1
|
Johnson BB, Cosson MV, Tsansizi LI, Holmes TL, Gilmore T, Hampton K, Song OR, Vo NTN, Nasir A, Chabronova A, Denning C, Peffers MJ, Merry CLR, Whitelock J, Troeberg L, Rushworth SA, Bernardo AS, Smith JGW. Perlecan (HSPG2) promotes structural, contractile, and metabolic development of human cardiomyocytes. Cell Rep 2024; 43:113668. [PMID: 38198277 DOI: 10.1016/j.celrep.2023.113668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/01/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Perlecan (HSPG2), a heparan sulfate proteoglycan similar to agrin, is key for extracellular matrix (ECM) maturation and stabilization. Although crucial for cardiac development, its role remains elusive. We show that perlecan expression increases as cardiomyocytes mature in vivo and during human pluripotent stem cell differentiation to cardiomyocytes (hPSC-CMs). Perlecan-haploinsuffient hPSCs (HSPG2+/-) differentiate efficiently, but late-stage CMs have structural, contractile, metabolic, and ECM gene dysregulation. In keeping with this, late-stage HSPG2+/- hPSC-CMs have immature features, including reduced ⍺-actinin expression and increased glycolytic metabolism and proliferation. Moreover, perlecan-haploinsuffient engineered heart tissues have reduced tissue thickness and force generation. Conversely, hPSC-CMs grown on a perlecan-peptide substrate are enlarged and display increased nucleation, typical of hypertrophic growth. Together, perlecan appears to play the opposite role of agrin, promoting cellular maturation rather than hyperplasia and proliferation. Perlecan signaling is likely mediated via its binding to the dystroglycan complex. Targeting perlecan-dependent signaling may help reverse the phenotypic switch common to heart failure.
Collapse
Affiliation(s)
- Benjamin B Johnson
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Marie-Victoire Cosson
- The Francis Crick Institute, London NW1 1AT, UK; NHLI, Imperial College London, London, UK
| | - Lorenza I Tsansizi
- The Francis Crick Institute, London NW1 1AT, UK; NHLI, Imperial College London, London, UK
| | - Terri L Holmes
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | | | - Katherine Hampton
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Ok-Ryul Song
- The Francis Crick Institute, London NW1 1AT, UK; High-Throughput Screening Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Nguyen T N Vo
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aishah Nasir
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alzbeta Chabronova
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Chris Denning
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Mandy J Peffers
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Catherine L R Merry
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - John Whitelock
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK; Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Linda Troeberg
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Stuart A Rushworth
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Andreia S Bernardo
- The Francis Crick Institute, London NW1 1AT, UK; NHLI, Imperial College London, London, UK.
| | - James G W Smith
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK.
| |
Collapse
|
2
|
Cuevas-Ocaña S, Yang JY, Aushev M, Schlossmacher G, Bear CE, Hannan NRF, Perkins ND, Rossant J, Wong AP, Gray MA. A Cell-Based Optimised Approach for Rapid and Efficient Gene Editing of Human Pluripotent Stem Cells. Int J Mol Sci 2023; 24:10266. [PMID: 37373413 PMCID: PMC10299534 DOI: 10.3390/ijms241210266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Introducing or correcting disease-causing mutations through genome editing in human pluripotent stem cells (hPSCs) followed by tissue-specific differentiation provide sustainable models of multiorgan diseases, such as cystic fibrosis (CF). However, low editing efficiency resulting in extended cell culture periods and the use of specialised equipment for fluorescence activated cell sorting (FACS) make hPSC genome editing still challenging. We aimed to investigate whether a combination of cell cycle synchronisation, single-stranded oligodeoxyribonucleotides, transient selection, manual clonal isolation, and rapid screening can improve the generation of correctly modified hPSCs. Here, we introduced the most common CF mutation, ΔF508, into the CFTR gene, using TALENs into hPSCs, and corrected the W1282X mutation using CRISPR-Cas9, in human-induced PSCs. This relatively simple method achieved up to 10% efficiency without the need for FACS, generating heterozygous and homozygous gene edited hPSCs within 3-6 weeks in order to understand genetic determinants of disease and precision medicine.
Collapse
Affiliation(s)
- Sara Cuevas-Ocaña
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.S.); (N.D.P.); (M.A.G.)
- Biodiscovery Institute, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Jin Ye Yang
- Programme in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.Y.); (J.R.); (A.P.W.)
| | - Magomet Aushev
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Biomedicine West Wing, Centre for Life, Times Square, Newcastle upon Tyne NE1 3BZ, UK;
| | - George Schlossmacher
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.S.); (N.D.P.); (M.A.G.)
| | - Christine E. Bear
- Programme in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Nicholas R. F. Hannan
- Biodiscovery Institute, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Neil D. Perkins
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.S.); (N.D.P.); (M.A.G.)
| | - Janet Rossant
- Programme in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.Y.); (J.R.); (A.P.W.)
| | - Amy P. Wong
- Programme in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.Y.); (J.R.); (A.P.W.)
| | - Michael A. Gray
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.S.); (N.D.P.); (M.A.G.)
