1
|
Marei I, Abu Samaan T, Al-Quradaghi MA, Farah AA, Mahmud SH, Ding H, Triggle CR. 3D Tissue-Engineered Vascular Drug Screening Platforms: Promise and Considerations. Front Cardiovasc Med 2022; 9:847554. [PMID: 35310996 PMCID: PMC8931492 DOI: 10.3389/fcvm.2022.847554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the efforts devoted to drug discovery and development, the number of new drug approvals have been decreasing. Specifically, cardiovascular developments have been showing amongst the lowest levels of approvals. In addition, concerns over the adverse effects of drugs to the cardiovascular system have been increasing and resulting in failure at the preclinical level as well as withdrawal of drugs post-marketing. Besides factors such as the increased cost of clinical trials and increases in the requirements and the complexity of the regulatory processes, there is also a gap between the currently existing pre-clinical screening methods and the clinical studies in humans. This gap is mainly caused by the lack of complexity in the currently used 2D cell culture-based screening systems, which do not accurately reflect human physiological conditions. Cell-based drug screening is widely accepted and extensively used and can provide an initial indication of the drugs' therapeutic efficacy and potential cytotoxicity. However, in vitro cell-based evaluation could in many instances provide contradictory findings to the in vivo testing in animal models and clinical trials. This drawback is related to the failure of these 2D cell culture systems to recapitulate the human physiological microenvironment in which the cells reside. In the body, cells reside within a complex physiological setting, where they interact with and respond to neighboring cells, extracellular matrix, mechanical stress, blood shear stress, and many other factors. These factors in sum affect the cellular response and the specific pathways that regulate variable vital functions such as proliferation, apoptosis, and differentiation. Although pre-clinical in vivo animal models provide this level of complexity, cross species differences can also cause contradictory results from that seen when the drug enters clinical trials. Thus, there is a need to better mimic human physiological conditions in pre-clinical studies to improve the efficiency of drug screening. A novel approach is to develop 3D tissue engineered miniaturized constructs in vitro that are based on human cells. In this review, we discuss the factors that should be considered to produce a successful vascular construct that is derived from human cells and is both reliable and reproducible.
Collapse
Affiliation(s)
- Isra Marei
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- *Correspondence: Isra Marei
| | - Tala Abu Samaan
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Asmaa A. Farah
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- Chris R. Triggle
| |
Collapse
|
2
|
Yogi A, Rukhlova M, Charlebois C, Tian G, Stanimirovic DB, Moreno MJ. Differentiation of Adipose-Derived Stem Cells into Vascular Smooth Muscle Cells for Tissue Engineering Applications. Biomedicines 2021; 9:biomedicines9070797. [PMID: 34356861 PMCID: PMC8301460 DOI: 10.3390/biomedicines9070797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022] Open
Abstract
Synthetic grafts have been developed for vascular bypass surgery, however, the risks of thrombosis and neointimal hyperplasia still limit their use. Tissue engineering with the use of adipose-derived stem cells (ASCs) has shown promise in addressing these limitations. Here we further characterized and optimized the ASC differentiation into smooth muscle cells (VSMCs) induced by TGF-β and BMP-4. TGF-β and BMP-4 induced a time-dependent expression of SMC markers in ASC. Shortening the differentiation period from 7 to 4 days did not impair the functional property of contraction in these cells. Stability of the process was demonstrated by switching cells to regular growth media for up to 14 days. The role of IGFBP7, a downstream effector of TGF-β, was also examined. Finally, topographic and surface patterning of a substrate is recognized as a powerful tool for regulating cell differentiation. Here we provide evidence that a non-woven PET structure does not affect the differentiation of ASC. Taken together, our results indicate that VSMCs differentiated from ASCs are a suitable candidate to populate a PET-based vascular scaffolds. By employing an autologous source of cells we provide a novel alternative to address major issues that reduces long-term patency of currently vascular grafts.
Collapse
Affiliation(s)
- Alvaro Yogi
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Road, Ottawa, ON K1A0R6, Canada; (M.R.); (C.C.); (D.B.S.)
- Correspondence: (A.Y.); (M.J.M.); Tel.: +1-613-990-0891 (A.Y.); +1-613-990-0829 (M.J.M.)
| | - Marina Rukhlova
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Road, Ottawa, ON K1A0R6, Canada; (M.R.); (C.C.); (D.B.S.)
| | - Claudie Charlebois
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Road, Ottawa, ON K1A0R6, Canada; (M.R.); (C.C.); (D.B.S.)
| | - Ganghong Tian
- Medical Devices Research Centre, National Research Council of Canada, 435 Ellice Ave, Winnipeg, MB R3B 1Y6, Canada;
| | - Danica B. Stanimirovic
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Road, Ottawa, ON K1A0R6, Canada; (M.R.); (C.C.); (D.B.S.)
| | - Maria J. Moreno
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Road, Ottawa, ON K1A0R6, Canada; (M.R.); (C.C.); (D.B.S.)
- Correspondence: (A.Y.); (M.J.M.); Tel.: +1-613-990-0891 (A.Y.); +1-613-990-0829 (M.J.M.)
| |
Collapse
|
3
|
Spadaccio C, Hu H, Li C, Qiao Z, Ge Y, Tie Z, Zhu J, Moon MR, Danton M, Sun L, Gaudino MF. Thoracic aortic surgery: status and upcoming novelties. Minerva Cardioangiol 2020; 68:518-531. [PMID: 32319269 DOI: 10.23736/s0026-4725.20.05263-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Several novel technological developments and surgical approaches have characterized the field of aortic surgery in the recent decade. The progressive introduction of endovascular procedures, minimally invasive surgical techniques and hybrid approaches have changed the practice in aortic surgery and generated new trends and questions. Also, the advancements in the manufacturing of tissue engineered vascular grafts as substitutes for aortic replacements are enlightening new avenues in the treatment of aortic disease. This review will provide an overview of the current novel perspectives, debates and trends in major thoracic aortic surgery.
