1
|
Nehal, Awasthi S. Insights into the Versatile and Efficient Characteristics, Classifications, and Rational Design of Surface-Grafted Smart Hydrogels. Chem Asian J 2025:e202500441. [PMID: 40200846 DOI: 10.1002/asia.202500441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Hydrogels have emerged as flexible biomaterials with enormous potential in biomedical applications due to their outstanding biocompatibility and ability to hold a high water concentration. Hydrogels have low toxicity and are biodegradable. This review begins with a look at the various riveting characteristics and classifications of hydrogel nanocomposites reinforced with various metallic and ceramic components. A distinct focus is offered on thoroughly deliberating surface modification techniques with special attention on fabrication, patterning, and their applications in biomedical fields. The review describes the value of novel cross-linking techniques including physical, chemical, and physical-chemical dual cross-linking in adapting hydrogel characteristics to specific applications. This review also explains the major bioapplication of functionalized hydrogels. It emphasizes the importance of nanocomposite hydrogels and multifunctional self-assembled monolayers in solving contemporary biological difficulties such as infection control, medication delivery, and tissue regeneration. It explains the need for interdisciplinary collaboration and ongoing research efforts to realize the full potential of hydrogels and nanomaterials in biomedical applications. Overall, this review gives useful insights into current advances and future possibilities for hydrogels grafted with metals and ceramic additives in biomedical applications, highlighting the need for multidisciplinary cooperation and ongoing research in nano(bio)technology.
Collapse
Affiliation(s)
- Nehal
- Department of Chemistry, Manipal University Jaipur, Jaipur, 303007, India
| | - Shikha Awasthi
- Department of Basic Sciences, IES University, Bhopal, Madhya Pradesh, 462044, India
| |
Collapse
|
2
|
Ostróżka-Cieślik A, Michalak M, Bryś T, Kudła M. The Potential of Hydrogel Preparations Containing Plant Materials in Supporting the Treatment of Vaginal and Vulvar Infections-Current State of Knowledge. Polymers (Basel) 2025; 17:470. [PMID: 40006132 PMCID: PMC11859247 DOI: 10.3390/polym17040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Vaginal hydrogels are a modern alternative to solid (tablets, globules) and other semi-solid forms of medication (ointments, creams) in the control of pathogenic microorganisms in diseases of the female reproductive tract. This review aims to summarize the current state of knowledge regarding the efficacy of hydrogels containing plant materials in the treatment of vaginal and vulvar infections. New therapies are essential to address the growing antimicrobial resistance crisis. Google Scholar, Web of Science, Cochrane, and Medline (PubMed) databases were searched. Twenty-five studies were included in the review, including basic, pre-clinical, and clinical studies. The results obtained confirmed the therapeutic potential of plant raw materials embedded in the polymer matrix of hydrogels. However, due to the small number of clinical trials conducted, further research in this area is needed.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia,41-200 Sosnowiec, Poland
| | - Monika Michalak
- Department of Pharmaceutical Sciences, Medical College, Jan Kochanowski University, 25-317 Kielce, Poland;
| | - Tomasz Bryś
- Clinical Department of Perinatology and Oncological Gynaecology, Medical University of Silesia, 41-200 Sosnowiec, Poland; (T.B.); (M.K.)
| | - Marek Kudła
- Clinical Department of Perinatology and Oncological Gynaecology, Medical University of Silesia, 41-200 Sosnowiec, Poland; (T.B.); (M.K.)
| |
Collapse
|
3
|
Moghaddam MM, Jooybar E, Imani R, Ehrbar M. Development of injectable microgel-based scaffolds via enzymatic cross-linking of hyaluronic acid-tyramine/gelatin-tyramine for potential bone tissue engineering. Int J Biol Macromol 2024; 279:135176. [PMID: 39214205 DOI: 10.1016/j.ijbiomac.2024.135176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Currently, the healing of large bone defects relies on invasive surgeries and the transplantation of autologous bone. As a less invasive treatment option, the provision of microenvironments that promote the regeneration of defective bones holds great promise. Here, we developed hyaluronic acid (HA)/gelatin (Ge) microgel-based scaffolds to guide bone regeneration. To enable the formation of microgels by enzymatic cross-linking in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2), we modified the polymers with tyramine (TA). Spectrophotometry and proton nuclear magnetic resonance (1H NMR) spectroscopy analysis confirmed successful tyramine substitution on polymer backbones. To enable the formation of microgels by a water-in-oil emulsion approach, the HRP and H2O2 concentrations were tuned to achieve the gelation in a few seconds. By varying the stirring speed from 600 to 1000 rpm, spherical microgels were produced with an average size of 116 ± 8.7 and 68 ± 4.7 μm, respectively. The results showed that microgels were injectable through needles and showed good biocompatibility with the cultured human osteosarcoma cell line (MG-63). HA/Ge-TA microgels served as a promising substrate for MG-63 cells since they improved the alkaline phosphatase activity and level of calcium deposition. In summary, the developed HA/Ge-TA microgels are promising injectable microgel-based scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Melika Mansouri Moghaddam
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Elaheh Jooybar
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Moghtader F, Tabata Y, Karaöz E. Biohybrids for Combined Therapies of Skin Wounds: Agglomerates of Mesenchymal Stem Cells with Gelatin Hydrogel Beads Delivering Phages and Basic Fibroblast Growth Factor. Gels 2024; 10:493. [PMID: 39195022 DOI: 10.3390/gels10080493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
There is great interest in developing effective therapies for the treatment of skin wounds accompanied by deep tissue losses and severe infections. We have attempted to prepare biohybrids formed of agglomerates of mesenchymal stem cells (MSCs) with gelatin hydrogel beads (GEL beads) delivering bacteriophages (phages) as antibacterial agents and/or basic fibroblast growth factor (bFGF) for faster and better healing, providing combined therapies for these types of skin wounds. The gelatin beads were produced through a two-step process using basic and/or acidic gelatins with different isoelectric points. Escherichia coli (E. coli) and its specific T4 phages were propagated. Phages and/or bFGF were loaded within the GELs and their release rates and modes were obtained. The phage release from the basic GEL beads was quite fast; in contrast, the bFGF release from the acidic GEL beads was sustained, as anticipated. MSCs were isolated from mouse adipose tissues and 2D-cultured. Agglomerates of these MSCs with GEL beads were formed and maturated in 3D cultures, and their time-dependent changes were followed. In these 3D culture experiments, it was observed that the agglomerates with GEL beads were very healthy and the MSCs formed tissue-like structures in 7 days, while the MSC agglomerates were not healthy and shrunk considerably as a result of cell death.
Collapse
Affiliation(s)
- Farzaneh Moghtader
- Nanobiyomedtek Biyomedikal ve Biyoteknoloji Sanayi ve Ticaret Limited Sirketi, Koycegiz 48800, Mugla, Turkey
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Department of Regeneration Science and Engineering, Kyoto University, Kyoto 606-850, Japan
- Institute of Health Sciences, Stem Cell and Tissue Engineering, Liv Hospital, İstinye University, Esenyurt, İstanbul 34517, Turkey
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Department of Regeneration Science and Engineering, Kyoto University, Kyoto 606-850, Japan
| | - Erdal Karaöz
- Institute of Health Sciences, Stem Cell and Tissue Engineering, Liv Hospital, İstinye University, Esenyurt, İstanbul 34517, Turkey
| |
Collapse
|
5
|
(Ogi) Suzuki K, Okamoto T, Tamai K, Tabata Y, Hatano E. Enhancement of tracheal cartilage regeneration by local controlled release of stromal cell-derived factor 1α with gelatin hydrogels and systemic administration of high-mobility group box 1 peptide. Regen Ther 2024; 26:415-424. [PMID: 39070123 PMCID: PMC11282968 DOI: 10.1016/j.reth.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction This present study evaluated the effect of combination therapy with stromal cell-derived factor 1α (SDF-1α) and high-mobility group box 1 (HMGB1) peptide on the regeneration of tracheal injury in a rat model. Methods To improve this effect, SDF-1α was incorporated into a gelatin hydrogel, which was then applied to the damaged tracheal cartilage of rats for local release. Furthermore, HMGB1 peptide was repeatedly administered intravenously. Regeneration of damaged tracheal cartilage was evaluated in terms of cell recruitment. Results Mesenchymal stem cells (MSC) with C-X-C motif chemokine receptor 4 (CXCR4) were mobilized more into the injured area, and consequently the fastest tracheal cartilage regeneration was observed in the combination therapy group eight weeks after injury. Conclusions The present study demonstrated that combination therapy with gelatin hydrogel incorporating SDF-1α and HMGB1 peptide injected intravenously can enhance the recruitment of CXCR4-positive MSC, promoting the regeneration of damaged tracheal cartilage.
Collapse
Affiliation(s)
- Kumiko (Ogi) Suzuki
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Department of Biomaterials, Field of Tissue Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tatsuya Okamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
6
|
Kesharwani P, Alexander A, Shukla R, Jain S, Bisht A, Kumari K, Verma K, Sharma S. Tissue regeneration properties of hydrogels derived from biological macromolecules: A review. Int J Biol Macromol 2024; 271:132280. [PMID: 38744364 DOI: 10.1016/j.ijbiomac.2024.132280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The successful tissue engineering depends on the development of biologically active scaffolds that possess optimal characteristics to effectively support cellular functions, maintain structural integrity and aid in tissue regeneration. Hydrogels have emerged as promising candidates in tissue regeneration due to their resemblance to the natural extracellular matrix and their ability to support cell survival and proliferation. The integration of hydrogel scaffold into the polymer has a variable impact on the pseudo extracellular environment, fostering cell growth/repair. The modification in size, shape, surface morphology and porosity of hydrogel scaffolds has consequently paved the way for addressing diverse challenges in the tissue engineering process such as tissue architecture, vascularization and simultaneous seeding of multiple cells. The present review provides a comprehensive update on hydrogel production using natural and synthetic biomaterials and their underlying mechanisms. Furthermore, it delves into the application of hydrogel scaffolds in tissue engineering for cardiac tissues, cartilage tissue, adipose tissue, nerve tissue and bone tissue. Besides, the present article also highlights various clinical studies, patents, and the limitations associated with hydrogel-based scaffolds in recent times.
Collapse
Affiliation(s)
- Payal Kesharwani
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India; Institute of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education Greater Noida, India
| | - Amit Alexander
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kajal Kumari
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.
| |
Collapse
|
7
|
Kai N, Nishida N, Aoishi K, Takagi T, Hato N. Effect of intranasal administration of concentrated growth factors on regeneration of the olfactory epithelium in an olfactory dysfunction-induced rat model. PLoS One 2024; 19:e0298640. [PMID: 38416730 PMCID: PMC10901354 DOI: 10.1371/journal.pone.0298640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/26/2024] [Indexed: 03/01/2024] Open
Abstract
OBJECTIVE The development of treatments that promote the regenerative capacity of the olfactory epithelium (OE) is desirable. This study aimed to evaluate the effects of intranasal administration of concentrated growth factors (CGFs) in a rat model of olfactory dysfunction. STUDY DESIGN Animal study. METHODS Nineteen male rats were used. Fourteen olfactory dysfunction models were created by intraperitoneal administration of 3-methylindole. We randomly divided the rats from the olfactory dysfunction model after 1 week into the CGF or saline group; CGFs were administered to seven animals and saline to seven animals. Behavioral assessments using the avoidance test were conducted until day 28 after CGF/saline administration. On day 28, histological evaluation was conducted to determine olfactory epithelial thickness and the olfactory marker protein (OMP)-positive cell count. Five animals were intraperitoneally injected with saline as the control group. RESULTS The avoidance rate remained decreased until 28 days after CGF/saline administration, and there was no significant difference between the two groups. Olfactory epithelial thicknesses on day 28 were 38.64 ± 3.17 μm and 32.84 ± 4.50 μm in the CGF and saline groups, respectively. OE thickness was significantly thicker in the CGF group than in the saline group (P = 0.013). The numbers of OMP-positive cells were 40.29 ± 9.77/1.0 × 104 μm2 and 31.00 ± 3.69/1.0 × 104 μm2 in the CGF and saline groups, respectively. The number of OMP+ cells in the CGF group was significantly increased compared with that in the saline group (P = 0.009). Both groups showed no improvement compared with the control group (OE thickness: 54.08 ± 3.36 μm; OMP+ cell count: 56.90 ± 9.91/1.0 × 104 μm2). CONCLUSIONS The CGF group showed improved olfactory epithelial thickness and OMP-positive cell numbers compared with that in the saline group.