| |
Collapse
|
3
|
Han JL, Entcheva E. Gene Modulation with CRISPR-based Tools in Human iPSC-Cardiomyocytes. Stem Cell Rev Rep 2023; 19:886-905. [PMID: 36656467 PMCID: PMC9851124 DOI: 10.1007/s12015-023-10506-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
Precise control of gene expression (knock-out, knock-in, knockdown or overexpression) is at the heart of functional genomics - an approach to dissect the contribution of a gene/protein to the system's function. The development of a human in vitro system that can be patient-specific, induced pluripotent stem cells, iPSC, and the ability to obtain various cell types of interest, have empowered human disease modeling and therapeutic development. Scalable tools have been deployed for gene modulation in these cells and derivatives, including pharmacological means, DNA-based RNA interference and standard RNA interference (shRNA/siRNA). The CRISPR/Cas9 gene editing system, borrowed from bacteria and adopted for use in mammalian cells a decade ago, offers cell-specific genetic targeting and versatility. Outside genome editing, more subtle, time-resolved gene modulation is possible by using a catalytically "dead" Cas9 enzyme linked to an effector of gene transcription in combination with a guide RNA. The CRISPRi / CRISPRa (interference/activation) system evolved over the last decade as a scalable technology for performing functional genomics with libraries of gRNAs. Here, we review key developments of these approaches and their deployment in cardiovascular research. We discuss specific use with iPSC-cardiomyocytes and the challenges in further translation of these techniques.
Collapse
Affiliation(s)
- Julie Leann Han
- Department of Biomedical Engineering, The George Washington University, 800 22nd St NW, Suite 5000, Washington, DC, 20052, USA
| | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, 800 22nd St NW, Suite 5000, Washington, DC, 20052, USA.
| |
Collapse
|
4
|
Fluorescence Spectroscopy of Low-Level Endogenous β-adrenergic Receptor Expression at the Plasma Membrane of Differentiating Human iPSC-Derived Cardiomyocytes. Int J Mol Sci 2022; 23:ijms231810405. [PMID: 36142320 PMCID: PMC9499492 DOI: 10.3390/ijms231810405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The potential of human-induced pluripotent stem cells (hiPSCs) to be differentiated into cardiomyocytes (CMs) mimicking adult CMs functional morphology, marker genes and signaling characteristics has been investigated since over a decade. The evolution of the membrane localization of CM-specific G protein-coupled receptors throughout differentiation has received, however, only limited attention to date. We employ here advanced fluorescent spectroscopy, namely linescan Fluorescence Correlation Spectroscopy (FCS), to observe how the plasma membrane abundance of the β1- and β2-adrenergic receptors (β1/2-ARs), labelled using a bright and photostable fluorescent antagonist, evolves during the long-term monolayer culture of hiPSC-derived CMs. We compare it to the kinetics of observed mRNA levels in wildtype (WT) hiPSCs and in two CRISPR/Cas9 knock-in clones. We conduct these observations against the backdrop of our recent report of cell-to-cell expression variability, as well as of the subcellular localization heterogeneity of β-ARs in adult CMs.
Collapse
|
5
|
Liu L, Lv J, Lin Z, Ning Y, Li J, Liu P, Chen C. Co-Overexpression of GRK5/ACTC1 Correlates With the Clinical Parameters and Poor Prognosis of Epithelial Ovarian Cancer. Front Mol Biosci 2022; 8:785922. [PMID: 35223984 PMCID: PMC8864135 DOI: 10.3389/fmolb.2021.785922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
Background: The prognosis of epithelial ovarian cancer (EOC) is poor, and the present prognostic predictors of EOC are neither sensitive nor specific. Objective: The aim of this study was to search the prognostic biomarkers of EOC and to investigate the expression of G protein-coupled receptor kinase 5 (GRK5) and actin alpha cardiac muscle 1 (ACTC1) in EOC tissues (both paraffin-embedded and fresh-frozen tissues) and to explore their association with clinicopathological parameters and prognostic value in patients with EOC. Methods: A total of 172 paraffin-embedded cancer tissues of EOC patients diagnosed and operated at the memorial hospital of Sun Yat-sen University between December 2009 and March 2017 and 41 paratumor tissues were collected and the expression of GRK5 and ACTC1 was examined using immunohistochemistry. Furthermore, 16 fresh-frozen EOC tissues and their matched paratumor tissues were collected from the Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, between August 2013 and November 2019 and subjected to reverse-transcription quantitative PCR analysis to detect the mRNA expression of GRK5 and ACTC1. Results: The expression of GRK5 and ACTC1 was both higher in cancer tissues than in paratumor tissues. GRK5 expression was positively correlated with ACTC1 expression. In addition, GRK5, ACTC1, and GRK5/ACTC1 expression was associated with the recurrence-free survival and overall survival of EOC patients. Furthermore, multivariate logistic regression analysis indicated that GRK5+/ACTC1+ co-expression, intestinal metastasis, postoperative chemotherapy, platinum resistance, and hyperthermic intraperitoneal chemotherapy were independent prognostic factors of EOC. Conclusion: GRK5 and ACTC1 are both upregulated in EOC compared with those in paratumor tissues. The co-expression of GRK5+/ACTC1+ rather than GRK5 or ACTC1 is an independent prognostic biomarker of EOC.