Collapse
Affiliation(s)
- Cristiano Spadaccio
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK - .,Department of Cardiac Surgery, Golden Jubilee National Hospital, Glasgow, UK - .,Department of Cardiovascular Surgery, Beijing Aortic Disease Centre, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Centre for Vascular Prostheses, Capital Medical University, Beijing, China -
| | - Haiou Hu
- Department of Cardiovascular Surgery, Beijing Aortic Disease Centre, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Centre for Vascular Prostheses, Capital Medical University, Beijing, China
| | - Chengnan Li
- Department of Cardiovascular Surgery, Beijing Aortic Disease Centre, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Centre for Vascular Prostheses, Capital Medical University, Beijing, China
| | - Zhiyu Qiao
- Department of Cardiovascular Surgery, Beijing Aortic Disease Centre, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Centre for Vascular Prostheses, Capital Medical University, Beijing, China
| | - Yipeng Ge
- Department of Cardiovascular Surgery, Beijing Aortic Disease Centre, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Centre for Vascular Prostheses, Capital Medical University, Beijing, China
| | - Zheng Tie
- Department of Cardiovascular Surgery, Beijing Aortic Disease Centre, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Centre for Vascular Prostheses, Capital Medical University, Beijing, China
| | - Junming Zhu
- Department of Cardiovascular Surgery, Beijing Aortic Disease Centre, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Centre for Vascular Prostheses, Capital Medical University, Beijing, China
| | - Marc R Moon
- School of Medicine, Washington University, St Louis, MI, USA
| | - Mark Danton
- Department of Cardiac Surgery, Scottish Pediatric Cardiac Services, Royal Hospital for Children, Glasgow, UK
| | - Lizhong Sun
- Department of Cardiovascular Surgery, Beijing Aortic Disease Centre, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Centre for Vascular Prostheses, Capital Medical University, Beijing, China
| | - Mario F Gaudino
- Department of Cardiothoracic Surgery Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
4
|
Afra S, Matin MM. Potential of mesenchymal stem cells for bioengineered blood vessels in comparison with other eligible cell sources. Cell Tissue Res 2020; 380:1-13. [PMID: 31897835 DOI: 10.1007/s00441-019-03161-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
Application of stem cells in tissue engineering has proved to be effective in many cases due to great proliferation and differentiation potentials as well as possible paracrine effects of these cells. Human mesenchymal stem cells (MSCs) are recognized as a valuable source for vascular tissue engineering, which requires endothelial and perivascular cells. The goal of this review is to survey the potential of MSCs for engineering functional blood vessels in comparison with other cell types including bone marrow mononuclear cells, endothelial precursor cells, differentiated adult autologous smooth muscle cells, autologous endothelial cells, embryonic stem cells, and induced pluripotent stem cells. In conclusion, MSCs represent a preference in making autologous tissue-engineered vascular grafts (TEVGs) as well as off-the-shelf TEVGs for emergency vascular surgery cases.
Collapse
Affiliation(s)
- Simindokht Afra
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
In vitro construction of artificial blood vessels using spider silk as a supporting matrix. J Mech Behav Biomed Mater 2020; 101:103436. [DOI: 10.1016/j.jmbbm.2019.103436] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 08/26/2019] [Accepted: 09/15/2019] [Indexed: 11/18/2022]
|
6
|
Directional Topography Influences Adipose Mesenchymal Stromal Cell Plasticity: Prospects for Tissue Engineering and Fibrosis. Stem Cells Int 2019; 2019:5387850. [PMID: 31191675 PMCID: PMC6525798 DOI: 10.1155/2019/5387850] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/24/2018] [Accepted: 02/11/2019] [Indexed: 01/17/2023] Open
Abstract
Introduction Progenitor cells cultured on biomaterials with optimal physical-topographical properties respond with alignment and differentiation. Stromal cells from connective tissue can adversely differentiate to profibrotic myofibroblasts or favorably to smooth muscle cells (SMC). We hypothesized that myogenic differentiation of adipose tissue-derived stromal cells (ASC) depends on gradient directional topographic features. Methods Polydimethylsiloxane (PDMS) samples with nanometer and micrometer directional topography gradients (wavelength (w) = 464-10, 990 nm; amplitude (a) = 49-3, 425 nm) were fabricated. ASC were cultured on patterned PDMS and stimulated with TGF-β1 to induce myogenic differentiation. Cellular alignment and adhesion were assessed by immunofluorescence microscopy after 24 h. After seven days, myogenic differentiation was examined by immunofluorescence microscopy, gene expression, and immunoblotting. Results Cell alignment occurred on topographies larger than w = 1758 nm/a = 630 nm. The number and total area of focal adhesions per cell were reduced on topographies from w = 562 nm/a = 96 nm to w = 3919 nm/a = 1430 nm. Focal adhesion alignment was increased on topographies larger than w = 731 nm/a = 146 nm. Less myogenic differentiation of ASC occurred on topographies smaller than w = 784 nm/a = 209 nm. Conclusion ASC adherence, alignment, and differentiation are directed by topographical cues. Our evidence highlights a minimal topographic environment required to facilitate the development of aligned and differentiated cell layers from ASC. These data suggest that nanotopography may be a novel tool for inhibiting fibrosis.
Collapse
|
7
|
Sánchez PF, Brey EM, Briceño JC. Endothelialization mechanisms in vascular grafts. J Tissue Eng Regen Med 2018; 12:2164-2178. [PMID: 30079631 DOI: 10.1002/term.2747] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 05/18/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
Despite the wide variety of tissue-engineered vascular grafts that are currently being developed, autologous vessels, such as the saphenous vein, are still the gold standard grafts for surgical treatment of vascular disease. Recently developed technologies have shown promising results in preclinical studies, but they still do not overcome the issues that native vessels present, and only a few have made the transition into clinical use. The endothelial lining is a key aspect for the success or failure of the grafts, especially on smaller diameter grafts (<5 mm). However, during the design and evaluation of the grafts, the mechanisms for the formation of this layer are not commonly examined. Therefore, a significant amount of established research might not be relevant to the clinical context, due to important differences that exist between the vascular regeneration mechanisms found in animal models and humans. This article reviews current knowledge about endothelialization mechanisms that have been so far identified: in vitro seeding, transanastomotic growth, transmural infiltration, and fallout endothelialization. Emphasis is placed on the models used for study of theses mechanisms and their effects on the development of tissue-engineering vascular conduits.
Collapse
Affiliation(s)
- Paolo F Sánchez
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Eric M Brey
- Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas.,Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois.,Research Service, South Texas Veterans Health Care System, San Antonio, Texas
| | - Juan Carlos Briceño
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia.,Research Department, Fundación Cardioinfantil Instituto de Cardiología, Bogotá, Colombia
| |
Collapse
|
8
|
Maina RM, Barahona MJ, Finotti M, Lysyy T, Geibel P, D'Amico F, Mulligan D, Geibel JP. Generating vascular conduits: from tissue engineering to three-dimensional bioprinting. Innov Surg Sci 2018; 3:203-213. [PMID: 31579784 PMCID: PMC6604577 DOI: 10.1515/iss-2018-0016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/04/2018] [Indexed: 12/25/2022] Open
Abstract
Vascular disease - including coronary artery disease, carotid artery disease, and peripheral vascular disease - is a leading cause of morbidity and mortality worldwide. The standard of care for restoring patency or bypassing occluded vessels involves using autologous grafts, typically the saphenous veins or internal mammary arteries. Yet, many patients who need life- or limb-saving procedures have poor outcomes, and a third of patients who need vascular intervention have multivessel disease and therefore lack appropriate vasculature to harvest autologous grafts from. Given the steady increase in the prevalence of vascular disease, there is great need for grafts with the biological and mechanical properties of native vessels that can be used as vascular conduits. In this review, we present an overview of methods that have been employed to generate suitable vascular conduits, focusing on the advances in tissue engineering methods and current three-dimensional (3D) bioprinting methods. Tissue-engineered vascular grafts have been fabricated using a variety of approaches such as using preexisting scaffolds and acellular organic compounds. We also give an extensive overview of the novel use of 3D bioprinting as means of generating new vascular conduits. Different strategies have been employed in bioprinting, and the use of cell-based inks to create de novo structures offers a promising solution to bridge the gap of paucity of optimal donor grafts. Lastly, we provide a glimpse of our work to create scaffold-free, bioreactor-free, 3D bioprinted vessels from a combination of rat vascular smooth muscle cells and fibroblasts that remain patent and retain the tensile and mechanical strength of native vessels.