Collapse
Affiliation(s)
- Naruhiko Kai
- Department of Otolaryngology, Head and Neck Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Naoya Nishida
- Department of Otolaryngology, Head and Neck Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
- Department of Otolaryngology, Ehime Prefectural Niihama Hospital, Niihama, Japan
| | - Kunihide Aoishi
- Department of Otolaryngology, Head and Neck Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Taro Takagi
- Department of Otolaryngology, Head and Neck Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Naohito Hato
- Department of Otolaryngology, Head and Neck Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| |
Collapse
|
8
|
Komori T, Hisaoka T, Kotaki A, Iwamoto M, Miyajima A, Esashi E, Morikawa Y. Blockade of OSMRβ signaling ameliorates skin lesions in a mouse model of human atopic dermatitis. FASEB J 2024; 38:e23359. [PMID: 38102969 DOI: 10.1096/fj.202301529r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by severe pruritus and eczematous skin lesions. Although IL-31, a type 2 helper T (Th2)-derived cytokine, is important to the development of pruritus and skin lesions in AD, the blockade of IL-31 signaling does not improve the skin lesions in AD. Oncostatin M (OSM), a member of IL-6 family of cytokines, plays important roles in the regulation of various inflammatory responses through OSM receptor β subunit (OSMRβ), a common receptor subunit for OSM and IL-31. However, the effects of OSM on the pathogenesis of AD remain to be elucidated. When AD model mice were treated with OSM, skin lesions were exacerbated and IL-4 production was increased in the lymph nodes. Next, we investigated the effects of the monoclonal antibody (mAb) against OSMRβ on the pathogenesis of AD. Treatment with the anti-OSMRβ mAb (7D2) reduced skin severity score in AD model mice. In addition to skin lesions, scratching behavior was decreased by 7D2 mAb with the reduction in the number of OSMRβ-positive neurons in the dorsal root ganglia of AD model mice. 7D2 mAb also reduced the serum concentration of IL-4, IL-13, and IgE as well as the gene expressions of IL-4 and IL-13 in the lymph nodes of AD model mice. Blockade of both IL-31 and OSM signaling is suggested to suppress both pruritus and Th2 responses, resulting in the improvement of skin lesions in AD. The anti-OSMRβ mAb may be a new therapeutic candidate for the treatment of AD.
Collapse
Affiliation(s)
- Tadasuke Komori
- Department of Anatomy & Neurobiology, Wakayama Medical University, Wakayama, Japan
| | - Tomoko Hisaoka
- Department of Anatomy & Neurobiology, Wakayama Medical University, Wakayama, Japan
| | - Ayumi Kotaki
- Ginkgo Biomedical Research Institute, R&D Department, SBI Biotech Co. Ltd, Fujisawa, Japan
| | - Miki Iwamoto
- Department of Pediatrics, Kainan Municipal Medical Center, Kainan, Japan
| | - Atsushi Miyajima
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Eiji Esashi
- Ginkgo Biomedical Research Institute, R&D Department, SBI Biotech Co. Ltd, Fujisawa, Japan
| | - Yoshihiro Morikawa
- Department of Anatomy & Neurobiology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
9
|
Dongare PR, Nille OS, Bhavsar PS, Devre PV, Kolekar GB, Prajapat AL, Gore AH. Analytical applications of graphene oxide-based hydrogels. COMPREHENSIVE ANALYTICAL CHEMISTRY 2024:391-434. [DOI: 10.1016/bs.coac.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Washio A, Kérourédan O, Tabata Y, Kokabu S, Kitamura C. Effect of Bioactive Glasses and Basic Fibroblast Growth Factor on Dental Pulp Cells. J Funct Biomater 2023; 14:568. [PMID: 38132822 PMCID: PMC10744375 DOI: 10.3390/jfb14120568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Ideal regeneration of hard tissue and dental pulp has been reported with the use of a combination of bioactive glass and basic fibroblast growth factor (bFGF). However, no previous study has investigated the molecular mechanisms underlying the processes induced by this combination in dental pulp cells. This study aimed to examine the cellular phenotype and transcriptional changes induced by the combination of bioactive glass solution (BG) and bFGF in dental pulp cells using phase-contrast microscopy, a cell counting kit-8 assay, alkaline phosphatase staining, and RNA sequence analysis. bFGF induced elongation of the cell process and increased the number of cells. Whereas BG did not increase ALP activity, it induced extracellular matrix-related genes in the dental pulp. In addition, the combination of BG and bFGF induces gliogenesis-related genes in the nervous system. This is to say, bFGF increased the viability of dental pulp cells, bioactive glass induced odontogenesis, and a dual stimulation with bioactive glass and bFGF induced the wound healing of the nerve system in the dental pulp. Taken together, bioactive glass and bFGF may be useful for the regeneration of the dentin-pulp complex.
Collapse
Affiliation(s)
- Ayako Washio
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan;
| | - Olivia Kérourédan
- National Institute of Health and Medical Research (INSERM), U1026 BIOTIS, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France;
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan;
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan;
| |
Collapse
|
11
|
Yoshizaki K, Nishida H, Tabata Y, Jo JI, Nakase I, Akiyoshi H. Controlled release of canine MSC-derived extracellular vesicles by cationized gelatin hydrogels. Regen Ther 2022; 22:1-6. [PMID: 36582604 PMCID: PMC9761439 DOI: 10.1016/j.reth.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 11/27/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Canine mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have emerged as a promising form of regenerative therapy. Therapeutic application of EVs remains difficult due to the short half-life of EVs in vivo and their rapid clearance from the body. We have developed cationized gelatin hydrogels that prolong the retention of EVs to overcome this problem. Methods Canine MSCs were isolated from bone marrow. MSC-derived EVs were isolated from the culture supernatant by ultracentrifugation. Gelatin was mixed with ethylene diamine anhydrate to cationized. Distinct cross-linked cationized gelatin hydrogels were created by thermal dehydration. Hydrogels were implanted into the back subcutis of mice in order to evaluate the degradation profiles. Hydrogels with collagenase were incubated at 37 °C in vitro to quantize the release of EVs from hydrogels. Lipopolysaccharide (LPS)-stimulated BV-2 cells were used to evaluate the immunomodulatory effect of EVs after release from the hydrogels. Results The cationized gelatin hydrogels suppressed EV release in PBS. More than 60% of immobilized EVs are not released from the hydrogels. The cationized hydrogels released EVs in a sustainable manner and prolonged the retention time of EVs depending on the intensity of cross-linking after degradation by collagenase. The expression of IL-1β in LPS-stimulated BV-2 cells was lower in EVs released from the hydrogels than in controls. Conclusions Our results indicate that the controlled release of EVs can be achieved by cationized gelatin hydrogels. The released EVs experimentally confirmed to be effective in reducing proinflammatory response. The cationized gelatin hydrogels appear to be useful biomaterials for releasing canine MSC-derived EVs for regenerative therapy.
Collapse
Affiliation(s)
- Karin Yoshizaki
- Department of Veterinary Surgery, Graduate School of Life and Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | - Hidetaka Nishida
- Department of Veterinary Surgery, Graduate School of Life and Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
- Corresponding author. Department of Veterinary Surgery, Graduate School of Life and Veterinary Science, Osaka Metropolitan University, 1-58, Rinku Oraikita, Izumisano, Osaka, 598-8531, Japan. Fax: +81 724-63-5476
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto, Japan
- Corresponding author. Laboratory of Biomaterials, Department of Regeneration Science and Engineering Institute for Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan. Fax: +81 75-751-4646
| | - Jun-ichiro Jo
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto, Japan
- Department of Biomaterials, Osaka Dental University, Hirakata, Osaka, Japan
| | - Ikuhiko Nakase
- Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Hideo Akiyoshi
- Department of Veterinary Surgery, Graduate School of Life and Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| |
Collapse
|
12
|
A Simple Preparation Method of Gelatin Hydrogels Incorporating Cisplatin for Sustained Release. Pharmaceutics 2022; 14:pharmaceutics14122601. [PMID: 36559095 PMCID: PMC9786307 DOI: 10.3390/pharmaceutics14122601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to develop a new preparation method for cisplatin (CDDP)-incorporated gelatin hydrogels without using chemical crosslinking nor a vacuum heating instrument for dehydrothermal crosslinking. By simply mixing CDDP and gelatin, CDDP-crosslinked gelatin hydrogels (CCGH) were prepared. CDDP functions as a crosslinking agent of gelatin to form the gelatin hydrogel. Simultaneously, CDDP is incorporated into the gelatin hydrogel as a controlled release carrier. CDDP's in vitro and in vivo anticancer efficacy after incorporation into CCGH was evaluated. In the in vitro system, the CDDP was released gradually due to CCGH degradation with an initial burst release of approximately 16%. CDDP metal-coordinated with the degraded fragment of gelatin was released from CCGH with maintaining the anticancer activity. After intraperitoneal administration of CCGH, CDDP was detected in the blood circulation while its toxicity was low. Following intraperitoneal administration of CCGH in a murine peritoneal dissemination model of human gastric cancer MKN45-Luc cell line, the survival time was significantly prolonged compared with free CDDP solution. It is concluded that CCGH prepared by the CDDP-based crosslinking of gelatin is an excellent sustained release system of CDDP to achieve superior anticancer effects with minimal side effects compared with free CDDP solution.
Collapse
|
13
|
Sairaman S, Nivedhitha MS, Shrivastava D, Al Onazi MA, Algarni HA, Mustafa M, Alqahtani AR, AlQahtani N, Teja KV, Janani K, Eswaramoorthy R, Sudhakar MP, Alam MK, Srivastava KC. Biocompatibility and antioxidant activity of a novel carrageenan based injectable hydrogel scaffold incorporated with Cissus quadrangularis: an in vitro study. BMC Oral Health 2022; 22:377. [PMID: 36064680 PMCID: PMC9442992 DOI: 10.1186/s12903-022-02409-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2024] Open
Abstract
Background Over the past years, polysaccharide-based scaffolds have emerged as the most promising material for tissue engineering. In the present study, carrageenan, an injectable scaffold has been used owing to its advantage and superior property. Cissus quadrangularis, a natural agent was incorporated into the carrageenan scaffold. Therefore, the present study aimed to assess the antioxidant activity and biocompatibility of this novel material.
Methods The present in vitro study comprised of four study groups each constituting a sample of 15 with a total sample size of sixty (n = 60). The carrageenan hydrogel devoid of Cissus quadrangularis acted as the control group (Group-I). Based on the concentration of aqueous extract of Cissus quadrangularis (10% w/v, 20% w/v and 30% w/v) in carrageenan hydrogel, respective study groups namely II, III and IV were considered. Antioxidant activity was assessed using a 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay, whereas the biocompatibility test was performed using a brine shrimp lethality assay. The microstructure and surface morphology of the hydrogel samples containing different concentrations of Cissus quadrangularis aqueous extract was investigated using SEM. One-way ANOVA with the post hoc tukey test was performed using SPSS software v22.