Collapse
Affiliation(s)
- Longyang Liu
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jin Lv
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Longgang Central Hospital of Shenzhen City, Shenzhen, China
| | - Zhongqiu Lin
- Department of Gynecology Oncology, The Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingxia Ning
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jing Li, ; Ping Liu, ; Chunlin Chen,
| | - Ping Liu
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jing Li, ; Ping Liu, ; Chunlin Chen,
| | - Chunlin Chen
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jing Li, ; Ping Liu, ; Chunlin Chen,
| |
Collapse
|
6
|
James V, Nizamudeen ZA, Lea D, Dottorini T, Holmes TL, Johnson BB, Arkill KP, Denning C, Smith JGW. Transcriptomic Analysis of Cardiomyocyte Extracellular Vesicles in Hypertrophic Cardiomyopathy Reveals Differential snoRNA Cargo. Stem Cells Dev 2021; 30:1215-1227. [PMID: 34806414 PMCID: PMC8742282 DOI: 10.1089/scd.2021.0202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by increased left ventricular wall thickness that can lead to devastating conditions such as heart failure and sudden cardiac death. Despite extensive study, the mechanisms mediating many of the associated clinical manifestations remain unknown and human models are required. To address this, human-induced pluripotent stem cell (hiPSC) lines were generated from patients with a HCM-associated mutation (c.ACTC1G301A) and isogenic controls created by correcting the mutation using CRISPR/Cas9 gene editing technology. Cardiomyocytes (hiPSC-CMs) were differentiated from these hiPSCs and analyzed at baseline, and at increased contractile workload (2 Hz electrical stimulation). Released extracellular vesicles (EVs) were isolated and characterized after a 24-h culture period and transcriptomic analysis performed on both hiPSC-CMs and released EVs. Transcriptomic analysis of cellular mRNA showed the HCM mutation caused differential splicing within known HCM pathways, and disrupted metabolic pathways. Analysis at increasing contraction frequency showed further disruption of metabolic gene expression, with an additive effect in the HCM background. Intriguingly, we observed differences in snoRNA cargo within HCM released EVs that specifically altered when HCM hiPSC-CMs were subjected to increased workload. These snoRNAs were predicted to have roles in post-translational modifications and alternative splicing, processes differentially regulated in HCM. As such, the snoRNAs identified in this study may unveil mechanistic insight into unexplained HCM phenotypes and offer potential future use as HCM biomarkers or as targets in future RNA-targeting therapies.
Collapse
Affiliation(s)
- Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Zubair A Nizamudeen
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Daniel Lea
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Terri L Holmes
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Benjamin B Johnson
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Kenton P Arkill
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Chris Denning
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - James G W Smith
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
7
|
Goulding J, Kondrashov A, Mistry SJ, Melarangi T, Vo NTN, Hoang DM, White CW, Denning C, Briddon SJ, Hill SJ. The use of fluorescence correlation spectroscopy to monitor cell surface β2-adrenoceptors at low expression levels in human embryonic stem cell-derived cardiomyocytes and fibroblasts. FASEB J 2021; 35:e21398. [PMID: 33710675 DOI: 10.1096/fj.202002268r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 12/31/2022]
Abstract
The importance of cell phenotype in determining the molecular mechanisms underlying β2 -adrenoceptor (β2AR) function has been noted previously when comparing responses in primary cells and recombinant model cell lines. Here, we have generated haplotype-specific SNAP-tagged β2AR human embryonic stem (ES) cell lines and applied fluorescence correlation spectroscopy (FCS) to study cell surface receptors in progenitor cells and in differentiated fibroblasts and cardiomyocytes. FCS was able to quantify SNAP-tagged β2AR number and diffusion in both ES-derived cardiomyocytes and CRISPR/Cas9 genome-edited HEK293T cells, where the expression level was too low to detect using standard confocal microscopy. These studies demonstrate the power of FCS in investigating cell surface β2ARs at the very low expression levels often seen in endogenously expressing cells. Furthermore, the use of ES cell technology in combination with FCS allowed us to demonstrate that cell surface β2ARs internalize in response to formoterol-stimulation in ES progenitor cells but not following their differentiation into ES-derived fibroblasts. This indicates that the process of agonist-induced receptor internalization is strongly influenced by cell phenotype and this may have important implications for drug treatment with long-acting β2AR agonists.
