evidence that embryo-like structures can be generated solely based on transcription factor-mediated reprogramming of embryonic stem cells in a simple 3D co-culture system. Embryonic stem cells in these cultures self-organize into elongated, compartmentalized embryo-like structures reflecting aspects of the inner regions of the early post-implantation embryo. Single-cell RNA-sequencing reveals transcriptional profiles resembling epiblast, primitive-/visceral endoderm, and extraembryonic ectoderm of early murine embryos around E4.5-E5.5. In this stem cell-based embryo model, progression from rosette formation to lumenogenesis accompanied by progression from naïve- to primed pluripotency was observed within Epi-like cells. Additionally, lineage specification of primordial germ cells and distal/anterior visceral endoderm-like cells was observed in epiblast- or visceral endoderm-like compartments, respectively. The system presented in this study allows for fast and reproducible generation of embryo-like structures, providing an additional tool to study aspects of early embryogenesis.
Collapse
|
5
|
Jeyarajah MJ, Jaju Bhattad G, Hillier DM, Renaud SJ. The Transcription Factor OVOL2 Represses ID2 and Drives Differentiation of Trophoblast Stem Cells and Placental Development in Mice. Cells 2020; 9:E840. [PMID: 32244352 PMCID: PMC7226816 DOI: 10.3390/cells9040840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022] Open
Abstract
Trophoblasts are the first cell type to be specified during embryogenesis, and they are essential for placental morphogenesis and function. Trophoblast stem (TS) cells are the progenitor cells for all trophoblast lineages; control of TS cell differentiation into distinct trophoblast subtypes is not well understood. Mice lacking the transcription factor OVO-like 2 (OVOL2) fail to produce a functioning placenta, and die around embryonic day 10.5, suggesting that OVOL2 may be critical for trophoblast development. Therefore, our objective was to determine the role of OVOL2 in mouse TS cell fate. We found that OVOL2 was highly expressed in mouse placenta and differentiating TS cells. Placentas and TS cells lacking OVOL2 showed poor trophoblast differentiation potential, including increased expression of stem-state associated genes (Eomes, Esrrb, Id2) and decreased levels of differentiation-associated transcripts (Gcm1, Tpbpa, Prl3b1, Syna). Ectopic OVOL2 expression in TS cells elicited precocious differentiation. OVOL2 bound proximate to the gene encoding inhibitor of differentiation 2 (ID2), a dominant negative helix-loop-helix protein, and directly repressed its activity. Overexpression of ID2 was sufficient to reinforce the TS cell stem state. Our findings reveal a critical role of OVOL2 as a regulator of TS cell differentiation and placental development, in-part by coordinating repression of ID2.
Collapse
Affiliation(s)
- Mariyan J. Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada; (M.J.J.)
| | - Gargi Jaju Bhattad
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada; (M.J.J.)
| | - Dendra M. Hillier
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada; (M.J.J.)
| | - Stephen J. Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada; (M.J.J.)
- Children’s Health Research Institute, London, ON N6C2V5, Canada
- Lawson Health Research Institute, London, ON N6C2R5, Canada
| |
Collapse
|
6
|
Chuva de Sousa Lopes SM, Alexdottir MS, Valdimarsdottir G. The TGFβ Family in Human Placental Development at the Fetal-Maternal Interface. Biomolecules 2020; 10:biom10030453. [PMID: 32183218 PMCID: PMC7175362 DOI: 10.3390/biom10030453] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging data suggest that a trophoblast stem cell (TSC) population exists in the early human placenta. However, in vitro stem cell culture models are still in development and it remains under debate how well they reflect primary trophoblast (TB) cells. The absence of robust protocols to generate TSCs from humans has resulted in limited knowledge of the molecular mechanisms that regulate human placental development and TB lineage specification when compared to other human embryonic stem cells (hESCs). As placentation in mouse and human differ considerably, it is only with the development of human-based disease models using TSCs that we will be able to understand the various diseases caused by abnormal placentation in humans, such as preeclampsia. In this review, we summarize the knowledge on normal human placental development, the placental disease preeclampsia, and current stem cell model systems used to mimic TB differentiation. A special focus is given to the transforming growth factor-beta (TGFβ) family as it has been shown that the TGFβ family has an important role in human placental development and disease.