Collapse
Affiliation(s)
- Renee M Maina
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Maria J Barahona
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Michele Finotti
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.,University of Padua, Transplantation and Hepatobiliary Surgery, Padua, Italy
| | - Taras Lysyy
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Peter Geibel
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Francesco D'Amico
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.,University of Padua, Transplantation and Hepatobiliary Surgery, Padua, Italy
| | - David Mulligan
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - John P Geibel
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Hielscher D, Kaebisch C, Braun BJV, Gray K, Tobiasch E. Stem Cell Sources and Graft Material for Vascular Tissue Engineering. Stem Cell Rev Rep 2018; 14:642-667. [DOI: 10.1007/s12015-018-9825-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Dhulekar J, Simionescu A. Challenges in vascular tissue engineering for diabetic patients. Acta Biomater 2018; 70:25-34. [PMID: 29396167 PMCID: PMC5871600 DOI: 10.1016/j.actbio.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 12/16/2022]
Abstract
Hyperglycemia and dyslipidemia coexist in diabetes and result in inflammation, degeneration, and impaired tissue remodeling, processes which are not conducive to the desired integration of tissue engineered products into the surrounding tissues. There are several challenges for vascular tissue engineering such as non-thrombogenicity, adequate burst pressure and compliance, suturability, appropriate remodeling responses, and vasoactivity, but, under diabetic conditions, an additional challenge needs to be considered: the aggressive oxidative environment generated by the high glucose and lipid concentrations that lead to the formation of advanced glycation end products (AGEs) in the vascular wall. Extracellular matrix-based scaffolds have adequate physical properties and are biocompatible, however, these scaffolds are altered in diabetes by the formation AGEs and impaired collagen degradation, consequently increasing vascular wall stiffness. In addition, vascular cells detect and respond to altered stimuli from the matrix by pathological remodeling of the vascular wall. Due to the immunomodulatory effects of mesenchymal stem cells (MSCs), they are frequently used in tissue engineering in order to protect the scaffolds from inflammation. MSCs together with antioxidant treatments of the scaffolds are expected to protect the vascular grafts from diabetes-induced alterations. In conclusion, as one of the most daunting environments that could damage the ECM and its interaction with cells is progressively built in diabetes, we recommend that cells and scaffolds used in vascular tissue engineering for diabetic patients are tested in diabetic animal models, in order to obtain valuable results regarding their resistance to diabetic adversities. STATEMENT OF SIGNIFICANCE Almost 25 million Americans have diabetes, characterized by high levels of blood sugar that binds to tissues and disturbs the function of cardiovascular structures. Therefore, patients with diabetes have a high risk of cardiovascular diseases. Surgery is required to replace diseased arteries with implants, but these fail after 5-10 years because they are made of non-living materials, not resistant to diabetes. New tissue engineering materials are developed, based on the patients' own stem cells, isolated from fat, and added to extracellular matrix-based scaffolds. Our main concern is that diabetes could damage the tissue-like implants. Thus we review studies related to the effect of diabetes on tissue components and recommend antioxidant treatments to increase the resistance of implants to diabetes.
Collapse
|
11
|
Sugiura T, Tara S, Nakayama H, Kurobe H, Yi T, Lee YU, Lee AY, Breuer CK, Shinoka T. Novel Bioresorbable Vascular Graft With Sponge-Type Scaffold as a Small-Diameter Arterial Graft. Ann Thorac Surg 2016; 102:720-727. [PMID: 27154152 DOI: 10.1016/j.athoracsur.2016.01.110] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/01/2015] [Accepted: 01/11/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND Current commercialized small-diameter arterial grafts have not shown clinical effectiveness due to their poor patency rates. The present study evaluated the feasibility of an arterial bioresorbable vascular graft, which has a porous sponge-type scaffold, as a small-diameter arterial conduit. METHODS The grafts were constructed by a 50:50 poly (1-lactic-co-ε-caprolactone) copolymer (PLCL) scaffold reinforced by a poly (1-lactic acid) (PLA) nanofiber. The pore size of the PLCL scaffold was adjusted to a small size (12.8 ± 1.85 μm) or a large size (28.5 ± 5.25 μm). We compared the difference in cellular infiltration, followed by tissue remodeling, between the groups. The grafts were implanted in 8- to 10-week-old female mice (n = 15 in each group) as infrarenal aortic interposition conduits. Animals were monitored for 8 weeks and euthanized to evaluate neotissue formation. RESULTS No aneurysmal change or graft rupture was observed in either group. Histologic assessment demonstrated favorable cell infiltration into scaffolds, neointimal formation with endothelialization, smooth muscle cell proliferation, and elastin deposition in both groups. No significant difference was observed between the groups. Immunohistochemical characterization with anti-F4/80 antibody demonstrated that macrophage infiltration into the grafts occurred in both groups. Staining for M1 and M2, which are the two major macrophage phenotypes, showed no significant difference between groups. CONCLUSIONS Our novel bioresorbable vascular grafts showed well-organized neointimal formation in the high-pressure arterial circulation environment. The large-pore scaffold did not improve cellular infiltration and neotissue formation compared with the small-pore scaffold.