Collapse
Affiliation(s)
- Joëlle Goulding
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Nottingham, UK.,Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Alexander Kondrashov
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Nottingham, UK.,Division of Cancer & Stem Cells, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Sarah J Mistry
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Nottingham, UK.,School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Tony Melarangi
- Division of Cancer & Stem Cells, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Nguyen T N Vo
- Division of Cancer & Stem Cells, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Duc M Hoang
- Division of Cancer & Stem Cells, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK.,Department of Cellular Manufacturing, Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam
| | - Carl W White
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Nottingham, UK.,Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Harry Perkins Institute of Medical Research and Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, WA, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Melbourne, VIC, Australia
| | - Chris Denning
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Nottingham, UK.,Division of Cancer & Stem Cells, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Stephen J Briddon
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Nottingham, UK.,Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Stephen J Hill
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Nottingham, UK.,Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
8
|
Kondrashov A, Karpova E. Notes on Functional Modules in the Assembly of CRISPR/Cas9-Mediated Epigenetic Modifiers. Methods Mol Biol 2021; 2198:401-428. [PMID: 32822047 DOI: 10.1007/978-1-0716-0876-0_30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CRISPR/cas9 is a popular tool, widely used today for genome editing. However, the modular organization of this tool allows it to be used not only for DNA modifications but also for introducing epigenetic modifications both in DNA (methylation/demethylation) and in histones (acetylation/deacetylation). In these notes we will concentrate on the ways to adapt the CRISPR/cas9 system for epigenetic DNA modification of specific regions of interest. The modular organization represents a universal principal, that allows to create infinite number of functions with a limited number of tools. CRISPR/cas9, in which each subunit can be adapted for a particular task, is an excellent example of this rule. Made of two main subunits, it can be modified for targeted delivery of foreign activity (effector, an epigenetic enzyme in our case) to a selected part of the genome. In doing this the CRISPR/cas9 system represents a unique method that allows the introduction of both genomic and epigenetic modifications. This chapter gives a detailed review of how to prepare DNA for the fully functional CRISPR/cas9 system, able to introduce required modifications in the region of interest. We will discuss specific requirements for each structural component of the system as well as for auxiliary elements (modules), which are needed to ensure efficient expression of the elements of the system within the cell and the needs of selection and visualization.
Collapse
Affiliation(s)
- Alexander Kondrashov
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK.
| | | |
Collapse
|
9
|
Kondrashov A, Mohd Yusof NAN, Hasan A, Goulding J, Kodagoda T, Hoang DM, Vo NTN, Melarangi T, Dolatshad N, Gorelik J, Hill SJ, Harding SE, Denning C. CRISPR/Cas9-mediated generation and analysis of N terminus polymorphic models of β 2AR in isogenic hPSC-derived cardiomyocytes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 20:39-53. [PMID: 33335946 PMCID: PMC7733025 DOI: 10.1016/j.omtm.2020.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022]
Abstract
During normal- and patho-physiological situations, the behavior of the beta2-adrenoreceptor (β2AR) is influenced by polymorphic variants. The functional impact of such polymorphisms has been suggested from data derived from genetic association studies, in vitro experiments with primary cells, and transgenic overexpression models. However, heterogeneous genetic background and non-physiological transgene expression levels confound interpretation, leading to conflicting mechanistic conclusions. To overcome these limitations, we used CRISPR/Cas9 gene editing technology in human pluripotent stem cells (hPSCs) to create a unique suite of four isogenic homozygous variants at amino acid positions 16(G/R) and 27(G/Q), which reside in the N terminus of the β2AR. By producing cardiomyocytes from these hPSC lines, we determined that at a functional level β2AR signaling dominated over β1AR . Examining changes in beat rates and responses to isoprenaline, Gi coupling, cyclic AMP (cAMP) production, downregulation, and desensitization indicated that responses were often heightened for the GE variant, implying differential dominance of both polymorphic location and amino acid substitution. This finding was corroborated, since GE showed hypersensitivity to doxorubicin-induced cardiotoxicity relative to GQ and RQ variants. Thus, understanding the effect of β2AR polymorphisms on cardiac response to anticancer therapy may provide a route for personalized medicine and facilitate immediate clinical impact.
Collapse
Affiliation(s)
- Alexander Kondrashov
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Nurul A N Mohd Yusof
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Alveera Hasan
- National Heart and Lung Institute, Imperial College, London W12 0NN, UK
| | - Joëlle Goulding
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK.,Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Duc M Hoang
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Nguyen T N Vo
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Tony Melarangi
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Nazanin Dolatshad
- National Heart and Lung Institute, Imperial College, London W12 0NN, UK
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College, London W12 0NN, UK
| | - Stephen J Hill
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK.,Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College, London W12 0NN, UK
| | - Chris Denning
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
10
|
Kargaran PK, Evans JM, Bodbin SE, Smith JGW, Nelson TJ, Denning C, Mosqueira D. Mitochondrial DNA: Hotspot for Potential Gene Modifiers Regulating Hypertrophic Cardiomyopathy. J Clin Med 2020; 9:E2349. [PMID: 32718021 PMCID: PMC7463557 DOI: 10.3390/jcm9082349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a prevalent and untreatable cardiovascular disease with a highly complex clinical and genetic causation. HCM patients bearing similar sarcomeric mutations display variable clinical outcomes, implying the involvement of gene modifiers that regulate disease progression. As individuals exhibiting mutations in mitochondrial DNA (mtDNA) present cardiac phenotypes, the mitochondrial genome is a promising candidate to harbor gene modifiers of HCM. Herein, we sequenced the mtDNA of isogenic pluripotent stem cell-cardiomyocyte models of HCM focusing on two sarcomeric mutations. This approach was extended to unrelated patient families totaling 52 cell lines. By correlating cellular and clinical phenotypes with mtDNA sequencing, potentially HCM-protective or -aggravator mtDNA variants were identified. These novel mutations were mostly located in the non-coding control region of the mtDNA and did not overlap with those of other mitochondrial diseases. Analysis of unrelated patients highlighted family-specific mtDNA variants, while others were common in particular population haplogroups. Further validation of mtDNA variants as gene modifiers is warranted but limited by the technically challenging methods of editing the mitochondrial genome. Future molecular characterization of these mtDNA variants in the context of HCM may identify novel treatments and facilitate genetic screening in cardiomyopathy patients towards more efficient treatment options.