Collapse
Affiliation(s)
- Susana M. Chuva de Sousa Lopes
- Dept. Anatomy and Embryology, Leiden University Medical Center, 2300 Leiden, The Netherlands;
- Dept. Reproductive Medicine Anatomy and Embryology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marta S. Alexdottir
- Department of Anatomy, BioMedical Center, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland;
| | - Gudrun Valdimarsdottir
- Department of Anatomy, BioMedical Center, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland;
- Correspondence: ; Tel.: +354-5254797
| |
Collapse
|
7
|
Trophoblast-Specific Expression of Hif-1α Results in Preeclampsia-Like Symptoms and Fetal Growth Restriction. Sci Rep 2019; 9:2742. [PMID: 30808910 PMCID: PMC6391498 DOI: 10.1038/s41598-019-39426-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 12/17/2018] [Indexed: 01/02/2023] Open
Abstract
The placenta is an essential organ that is formed during pregnancy and its proper development is critical for embryonic survival. While several animal models have been shown to exhibit some of the pathological effects present in human preeclampsia, these models often do not represent the physiological aspects that have been identified. Hypoxia-inducible factor 1 alpha (Hif-1α) is a necessary component of the cellular oxygen-sensing machinery and has been implicated as a major regulator of trophoblast differentiation. Elevated levels of Hif-1α in the human placenta have been linked to the development of pregnancy-associated disorders, such as preeclampsia and fetal growth restriction. As oxygen regulation is a critical determinant for placentogenesis, we determined the effects of constitutively active Hif-1α, specifically in trophoblasts, on mouse placental development in vivo. Our research indicates that prolonged expression of trophoblast-specific Hif-1α leads to a significant decrease in fetal birth weight. In addition, we noted significant physiological alterations in placental differentiation that included reduced branching morphogenesis, alterations in maternal and fetal blood spaces, and failure to remodel the maternal spiral arteries. These placental alterations resulted in subsequent maternal hypertension with parturitional resolution and maternal kidney glomeruloendotheliosis with accompanying proteinuria, classic hallmarks of preeclampsia. Our findings identify Hif-1α as a critical molecular mediator of placental development and indicate that prolonged expression of Hif-1α, explicitly in placental trophoblasts causes maternal pathology and establishes a mouse model that significantly recapitulates the physiological and pathophysiological characteristics of preeclampsia with fetal growth restriction.
Collapse
|
8
|
Gou X, Tang Y, Qu Y, Xiao D, Ying J, Mu D. Could the inhibitor of DNA binding 2 and 4 play a role in white matter injury? Rev Neurosci 2019; 30:625-638. [PMID: 30738015 DOI: 10.1515/revneuro-2018-0090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/02/2018] [Indexed: 01/12/2023]
Abstract
Abstract
White matter injury (WMI) prevents the normal development of myelination, leading to central nervous system myelination disorders and the production of chronic sequelae associated with WMI, such as chronic dyskinesia, cognitive impairment and cerebral palsy. This results in a large emotional and socioeconomic burden. Decreased myelination in preterm infant WMI is associated with the delayed development or destruction of oligodendrocyte (OL) lineage cells, particularly oligodendrocyte precursor cells (OPCs). The development of cells from the OL lineage involves the migration, proliferation and different stages of OL differentiation, finally leading to myelination. A series of complex intrinsic, extrinsic and epigenetic factors regulate the OPC cell cycle withdrawal, OL lineage progression and myelination. We focus on the inhibitor of DNA binding 2 (ID2), because it is widely involved in the different stages of OL differentiation and genesis. ID2 is a key transcription factor for the normal development of OL lineage cells, and the pathogenesis of WMI is closely linked with OL developmental disorders. ID4, another family member of the IDs protein, also plays a similar role in OL differentiation and genesis. ID2 and ID4 belong to the helix-loop-helix family; they lack the DNA-binding sequences and inhibit oligodendrogenesis and OPC differentiation. In this review, we mainly discuss the roles of ID2 in OL development, especially during OPC differentiation, and summarize the ID2-mediated intracellular and extracellular signaling pathways that regulate these processes. We also discuss ID4 in relation to bone morphogenetic protein signaling and oligodendrogenesis. It is likely that these developmental mechanisms are also involved in the myelin repair or remyelination in human neurological diseases.