Results A significant difference (P < 0.05) in the antioxidant activity was observed among the study groups. Group III reported the highest activity, whereas the control group showed the least antioxidant activity. Additionally, a significant (P < 0.01) drop in the antioxidant activity was observed in group IV when compared with group III. While assessing the biocompatibility, a significant (P < 0.001) dose-dependent increase in biocompatibility was observed with the increasing concentration of aqueous extract of Cissus quadrangularis. SEM analysis in group III showed even distribution throughout the hydrogel although the particles are close and densely arranged. Reduced antioxidant activity in group IV was probably due to clumping of the particles, thus reducing the active surface area. Conclusion Keeping the limitations of in vitro study, it can be assumed that a carrageenan based injectable hydrogel scaffold incorporated with 20% w/v Cissus quadrangularis can provide a favourable micro-environment as it is biocompatible and possess better antioxidant property.
Collapse
Affiliation(s)
- Sruthi Sairaman
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - M S Nivedhitha
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Deepti Shrivastava
- Periodontics, Preventive Dentistry, College of Dentistry, Jouf University, Sakaka, 72345, Saudi Arabia.
| | - Meshal Aber Al Onazi
- Department of Operative Dentistry and Endodontics, College of Dentistry, Jouf University, Sakaka, 72345, Saudi Arabia
| | - Hmoud Ali Algarni
- Department of Operative Dentistry and Endodontics, College of Dentistry, Jouf University, Sakaka, 72345, Saudi Arabia
| | - Mohammed Mustafa
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Ali Robaian Alqahtani
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Nouf AlQahtani
- Dental Department, FM & PHC, NGHA-CR, Riyadh, Saudi Arabia
| | - Kavalipurapu Venkata Teja
- Department of Conservative Dentistry and Endodontics, Mamata Institute of Dental Sciences, Bachupally, Hyderabad, Telangana state, 500090, India
| | - Krishnamachari Janani
- Department of Conservative Dentistry and Endodontics, SRM Dental College, SRM Institute of Science and Technology, Chennai, India
| | - Rajalakshmanan Eswaramoorthy
- Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - M P Sudhakar
- Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Mohammad Khursheed Alam
- Department of Orthodontics, Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka, 72345, Saudi Arabia
| | - Kumar Chandan Srivastava
- Oral Medicine and Maxillofacial Radiology, Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka, 72345, Saudi Arabia.
| |
Collapse
|
14
|
Zhang D, Ding C, Duan T, Zhou Q. Applications of Hydrogels in Premature Ovarian Failure and Intrauterine Adhesion. FRONTIERS IN MATERIALS 2022; 9. [DOI: 10.3389/fmats.2022.942957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Premature ovarian failure (POF) and intrauterine adhesion (IUA) that easily lead to reduced fertility in premenopausal women are two difficult diseases to treat in obstetrics and gynecology. Hormone therapy, in vitro fertilization and surgical treatments do not completely restore fertility. The advent of hydrogels offers new hope for the treatment of POF and IUA. Hydrogels are noncytotoxic and biodegradable, and do not cause immune rejection or inflammatory reactions. Drug delivery and stem cell delivery are the main application forms. Hydrogels are a local drug delivery reservoir, and the control of drug release is achieved by changing the physicochemical properties. The porous properties and stable three-dimensional structure of hydrogels support stem cell growth and functions. In addition, hydrogels are promising biomaterials for increasing the success rate of ovarian tissue transplantation. Hydrogel-based in vitro three-dimensional culture of follicles drives the development of artificial ovaries. Hydrogels form a barrier at the site of injury and have antibacterial, antiadhesive and antistenosis properties for IUA treatment. In this review, we evaluate the physicochemical properties of hydrogels, and focus on the latest applications of hydrogels in POF and IUA. We also found the limitations on clinical application of hydrogel and provide future prospects. Artificial ovary as the future of hydrogel in POF is worth studying, and 3D bioprinting may help the mass production of hydrogels.
Collapse
|
15
|
Ahmad Z, Salman S, Khan SA, Amin A, Rahman ZU, Al-Ghamdi YO, Akhtar K, Bakhsh EM, Khan SB. Versatility of Hydrogels: From Synthetic Strategies, Classification, and Properties to Biomedical Applications. Gels 2022; 8:167. [PMID: 35323280 PMCID: PMC8950628 DOI: 10.3390/gels8030167] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Hydrogels are three-dimensional, cross-linked, and supramolecular networks that can absorb significant volumes of water. Hydrogels are one of the most promising biomaterials in the biological and biomedical fields, thanks to their hydrophilic properties, biocompatibility, and wide therapeutic potential. Owing to their nontoxic nature and safe use, they are widely accepted for various biomedical applications such as wound dressing, controlled drug delivery, bone regeneration, tissue engineering, biosensors, and artificial contact lenses. Herein, this review comprises different synthetic strategies for hydrogels and their chemical/physical characteristics, and various analytical, optical, and spectroscopic tools for their characterization are discussed. A range of synthetic approaches is also covered for the synthesis and design of hydrogels. It will also cover biomedical applications such as bone regeneration, tissue engineering, and drug delivery. This review addressed the fundamental, general, and applied features of hydrogels in order to facilitate undergraduates, graduates, biomedical students, and researchers in a variety of domains.
Collapse
Affiliation(s)
- Zubair Ahmad
- Department of Chemistry, University of Swabi, Swabi 23561, Pakistan; (Z.A.); (A.A.); (Z.U.R.)
| | - Saad Salman
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad 44000, Pakistan;
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Abdul Amin
- Department of Chemistry, University of Swabi, Swabi 23561, Pakistan; (Z.A.); (A.A.); (Z.U.R.)
| | - Zia Ur Rahman
- Department of Chemistry, University of Swabi, Swabi 23561, Pakistan; (Z.A.); (A.A.); (Z.U.R.)
| | - Youssef O. Al-Ghamdi
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| | - Kalsoom Akhtar
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.A.); (E.M.B.)
| | - Esraa M. Bakhsh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.A.); (E.M.B.)
| | - Sher Bahadar Khan
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.A.); (E.M.B.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
16
|
Kushibiki T, Mayumi Y, Nakayama E, Azuma R, Ojima K, Horiguchi A, Ishihara M. Photocrosslinked gelatin hydrogel improves wound healing and skin flap survival by the sustained release of basic fibroblast growth factor. Sci Rep 2021; 11:23094. [PMID: 34845307 PMCID: PMC8630120 DOI: 10.1038/s41598-021-02589-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023] Open
Abstract
Biomaterials traditionally used for wound healing can act as a temporary barrier to halt bleeding, prevent infection, and enhance regeneration. Hydrogels are among the best candidates for wound healing owing to their moisture retention and drug-releasing properties. Photo-polymerization using visible light irradiation is a promising method for hydrogel preparation since it can easily control spatiotemporal reaction kinetics and rapidly induce a single-step reaction under mild conditions. In this study, photocrosslinked gelatin hydrogels were imparted with properties namely fast wound adherence, strong wet tissue surface adhesion, greater biocompatibility, long-term bFGF release, and importantly, ease of use through the modification and combination of natural bio-macromolecules. The production of a gelatin hydrogel made of natural gelatin (which is superior to chemically modified gelatin), crosslinked by visible light, which is more desirable than UV light irradiation, will enable its prolonged application to uneven wound surfaces. This is due to its flexible shape, along with the administration of cell growth factors, such as bFGF, for tissue regeneration. Further, the sustained release of bFGF enhances wound healing and skin flap survival. The photocrosslinking gelatin hydrogel designed in this study is a potential candidate to enhance wound healing and better skin flap survival.
Collapse
Affiliation(s)
- Toshihiro Kushibiki
- Department of Medical Engineering, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan.
| | - Yoshine Mayumi
- Department of Medical Engineering, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| | - Eiko Nakayama
- Department of Plastic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| | - Ryuichi Azuma
- Department of Plastic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| | - Kenichiro Ojima
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| | - Akio Horiguchi
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| | - Miya Ishihara
- Department of Medical Engineering, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| |
Collapse
|
17
|
Biocompatible and Biomaterials Application in Drug Delivery System in Oral Cavity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9011226. [PMID: 34812267 PMCID: PMC8605911 DOI: 10.1155/2021/9011226] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/27/2021] [Indexed: 02/03/2023]
Abstract
Biomaterials applications have rapidly expanded into different fields of sciences. One of the important fields of using biomaterials is dentistry, which can facilitate implantation, surgery, and treatment of oral diseases such as peri-implantitis, periodontitis, and other dental problems. Drug delivery systems based on biocompatible materials play a vital role in the release of drugs into aim tissues of the oral cavity with minimum side effects. Therefore, scientists have studied various delivery systems to improve the efficacy and acceptability of therapeutic approaches in dental problems and oral diseases. Also, biomaterials could be utilized as carriers in biocompatible drug delivery systems. For instance, natural polymeric substances, such as gelatin, chitosan, calcium phosphate, alginate, and xanthan gum are used to prepare different forms of delivery systems. In addition, some alloys are conducted in drug complexes for the better in transportation. Delivery systems based on biomaterials are provided with different strategies, although individual biomaterial has advantages and disadvantages which have a significant influence on transportation of complex such as solubility in physiological environments or distribution in tissues. Biomaterials have antibacterial and anti-inflammatory effects and prolonged time contact and even enhance antibiotic activities in oral infections. Moreover, these biomaterials are commonly prepared in some forms such as particulate complex, fibers, microspheres, gels, hydrogels, and injectable systems. In this review, we examined the application of biocompatible materials in drug delivery systems of oral and dental diseases or problems.
Collapse
|
18
|
Mitsui R, Matsukawa M, Nakagawa K, Isomura E, Kuwahara T, Nii T, Tanaka S, Tabata Y. Efficient cell transplantation combining injectable hydrogels with control release of growth factors. Regen Ther 2021; 18:372-383. [PMID: 34632010 PMCID: PMC8479297 DOI: 10.1016/j.reth.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/11/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction The objective of this study is to investigate the effect of gelatin microspheres incorporating growth factors on the therapeutic efficacy in cell transplantation. The strength of this study is to combine gelatin hydrogel microspheres incorporating basic fibroblast growth factor and platelet growth factor mixture (GM/GF) with bioabsorbable injectable hydrogels (iGel) for transplantation of adipose-derived stem cells (ASCs). Methods The rats ASCs suspended in various solutions were transplanted in masseter muscle. Rats were euthanized 2, 7, 14 days after injection for measurement of the number of ASCs retention in the muscle and morphological evaluation of muscle fibers and the inflammation of the injected tissue by histologic and immunofluorescent stain. Results Following the injection into the skeletal muscle, the GM/GF allowed the growth factors to release at the injection site over one week. When ASCs were transplanted into skeletal muscle using iGel incorporating GM/GF (iGel+GM/GF), the number of cells grafted was significantly high compared with other control groups. Moreover, for the groups to which GM/GF was added, the cells transplanted survived, and the Myo-D expression of a myoblast marker was observed at the region of cells transplanted. Conclusions The growth factors released for a long time likely enhance the proliferative and differentiative capacity of cells. The simple combination with iGel and GM/GF allowed ASCs to enhance their survival at the injected site and consequently achieve improved therapeutic efficacy in cell transplantation. The rats adipose-derived stem cells (ASCs) suspended in various solutions were transplanted in masseter muscle. The number of cells transplanted using this study's technology was significantly high compared with other control groups. For the groups with growth factors, the Myo-D (myoblast marker) expression was observed at the region of cells transplanted.