Collapse
Affiliation(s)
- Parisa K. Kargaran
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jared M. Evans
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA;
| | - Sara E. Bodbin
- Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - James G. W. Smith
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK;
| | - Timothy J. Nelson
- Division of General Internal Medicine, Division of Pediatric Cardiology, Departments of Medicine, Molecular Pharmacology, and Experimental Therapeutics, Mayo Clinic Center for Regenerative Medicine, Rochester, MN 55905, USA;
| | - Chris Denning
- Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Diogo Mosqueira
- Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
11
|
Goßmann M, Linder P, Thomas U, Juhasz K, Lemme M, George M, Fertig N, Dragicevic E, Stoelzle-Feix S. Integration of mechanical conditioning into a high throughput contractility assay for cardiac safety assessment. J Pharmacol Toxicol Methods 2020; 105:106892. [PMID: 32629160 DOI: 10.1016/j.vascn.2020.106892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/29/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023]
Abstract
INDUCTION Despite increasing acceptance of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in safety pharmacology, controversy remains about the physiological relevance of existing in vitro models for their mechanical testing. We hypothesize that existing signs of immaturity of the cell models result from an improper mechanical environment. With the presented study, we aimed at validating the newly developed FLEXcyte96 technology with respect to physiological responses of hiPSC-CMs to pharmacological compounds with known inotropic and/or cardiotoxic effects. METHODS hiPSC-CMs were cultured in a 96-well format on hyperelastic silicone membranes imitating their native mechanical environment. Cardiomyocyte contractility was measured contact-free by application of capacitive displacement sensing of the cell-membrane biohybrids. Acute effects of positive inotropic compounds with distinct mechanisms of action were examined. Additionally, cardiotoxic effects of tyrosine kinase inhibitors and anthracyclines were repetitively examined during repeated exposure to drug concentrations for up to 5 days. RESULTS hiPSC-CMs grown on biomimetic membranes displayed increased contractility responses to isoproterenol, S-Bay K8644 and omecamtiv mecarbil without the need for additional stimulation. Tyrosine kinase inhibitor erlotinib, vandetanib, nilotinib, gefitinib, A-674563 as well as anthracycline idarubicin showed the expected cardiotoxic effects, including negative inotropy and induction of proarrhythmic events. DISCUSSION We conclude that the FLEXcyte 96 system is a reliable high throughput tool for invitro cardiac contractility research, providing the user with data obtained under physiological conditions which resemble the native environment of human heart tissue. We showed that the results obtained for both acute and sub-chronic compound administration are consistent with the respective physiological responses in humans.
Collapse
Affiliation(s)
| | - Peter Linder
- innoVitro GmbH, Artilleriestr 2, 52428 Jülich, Germany
| | - Ulrich Thomas
- Nanion Technologies GmbH, Ganghoferstr 70A, 80339 Munich, Germany
| | - Krisztina Juhasz
- Nanion Technologies GmbH, Ganghoferstr 70A, 80339 Munich, Germany; Institute for Nanoelectronics, Technische Universität München, Arcisstrasse 21, 80333 Munich, Germany
| | - Marta Lemme
- Nanion Technologies GmbH, Ganghoferstr 70A, 80339 Munich, Germany
| | - Michael George
- Nanion Technologies GmbH, Ganghoferstr 70A, 80339 Munich, Germany
| | - Niels Fertig
- Nanion Technologies GmbH, Ganghoferstr 70A, 80339 Munich, Germany
| | - Elena Dragicevic
- Nanion Technologies GmbH, Ganghoferstr 70A, 80339 Munich, Germany
| | | |
Collapse
|
12
|
Bhagwan JR, Mosqueira D, Chairez-Cantu K, Mannhardt I, Bodbin SE, Bakar M, Smith JGW, Denning C. Isogenic models of hypertrophic cardiomyopathy unveil differential phenotypes and mechanism-driven therapeutics. J Mol Cell Cardiol 2020; 145:43-53. [PMID: 32531470 PMCID: PMC7487780 DOI: 10.1016/j.yjmcc.2020.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a prevalent and complex cardiovascular condition. Despite being strongly associated with genetic alterations, wide variation of disease penetrance, expressivity and hallmarks of progression complicate treatment. We aimed to characterize different human isogenic cellular models of HCM bearing patient-relevant mutations to clarify genetic causation and disease mechanisms, hence facilitating the development of effective therapeutics. METHODS We directly compared the p.β-MHC-R453C and p.ACTC1-E99K HCM-associated mutations in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and their healthy isogenic counterparts, generated using CRISPR/Cas9 genome editing technology. By harnessing several state-of-the-art HCM phenotyping techniques, these mutations were investigated to identify similarities and differences in disease progression and hypertrophic signaling pathways, towards establishing potential targets for pharmacological treatment. CRISPR/Cas9 knock-in of the genetically-encoded calcium indicator R-GECO1.0 to the AAVS1 locus into these disease models resulted in calcium reporter lines. RESULTS Confocal line scan analysis identified calcium transient arrhythmias and intracellular calcium overload in both models. The use of optogenetics and 2D/3D contractility assays revealed opposing phenotypes in the two mutations. Gene expression analysis highlighted upregulation of CALM1, CASQ2 and CAMK2D, and downregulation of IRF8 in p.β-MHC-R453C mutants, whereas the opposite changes were detected in p.ACTC1-E99K mutants. Contrasting profiles of nuclear translocation of NFATc1 and MEF2 between the two HCM models suggest differential hypertrophic signaling pathway activation. Calcium transient abnormalities were rescued with combination of dantrolene and ranolazine, whilst mavacamten reduced the hyper-contractile phenotype of p.ACTC1-E99K hiPSC-CMs. CONCLUSIONS Our data show that hypercontractility and molecular signaling within HCM are not uniform between different gene mutations, suggesting that a 'one-size fits all' treatment underestimates the complexity of the disease. Understanding where the similarities (arrhythmogenesis, bioenergetics) and differences (contractility, molecular profile) lie will allow development of therapeutics that are directed towards common mechanisms or tailored to each disease variant, hence providing effective patient-specific therapy.