Collapse
Affiliation(s)
- Tadahisa Sugiura
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Shuhei Tara
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Hidetaka Nakayama
- QOL Research Center Laboratory, Gunze Limited, Ayabe-shi, Kyoto, Japan
| | - Hirotsugu Kurobe
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Tai Yi
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Yong-Ung Lee
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Avione Y Lee
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Christopher K Breuer
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Toshiharu Shinoka
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio; Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|
12
|
Shamosi A, Mehrabani D, Azami M, Ebrahimi-Barough S, Siavashi V, Ghanbari H, Sharifi E, Roozafzoon R, Ai J. Differentiation of human endometrial stem cells into endothelial-like cells on gelatin/chitosan/bioglass nanofibrous scaffolds. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:163-173. [PMID: 26878747 DOI: 10.3109/21691401.2016.1138493] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The capacity of gelatin/chitosan/bioactive glass nanopowders (GEL/CS/BGNPs) scaffolds was investigated for increasing human endometrial stem cells (hEnSCs) differentiation into the endothelial cells in the presence of angiogenic factors. GEL/CS nanofibrous scaffold with different contents of BGNPs were fabricated and assessed. Expression of endothelial markers (CD31, vascular endothelial cadherin (VE-cadherin), and KDR) in differentiated cells was evaluated. Results showed the diameter of nanofiber increases with decreasing the BG content in GEL/CS scaffolds. Moreover, in vitro study indicated that the GEL/CS/BGNPs scaffold with 1.5% BGNPs content provided a suitable three-dimensional structure for endothelial cells differentiation. Thus, the GEL/CS/BGNPs scaffold can be recommended for blood vessels repair.
Collapse
Affiliation(s)
- Atefeh Shamosi
- a Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Davood Mehrabani
- b Stem Cell and Transgenic Technology Research Center , Shiraz University of Medical Sciences , Shiraz , Iran.,c Department of Regenerative Medicine , University of Manitoba , Winnipeg , Canada
| | - Mahmoud Azami
- a Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Somayeh Ebrahimi-Barough
- a Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Vahid Siavashi
- d Department of Clinical Pathology, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| | - Hossein Ghanbari
- e Department of Medical Nanotechnology, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Esmaeel Sharifi
- a Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Reza Roozafzoon
- a Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Jafar Ai
- a Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran.,f Brain and Spinal Injury Research Center, Imam Khomeini Hospital , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
13
|
Ghasemi-Mobarakeh L, Prabhakaran MP, Tian L, Shamirzaei-Jeshvaghani E, Dehghani L, Ramakrishna S. Structural properties of scaffolds: Crucial parameters towards stem cells differentiation. World J Stem Cells 2015; 7:728-744. [PMID: 26029344 PMCID: PMC4444613 DOI: 10.4252/wjsc.v7.i4.728] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/18/2014] [Accepted: 03/05/2015] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering is a multidisciplinary field that applies the principles of engineering and life-sciences for regeneration of damaged tissues. Stem cells have attracted much interest in tissue engineering as a cell source due to their ability to proliferate in an undifferentiated state for prolonged time and capability of differentiating to different cell types after induction. Scaffolds play an important role in tissue engineering as a substrate that can mimic the native extracellular matrix and the properties of scaffolds have been shown to affect the cell behavior such as the cell attachment, proliferation and differentiation. Here, we focus on the recent reports that investigated the various aspects of scaffolds including the materials used for scaffold fabrication, surface modification of scaffolds, topography and mechanical properties of scaffolds towards stem cells differentiation effect. We will present a more detailed overview on the effect of mechanical properties of scaffolds on stem cells fate.
Collapse
|
14
|
G N, Tan A, Gundogan B, Farhatnia Y, Nayyer L, Mahdibeiraghdar S, Rajadas J, De Coppi P, Davies AH, Seifalian AM. Tissue engineering vascular grafts a fortiori: looking back and going forward. Expert Opin Biol Ther 2014; 15:231-44. [PMID: 25427995 DOI: 10.1517/14712598.2015.980234] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Cardiovascular diseases such as coronary heart disease often necessitate the surgical repair using conduits. Although autografts still remain the gold standard, the inconvenience of harvesting and/or insufficient availability in patients with atherosclerotic disease has given impetus to look into alternative sources for vascular grafts. AREAS COVERED There are four main techniques to produce tissue-engineered vascular grafts (TEVGs): i) biodegradable synthetic scaffolds; ii) gel-based scaffolds; iii) decellularised scaffolds and iv) self-assembled cell-sheet-based techniques. The first three techniques can be grouped together as scaffold-guided approach as it involves the use of a construct to function as a supportive framework for the vascular graft. The most significant advantages of TEVGs are that it possesses the ability to grow, remodel and respond to environmental factors. Cell sources for TEVGs include mature somatic cells, stem cells, adult progenitor cells and pluripotent stem cells. EXPERT OPINION TEVG holds great promise with advances in nanotechnology, coupled with important refinements in tissue engineering and decellularisation techniques. This will undoubtedly be an important milestone for cardiovascular medicine when it is eventually translated to clinical use.
Collapse
Affiliation(s)
- Natasha G
- University College London (UCL), Centre for Nanotechnology and Regenerative Medicine, UCL Division of Surgery and Interventional Science, Research Department of Nanotechnology , London NW3 2QG , UK +44 207 830 2901 ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wingate K, Floren M, Tan Y, Tseng PON, Tan W. Synergism of matrix stiffness and vascular endothelial growth factor on mesenchymal stem cells for vascular endothelial regeneration. Tissue Eng Part A 2014; 20:2503-12. [PMID: 24702044 DOI: 10.1089/ten.tea.2013.0249] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) hold tremendous potential for vascular tissue regeneration. Research has demonstrated that individual factors in the cell microenvironment such as matrix elasticity and growth factors regulate MSC differentiation to vascular lineage. However, it is not well understood how matrix elasticity and growth factors combine to direct the MSC fate. This study examines the combined effects of matrix elasticity and vascular endothelial growth factor (VEGF) on both MSC differentiation into endothelial lineage and MSC paracrine signaling. MSCs were seeded in soft nanofibrous matrices with or without VEGF, and in Petri dishes with or without VEGF. Only MSCs seeded in three-dimensional soft matrices with VEGF showed significant increases in the expression of endothelial markers (vWF, eNOS, Flt-1, and Flk-1), while eliminating the expression of smooth muscle marker (SM-α-actin). MSCs cultured in VEGF alone on two-dimensional dishes showed increased expression of both early-stage endothelial and smooth muscle markers, indicating immature vascular differentiation. Furthermore, MSCs cultured in soft matrices with VEGF showed faster upregulation of endothelial markers compared with MSCs cultured in VEGF alone. Paracrine signaling studies found that endothelial cells cultured in the conditioned media from MSCs differentiated in the soft matrix and VEGF condition exhibited increased migration and formation of capillary-like structures. These results demonstrate that VEGF and soft matrix elasticity act synergistically to guide MSC differentiation into mature endothelial phenotype while enhancing paracrine signaling. Therefore, it is critical to control both mechanical and biochemical factors to safely regenerate vascular tissues with MSCs.