Collapse
Key Words
- ASCs, adipose-derived stem cells
- Adipose-derived stem cells
- DMEM, Dulbecco modified Eagle medium
- Drug delivery system
- ELISA, Enzyme-Linked ImmunoSorbent Assay
- GM, gelatin hydrogel microspheres
- GM/GF, GM containing bFGF and PGFM
- HGF, hepatocyte growth factor
- Injectable hydrogel
- PBS, phosphate-buffered saline solution
- PGFM, platelet growth factor mixture
- Stem cell transplantation
- VEGF, vascular endothelial growth factor
- bFGF, basic fibroblast growth factor
- iGel+GM/GF, iGel incorporating GM/GF
- iGel, bioabsorbable injectable hydrogels
Collapse
Affiliation(s)
- Ryo Mitsui
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Makoto Matsukawa
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kiyoko Nakagawa
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Emiko Isomura
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshie Kuwahara
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Teruki Nii
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Susumu Tanaka
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Corresponding author. 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan. Fax: +81-75-751-4646.
| |
Collapse
|
19
|
Seiwerth S, Milavic M, Vukojevic J, Gojkovic S, Krezic I, Vuletic LB, Pavlov KH, Petrovic A, Sikiric S, Vranes H, Prtoric A, Zizek H, Durasin T, Dobric I, Staresinic M, Strbe S, Knezevic M, Sola M, Kokot A, Sever M, Lovric E, Skrtic A, Blagaic AB, Sikiric P. Stable Gastric Pentadecapeptide BPC 157 and Wound Healing. Front Pharmacol 2021; 12:627533. [PMID: 34267654 PMCID: PMC8275860 DOI: 10.3389/fphar.2021.627533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Significance: The antiulcer peptide, stable gastric pentadecapeptide BPC 157 (previously employed in ulcerative colitis and multiple sclerosis trials, no reported toxicity (LD1 not achieved)), is reviewed, focusing on the particular skin wound therapy, incisional/excisional wound, deep burns, diabetic ulcers, and alkali burns, which may be generalized to the other tissues healing. Recent Advances: BPC 157 has practical applicability (given alone, with the same dose range, and same equipotent routes of application, regardless the injury tested). Critical Issues: By simultaneously curing cutaneous and other tissue wounds (colocutaneous, gastrocutaneous, esophagocutaneous, duodenocutaneous, vesicovaginal, and rectovaginal) in rats, the potency of BPC 157 is evident. Healing of the wounds is accomplished by resolution of vessel constriction, the primary platelet plug, the fibrin mesh which acts to stabilize the platelet plug, and resolution of the clot. Thereby, BPC 157 is effective in wound healing much like it is effective in counteracting bleeding disorders, produced by amputation, and/or anticoagulants application. Likewise, BPC 157 may prevent and/or attenuate or eliminate, thus, counteract both arterial and venous thrombosis. Then, confronted with obstructed vessels, there is circumvention of the occlusion, which may be the particular action of BPC 157 in ischemia/reperfusion. Future Directions: BPC 157 rapidly increases various genes expression in rat excision skin wound. This would define the healing in the other tissues, that is, gastrointestinal tract, tendon, ligament, muscle, bone, nerve, spinal cord, cornea (maintained transparency), and blood vessels, seen with BPC 157 therapy.
Collapse
Affiliation(s)
- Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jaksa Vukojevic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | - Andrea Petrovic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Andreja Prtoric
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tajana Durasin
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Dobric
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Sola
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, School of Medicine Osijek, University of Osijek, Osijek, Croatia
| | - Marko Sever
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
20
|
Kuroda Y, Tanaka T, Miyagawa T, Hamada H, Abe H, Ito-Ihara T, Asada R, Fujimoto Y, Takahashi D, Tetsunaga T, Kaneuji A, Takagi M, Inaba Y, Morita S, Sugano N, Tanaka S, Matsuda S, Akiyama H. Recombinant human FGF-2 for the treatment of early-stage osteonecrosis of the femoral head: TRION, a single-arm, multicenter, Phase II trial. Regen Med 2021; 16:535-548. [PMID: 34075804 DOI: 10.2217/rme-2021-0049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: This study aimed to evaluate the 2-year outcomes from a clinical trial of recombinant human FGF-2 (rhFGF-2) for osteonecrosis of the femoral head (ONFH). Patients & methods: Sixty-four patients with nontraumatic, precollapse and large ONFHs were percutaneously administered with 800 μg rhFGF-2 contained in gelatin hydrogel. Setting the end point of radiological collapse, we analyzed the joint preservation period of the historical control. Changes in two validated clinical scores, bone regeneration and safety were evaluated. Results: Radiological joint preservation time was significantly higher in the rhFGF-2 group than in the control group. The ONFHs tended to improve to smaller ONFHs. The postoperative clinical scores significantly improved. Thirteen serious adverse events showed recovery. Conclusion: rhFGF-2 treatment increases joint preservation time with clinical efficacy, radiological bone regeneration and safety.
Collapse
Affiliation(s)
- Yutaka Kuroda
- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Shogoin, Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takeyuki Tanaka
- Department of Orthopedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takaki Miyagawa
- Department of Orthopedic Surgery, Gifu University, Gifu, 501-1194, Japan
| | - Hidetoshi Hamada
- Department of Orthopedic Surgery, Osaka University, Osaka, 565-0871, Japan
| | - Hiroyasu Abe
- Department of Biomedical Statistics & Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Toshiko Ito-Ihara
- The Clinical & Translational Research Center, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Ryuta Asada
- Innovative & Clinical Research Promotion Center, Graduate School of Medicine, Gifu University, Gifu, 501-1194, Japan
| | - Yusuke Fujimoto
- Department of Medical Joint Materials, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, 890-8520, Japan
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Faculty of Medicine & Graduate School of Medicine, Hokkaido University, Hokkaido, 060-8648, Japan
| | - Tomonori Tetsunaga
- Department of Orthopedic Surgery, Okayama University, Okayama, 700-0914, Japan
| | - Ayumi Kaneuji
- Department of Orthopedic Surgery, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Michiaki Takagi
- Department of Orthopedic Surgery, Yamagata University Faculty of Medicine, Yamagata, 990-2331, Japan
| | - Yutaka Inaba
- Department of Orthopedic Surgery, Yokohama City University, Kanagawa, 236-0004, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics & Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Nobuhiko Sugano
- Department of Orthopedic Medical Engineering, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Sakae Tanaka
- Department of Orthopedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Shuichi Matsuda
- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Shogoin, Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Haruhiko Akiyama
- Department of Orthopedic Surgery, Gifu University, Gifu, 501-1194, Japan
| | | |
Collapse
|
21
|
Abbass MMS, El-Rashidy AA, Sadek KM, Moshy SE, Radwan IA, Rady D, Dörfer CE, Fawzy El-Sayed KM. Hydrogels and Dentin-Pulp Complex Regeneration: From the Benchtop to Clinical Translation. Polymers (Basel) 2020; 12:E2935. [PMID: 33316886 PMCID: PMC7763835 DOI: 10.3390/polym12122935] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Dentin-pulp complex is a term which refers to the dental pulp (DP) surrounded by dentin along its peripheries. Dentin and dental pulp are highly specialized tissues, which can be affected by various insults, primarily by dental caries. Regeneration of the dentin-pulp complex is of paramount importance to regain tooth vitality. The regenerative endodontic procedure (REP) is a relatively current approach, which aims to regenerate the dentin-pulp complex through stimulating the differentiation of resident or transplanted stem/progenitor cells. Hydrogel-based scaffolds are a unique category of three dimensional polymeric networks with high water content. They are hydrophilic, biocompatible, with tunable degradation patterns and mechanical properties, in addition to the ability to be loaded with various bioactive molecules. Furthermore, hydrogels have a considerable degree of flexibility and elasticity, mimicking the cell extracellular matrix (ECM), particularly that of the DP. The current review presents how for dentin-pulp complex regeneration, the application of injectable hydrogels combined with stem/progenitor cells could represent a promising approach. According to the source of the polymeric chain forming the hydrogel, they can be classified into natural, synthetic or hybrid hydrogels, combining natural and synthetic ones. Natural polymers are bioactive, highly biocompatible, and biodegradable by naturally occurring enzymes or via hydrolysis. On the other hand, synthetic polymers offer tunable mechanical properties, thermostability and durability as compared to natural hydrogels. Hybrid hydrogels combine the benefits of synthetic and natural polymers. Hydrogels can be biofunctionalized with cell-binding sequences as arginine-glycine-aspartic acid (RGD), can be used for local delivery of bioactive molecules and cellularized with stem cells for dentin-pulp regeneration. Formulating a hydrogel scaffold material fulfilling the required criteria in regenerative endodontics is still an area of active research, which shows promising potential for replacing conventional endodontic treatments in the near future.
Collapse
Affiliation(s)
- Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Aiah A. El-Rashidy
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Khadiga M. Sadek
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Sara El Moshy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Israa Ahmed Radwan
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Dina Rady
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
22
|
Tsubosaka M, Kihara S, Hayashi S, Nagata J, Kuwahara T, Fujita M, Kikuchi K, Takashima Y, Kamenaga T, Kuroda Y, Takeuchi K, Fukuda K, Takayama K, Hashimoto S, Matsumoto T, Niikura T, Tabata Y, Kuroda R. Gelatin hydrogels with eicosapentaenoic acid can prevent osteoarthritis progression in vivo in a mouse model. J Orthop Res 2020; 38:2157-2169. [PMID: 32270890 DOI: 10.1002/jor.24688] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/04/2023]
Abstract
Eicosapentanoic acid (EPA) is an antioxidant and omega-3 polyunsaturated fatty acid that reduces inflammatory cytokine production. Gelatin hydrogel can be used as a carrier of a physiologically active substance that release it gradually for an average of ~3 weeks. Therefore, this study aimed to clarify the effect of EPA-incorporating gelatin hydrogels on osteoarthritis (OA) progression in vivo. Ten-week-old male C57BL/6J mice were randomly divided into six groups (n = 6): Sham, destabilization of the medial meniscus (DMM), Corn: DMM + 2 µL corn oil, EPA injection alone (EPA-I): DMM + 2 µL corn oil + 125 μg/μL EPA, Gel: DMM + gelatin hydrogels, and EPA-G: DMM + 125 μg/μL EPA-incorporating gelatin hydrogels. The mice were euthanized at 8 weeks after DMM or Sham surgery, and subjected to histological evaluation. Matrix-metalloproteinases-3 (MMP-3), MMP-13, interleukin-1β (IL-1β), p-IKK α/β, CD86, and CD163 protein expression in the synovial cartilage was detected by immunohistochemical staining. F4/80 expression was also assessed using the F4/80 score of macrophage. Histological score was significantly lower in EPA-G than in EPA-I. MMP-3-, MMP-13-, IL-1β-, and p-IKK α/β-positive cell ratio was significantly lower in EPA-G than in EPA-I. However, CD86- and CD163-positive cell ratio was not significantly different between EPA-I and EPA-G. The average-sum F4/80 score of macrophage in EPA-G was significantly lower than that in EPA-I. EPA-incorporating gelatin hydrogels were shown to prevent OA progression in vivo more effectively than EPA injection alone. Our results suggested that intra-articular administration of controlled-release EPA can be a new therapeutic approach for treating OA.