Collapse
Affiliation(s)
- Jamie R Bhagwan
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK.
| | - Diogo Mosqueira
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK.
| | - Karolina Chairez-Cantu
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sara E Bodbin
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - Mine Bakar
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - James G W Smith
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK; Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia,NR4 7UQ, UK
| | - Chris Denning
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
13
|
Trionfini P, Ciampi O, Todeschini M, Ascanelli C, Longaretti L, Perico L, Remuzzi G, Benigni A, Tomasoni S. CRISPR-Cas9-Mediated Correction of the G189R-PAX2 Mutation in Induced Pluripotent Stem Cells from a Patient with Focal Segmental Glomerulosclerosis. CRISPR J 2020; 2:108-120. [PMID: 30998089 DOI: 10.1089/crispr.2018.0048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is defined by focal (involving few glomeruli) and segmental sclerosis of the glomerular tuft that manifests with nephrotic syndrome. Mutations in genes involved in the maintenance of structure and function of podocytes have been found in a minority of these patients. A family with adult-onset autosomal dominant FSGS was recently found to carry a new germline missense heterozygous mutation (p.G189R) in the octapeptide domain of the transcription factor PAX2. Here, we efficiently corrected this point mutation in patient-derived induced pluripotent stem cells (iPSCs) by means of CRISPR-Cas9-based homology-directed repair. The iPSC lines were differentiated into podocytes, which were tested for their motility. Editing the PAX2 p.G189R mutation restored podocyte motility, which was altered in podocytes derived from patient iPSCs.
Collapse
Affiliation(s)
- Piera Trionfini
- 1 Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy; University of Milan, Milan, Italy
| | - Osele Ciampi
- 1 Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy; University of Milan, Milan, Italy
| | - Marta Todeschini
- 1 Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy; University of Milan, Milan, Italy
| | - Camilla Ascanelli
- 1 Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy; University of Milan, Milan, Italy
| | - Lorena Longaretti
- 1 Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy; University of Milan, Milan, Italy
| | - Luca Perico
- 1 Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy; University of Milan, Milan, Italy
| | - Giuseppe Remuzzi
- 1 Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy; University of Milan, Milan, Italy.,2 L. Sacco' Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Ariela Benigni
- 1 Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy; University of Milan, Milan, Italy
| | - Susanna Tomasoni
- 1 Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy; University of Milan, Milan, Italy
| |
Collapse
|
14
|
Rezaei H, khadempar S, Farahani N, Hosseingholi EZ, hayat SMG, Sathyapalan T, Sahebkar AH. Harnessing CRISPR/Cas9 technology in cardiovascular disease. Trends Cardiovasc Med 2020; 30:93-101. [DOI: 10.1016/j.tcm.2019.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/03/2019] [Accepted: 03/20/2019] [Indexed: 12/30/2022]
|
15
|
Bhagwan JR, Collins E, Mosqueira D, Bakar M, Johnson BB, Thompson A, Smith JG, Denning C. Variable expression and silencing of CRISPR-Cas9 targeted transgenes identifies the AAVS1 locus as not an entirely safe harbour. F1000Res 2019; 8:1911. [PMID: 32789000 PMCID: PMC7401084 DOI: 10.12688/f1000research.19894.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Diseases such as hypertrophic cardiomyopathy (HCM) can lead to severe outcomes including sudden death. The generation of human induced pluripotent stem cell (hiPSC) reporter lines can be useful for disease modelling and drug screening by providing physiologically relevant in vitro models of disease. The AAVS1 locus is cited as a safe harbour that is permissive for stable transgene expression, and hence is favoured for creating gene targeted reporter lines. Methods: We generated hiPSC reporters using a plasmid-based CRISPR/Cas9 nickase strategy. The first intron of PPP1R12C, the AAVS1 locus, was targeted with constructs expressing a genetically encoded calcium indicator (R-GECO1.0) or HOXA9-T2A-mScarlet reporter under the control of a pCAG or inducible pTRE promoter, respectively. Transgene expression was compared between clones before, during and/or after directed differentiation to mesodermal lineages. Results: Successful targeting to AAVS1 was confirmed by PCR and sequencing. Of 24 hiPSC clones targeted with pCAG-R-GECO1.0, only 20 expressed the transgene and in these, the percentage of positive cells ranged from 0% to 99.5%. Differentiation of a subset of clones produced cardiomyocytes, wherein the percentage of cells positive for R-GECO1.0 ranged from 2.1% to 93.1%. In the highest expressing R-GECO1.0 clones, transgene silencing occurred during cardiomyocyte differentiation causing a decrease in expression from 98.93% to 1.3%. In HOXA9-T2A-mScarlet hiPSC reporter lines directed towards mesoderm lineages, doxycycline induced a peak in transgene expression after two days but this reduced by up to ten-thousand-fold over the next 8-10 days. Nevertheless, for R-GECO1.0 lines differentiated into cardiomyocytes, transgene expression was rescued by continuous puromycin drug selection, which allowed the Ca 2+ responses associated with HCM to be investigated in vitro using single cell analysis. Conclusions: Targeted knock-ins to AAVS1 can be used to create reporter lines but variability between clones and transgene silencing requires careful attention by researchers seeking robust reporter gene expression.