Collapse
Affiliation(s)
- Xiaoyun Gou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Ying Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dongqiong Xiao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Albers RE, Selesniemi K, Natale DRC, Brown TL. TGF- β induces Smad2 Phosphorylation, ARE Induction, and Trophoblast Differentiation. Int J Stem Cells 2018; 11:111-120. [PMID: 29699384 PMCID: PMC5984065 DOI: 10.15283/ijsc17069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 12/16/2022] Open
Abstract
Background Transforming growth factor beta (TGF-β) signaling has been shown to control a large number of critical cellular actions such as cell death, differentiation, and development and has been implicated as a major regulator of placental function. SM10 cells are a mouse placental progenitor cell line, which has been previously shown to differentiate into nutrient transporting, labyrinthine-like cells upon treatment with TGF-β. However, the signal transduction pathway activated by TGF-β to induce SM10 progenitor differentiation has yet to be fully investigated. Materials and Methods In this study the SM10 labyrinthine progenitor cell line was used to investigate TGF-β induced differentiation. Activation of the TGF-β pathway and the ability of TGF-β to induce differentiation were investigated by light microscopy, luciferase assays, and Western blot analysis. Results and Conclusions In this report, we show that three isoforms of TGF-β have the ability to terminally differentiate SM10 cells, whereas other predominant members of the TGF-β superfamily, Nodal and Activin A, do not. Additionally, we have determined that TGF-β induced Smad2 phosphorylation can be mediated via the ALK-5 receptor with subsequent transactivation of the Activin response element. Our studies identify an important regulatory signaling pathway in SM10 progenitor cells that is involved in labyrinthine trophoblast differentiation.
Collapse
Affiliation(s)
- Renee E Albers
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435, USA
| | - Kaisa Selesniemi
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435, USA
| | - David R C Natale
- Department of Reproductive Medicine, University of California-San Diego, San Diego, California 92093, USA
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435, USA
| |
Collapse
|
10
|
Finley J. Transposable elements, placental development, and oocyte activation: Cellular stress and AMPK links jumping genes with the creation of human life. Med Hypotheses 2018; 118:44-54. [PMID: 30037614 DOI: 10.1016/j.mehy.2018.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/18/2018] [Indexed: 12/16/2022]
Abstract
Transposable elements (TEs), also known as "jumping genes", are DNA sequences first described by Nobel laureate Barbara McClintock that comprise nearly half of the human genome and are able to transpose or move from one genomic location to another. As McClintock also noted that a genome "shock" or stress may induce TE activation and transposition, accumulating evidence suggests that cellular stress (e.g. mediated by increases in intracellular reactive oxygen species [ROS] and calcium [Ca2+], etc.) induces TE mobilization in several model organisms and L1s (a member of the retrotransposon class of TEs) are active and capable of retrotransposition in human oocytes, human sperm, and in human neural progenitor cells. Cellular stress also plays a critical role in human placental development, with cytotrophoblast (CTB) differentiation leading to the formation of the syncytiotrophoblast (STB), a cellular layer that facilitates nutrient and gas exchange between the mother and the fetus. Syncytin-1, a protein that promotes fusion of CTB cells and is necessary for STB formation, and its receptor is found in human sperm and human oocytes, respectively, and increases in ROS and Ca2+ promote trophoblast differentiation and syncytin-1 expression. Cellular stress is also essential in promoting human oocyte maturation and activation which, similar to TE mobilization, can be induced by compounds that increase intracellular Ca2+ and ROS levels. AMPK is a master metabolic regulator activated by increases in ROS, Ca2+, and/or an AMP(ADP)/ATP ratio increase, etc. as well as compounds that induce L1 mobilization in human cells. AMPK knockdown inhibits trophoblast differentiation and AMPK-activating compounds that promote L1 mobility also enhance trophoblast differentiation. Cellular stressors that induce TE mobilization (e.g. heat shock) also promote oocyte maturation in an AMPK-dependent manner and the antibiotic ionomycin activates AMPK, promotes TE activation, and induces human oocyte activation, producing