Collapse
Affiliation(s)
- Kathryn Wingate
- 1 Department of Mechanical Engineering, University of Colorado at Boulder , Boulder, Colorado
| | | | | | | | | |
Collapse
|
16
|
Weigel T, Schinkel G, Lendlein A. Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev Med Devices 2014; 3:835-51. [PMID: 17280547 DOI: 10.1586/17434440.3.6.835] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polymeric scaffolds for tissue engineering can be prepared with a multitude of different techniques. Many diverse approaches have recently been under development. The adaptation of conventional preparation methods, such as electrospinning, induced phase separation of polymer solutions or porogen leaching, which were developed originally for other research areas, are described. In addition, the utilization of novel fabrication techniques, such as rapid prototyping or solid free-form procedures, with their many different methods to generate or to embody scaffold structures or the usage of self-assembly systems that mimic the properties of the extracellular matrix are also described. These methods are reviewed and evaluated with specific regard to their utility in the area of tissue engineering.
Collapse
Affiliation(s)
- Thomas Weigel
- Department of Polymer Technology, Institute of Polymer Research, GKSS Research Center Geesthacht, Kantstr 55, D-14513 Teltow, Germany.
| | | | | |
Collapse
|
17
|
Denost Q, Adam JP, Rullier E, Bareille R, Montembault A, David L, Bordenave L. Colorectal tissue engineering: prerequisites, current status and perspectives. Expert Rev Med Devices 2014; 10:501-7. [DOI: 10.1586/17434440.2013.811834] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Bordenave L, Menu P, Baquey C. Developments towards tissue-engineered, small-diameter arterial substitutes. Expert Rev Med Devices 2014; 5:337-47. [DOI: 10.1586/17434440.5.3.337] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Abstract
The development of vascular bioengineering has led to a variety of novel treatment strategies for patients with cardiovascular disease. Notably, combining biodegradable scaffolds with autologous cell seeding to create tissue-engineered vascular grafts (TEVG) allows for in situ formation of organized neovascular tissue and we have demonstrated the clinical viability of this technique in patients with congenital heart defects. The role of the scaffold is to provide a temporary 3-dimensional structure for cells, but applying TEVG strategy to the arterial system requires scaffolds that can also endure arterial pressure. Both biodegradable synthetic polymers and extracellular matrix-based natural materials can be used to generate arterial scaffolds that satisfy these requirements. Furthermore, the role of specific cell types in tissue remodeling is crucial and as a result many different cell sources, from matured somatic cells to stem cells, are now used in a variety of arterial TEVG techniques. However, despite great progress in the field over the past decade, clinical effectiveness of small-diameter arterial TEVG (<6mm) has remained elusive. To achieve successful translation of this complex multidisciplinary technology to the clinic, active participation of biologists, engineers, and clinicians is required.
Collapse
|
20
|
Li S, Sengupta D, Chien S. Vascular tissue engineering: from in vitro to in situ. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 6:61-76. [PMID: 24151038 DOI: 10.1002/wsbm.1246] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 01/02/2023]
Abstract
Blood vessels transport blood to deliver oxygen and nutrients. Vascular diseases such as atherosclerosis may result in obstruction of blood vessels and tissue ischemia. These conditions require blood vessel replacement to restore blood flow at the macrocirculatory level, and angiogenesis is critical for tissue regeneration and remodeling at the microcirculatory level. Vascular tissue engineering has focused on addressing these two major challenges. We provide a systematic review on various approaches for vascular graft tissue engineering. To create blood vessel substitutes, bioengineers and clinicians have explored technologies in cell engineering, materials science, stem cell biology, and medicine. The scaffolds for vascular grafts can be made from native matrix, synthetic polymers, or other biological materials. Besides endothelial cells, smooth muscle cells, and fibroblasts, expandable cells types such as adult stem cells, pluripotent stem cells, and reprogrammed cells have also been used for vascular tissue engineering. Cell-seeded functional tissue-engineered vascular grafts can be constructed in bioreactors in vitro. Alternatively, an autologous vascular graft can be generated in vivo by harvesting the capsule layer formed around a rod implanted in soft tissues. To overcome the scalability issue and make the grafts available off-the-shelf, nonthrombogenic vascular grafts have been engineered that rely on the host cells to regenerate blood vessels in situ. The rapid progress in the field of vascular tissue engineering has led to exciting preclinical and clinical trials. The advancement of micro-/nanotechnology and stem cell engineering, together with in-depth understanding of vascular regeneration mechanisms, will enable the development of new strategies for innovative therapies.
Collapse
Affiliation(s)
- Song Li
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | | |
Collapse
|
21
|
Li Q, Wang Z, Zhang S, Zheng W, Zhao Q, Zhang J, Wang L, Wang S, Kong D. Functionalization of the surface of electrospun poly(epsilon-caprolactone) mats using zwitterionic poly(carboxybetaine methacrylate) and cell-specific peptide for endothelial progenitor cells capture. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:1646-53. [DOI: 10.1016/j.msec.2012.12.074] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 12/16/2022]
|
22
|
Tissue engineered vascular grafts--preclinical aspects. Int J Cardiol 2012; 167:1091-100. [PMID: 23040078 DOI: 10.1016/j.ijcard.2012.09.069] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 06/01/2012] [Accepted: 09/14/2012] [Indexed: 11/23/2022]
Abstract
Tissue engineering enables the development of fully biological vascular substitutes that restore, maintain and improve tissue function in a manner identical to natural host tissue. However the development of the appropriate preclinical evaluation techniques for the generation of fully functional tissue-engineered vascular graft (TEVG) is required to establish their safety for use in clinical trials and to test clinical effectiveness. This review gives an insight on the various preclinical studies performed in the area of tissue engineered vascular grafts highlighting the different strategies used with respect to cells and scaffolds, typical animal models used and the major in vivo evaluation studies that have been carried out. The review emphasizes the combined effort of engineers, biologists and clinicians which can take this clinical research to new heights of regenerative therapy.