Collapse
Affiliation(s)
- Jamie R. Bhagwan
- Department of Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Emma Collins
- Department of Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Diogo Mosqueira
- Department of Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Mine Bakar
- Department of Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Benjamin B. Johnson
- Department of Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alexander Thompson
- Department of Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - James G.W. Smith
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Chris Denning
- Department of Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
16
|
Bhagwan JR, Collins E, Mosqueira D, Bakar M, Johnson BB, Thompson A, Smith JG, Denning C. Variable expression and silencing of CRISPR-Cas9 targeted transgenes identifies the AAVS1 locus as not an entirely safe harbour. F1000Res 2019; 8:1911. [PMID: 32789000 PMCID: PMC7401084 DOI: 10.12688/f1000research.19894.2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2020] [Indexed: 01/11/2023] Open
Abstract
Background: Diseases such as hypertrophic cardiomyopathy (HCM) can lead to severe outcomes including sudden death. The generation of human induced pluripotent stem cell (hiPSC) reporter lines can be useful for disease modelling and drug screening by providing physiologically relevant in vitro models of disease. The AAVS1 locus is cited as a safe harbour that is permissive for stable transgene expression, and hence is favoured for creating gene targeted reporter lines. Methods: We generated hiPSC reporters using a plasmid-based CRISPR/Cas9 nickase strategy. The first intron of PPP1R12C, the AAVS1 locus, was targeted with constructs expressing a genetically encoded calcium indicator (R-GECO1.0) or HOXA9-T2A-mScarlet reporter under the control of a pCAG or inducible pTRE promoter, respectively. Transgene expression was compared between clones before, during and/or after directed differentiation to mesodermal lineages. Results: Successful targeting to AAVS1 was confirmed by PCR and sequencing. Of 24 hiPSC clones targeted with pCAG-R-GECO1.0, only 20 expressed the transgene and in these, the percentage of positive cells ranged from 0% to 99.5%. Differentiation of a subset of clones produced cardiomyocytes, wherein the percentage of cells positive for R-GECO1.0 ranged from 2.1% to 93.1%. In the highest expressing R-GECO1.0 clones, transgene silencing occurred during cardiomyocyte differentiation causing a decrease in expression from 98.93% to 1.3%. In HOXA9-T2A-mScarlet hiPSC reporter lines directed towards mesoderm lineages, doxycycline induced a peak in transgene expression after two days but this reduced by up to ten-thousand-fold over the next 8-10 days. Nevertheless, for R-GECO1.0 lines differentiated into cardiomyocytes, transgene expression was rescued by continuous puromycin drug selection, which allowed the Ca 2+ responses associated with HCM to be investigated in vitro using single cell analysis. Conclusions: Targeted knock-ins to AAVS1 can be used to create reporter lines but variability between clones and transgene silencing requires careful attention by researchers seeking robust reporter gene expression.
Collapse
Affiliation(s)
- Jamie R. Bhagwan
- Department of Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Emma Collins
- Department of Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Diogo Mosqueira
- Department of Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Mine Bakar
- Department of Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Benjamin B. Johnson
- Department of Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alexander Thompson
- Department of Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - James G.W. Smith
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Chris Denning
- Department of Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
17
|
Mosqueira D, Smith JGW, Bhagwan JR, Denning C. Modeling Hypertrophic Cardiomyopathy: Mechanistic Insights and Pharmacological Intervention. Trends Mol Med 2019; 25:775-790. [PMID: 31324451 DOI: 10.1016/j.molmed.2019.06.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a prevalent and complex cardiovascular disease where cardiac dysfunction often associates with mutations in sarcomeric genes. Various models based on tissue explants, isolated cardiomyocytes, skinned myofibrils, and purified actin/myosin preparations have uncovered disease hallmarks, enabling the development of putative therapeutics, with some reaching clinical trials. Newly developed human pluripotent stem cell (hPSC)-based models could be complementary by overcoming some of the inconsistencies of earlier systems, whilst challenging and/or clarifying previous findings. In this article we compare recent progress in unveiling multiple HCM mechanisms in different models, highlighting similarities and discrepancies. We explore how insight is facilitating the design of new HCM therapeutics, including those that regulate metabolism, contraction and heart rhythm, providing a future perspective for treatment of HCM.