Collapse
Affiliation(s)
- Masanori Tsubosaka
- Department of Orthopaedic Surgery, Kobe University School of Medicine, Kobe, Japan
| | - Shinsuke Kihara
- Department of Orthopaedic Surgery, Kobe University School of Medicine, Kobe, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University School of Medicine, Kobe, Japan
| | - Junpei Nagata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Toshie Kuwahara
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masahiro Fujita
- Department of Orthopaedic Surgery, Kobe University School of Medicine, Kobe, Japan
| | - Kenichi Kikuchi
- Department of Orthopaedic Surgery, Kobe University School of Medicine, Kobe, Japan
| | - Yoshinori Takashima
- Department of Orthopaedic Surgery, Kobe University School of Medicine, Kobe, Japan
| | - Tomoyuki Kamenaga
- Department of Orthopaedic Surgery, Kobe University School of Medicine, Kobe, Japan
| | - Yuichi Kuroda
- Department of Orthopaedic Surgery, Kobe University School of Medicine, Kobe, Japan
| | - Kazuhiro Takeuchi
- Department of Orthopaedic Surgery, Kobe University School of Medicine, Kobe, Japan
| | - Koji Fukuda
- Department of Orthopaedic Surgery, Kobe University School of Medicine, Kobe, Japan
| | - Koji Takayama
- Department of Orthopaedic Surgery, Kobe University School of Medicine, Kobe, Japan
| | - Shingo Hashimoto
- Department of Orthopaedic Surgery, Kobe University School of Medicine, Kobe, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University School of Medicine, Kobe, Japan
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University School of Medicine, Kobe, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University School of Medicine, Kobe, Japan
| |
Collapse
|
23
|
Three-Dimensional Culture System of Cancer Cells Combined with Biomaterials for Drug Screening. Cancers (Basel) 2020; 12:cancers12102754. [PMID: 32987868 PMCID: PMC7601447 DOI: 10.3390/cancers12102754] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary For the research and development of drug discovery, it is of prime importance to construct the three-dimensional (3D) tissue models in vitro. To this end, the enhancement design of cell function and activity by making use of biomaterials is essential. In this review, 3D culture systems of cancer cells combined with several biomaterials for anticancer drug screening are introduced. Abstract Anticancer drug screening is one of the most important research and development processes to develop new drugs for cancer treatment. However, there is a problem resulting in gaps between the in vitro drug screening and preclinical or clinical study. This is mainly because the condition of cancer cell culture is quite different from that in vivo. As a trial to mimic the in vivo cancer environment, there has been some research on a three-dimensional (3D) culture system by making use of biomaterials. The 3D culture technologies enable us to give cancer cells an in vitro environment close to the in vivo condition. Cancer cells modified to replicate the in vivo cancer environment will promote the biological research or drug discovery of cancers. This review introduces the in vitro research of 3D cell culture systems with biomaterials in addition to a brief summary of the cancer environment.
Collapse
|
24
|
Abdelhakim M, Lin X, Ogawa R. The Japanese Experience with Basic Fibroblast Growth Factor in Cutaneous Wound Management and Scar Prevention: A Systematic Review of Clinical and Biological Aspects. Dermatol Ther (Heidelb) 2020; 10:569-587. [PMID: 32506250 PMCID: PMC7367968 DOI: 10.1007/s13555-020-00407-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Basic fibroblast growth factor (bFGF) plays several key roles in wound healing. Over the last 2 decades, clinical and basic research on bFGF has been actively conducted in Japan with reports on its potent efficacy in accelerating the healing of chronic ulcers and burn wounds by stimulating key cellular players in the skin. However, its efficacy remains unrecognized internationally. Thus, this study reviews current knowledge about the therapeutic value of bFGF in wound management and scar prevention accumulated in Japan over the last 2 decades. METHODS We review the Japanese literature that demonstrates the anti-scarring effects of bFGF and exhaustively assess how these effects are exerted. Using the search terms "bFGF OR growth factors AND wound healing in Japan" and "bFGF AND scar prevention in Japan," we conducted a search of the PubMed database for publications on the role of bFGF in wound and scar management in Japan. All eligible papers published between 1988 and December 2019 were retrieved and reviewed. RESULTS Our search yielded 208 articles; 82 were related to the application of bFGF for dermal wound healing in Japan. Of these, 27 fulfilled all inclusion criteria; 11 were laboratory studies, 7 were case reports, 4 were clinical studies, and 5 were randomized controlled trials. CONCLUSION Further research, with recognition of the therapeutic value of bFGF in wound and scar management and its clinical applications, is needed to provide additional clinical advantages while improving wound healing and reducing the risk of post-surgical scar formation.
Collapse
Affiliation(s)
- Mohamed Abdelhakim
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.
| | - Xunxun Lin
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| |
Collapse
|
25
|
Nakamura K, Saotome T, Shimada N, Matsuno K, Tabata Y. A Gelatin Hydrogel Nonwoven Fabric Facilitates Metabolic Activity of Multilayered Cell Sheets. Tissue Eng Part C Methods 2020; 25:344-352. [PMID: 31062648 DOI: 10.1089/ten.tec.2019.0061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPACT STATEMENT This study introduces the utility of gelatin hydrogel nonwoven fabrics (GHNFs) for cell sheet engineering. The GHNF had the mechanical property strong enough to hold by forceps even in the swollen condition. The cell sheet harvest and transfer processes were performed simpler and faster than those without using the GHNF. The GHNF facilitates the metabolic activity of three-layered cell sheets, and the cell migration from cell sheets into the GHNF was observed. The GHNF is a promising material used to support cell sheets during the process of assemble formulation and contributes to the improved biological functions of tissue-like cell constructs.
Collapse
Affiliation(s)
- Koichiro Nakamura
- 1 Research and Development Center, The Japan Wool Textile Co., Ltd., Hyogo, Japan.,2 Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Toshiki Saotome
- 1 Research and Development Center, The Japan Wool Textile Co., Ltd., Hyogo, Japan.,2 Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Naoki Shimada
- 1 Research and Development Center, The Japan Wool Textile Co., Ltd., Hyogo, Japan
| | - Kumiko Matsuno
- 1 Research and Development Center, The Japan Wool Textile Co., Ltd., Hyogo, Japan.,2 Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- 2 Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Improved viability of murine skin flaps using a gelatin hydrogel sheet impregnated with bFGF. J Artif Organs 2020; 23:348-357. [PMID: 32632506 DOI: 10.1007/s10047-020-01188-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/12/2020] [Indexed: 01/14/2023]
Abstract
Basic fibroblast growth factor (bFGF) promotes epithelial cell proliferation and angiogenesis but its clinical applications are limited by its short half-life and low retention. Recently developed gelatin hydrogel sheets able to release physiologically active substances in a controlled manner have the potential to overcome these issues. In this study, the effects of gelatin hydrogel sheets impregnated with bFGF on flap survival and angiogenesis were examined in a murine skin flap model. A flap of 1 × 3 cm was generated on the backs of 60 C57BL/6 mice. The mice were divided into five groups (n = 12/group): Group I, untreated; Group II, treated with a gelatin hydrogel sheet impregnated with saline; Group III, treated with bFGF (50 µg) without sheets; Groups IV and V, treated with gelatin hydrogel sheets impregnated with 50 and 100 µg of bFGF, respectively. On the seventh day after surgery, the flap survival area and vascular network were examined and hematoxylin and eosin and von Willebrand factor staining were used for histological examinations. The flap survival areas were significantly larger in Groups IV and V than in other groups. The area of new vessels was significantly larger in Group IV than in the other groups. In the murine skin flap model, gelatin hydrogel sheets impregnated with bFGF promoted angiogenesis and improved flap survival. These findings support the use of bFGF-impregnated gelatin hydrogel sheets for improving ischemic flap survival in clinical settings.
Collapse
|
27
|
Nii T, Kuwahara T, Makino K, Tabata Y. A Co-Culture System of Three-Dimensional Tumor-Associated Macrophages and Three-Dimensional Cancer-Associated Fibroblasts Combined with Biomolecule Release for Cancer Cell Migration. Tissue Eng Part A 2020; 26:1272-1282. [PMID: 32434426 DOI: 10.1089/ten.tea.2020.0095] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The objective of this study is to design a cancer invasion model by making use of cancer-associated fibroblasts (CAF) or tumor-associated macrophages (TAM) and gelatin hydrogel microspheres (GM) for the sustained release of drugs. The GM containing adenosine (A) (GM-A) were prepared and cultured with TAM to obtain three-dimensional (3D) TAM aggregates incorporating GM-A (3D TAM-GM-A). The GM-A incorporation enabled TAM to enhance the secretion level of vascular endothelial growth factor. When co-cultured with HepG2 liver cancer cells in an invasion assay, the 3D TAM-GM-A promoted the invasion rate of cancer cells. In addition, the E-cadherin expression level decreased to a significantly greater extent compared with that co-cultured with TAM aggregates incorporating GM, whereas the significantly higher expression of N-cadherin and Vimentin was observed. This indicates that the epithelial-mesenchymal transition event was induced. The GM containing transforming growth factor-β1 (TGF-β1) were prepared to incorporate into 3D CAF (3D CAF-GM-TGF-β1). Following a co-culture of mixed 3D CAF-GM-TGF-β1 and 3D TAM-GM-A and every HepG2, MCF-7 breast cancer cell, or WA-hT lung cancer cell, the invasion rate of every cancer cell enhanced depending on the mixing ratio of 3D TAM-GM-A and 3D CAF-GM-TGF-β1. The amount of matrix metalloproteinase-2 (MMP-2) secreted also enhanced, and the enhancement was well corresponded with that of cancer cell invasion rate. The higher MMP secretion assists the breakdown of basement membrane, leading to the higher rate of cancer cell invasion. This model is a promising 3D culture system to evaluate the invasion ability of various cancer cells in vitro. Impact statement This study proposes a cell culture system to enhance the tumor-associated macrophage function based on the combination of three-dimensional (3D) cell aggregates and gelatin hydrogel microspheres (GM) for adenosine delivery. An additional combination of 3D cancer-associated fibroblasts incorporating GM containing transforming growth factor-β1 allowed cancer cells to enhance their invasion rate. This co-culture system is promising to evaluate the ability of cancer cell invasion for anticancer drug screening.
Collapse
Affiliation(s)
- Teruki Nii
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Toshie Kuwahara
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Center for Drug Delivery Research, Tokyo University of Science, Noda, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Sugiyama M, Ito T, Furukawa T, Hirayama A, Kakehata S. The effect of insulin-like growth factor 1 on the recovery of facial nerve function in a guinea pig model of facial palsy. J Physiol Sci 2020; 70:28. [PMID: 32513097 PMCID: PMC10717557 DOI: 10.1186/s12576-020-00755-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/21/2020] [Indexed: 01/13/2023]
Abstract
The efficacy of insulin-like growth factor 1 (IGF-1) in the treatment of peripheral facial nerve palsy was investigated using an animal model. The facial nerve within the temporal bone was exposed and compressed by clamping. The animals were treated with either IGF-1 or saline which was topically administered by a gelatin-based sustained-release hydrogel via an intratemporal route. The recovery from facial nerve palsy was evaluated at 8 weeks postoperatively based on eyelid closure, complete recovery rate, electroneurography and number of axons found on the facial nerve. IGF-1 treatment resulted in significant improvement in the changes of the degree of eyelid closure over the total time period and complete recovery rate. A separate study showed that IGF-1 receptor mRNA was expressed in facial nerves up to 14 days after the nerve-clamping procedure. IGF-1 was thus found to be effective in the treatment of peripheral facial nerve palsy when topically applied using a sustained-release gelatin-based hydrogel via an intratemporal route.
Collapse
Affiliation(s)
- Motoyasu Sugiyama
- Department of Otolaryngology, Head and Neck Surgery, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata-shi, Yamagata, 990-9585, Japan
| | - Tsukasa Ito
- Department of Otolaryngology, Head and Neck Surgery, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata-shi, Yamagata, 990-9585, Japan
| | - Takatoshi Furukawa
- Department of Otolaryngology, Head and Neck Surgery, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata-shi, Yamagata, 990-9585, Japan
| | - Atsushi Hirayama
- Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Seiji Kakehata
- Department of Otolaryngology, Head and Neck Surgery, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata-shi, Yamagata, 990-9585, Japan.
| |
Collapse
|
29
|
Nakamura K, Nobutani K, Shimada N, Tabata Y. Gelatin Hydrogel-Fragmented Fibers Suppress Shrinkage of Cell Sheet. Tissue Eng Part C Methods 2020; 26:216-224. [DOI: 10.1089/ten.tec.2019.0348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Koichiro Nakamura
- Research and Development Center, The Japan Wool Textile Co., Ltd., Hyogo, Japan
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kimiaki Nobutani
- Research and Development Center, The Japan Wool Textile Co., Ltd., Hyogo, Japan
| | - Naoki Shimada
- Research and Development Center, The Japan Wool Textile Co., Ltd., Hyogo, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Miyake Y, Shimizu O, Shiratsuchi H, Tamagawa T, Tonogi M. Wound healing after applying a gelatin-based hydrogel sheet to resected rat submandibular gland. J Oral Sci 2020; 62:222-225. [PMID: 32224573 DOI: 10.2334/josnusd.19-0244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The present study was done to develop a useful experimental model for analysis of the effects of physiologically active substances on atrophy and regeneration of salivary gland acinar cells. Resection wounds (diameter, 3 mm) were made in the submandibular glands of 8-week-old Wistar rats (n = 24) for histochemical examination on Days 3, 5, 7, 10, 14, and 21 after implantation of a gelatin-based hydrogel sheet. The results showed that the sheet had nearly disappeared by Day 10. Regions around the resection wounds were classified as normal, atrophic, or necrotic. In atrophic regions, acinar cells atrophied after resection, and few acinar cells were observed on Day 7. On Days 5-7, striated and granular ducts resembled duct-like structures. On Day 10, newly formed acinar cells were confirmed by increased periodic acid-Schiff staining, and a greater number of mature cells was present thereafter. In necrotic regions, acinar and ductal cells were destroyed, and scattered enucleated acinar cells and duct-like structures were present, on Day 3; newly formed acinar cells were observed on Day 10. Thus, the experimental model demonstrated atrophy and regeneration of the submandibular gland and enabled analysis of the effects of sustained release of physiologically active substances contained within an implanted sheet.