Collapse
|
23
|
Park IS, Kim SH, Heo DN, Jung Y, Kwon IK, Rhie JW, Kim SH. Synergistic Effect of Biochemical Factors and Strain on the Smooth Muscle Cell Differentiation of Adipose-Derived Stem Cells on an Elastic Nanofibrous Scaffold. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1579-93. [DOI: 10.1163/092050611x587538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- In Su Park
- a Center for Biomaterials, Medical Engineering Institute, Korea Institute of Science and Technology , 39-1 Hawolgok, Seongbuk , Seoul , 136-791 , South Korea
| | - Soo Hyun Kim
- a Center for Biomaterials, Medical Engineering Institute, Korea Institute of Science and Technology , 39-1 Hawolgok, Seongbuk , Seoul , 136-791 , South Korea
| | - Dong Nyoung Heo
- b Department of Oral Biology , School of Dentistry, Kyung Hee University , Seoul , 130-701 , South Korea
| | - Youngmee Jung
- a Center for Biomaterials, Medical Engineering Institute, Korea Institute of Science and Technology , 39-1 Hawolgok, Seongbuk , Seoul , 136-791 , South Korea
| | - Il Keun Kwon
- b Department of Oral Biology , School of Dentistry, Kyung Hee University , Seoul , 130-701 , South Korea
| | - Jong-Won Rhie
- c Department of Plastic Surgery , College of Medicine, The Catholic University of Korea , Seoul , 137-701 , South Korea
| | - Sang-Heon Kim
- a Center for Biomaterials, Medical Engineering Institute, Korea Institute of Science and Technology , 39-1 Hawolgok, Seongbuk , Seoul , 136-791 , South Korea
| |
Collapse
|
24
|
Vishnubalaji R, Manikandan M, Al-Nbaheen M, Kadalmani B, Aldahmash A, Alajez NM. In vitro differentiation of human skin-derived multipotent stromal cells into putative endothelial-like cells. BMC DEVELOPMENTAL BIOLOGY 2012; 12:7. [PMID: 22280443 PMCID: PMC3280173 DOI: 10.1186/1471-213x-12-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 01/27/2012] [Indexed: 12/18/2022]
Abstract
Background Multipotent stem cells have been successfully isolated from various tissues and are currently utilized for tissue-engineering and cell-based therapies. Among the many sources, skin has recently emerged as an attractive source for multipotent cells because of its abundance. Recent literature showed that skin stromal cells (SSCs) possess mesoderm lineage differentiation potential; however, the endothelial differentiation and angiogenic potential of SSC remains elusive. In our study, SSCs were isolated from human neonatal foreskin (hNFSSCs) and adult dermal skin (hADSSCs) using explants cultures and were compared with bone marrow (hMSC-TERT) and adipose tissue-derived mesenchymal stem cells (hADMSCs) for their potential differentiation into osteoblasts, adipocytes, and endothelial cells. Results Concordant with previous studies, both MSCs and SSCs showed similar morphology, surface protein expression, and were able to differentiate into osteoblasts and adipocytes. Using an endothelial induction culture system combined with an in vitro matrigel angiogenesis assay, hNFSSCs and hADSSCs exhibited the highest tube-forming capability, which was similar to those formed by human umbilical vein endothelial cells (HUVEC), with hNFSSCs forming the most tightly packed, longest, and largest diameter tubules among the three cell types. CD146 was highly expressed on hNFSSCs and HUVEC followed by hADSSCs, and hMSC-TERT, while its expression was almost absent on hADMSCs. Similarly, higher vascular density (based on the expression of CD31, CD34, vWF, CD146 and SMA) was observed in neonatal skin, followed by adult dermal skin and adipose tissue. Thus, our preliminary data indicated a plausible relationship between vascular densities, and the expression of CD146 on multipotent cells derived from those tissues. Conclusions Our data is the first to demonstrate that human dermal skin stromal cells can be differentiated into endothelial lineage. Hence, SSCs represents a novel source of stem/stromal cells for tissue regeneration and the vascularization of engineered tissues. Moreover, the CD146 investigations suggested that the microenvironmental niche might contribute to direct stromal cells multipotency toward certain lineages, which warrants further investigation.
Collapse
|
25
|
Klopsch C, Steinhoff G. Tissue-Engineered Devices in Cardiovascular Surgery. Eur Surg Res 2012; 49:44-52. [DOI: 10.1159/000339606] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/17/2012] [Indexed: 11/19/2022]
|
26
|
Myon L, Ferri J, Chai F, Blanchemain N, Raoul G. [Oro-maxillofacial bone tissue engineering combining biomaterials, stem cells, and gene therapy]. ACTA ACUST UNITED AC 2011; 112:201-11. [PMID: 21798570 DOI: 10.1016/j.stomax.2011.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Improvements have been made in regenerative medicine, due to the development of tissue engineering and cellular therapy. Bone regeneration is an ambitious project, leading to many applications involving skull, maxillofacial, and orthopaedic surgery. Scaffolds, stem cells, and signals support bone tissue engineering. The scaffold physical and chemical properties promote cell invasion, guide their differentiation, and enable signal transmission. Scaffold may be inorganic or organic. Their conception was improved by the use of new techniques: self-assembled nanofibres, electrospinning, solution-phase separation, micropatterned hydrogels, bioprinting, and rapid prototyping. Cellular biology processes allow us to choose between embryonic stem cells or adult stem cells for regenerative medicine. Finally, communication between cells and their environment is essential; they use various signals to do so. The study of signals and their transmission led to the discovery and the use of Bone Morphogenetic Protein (BMP). The development of cellular therapy led to the emergence of a specific field: gene therapy. It relies on viral vectors, which include: retroviruses, adenoviruses and adeno-associated vectors (AAV). Non-viral vectors include plasmids and lipoplex. Some BMP genes have successfully been transfected. The ability to control transfected cells and the capacity to combine and transfect many genes involved in osseous healing will improve gene therapy.
Collapse
Affiliation(s)
- L Myon
- Université Lille Nord de France, UDSL, 59000 Lille, France
| | | | | | | | | |
Collapse
|
27
|
Schmidt JJ, Jeong J, Kong H. The interplay between cell adhesion cues and curvature of cell adherent alginate microgels in multipotent stem cell culture. Tissue Eng Part A 2011; 17:2687-94. [PMID: 21790303 DOI: 10.1089/ten.tea.2010.0685] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cell-adherent microcarriers are increasingly used to expand multipotent stem cells on a large scale for therapeutic applications. However, the role of the microcarrier properties and geometry on the phenotypic activities of multipotent cells has not been well studied. This study presents a significant interplay of the number of cell adhesion sites and the curvature of the microcarrier in regulating cell growth and differentiation by culturing mesenchymal stem cells on alginate microgels chemically linked with oligopeptides containing the Arg-Gly-Asp (RGD) sequence. Interestingly, the cell growth rate and osteogenic differentiation level were increased with the RGD peptide density. At a given RGD peptide density, the cell growth rate was inversely related to the microgel diameter, whereas the osteogenic differentiation level was minimally influenced. The dependency of the cell growth rate on the microgel diameter was related to changes in shear stresses acting on cells according to simulation. Overall, this study identifies material variables key to regulating cellular activities on microcarriers, and these findings will be useful to designing a broad array of bioactive microcarriers.