Collapse
Affiliation(s)
- Diogo Mosqueira
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | - James G W Smith
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Jamie R Bhagwan
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chris Denning
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
18
|
Smith JGW, Owen T, Bhagwan JR, Mosqueira D, Scott E, Mannhardt I, Patel A, Barriales-Villa R, Monserrat L, Hansen A, Eschenhagen T, Harding SE, Marston S, Denning C. Isogenic Pairs of hiPSC-CMs with Hypertrophic Cardiomyopathy/LVNC-Associated ACTC1 E99K Mutation Unveil Differential Functional Deficits. Stem Cell Reports 2018; 11:1226-1243. [PMID: 30392975 PMCID: PMC6235010 DOI: 10.1016/j.stemcr.2018.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a primary disorder of contractility in heart muscle. To gain mechanistic insight and guide pharmacological rescue, this study models HCM using isogenic pairs of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) carrying the E99K-ACTC1 cardiac actin mutation. In both 3D engineered heart tissues and 2D monolayers, arrhythmogenesis was evident in all E99K-ACTC1 hiPSC-CMs. Aberrant phenotypes were most common in hiPSC-CMs produced from the heterozygote father. Unexpectedly, pathological phenotypes were less evident in E99K-expressing hiPSC-CMs from the two sons. Mechanistic insight from Ca2+ handling expression studies prompted pharmacological rescue experiments, wherein dual dantroline/ranolazine treatment was most effective. Our data are consistent with E99K mutant protein being a central cause of HCM but the three-way interaction between the primary genetic lesion, background (epi)genetics, and donor patient age may influence the pathogenic phenotype. This illustrates the value of isogenic hiPSC-CMs in genotype-phenotype correlations.
Collapse
Affiliation(s)
- James G W Smith
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK.
| | - Thomas Owen
- National Heart and Lung Institute, Imperial College, London W12 0NN, UK
| | - Jamie R Bhagwan
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Diogo Mosqueira
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Elizabeth Scott
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Ingra Mannhardt
- Institute of Experimental Pharmacology and Toxicology, University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Asha Patel
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Department of Gene Therapy, National Heart and Lung Institute, Imperial College London SW3 6LR, UK
| | - Roberto Barriales-Villa
- Inherited Cardiovascular Diseases Unit, Cardiology Service, Complexo Hospitalario Universitario A Coruña, Servizo Galego de Saúde (SERGAS), Universidade da Coruña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Lorenzo Monserrat
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain; Health in Code S.L., Cardiology Department, A Coruña, Spain
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College, London W12 0NN, UK
| | - Steve Marston
- National Heart and Lung Institute, Imperial College, London W12 0NN, UK
| | - Chris Denning
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
19
|
Hoes MF, Bomer N, van der Meer P. Concise Review: The Current State of Human In Vitro Cardiac Disease Modeling: A Focus on Gene Editing and Tissue Engineering. Stem Cells Transl Med 2018; 8:66-74. [PMID: 30302938 PMCID: PMC6312446 DOI: 10.1002/sctm.18-0052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/04/2018] [Indexed: 12/11/2022] Open
Abstract
Until recently, in vivo and ex vivo experiments were the only means to determine factors and pathways involved in disease pathophysiology. After the generation of characterized human embryonic stem cell lines, human diseases could readily be studied in an extensively controllable setting. The introduction of human‐induced pluripotent stem cells, a decade ago, allowed the investigation of hereditary diseases in vitro. In the field of cardiology, diseases linked to known genes have successfully been studied, revealing novel disease mechanisms. The direct effects of various mutations leading to hypertrophic cardiomyopathy, dilated cardiomyopathy, arrythmogenic cardiomyopathy, or left ventricular noncompaction cardiomyopathy are discovered as a result of in vitro disease modeling. Researchers are currently applying more advanced techniques to unravel more complex phenotypes, resulting in state‐of‐the‐art models that better mimic in vivo physiology. The continued improvement of tissue engineering techniques and new insights into epigenetics resulted in more reliable and feasible platforms for disease modeling and the development of novel therapeutic strategies. The introduction of CRISPR‐Cas9 gene editing granted the ability to model diseases in vitro independent of induced pluripotent stem cells. In addition to highlighting recent developments in the field of human in vitro cardiomyopathy modeling, this review also aims to emphasize limitations that remain to be addressed; including residual somatic epigenetic signatures induced pluripotent stem cells, and modeling diseases with unknown genetic causes. Stem Cells Translational Medicine2019;8:66–74
Collapse
Affiliation(s)
- Martijn F Hoes
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, RB, The Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, RB, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, RB, The Netherlands
| |
Collapse
|