Collapse
Affiliation(s)
- Yusuke Miyake
- Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry
| | - Osamu Shimizu
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry.,Department of Functional Morphology, Nihon University School of Dentistry
| | - Hiroshi Shiratsuchi
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry.,Department of Functional Morphology, Nihon University School of Dentistry
| | - Takaaki Tamagawa
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry.,Department of Functional Morphology, Nihon University School of Dentistry
| | - Morio Tonogi
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry.,Department of Functional Morphology, Nihon University School of Dentistry
| |
Collapse
|
31
|
Nii T, Makino K, Tabata Y. A cancer invasion model of cancer-associated fibroblasts aggregates combined with TGF-β1 release system. Regen Ther 2020; 14:196-204. [PMID: 32154334 PMCID: PMC7058408 DOI: 10.1016/j.reth.2020.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/02/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction The objective of this study is to design a cancer invasion model where the cancer invasion rate can be regulated in vitro. Methods Cancer-associated fibroblasts (CAF) aggregates incorporating gelatin hydrogel microspheres (GM) containing various concentrations of transforming growth factor-β1 (TGF-β1) (CAF-GM-TGF-β1) were prepared. Alpha-smooth muscle actin (α-SMA) for the CAF aggregates was measured to investigate the CAF activation level by changing the concentration of TGF-β1. An invasion assay was performed to evaluate the cancer invasion rate by co-cultured of cancer cells with various CAF-GM-TGF-β1. Results The expression level of α-SMA for CAF increased with an increased in the TGF-β1 concentration. When co-cultured with various types of CAF-GM-TGF-β1, the cancer invasion rate was well correlated with the α-SMA level. It is conceivable that the TGF-β1 concentration could modify the level of CAF activation, leading to the invasion rate of cancer cells. In addition, at the high concentrations of TGF-β1, the effect of a matrix metalloproteinase (MMP) inhibitor on the cancer invasion rate was observed. The higher invasion rate would be achieved through the higher MMP production. Conclusions The present model is promising to realize the cancer invasion whose rate can be modified by changing the TGF-β1 concentration. This invasion model would be a promising tool for anti-cancer drug screening. TGF-β1 was controlled release from gelatin hydrogel microspheres. CAF were activated by increased TGF-β1 concentration. There was a good correlation between invasion rate and TGF-β1 concentration. Higher invasion rate would be achieved through matrix metalloproteinase production.
Collapse
Key Words
- 2D, two-dimensional
- 3D, three-dimensional
- Anti-cancer drug screening
- CAF, cancer-associated fibroblasts
- Cancer invasion model
- DDW, double-distilled water
- Drug delivery system
- ELISA, enzyme-linked immunosolvent assay
- FCS, fetal calf serum
- GM, gelatin hydrogel microspheres
- Gelatin hydrogel microspheres
- MEM, minimum essential medium
- MMP, matrix metalloproteinase
- PBS, phosphate buffered-saline
- PLGA, poly (lactic-co-glycolic acid)
- PVA, poly (vinyl alcohol)
- TGF-β1, transforming growth factor-β1
- Three-dimensional cell culture
- α-SMA, alpha-smooth muscle actin
Collapse
Affiliation(s)
- Teruki Nii
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, 278-8510, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, 278-8510, Japan.,Center for Drug Delivery Research, Tokyo University of Science, 2641, Yamazaki, Noda, 278-8510, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
32
|
Shintani K, Uemura T, Takamatsu K, Yokoi T, Onode E, Okada M, Tabata Y, Nakamura H. Evaluation of dual release of stromal cell-derived factor-1 and basic fibroblast growth factor with nerve conduit for peripheral nerve regeneration: An experimental study in mice. Microsurgery 2019; 40:377-386. [PMID: 31868964 DOI: 10.1002/micr.30548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/30/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The development of drug delivery systems has enabled the release of multiple bioactive molecules. The efficacy of nerve conduits coated with dual controlled release of stromal cell-derived factor-1 (SDF-1) and basic fibroblast growth factor (bFGF) for peripheral nerve regeneration was investigated. MATERIALS AND METHODS Sixty-two C57BL6 mice were used for peripheral nerve regeneration with a nerve conduit (inner diameter, 1 mm, and length, 7 mm) and an autograft. The mice were randomized into five groups based on the different repairs of nerve defects. In the group of repair with conduits alone (n = 9), a 5-mm sciatic nerve defect was repaired by the nerve conduit. In the group of repair with conduits coated with bFGF (n = 10), SDF-1 (n = 10), and SDF-1/bFGF (n = 10), it was repaired by the nerve conduit with bFGF gelatin, SDF-1 gelatin, and SDF-1/bFGF gelatin, respectively. In the group of repair with autografts (n = 10), it was repaired by the resected nerve itself. The functional recovery, nerve regeneration, angiogenesis, and TGF-β1 gene expression were assessed. RESULTS In the conduits coated with SDF-1/bFGF group, the mean sciatic functional index value (-88.68 ± 10.64, p = .034) and the axon number (218.8 ± 111.1, p = .049) were significantly higher than the conduit alone group, followed by the autograft group; in addition, numerous CD34-positive cells and micro vessels were observed. TGF-β1 gene expression relative values in the conduits with SDF-1/bFGF group at 3 days (7.99 ± 5.14, p = .049) significantly increased more than the conduits alone group. CONCLUSION Nerve conduits coated with dual controlled release of SDF-1 and bFGF promoted peripheral nerve regeneration.
Collapse
Affiliation(s)
- Kosuke Shintani
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Pediatric Orthopaedic Surgery, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Takuya Uemura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Orthopaedic Surgery, Osaka General Hospital of West Japan Railway Company, Osaka, Japan
| | - Kiyohito Takamatsu
- Department of Orthopaedic Surgery, Yodogawa Christian Hospital, Osaka, Japan
| | - Takuya Yokoi
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ema Onode
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mitsuhiro Okada
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiko Tabata
- Department of Regeneration Science and Engineering, Institute for Frontier Life and MedicalSciences, Kyoto University, Kyoto, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
33
|
Nii T, Makino K, Tabata Y. A Cancer Invasion Model Combined with Cancer-Associated Fibroblasts Aggregates Incorporating Gelatin Hydrogel Microspheres Containing a p53 Inhibitor. Tissue Eng Part C Methods 2019; 25:711-720. [DOI: 10.1089/ten.tec.2019.0189] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Teruki Nii
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Kimiko Makino
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
- Center for Drug Delivery Research, Tokyo University of Science, Noda, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
34
|
Nakajima N, Hashimoto S, Sato H, Takahashi K, Nagoya T, Kamimura K, Tsuchiya A, Yokoyama J, Sato Y, Wakatsuki H, Miyata M, Akashi Y, Tanaka R, Matsuda K, Tabata Y, Terai S. Efficacy of gelatin hydrogels incorporating triamcinolone acetonide for prevention of fibrosis in a mouse model. Regen Ther 2019; 11:41-46. [PMID: 31193122 PMCID: PMC6518320 DOI: 10.1016/j.reth.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/26/2019] [Accepted: 04/05/2019] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Triamcinolone acetonide (TA), a steroid, is often used clinically to prevent dysfunctions associated with fibrosis. The objective of this study was to examine whether TA can be suspended in a gelatin sheet for tissue engineering using a mouse skin wound model. METHODS TA was suspended in biodegradable gelatin and freeze-dried in a sheet form. The sheet was analyzed for homogeneity and controlled release of TA by high-performance liquid chromatography. We made two skin wounds on the dorsal side of mice. Gelatin sheets with TA (TA sheet) and without TA (control sheet) were attached to each skin wound. To determine the efficacy of the prepared TA sheet on the skin wounds, TA-sheet versus TA-injection experiments were conducted. Hematoxylin and eosin staining was performed to assess the grade of epithelialization and alpha smooth muscle actin (α-SMA) immunohistochemical staining was conducted to evaluate myofibroblast infiltration. RESULTS In the TA-release test in vitro, 7.7 ± 2.3% of TA was released from the sheet by 24 h. After replacing the initial phosphate-buffered saline (PBS) with collagenase PBS, the amount of released TA increased over time. The wound area/original skin wound area after 15 days with the TA sheet was significantly larger than that with the control sheet (26.9 ± 5.5% vs 10.7 ± 2.6%, p = 0.023). The α-SMA positive area/whole area with the TA sheet was significantly lower than that with the control sheet (4.65 ± 0.66% vs 7.24 ± 0.7%, p = 0.023). Furthermore, the α-SMA positive area/whole area with the TA sheet was significantly lower than that with TA injection (5.32 ± 0.45% vs 7.93 ± 0.75%, p = 0.013). CONCLUSIONS We developed a TA sheet and confirmed both the homogeneity of the suspended TA and controlled-release of the TA in the presence of collagenase in vitro. The TA sheet caused less myofibroblast infiltration into the tissue than the control sheet or TA injection did.
Collapse
Affiliation(s)
- Nao Nakajima
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Satoru Hashimoto
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroki Sato
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kazuya Takahashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takuro Nagoya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Junji Yokoyama
- Department of Endoscopy, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Yuichi Sato
- Department of Endoscopy, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Hanako Wakatsuki
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masayuki Miyata
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yusuke Akashi
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryusuke Tanaka
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ken Matsuda
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
35
|
Nii T, Makino K, Tabata Y. Influence of shaking culture on the biological functions of cell aggregates incorporating gelatin hydrogel microspheres. J Biosci Bioeng 2019; 128:606-612. [DOI: 10.1016/j.jbiosc.2019.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/23/2022]
|
36
|
Kuroda Y, Kawai T, Goto K, Matsuda S. Clinical application of injectable growth factor for bone regeneration: a systematic review. Inflamm Regen 2019; 39:20. [PMID: 31660090 PMCID: PMC6805537 DOI: 10.1186/s41232-019-0109-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/25/2019] [Indexed: 12/04/2022] Open
Abstract
Bone regeneration has been the ultimate goal in the field of bone and joint medicine and has been evaluated through various basic research studies to date. Translational research of regenerative medicine has focused on three primary approaches, which are expected to increase in popularity: cell therapy, proteins, and artificial materials. Among these, the local injection of a gelatin hydrogel impregnated with the protein fibroblast growth factor (FGF)-2 is a biomaterial technique that has been developed in Japan. We have previously reported the efficacy of gelatin hydrogel containing injectable FGF-2 for the regenerative treatment of osteonecrosis of the femoral head. Injectable growth factors will probably be developed in the future and gain popularity as a medical approach in various fields as well as orthopedics. Several clinical trials have already been conducted and have focused on this technique, reporting its efficacy and safety. To date, reports of the clinical application of FGF-2 in revascularization for critical limb ischemia, treatment of periodontal disease, early bone union for lower limb fracture and knee osteotomy, and bone regeneration for osteonecrosis of the femoral head have been based on basic research conducted in Japan. In the present report, we present an extensive review of clinical applications using injectable growth factors and discuss the associated efficacy and safety of their administration.