Collapse
Affiliation(s)
- John J Schmidt
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3602, USA
| | | | | |
Collapse
|
28
|
Harris LJ, Abdollahi H, Zhang P, McIlhenny S, Tulenko TN, DiMuzio PJ. Differentiation of adult stem cells into smooth muscle for vascular tissue engineering. J Surg Res 2011; 168:306-14. [PMID: 19959190 PMCID: PMC2888621 DOI: 10.1016/j.jss.2009.08.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 07/24/2009] [Accepted: 08/04/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND Herein we evaluate the potential of adipose-derived stem cells (ASC) to differentiate into smooth muscle cells (SMC) and their potential for use in a tissue-engineered vascular graft. MATERIALS AND METHODS We isolated ASC (CD13+29+90+) from the peri-umbilical adipose tissue of patients undergoing vascular surgery, and cultured them in media containing angiotensin II (AngII), sphingosylphosphorylcholine (SPC), or transforming growth factor-beta 1 (TGFβ1) for up to 3 weeks. SMC differentiation was assessed by (1) expression of early (calponin, caldesmon) and late (myosin heavy chain, MHC) SMC markers by RT-PCR, qPCR and Western blot, and (2) contraction upon plating on collagen gel. Differentiated ASCs were seeded onto a vascular graft (decellularized saphenous vein) within a bioreactor, and cell attachment was determined using confocal microscopy. RESULTS Prior to differentiation, ASC expressed low levels of all three molecular markers. After culture in each differentiating medium, the extent of up-regulation of calponin, caldesmon, and MHC was variable across all cell lines. After seeding onto collagen gel, ASCs differentiated in SPC and TGFβ1 exhibit contractile properties, similar to smooth muscle cell controls. Differentiated stem cells adhered and proliferated on the vascular graft. CONCLUSION These data suggest that human adipose-derived stem cells (1) exhibit variable expression of SMC molecular markers after differentiation, (2) exhibit a contractile phenotype after differentiation with SPC and TGFβ1, and (3) proliferate on a vascular graft scaffold. Thus, ASCs are potentially useful in the construction of autologous arteries.
Collapse
Affiliation(s)
- Lisa J Harris
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
29
|
Wu W, Allen R, Gao J, Wang Y. Artificial niche combining elastomeric substrate and platelets guides vascular differentiation of bone marrow mononuclear cells. Tissue Eng Part A 2011; 17:1979-92. [PMID: 21449713 DOI: 10.1089/ten.tea.2010.0550] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Bone marrow-derived progenitor cells are promising cell sources for vascular tissue engineering. However, conventional bone marrow mesenchymal stem cell expansion and induction strategies require plating on tissue culture plastic, a stiff substrate that may itself influence cell differentiation. Direct scaffold seeding avoids plating on plastic; to the best of our knowledge, there is no report of any scaffold that induces the differentiation of bone marrow mononuclear cells (BMNCs) to vascular cells in vitro. In this study, we hypothesize that an elastomeric scaffold with adsorbed plasma proteins and platelets will induce differentiation of BMNCs to vascular cells and promote vascular tissue formation by combining soft tissue mechanical properties with platelet-mediated tissue repairing signals. To test our hypothesis, we directly seeded rat primary BMNCs in four types of scaffolds: poly(lactide-co-glycolide), elastomeric poly(glycerol sebacate) (PGS), platelet-poor plasma-coated PGS, and PGS coated by plasma supplemented with platelets. After 21 days of culture, osteochondral differentiation of cells in poly(lactide-co-glycolide) was detected, but most of the adhered cells on the surface of all PGS scaffolds expressed calponin-I and α-smooth muscle actin, suggesting smooth muscle differentiation. Cells in PGS scaffolds also produced significant amount of collagen and elastin. Further, plasma coating improves seeding efficiency, and platelet increases proliferation, the number of differentiated cells, and extracellular matrix content. Thus, the artificial niche composed of platelets, plasma, and PGS is promising for artery tissue engineering using BMNCs.
Collapse
Affiliation(s)
- Wei Wu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
30
|
Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 2011; 63:300-11. [PMID: 21396416 DOI: 10.1016/j.addr.2011.03.004] [Citation(s) in RCA: 683] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/09/2011] [Accepted: 03/02/2011] [Indexed: 12/11/2022]
Abstract
The main limitation in engineering in vitro tissues is the lack of a sufficient blood vessel system - the vascularization. In vivo almost all tissues are supplied by these endothelial cell coated tubular networks. Current strategies to create vascularized tissues are discussed in this review. The first strategy is based on the endothelial cells and their ability to form new vessels known as neoangiogenesis. Herein prevascularization techniques are compared to approaches in which biomolecules, such as growth factors, cytokines, peptides and proteins as well as cells are applied to generate new vessels. The second strategy is focused on scaffold-based techniques. Naturally-derived scaffolds, which contain vessels, are distinguished from synthetically manufactured matrices. Advantages and pitfalls of the approaches to create vascularized tissues in vitro are outlined and feasible future strategies are discussed.
Collapse
|
31
|
Klopsch C, Donndorf P, Kaminski A, Ma N, Steinhoff G. Zellquellen für kardiovaskuläres Tissue Engineering. Chirurg 2011; 82:295-302. [DOI: 10.1007/s00104-010-2030-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Leeper NJ, Hunter AL, Cooke JP. Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells. Circulation 2010; 122:517-26. [PMID: 20679581 DOI: 10.1161/circulationaha.109.881441] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Nicholas J Leeper
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, Calif 94305, USA
| | | | | |
Collapse
|
33
|
Saxena AK. Tissue engineering and regenerative medicine research perspectives for pediatric surgery. Pediatr Surg Int 2010; 26:557-73. [PMID: 20333389 DOI: 10.1007/s00383-010-2591-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2010] [Indexed: 01/28/2023]
Abstract
Tissue engineering and regenerative medicine research is being aggressively pursued in attempts to develop biological substitutes to replace lost tissue or organs. Remarkable degrees of success have been achieved in the generation of a variety of tissues and organs as a result of concerted contributions by multidisciplinary groups in the field of biotechnology. Engineering of an organ is a complex process which is initiated by appropriate sourcing of cells and their controlled proliferation to achieve critical numbers for seeding on biodegradable scaffolds in order to create cell-scaffold constructs, which are thereafter maintained in bioreactors to generate tissues identical to those required for replacement. Extensive efforts in understanding the characteristics of cells and their interaction with specifically tailored scaffolds holds the key to their attachment, controlled proliferation and differentiation, intercommunication, and organization to form tissues. The demand for tissue-engineered organs is enormous and this technology holds the promise to supply customized organs to overcome the severe shortages that are currently faced by the pediatric patient, especially due to organ-size mismatch. The contemporary state of tissue-engineering technology presented in this review summarizes the advances in the various areas of regenerative medicine and addresses issues that are associated with its future implementation in the pediatric surgical patient.