normal, healthy children. Metformin promotes AMPK-dependent telomerase activation (critical for telomere maintenance) and induces activation of the endonuclease RAG1 (promotes DNA cleavage and transposition) via AMPK. Both RAG1 and telomerase are derived from TEs. It is our hypothesis that cellular stress and AMPK links TE activation and transposition with placental development and oocyte activation, facilitating both human genome evolution and the creation of all human life. We also propose the novel observation that various cellular stress-inducing compounds (e.g. metformin, resveratrol, etc.) may facilitate beneficial TE activation and transposition and enhance fertilization and embryological development through a common mechanism of AMPK activation.
Collapse
|
11
|
Feng Y, Wang N, Xu J, Zou J, Liang X, Liu H, Chen Y. Alpha-1-antitrypsin functions as a protective factor in preeclampsia through activating Smad2 and inhibitor of DNA binding 4. Oncotarget 2017; 8:113002-113012. [PMID: 29348884 PMCID: PMC5762569 DOI: 10.18632/oncotarget.22949] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
Pre-eclampsia (PE) is one of the most common reason for high morbidity and mortality of maternal and prenatal infants. Production from oxidative stress results in maternal ROS system and anti-oxidation defense system imbalance to promote tissue ischemia and hypoxia, and ultimately impairs the maternal organs and placenta. Our previous study showed that exogenous Alpha-1-antitrypsin (AAT) and overexpression of AAT in umbilical vein cell (HUVEC) hypoxia-reoxygenation model could increase the activity of antioxidant enzymes, and played a protective role in preeclampsia animal model. In this study, we aim to investigate the underlying mechanism by which AAT prevents PE progress. Whole-exome sequencing was performed to screen the genes altered by AAT. We found that AAT knockdown altered the expression of Smad family and Id family genes, and further demonstrated that AAT positively regulated Id4 expression through activating Smad2. Reduced Id4 expression and Smad2 phosphorylation were observed in preeclampsia animal model, which was also confirmed in human placenta tissues. In addition, AAT protected HUVEC cells from hypoxia/reoxygenation injury and relieved preeclampsia symptoms through Smad2/Id4 axis. Our data illustrate AAT/Smad2/Id4 axis is an important mediator of placenta and vascular function during pregnancy. These findings provide insights into events governing pregnancy-associated disorders, such as preeclampsia.
Collapse
Affiliation(s)
- Yaling Feng
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| | - Nan Wang
- Department of Obstetrics, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, PR China
| | - Jianjuan Xu
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| | - Jinfang Zou
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| | - Xi Liang
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| | - Huan Liu
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| | - Ying Chen
- Central Lab, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| |
Collapse
|
12
|
Albers RE, Waker CA, Keoni C, Kaufman MR, Bottomley MA, Min S, Natale DR, Brown TL. Gestational differences in murine placenta: Glycolytic metabolism and pregnancy parameters. Theriogenology 2017; 107:115-126. [PMID: 29145065 DOI: 10.1016/j.theriogenology.2017.10.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022]
Abstract
The placenta is a complex and essential organ composed largely of fetal-derived cells, including several different trophoblast subtypes that work in unison to support nutrient transport to the fetus during pregnancy. Abnormal placental development can lead to pregnancy-associated disorders that often involve metabolic dysfunction. The scope of dysregulated metabolism during placental development may not be fully representative of the in vivo state in defined culture systems, such as cell lines or isolated primary cells. Thus, assessing metabolic function in intact placental tissue would provide a better assessment of placental metabolism. In this study, we describe a methodology for assaying glycolytic function in structurally-intact mouse placental tissue, ex vivo, without culturing or tissue dissociation, that more closely resembles the in vivo state. Additionally, we present data highlighting sex-dependent differences of two mouse strains (C57BL/6 and ICR) in the pre-hypertrophic (E14.5) and hypertrophic (E18.5) placenta. These data establish a foundation for investigation of metabolism throughout gestation and provides a comprehensive assessment of glycolytic function during placental development.