Collapse
Affiliation(s)
- Yutaka Kuroda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Shogoin, Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Toshiyuki Kawai
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Shogoin, Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Koji Goto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Shogoin, Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Shogoin, Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
37
|
Injectable biomaterials for delivery of interleukin-1 receptor antagonist: Toward improving its therapeutic effect. Acta Biomater 2019; 93:123-134. [PMID: 31029831 DOI: 10.1016/j.actbio.2019.04.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 01/31/2023]
Abstract
Interleukin-1 receptor antagonist (IL-1Ra) is a naturally occurring anti-inflammatory cytokine that inhibits IL-1 activity and has been proposed to treat a wide variety of systemic and local inflammatory pathologies for multiple decades. However, the short half-life and high concentration required to inhibit IL-1 activity has limited its use in clinical applications. Many strategies have been developed with the goal of improving the therapeutic efficacy of IL-1Ra for a variety of pathologies, including fusing IL-1Ra to protein/peptide/polymer partners, releasing IL-1Ra from injectable polymer or mineral particles, and release of IL-1Ra from injectable coacervates and gels. This literature review examines injectable biomaterials engineered to improve IL-1Ra delivery, both locally and systemically, to increase its efficacy and ease of use in clinic. STATEMENT OF SIGNIFICANCE: Interleukin-1 receptor antagonist (IL-1Ra) is a therapeutic protein with the potential to treat numerous inflammatory conditions and diseases. However, its short biological half-life and high therapeutic concentration may limit its utility in all but a few clinical scenarios. In this review, we present the biomaterial based delivery strategies which have been explored to deliver IL-1Ra to improve its efficacy and applicability to treat inflammation.
Collapse
|
38
|
Abstract
The ability to generate new microvessels in desired numbers and at desired locations has been a long-sought goal in vascular medicine, engineering, and biology. Historically, the need to revascularize ischemic tissues nonsurgically (so-called therapeutic vascularization) served as the main driving force for the development of new methods of vascular growth. More recently, vascularization of engineered tissues and the generation of vascularized microphysiological systems have provided additional targets for these methods, and have required adaptation of therapeutic vascularization to biomaterial scaffolds and to microscale devices. Three complementary strategies have been investigated to engineer microvasculature: angiogenesis (the sprouting of existing vessels), vasculogenesis (the coalescence of adult or progenitor cells into vessels), and microfluidics (the vascularization of scaffolds that possess the open geometry of microvascular networks). Over the past several decades, vascularization techniques have grown tremendously in sophistication, from the crude implantation of arteries into myocardial tunnels by Vineberg in the 1940s, to the current use of micropatterning techniques to control the exact shape and placement of vessels within a scaffold. This review provides a broad historical view of methods to engineer the microvasculature, and offers a common framework for organizing and analyzing the numerous studies in this area of tissue engineering and regenerative medicine. © 2019 American Physiological Society. Compr Physiol 9:1155-1212, 2019.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts, USA
| |
Collapse
|
39
|
Notodihardjo SC, Morimoto N, Kakudo N, Mitsui T, Le TM, Tabata Y, Kusumoto K. Comparison of the efficacy of cryopreserved human platelet lysate and refrigerated lyophilized human platelet lysate for wound healing. Regen Ther 2019; 10:1-9. [PMID: 30525065 PMCID: PMC6260428 DOI: 10.1016/j.reth.2018.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/08/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Human platelet lysate (hPL) part of the growth factor cocktail derived from human platelets, which has been applied as a cell growth supplement. The production process is easier in comparison to platelet-rich plasma; thus, hPL is now considered for use in wound healing therapy. However, methods for preserving hPL for more than several months that maintain its bioactivity must be considered, especially for chronic wound treatment. The present study compared the effects of preservation for 9 months using a refrigerator or deep freezer. METHODS We investigated three preservation conditions. In the C-hPL group, hPL was stored at -80 °C in a deep freezer for 9 months; in the CL-hPL group, hPL was cryopreserved for 9 months at -80 °C in a deep freezer then lyophilized; in the L-hPL group, lyophilized hPL was refrigerated at 4 °C for 9 months. The quantity and quality of growth factors in these three groups were measured by an ELISA and in fibroblast cell cultures. Then, gelatin hydrogel discs were impregnated with hPL and its effects with regard to the promotion of wound healing in mice were evaluated by histologic examinations. RESULTS The PDGF-BB concentration in C-hPL, CL-hPL and L-hPL was 18,363 ± 370 pg/ml, 11,325 ± 171 pg/ml, and 12,307 ± 348 pg/ml, respectively; the VEGF concentration was 655 ± 23 pg/ml, 454 ± 27 pg/ml, and 499 ± 23 pg/ml, respectively; and the TGF-β1 concentration was 97,363 ± 5418 pg/ml, 73,198 ± 2442 pg/ml, and 78,034 ± 3885 pg/ml, respectively. In cell culture medium, fibroblast cell cultures were better supported in the hPL groups than in the fetal bovine serum group. In the histologic examination of the wound healing process, no differences were observed among the three preserved hPL groups with regard to epithelialization, or granulation tissue or capillary formation. The wounds in all groups had almost healed by day 14. CONCLUSIONS The stability of growth factors contained in lyophilized hPL is maintained at 4 °C for up to 9 months. This was a versatile preservation method that can be applied in clinical practice.
Collapse
Affiliation(s)
- Sharon Claudia Notodihardjo
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Natsuko Kakudo
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Toshihito Mitsui
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Tien Minh Le
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Kusumoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| |
Collapse
|
40
|
Collagen/Gelatin Sponges (CGSs) Provide Both Protection and Release of bFGF: An In Vitro Study. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4016351. [PMID: 30911542 PMCID: PMC6399556 DOI: 10.1155/2019/4016351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/10/2019] [Indexed: 12/26/2022]
Abstract
It has been reported that collagen/gelatin sponges (CGSs) are able to sustain the release of basic fibroblast growth factor (bFGF) for approximately 10 days via the formation of ion complexes between bFGF and gelatin. CGSs impregnated with bFGF have been proven to promote dermis-like tissue formation in various in vivo studies and clinical trials. However, the bioactivities of bFGF released from CGSs have not been explored in vitro. In this study, we explored the ability of CGS impregnated with bFGF, stored at 37°C for up to 14 days, to promote fibroblast proliferation and the sustained release of bFGF. We analyzed the cellular viability and proliferation in 2D and in 3D cell cultures, by a CCK-8 assay. Furthermore, in order to characterize the morphological alteration of fibroblasts, we studied 3D cultures by microscopy with a scanning electron microscope (SEM) and a confocal microscope. Our analyses revealed that the fibroblasts were elongated and flanked each other. They infiltrated and migrated inside the CGSs and were oriented along the CGS structure. Thus, these data prove that CGSs protect and sustain the efficient release of growth factor for more than 7 days.
Collapse
|
41
|
Prevention of tooth extraction-triggered bisphosphonate-related osteonecrosis of the jaws with basic fibroblast growth factor: An experimental study in rats. PLoS One 2019; 14:e0211928. [PMID: 30735554 PMCID: PMC6368314 DOI: 10.1371/journal.pone.0211928] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 01/24/2019] [Indexed: 01/13/2023] Open
Abstract
Osteonecrosis of the jaw induced by administration of bisphosphonates (BPs), BP-related osteonecrosis (BRONJ), typically develops after tooth extraction and is medically challenging. As BPs inhibit oral mucosal cell growth, we hypothesized that suppression of the wound healing-inhibiting effects could prevent BRONJ onset after tooth extraction. Since basic fibroblast growth factor (bFGF) promotes wound healing, but has a short half-life, we examined whether the initiation of BRONJ could be prevented by applying a bFGF-containing gelatin hydrogel over the extraction sockets of BRONJ model rats. Forty-three rats, received two intravenous injections of zoledronic acid 60 μg/kg, once per week for a period of 2 weeks, underwent extraction of a unilateral lower first molar. The rats here were randomly assigned to the bFGF group (n = 15 rats, gelatin hydrogel sheets with incorporated bFGF applied over the sockets); the phosphate-buffered saline (PBS) group (n = 14 rats, gelatin hydrogel sheets without bFGF applied over the sockets); or the control group (n = 14 rats, nothing applied over the sockets). One rat in the bFGF group was sacrificed immediately after tooth extraction. Twenty-one rats were sacrificed at 3 weeks, and the remaining 21 rats were sacrificed at 8 weeks after tooth extractions. The harvested mandibles were analyzed using micro-computed tomography and sections were evaluated qualitatively for mucosal disruption and osteonecrosis. The incidence of osteonecrosis at 8 weeks after tooth extraction was 0% in the bFGF group, 100% in the PBS group, and 85.7% in the control group. The frequency of complete coverage of the extraction socket by mucosal tissue was significantly greater in the bFGF group than in the other groups. These results suggest that application of bFGF in the extraction socket promoted socket healing, which prevented BRONJ development. The growth-stimulating effects of bFGF may have offset the inhibition of wound healing by BP.
Collapse
|
42
|
Notodihardjo SC, Morimoto N, Kakudo N, Mitsui T, Le TM, Tabata Y, Kusumoto K. Efficacy of Gelatin Hydrogel Impregnated With Concentrated Platelet Lysate in Murine Wound Healing. J Surg Res 2019; 234:190-201. [DOI: 10.1016/j.jss.2018.09.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/29/2018] [Accepted: 09/11/2018] [Indexed: 11/26/2022]
|
43
|
Arai D, Ishii A, Ikeda H, Abekura Y, Nishi H, Miyamoto S, Tabata Y. Development of a stent capable of the controlled release of basic fibroblast growth factor and argatroban to treat cerebral aneurysms: In vitro experiment and evaluation in a rabbit aneurysm model. J Biomed Mater Res B Appl Biomater 2019; 107:2185-2194. [PMID: 30653829 DOI: 10.1002/jbm.b.34314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/14/2018] [Accepted: 12/23/2018] [Indexed: 11/09/2022]
Abstract
An ideal stent to treat cerebral aneurysms should have an antithrombotic effect on the inner stent blood-facing side and a tissue organization effect on the outer aneurysmal side of the stent. The objective of this study is to evaluate the feasibility of a drug containing stent in the in vivo treatment of cerebral aneurysms. Argatroban, an antithrombotic drug, is encapsulated in biodegradable poly (d,l-lactide-co-glycolide) (PLGA) microspheres for the controlled release with an in vitro study conducted to evaluate the drug release and anticoagulation behavior of released drug. Basic fibroblast growth factor (bFGF), an organization drug, is released from gelatin hydrogels. The stents are coated with gelatin hydrogels incorporating bFGF and PLGA microspheres containing argatroban, and applied to the carotid artery aneurysm of an elastase-induced rabbit model. Most of the aneurysm cavity is occupied by loose connective tissues in the group treated with drug-coated stents, whereas extensive massive hematomas are observed in the group treated with drug-free stents. The occurrence rate of in-stent thrombus is small in the drug-coated stents. The stent incorporating bFGF and PLGA microspheres containing argatroban is an effective device for cerebral aneurysm treatment. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2185-2194, 2019.