Collapse
Affiliation(s)
- Renee E Albers
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, United States
| | - Christopher A Waker
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, United States
| | - Chanel Keoni
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, United States
| | - Melissa R Kaufman
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, United States
| | - Michael A Bottomley
- Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, United States
| | - Sarah Min
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - David R Natale
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, United States.
| |
Collapse
|
13
|
Svitina H, Kyryk V, Skrypkina I, Kuchma M, Bukreieva T, Areshkov P, Shablii Y, Denis Y, Klymenko P, Garmanchuk L, Ostapchenko L, Lobintseva G, Shablii V. Placenta-derived multipotent cells have no effect on the size and number of DMH-induced colon tumors in rats. Exp Ther Med 2017; 14:2135-2147. [PMID: 28962134 PMCID: PMC5609206 DOI: 10.3892/etm.2017.4792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
Transplantation of placenta-derived multipotent cells (PDMCs) is a promising approach for cell therapy to treat inflammation-associated colon diseases. However, the effect of PDMCs on colon cancer cells remains unknown. The aim of the present study was to characterize PDMCs obtained from human (hPDMCs) and rat (rPDMCs) placentas and to evaluate their impact on colon cancer progression in rats. PDMCs were obtained from human and rat placentas by tissue explant culturing. Stemness- and trophoblast-related gene expression was studied using reverse transcription-polymerase chain reaction (RT-PCR), and surface markers and intracellular proteins were detected using flow cytometry and immunofluorescence, respectively. Experimental colon carcinogenesis was induced in male albino Wistar rats by injecting 20 mg/kg dimethylhydrazine (DMH) once a week for 20 consecutive weeks. The administration of rPDMCs and hPDMC was performed at week 22 after the initial DMH-injection. All animals were sacrificed through carbon dioxide asphyxiation at week 5 after cell transplantation. The number and size of each tumor lesion was calculated. The type of tumor was determined by standard histological methods. Cell engraftment was determined by PCR and immunofluorescence. Results demonstrated that rPDMCs possessed the immunophenotype and differentiation potential inherent in MSCs; however, hPDMCs exhibited a lower expression of cluster of differentiation 44 and did not express trophoblast-associated genes. The data of the present study indicated that PDMCs may engraft in different tissues but do not significantly affect DMH-induced tumor growth during short-term observations.
Collapse
Affiliation(s)
- Hanna Svitina
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine.,Department of Biochemistry, Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Vitaliy Kyryk
- Department of Cell and Tissue Technologies, State Institute of Genetics and Regenerative Medicine of Academy of Medicine of Ukraine, 04114 Kyiv, Ukraine
| | - Inessa Skrypkina
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine.,Department of Functional Genomics, Institute of Molecular Biology and Genetics of National Academy of Science of Ukraine, 03680 Kyiv, Ukraine
| | - Maria Kuchma
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine.,Department of Functional Genomics, Institute of Molecular Biology and Genetics of National Academy of Science of Ukraine, 03680 Kyiv, Ukraine
| | - Tetiana Bukreieva
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine
| | - Pavlo Areshkov
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine.,Department of Functional Genomics, Institute of Molecular Biology and Genetics of National Academy of Science of Ukraine, 03680 Kyiv, Ukraine
| | - Yulia Shablii
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine
| | - Yevheniy Denis
- Department of Biochemistry, Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Pavlo Klymenko
- Department of Cell and Tissue Technologies, State Institute of Genetics and Regenerative Medicine of Academy of Medicine of Ukraine, 04114 Kyiv, Ukraine
| | - Liudmyla Garmanchuk
- Department of Biochemistry, Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Liudmyla Ostapchenko
- Department of Biochemistry, Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Galina Lobintseva
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine
| | - Volodymyr Shablii
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine.,Department of Biochemistry, Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| |
Collapse
|
14
|
Waker CA, Albers RE, Pye RL, Doliboa SR, Wyatt CN, Brown TL, Mayes DA. AMPK Knockdown in Placental Labyrinthine Progenitor Cells Results in Restriction of Critical Energy Resources and Terminal Differentiation Failure. Stem Cells Dev 2017; 26:808-817. [PMID: 28335680 DOI: 10.1089/scd.2016.0252] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Placental abnormalities can cause Pregnancy-Associated Disorders, including preeclampsia, intrauterine growth restriction, and placental insufficiency, resulting in complications for both the mother and fetus. Trophoblast cells within the labyrinthine layer of the placenta facilitate the exchange of nutrients, gases, and waste between mother and fetus; therefore, the development of this cell layer is critical for fetal development. As trophoblast cells differentiate, it is assumed their metabolism changes with their energy requirements. We hypothesize that proper regulation of trophoblast metabolism is a key component of normal placental development; therefore, we examined the role of AMP-activated kinase (AMPK, PRKAA1/2), a sensor of cellular energy status. Our previous studies have shown that AMPK knockdown alters both trophoblast differentiation and nutrient transport. In this study, AMPKα1/2 shRNA was used to investigate the metabolic effects of AMPK knockdown on SM10 placental labyrinthine progenitor cells before and after differentiation. Extracellular flux analysis confirmed that AMPK knockdown was sufficient to reduce trophoblast glycolysis, mitochondrial respiration, and ATP coupling efficiency. A reduction in AMPK in differentiated trophoblasts also resulted in increased mitochondrial volume. These data indicate that a reduction in AMPK disrupts cellular metabolism in both progenitors and differentiated placental trophoblasts. This disruption correlates to abortive trophoblast differentiation that may contribute to the development of Pregnancy-Associated Disorders.
Collapse
Affiliation(s)
- Christopher A Waker
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine , Dayton, Ohio
| | - Renee E Albers
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine , Dayton, Ohio
| | - Richard L Pye
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine , Dayton, Ohio
| | - Savannah R Doliboa
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine , Dayton, Ohio
| | - Christopher N Wyatt
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine , Dayton, Ohio
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine , Dayton, Ohio
| | - Debra A Mayes
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine , Dayton, Ohio
| |
Collapse
|
15
|
Abstract
AMPK is important in numerous physiological systems but plays a vital role in embryonic and placental development. The placenta is a unique organ that is the essential lifeline between the mother and baby during pregnancy and gestation. During placental development, oxygen concentrations are very low until cells differentiate to establish the appropriate lineages that take on new functions required for placental and embryonic survival. Balancing the oxygen regulatory environment with the demands for energy and need to maintain metabolism during this process places AMPK at the center of maintaining placental cellular homeostasis as it integrates and responds to numerous complex stimuli. AMPK plays a critical role in sensing metabolic and energy changes. Once activated, it turns on pathways that produce energy and shuts down catabolic processes. AMPK coordinates cell growth, differentiation, and nutrient transport to maintain cell survival. Appropriate regulation of AMPK is essential for normal placental and embryonic development, and its dysregulation may lead to pregnancy-associated disorders such as intrauterine growth restriction, placental insufficiency, or preeclampsia.
Collapse
Affiliation(s)
- Melissa R Kaufman
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Highway, 457 Neuroscience Engineering Collaboration Building, Dayton, OH, 45435, USA
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Highway, 457 Neuroscience Engineering Collaboration Building, Dayton, OH, 45435, USA.
| |
Collapse
|