Collapse
Affiliation(s)
- Daisuke Arai
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Biomaterials, Institution for Frontier Life and Medicine Sciences, Kyoto University, Kyoto, Japan
| | - Akira Ishii
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Ikeda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yu Abekura
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidehisa Nishi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institution for Frontier Life and Medicine Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
44
|
Esaki S, Katsumi S, Hamajima Y, Nakamura Y, Murakami S. Transplantation of Olfactory Stem Cells with Biodegradable Hydrogel Accelerates Facial Nerve Regeneration After Crush Injury. Stem Cells Transl Med 2018; 8:169-178. [PMID: 30417987 PMCID: PMC6344901 DOI: 10.1002/sctm.15-0399] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 07/21/2018] [Accepted: 08/20/2018] [Indexed: 01/12/2023] Open
Abstract
Olfactory mucosa contains neural stem cells, called olfactory stem cells (OSCs), which produce trophic support required for promoting axonal regeneration after nerve injury. However, the local tissue environment can reduce the viability/function of transplanted cells when placed directly on the injury. Although gelatin hydrogels have been shown to aid cell survival during transplantation, such OSC‐hydrogel combinations have not been extensively tested, particularly during recovery from facial nerve palsy. In this study, OSCs were isolated from the olfactory mucosae of newborn mice and were shown to express neural stem cell markers before differentiation, as well as cell‐type specific markers after differentiation, confirming their multipotency. The OSCs also secrete growth factors and various cytokines that promote nerve regeneration. To test the effects of OSC transplantation in vivo, Medgel, a biodegradable hydrogel sponge, was applied to retain OSCs around the injury site and to lessen the detrimental effects of the local environment in an established facial nerve palsy mouse model. When OSCs were transplanted into the injury site, accelerated recovery was observed for 1 week. When OSCs were transplanted with Medgel, a higher level and duration of accelerated recovery was observed. OSCs in Medgel also increased peripheral nerve function and increased the number of regenerated nerve fibers. These results suggest that OSCs implanted with Medgel accelerate and enhance recovery from facial palsy in mice. Because human OSCs can be easily obtained from olfactory mucosa biopsies with limited risk, this OSC‐Medgel combination is a candidate treatment option for accelerating recovery after facial nerve injury. stem cells translational medicine2019;8:169&10
Collapse
Affiliation(s)
- Shinichi Esaki
- Department of Otolaryngology, Head & Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan.,Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sachiyo Katsumi
- Department of Otolaryngology, Head & Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Yuki Hamajima
- Department of Otolaryngology, Head & Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Yoshihisa Nakamura
- Department of Otolaryngology, Head & Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Shingo Murakami
- Department of Otolaryngology, Head & Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| |
Collapse
|
45
|
Shimizu Y, Polavarapu R, Eskla K, Pantner Y, Nicholson CK, Ishii M, Brunnhoelzl D, Mauria R, Husain A, Naqvi N, Murohara T, Calvert JW. Impact of Lymphangiogenesis on Cardiac Remodeling After Ischemia and Reperfusion Injury. J Am Heart Assoc 2018; 7:e009565. [PMID: 30371303 PMCID: PMC6404883 DOI: 10.1161/jaha.118.009565] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022]
Abstract
Background Lymphatic vessels interconnect with blood vessels to form an elaborate system that aids in the control of tissue pressure and edema formation. Although the lymphatic system has been known to exist in a heart, little is known about the role the cardiac lymphatic system plays in the development of heart failure. Methods and Results Mice (C57 BL /6J, male, 8 to 12 weeks of age) were subjected to either myocardial ischemia or myocardial ischemia and reperfusion for up to 28 days. Analysis revealed that both models increased the protein expression of vascular endothelial growth factor C and VEGF receptor 3 starting at 1 day after the onset of injury, whereas a significant increase in lymphatic vessel density was observed starting at 3 days. Further studies aimed to determine the consequences of inhibiting the endogenous lymphangiogenesis response on the development of heart failure. Using 2 different pharmacological approaches, we found that inhibiting VEGF receptor 3 with MAZ -51 and blocking endogenous vascular endothelial growth factor C with a neutralizing antibody blunted the increase in lymphatic vessel density, blunted lymphatic transport, increased inflammation, increased edema, and increased cardiac dysfunction. Subsequent studies revealed that augmentation of the endogenous lymphangiogenesis response with vascular endothelial growth factor C treatment reduced inflammation, reduced edema, and improved cardiac dysfunction. Conclusions These results suggest that the endogenous lymphangiogenesis response plays an adaptive role in the development of ischemic-induced heart failure and supports the emerging concept that therapeutic lymphangiogenesis is a promising new approach for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Yuuki Shimizu
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Rohini Polavarapu
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Kattri‐Liis Eskla
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Yvanna Pantner
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Chad K. Nicholson
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Masakazu Ishii
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Daniel Brunnhoelzl
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Rohit Mauria
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Ahsan Husain
- Division of CardiologyDepartment of MedicineEmory University School of MedicineAtlantaGA
| | - Nawazish Naqvi
- Division of CardiologyDepartment of MedicineEmory University School of MedicineAtlantaGA
| | - Toyoaki Murohara
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - John W. Calvert
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| |
Collapse
|
46
|
Morotomi T, Washio A, Kitamura C. Current and future options for dental pulp therapy. JAPANESE DENTAL SCIENCE REVIEW 2018; 55:5-11. [PMID: 30733839 PMCID: PMC6354285 DOI: 10.1016/j.jdsr.2018.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/13/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023] Open
Abstract
Dental pulp is a connective tissue and has functions that include initiative, formative, protective, nutritive, and reparative activities. However, it has relatively low compliance, because it is enclosed in hard tissue. Its low compliance against damage, such as dental caries, results in the frequent removal of dental pulp during endodontic therapy. Loss of dental pulp frequently leads to fragility of the tooth, and eventually, a deterioration in the patient’s quality of life. With the development of biomaterials such as bioceramics and advances in pulp biology such as the identification of dental pulp stem cells, novel ideas for the preservation of dental pulp, the regenerative therapy of dental pulp, and new biomaterials for direct pulp capping have now been proposed. Therapies for dental pulp are classified into three categories; direct pulp capping, vital pulp amputation, and treatment for non-vital teeth. In this review, we discuss current and future treatment options in these therapies.
Collapse
Affiliation(s)
- Takahiko Morotomi
- Division of Endodontics and Restorative Dentistry, Department of Science of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Ayako Washio
- Division of Endodontics and Restorative Dentistry, Department of Science of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Department of Science of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| |
Collapse
|
47
|
Tanaka A, Nakamura H, Tabata Y, Fujimori Y, Kumasawa K, Kimura T. Effect of sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogels on frozen-thawed human ovarian tissue in a xenograft model. J Obstet Gynaecol Res 2018; 44:1947-1955. [PMID: 29998469 DOI: 10.1111/jog.13726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/07/2018] [Indexed: 01/08/2023]
Abstract
AIM Ovarian tissue cryopreservation before cancer treatment is the only option to preserve fertility under some circumstances. However, tissue ischemia after transplantation while awaiting angiogenesis induces dysfunctional folliculogenesis and reduces ovarian reserve and is one of the disadvantages of frozen-thawed ovarian tissue transplantation. Basic fibroblast growth factor (bFGF) is a major regulator of angiogenesis. However, bFGF rapidly loses biological activity when its free form is injected in vivo. This study investigated whether administration of active bFGF helps establish a nurturing environment for follicular survival. METHODS A sheet form of a sustained release drug delivery system for bFGF was developed using biodegradable acidic gelatin hydrogel (bFGF sheet). The bFGF sheets or phosphate-buffered saline sheets, as a negative control, were transplanted with frozen-thawed human ovarian tissues subcutaneously into the backs of severe combined immunodeficient mice. Neovascularization, cell proliferation, fibrosis and follicular survival of ovarian grafts were analyzed at 6 weeks after xenografting. RESULTS The bFGF sheets were optimized to release bFGF for at least 10 days. The transplantation of bFGF sheets with frozen-thawed ovarian tissues significantly increased human and mouse CD31-positive areas and stromal and endothelial cell proliferations. The administration of bFGF also significantly decreased the percentage of the fibrotic area in the graft, resulting in a significant increase in primordial and primary follicular density. CONCLUSION Local administration of a sustained release of biologically active bFGF induced neovascularization in frozen-thawed ovarian tissue grafts, which could establish the nurturing environment required for follicular survival in heterotopic xenografts.
Collapse
Affiliation(s)
- Ayaka Tanaka
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hitomi Nakamura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yuka Fujimori
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiichi Kumasawa
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
48
|
Sustained release of basic fibroblast growth factor using gelatin hydrogel improved left ventricular function through the alteration of collagen subtype in a rat chronic myocardial infarction model. Gen Thorac Cardiovasc Surg 2018; 66:641-647. [PMID: 29982930 DOI: 10.1007/s11748-018-0969-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/30/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Chronic myocardial infarction (CMI) tends to be resistant to treatments possibly due to extensive solid fibrotic scar, hypoxia mediated by poorly vascularized environment, and/or inflammation and apoptosis. Here we aimed to testify the therapeutic effects of sustained release of basic fibroblast growth factor (bFGF) using gelatin hydrogel (GH) in a rat chronic MI model and to elucidate the therapeutic mechanism including the alteration of extracellular matrix component. METHODS CMI model rats are prepared by the permanent ligation of proximal left anterior descending coronary artery. After 4 weeks, GH sheets (GHSs) with bFGF (100 µg) (bFGF group) or with phosphate-buffered saline (Vehicle group) were implanted to the CMI models to evaluate the effect of bFGF-GHS on chronic scar tissue. Sham operation group was also prepared (n = 5 for each). RESULTS 4 weeks after implantation, bFGF-GHS significantly improved cardiac contractile function (fractional shortening: 21.8 ± 1.1 vs 21.5 ± 1.3 vs 29.7 ± 1.8%; P < 0.001/fractional area change: 33.0 ± 1.4 vs 34.1 ± 2.3 vs 40.6 ± 1.8%; P < 0.001) (Sham vs Vehicle vs bFGF) accompanied with neovascularization. Immunohistochemical studies revealed that bFGF-GHS increased collagen III/I ratio indicating the alteration of solid scar tissue. Quantitative RT-PCR results showed a decrease of collagen I mRNA expression within border MI zone. CONCLUSIONS The implantation of bFGF-GHS altered the collagen subtype of the fibrotic scar more suitable for tissue repair. The treatment of sustained-release bFGF may be promising for ischemic heart disease through chronic pathology.
Collapse
|
49
|
Kumagai M, Minakata K, Masumoto H, Yamamoto M, Yonezawa A, Ikeda T, Uehara K, Yamazaki K, Ikeda T, Matsubara K, Yokode M, Shimizu A, Tabata Y, Sakata R, Minatoya K. A therapeutic angiogenesis of sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogel sheets in a canine chronic myocardial infarction model. Heart Vessels 2018; 33:1251-1257. [DOI: 10.1007/s00380-018-1185-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/11/2018] [Indexed: 10/16/2022]
|
50
|
Aoki S, Fujii M, Fujie T, Nishiwaki K, Miyazaki H, Saitoh D, Takeoka S, Kiyosawa T, Kinoshita M. The efficacy of basic fibroblast growth factor-loaded poly(lactic-co
-glycolic acid) nanosheet for mouse wound healing. Wound Repair Regen 2018; 25:1008-1016. [DOI: 10.1111/wrr.12604] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/26/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Shimpo Aoki
- Department of Plastic Surgery; National Defense Medical College; Saitama Japan
| | - Mao Fujii
- Department of Life Science and Medical Bioscience; Graduate School of Advanced Science and Engineering, Waseda University; Tokyo Japan
| | - Toshinori Fujie
- Waseda Institute for Advanced Study, Waseda University; Tokyo Japan
- Japan Science and Technology Agency, PRESTO; Saitama Japan
| | - Keisuke Nishiwaki
- Department of Life Science and Medical Bioscience; Graduate School of Advanced Science and Engineering, Waseda University; Tokyo Japan
| | - Hiromi Miyazaki
- Division of Traumatology; Research Institute, National Defense Medical College; Saitama Japan
| | - Daizoh Saitoh
- Division of Traumatology; Research Institute, National Defense Medical College; Saitama Japan
| | - Shinji Takeoka
- Department of Life Science and Medical Bioscience; Graduate School of Advanced Science and Engineering, Waseda University; Tokyo Japan
| | - Tomoharu Kiyosawa
- Department of Plastic Surgery; National Defense Medical College; Saitama Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology; National Defense Medical College; Saitama Japan
| |
Collapse
|