Collapse
Affiliation(s)
- Amulya K Saxena
- Experimental Fetal Surgery and Tissue Engineering Unit, Department of Pediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz-34, 8036, Graz, Austria.
| |
Collapse
|
34
|
Harris LJ, Zhang P, Abdollahi H, Tarola NA, DiMatteo C, McIlhenny SE, Tulenko TN, DiMuzio PJ. Availability of adipose-derived stem cells in patients undergoing vascular surgical procedures. J Surg Res 2010; 163:e105-12. [PMID: 20638677 DOI: 10.1016/j.jss.2010.04.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 03/07/2010] [Accepted: 04/15/2010] [Indexed: 01/12/2023]
Abstract
BACKGROUND Most research evaluating adipose-derived stem cells (ASC) uses tissue obtained from young, healthy patients undergoing plastic surgical procedures. Given the propensity of other adult stem cell lines to diminish with increasing patient age and co-morbidities, we assess the availability of ASC in elderly patients undergoing vascular surgical procedures, and evaluate their acquisition of endothelial cell (EC) traits to define their potential use in vascular tissue engineering. METHODS AND METHODS Adipose tissue obtained by liposuction from patients undergoing vascular procedures (n = 50) was digested with collagenase and centrifuged to remove mature adipocytes. The resultant number of cells, defined as the stromal-vascular (SV) pellet, was quantified. Following a 7-d culture period and negative selection for CD31 and CD45, the resultant number of ASC was quantified. After culture in differentiating media (EMG-2), ASCs were tested for the acquisition of endothelial-specific traits (expression of CD31, realignment in shear, cord formation on Matrigel). RESULTS The SV pellet contained 2.87 ± 0.34 × 10(5) cells/g fat, and the resultant number of ASCs obtained was 1.41 ± 0.18 × 10(5) cells/g fat. Flow cytometry revealed a homogeneous ASC population (>98% positive for CD13, 29, 90). Advanced age or co-morbidity (obesity, diabetes, renal or peripheral vascular disease) did not significantly alter yield of ASC. After culture in differentiating media (EMG-2), ASCs acquired each of the endothelial-specific traits. CONCLUSION ASC isolation appears independent of age and co-morbidities, and ASCs harvested from patients with vascular disease retain their ability to differentiate into endothelial-like cells. Adipose tissue, therefore, is a practical source of autologous, adult stem cells for vascular tissue engineering.
Collapse
Affiliation(s)
- Lisa J Harris
- Department of Surgery, Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Behavior of Human Mesenchymal Stem Cells in Fibrin-Based Vascular Tissue Engineering Constructs. Ann Biomed Eng 2010; 38:649-57. [DOI: 10.1007/s10439-010-9912-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 01/05/2010] [Indexed: 10/20/2022]
|
36
|
Liliensiek SJ, Nealey P, Murphy CJ. Characterization of endothelial basement membrane nanotopography in rhesus macaque as a guide for vessel tissue engineering. Tissue Eng Part A 2009; 15:2643-51. [PMID: 19207042 DOI: 10.1089/ten.tea.2008.0284] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Basement membranes have many features that greatly influence vascular endothelial cell function, including a complex three-dimensional topography. As a first step in the design and development of vascular prosthetics, we undertook a thorough characterization of the topographic features of endothelial vascular basement membranes utilizing transmission electron microscopy and scanning electron microscopy. Specifically, we quantitatively analyzed the topographic features present in the aorta, carotid, saphenous, and inferior vena cava vessels in the rhesus macaque. Our results indicate that vascular basement membranes are composed of a complex meshwork consisting of pores and fibers in the submicron (100-1000 nm) and nanoscale (1-100 nm) range, consistent with what has previously been reported in basement membranes of other tissues. We found significant differences (p<0.05) in basement membrane thickness and pore and fiber diameter depending on the location and physical properties of the vessel. These results have relevance to our fundamental understanding of vascular endothelial cell-matrix interactions in health and disease, evolving strategies in cell and tissue engineering and the design of cardiovascular prosthetic devices.
Collapse
Affiliation(s)
- Sara J Liliensiek
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. sjlilien@.wisc.edu
| | | | | |
Collapse
|
37
|
Karlsson LK, Junker JP, Grenegård M, Kratz G. Human Dermal Fibroblasts: A Potential Cell Source for Endothelialization of Vascular Grafts. Ann Vasc Surg 2009; 23:663-74. [DOI: 10.1016/j.avsg.2009.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 01/03/2023]
|
38
|
Serrano MC, Pagani R, Vallet-Regí M, Peña J, Comas JV, Portolés MT. Nitric oxide production by endothelial cells derived from blood progenitors cultured on NaOH-treated polycaprolactone films: A biofunctionality study. Acta Biomater 2009; 5:2045-53. [PMID: 19332384 DOI: 10.1016/j.actbio.2009.02.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 12/18/2008] [Accepted: 02/27/2009] [Indexed: 12/26/2022]
Abstract
Poly(epsilon-caprolactone) (PCL) is a biodegradable polyester whose biocompatibility has been widely demonstrated both in vivo and in vitro. In the last few years, our group has confirmed that NaOH-treated PCL films can serve as a suitable biomaterial for vascular tissue engineering by supporting the culture of primary vascular cells and, more recently, endothelial-like EC(2) cells derived from endothelial progenitor cells (EPC). In the present study, NO production in basal conditions and after stimulation with different agents has been evaluated and related to the reactive oxygen species (ROS) content and the intracellular calcium levels on EC(2) cells cultured on NaOH-treated PCL films. The results obtained demonstrate that EC(2) seeded on NaOH-treated PCL films enhance the basal NO levels and show a faster, more intense response to physiological stimuli such as VEGF, bradykinin and thrombin than vein endothelial cells (ECv). This result could be indicative of a better capacity of EC(2) cells to maintain their endothelial functionality when seeded on polymers. On the other hand, the culture of both EC(2) and ECv cells on NaOH-treated PCL films induces a significant increase in both ROS content and intracellular calcium that is balanced out through the stimulation of NO production in these cells. In conclusion, these results demonstrate the ability of NaOH-treated PCL films to support endothelial cell production of nitric oxide and reinforce the idea of considering the endothelial-like EC(2) cells derived from blood progenitors as an adequate source of endothelial cells to functionalize vascular grafts. Furthermore, NaOH-treated PCL films could be considered as a promising cellular NO production-inducing biomaterial for vascular tissue engineering applications.
Collapse
|
39
|
Muzzarelli RA. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2008.11.002] [Citation(s) in RCA: 632] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Abstract
Tissue-resident stem cells or primitive progenitors play an integral role in homeostasis of most organ systems. Recent developments in methodologies to isolate and culture embryonic and somatic stem cells have many new applications poised for clinical and preclinical trials, which will enable the potential of regenerative medicine to be realized. Here, we overview the current progress in therapeutic applications of various stem cells and discuss technical and social hurdles that must be overcome for their potential to be realized.
Collapse
Affiliation(s)
- Ali M Riazi
- Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
41
|
Serrano MC, Pagani R, Ameer GA, Vallet-Regí M, Portolés MT. Endothelial cells derived from circulating progenitors as an effective source to functional endothelialization of NaOH-treated poly(ε-caprolactone) films. J Biomed Mater Res A 2008; 87:964-71. [DOI: 10.1002/jbm.a.31728] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Stem Cell–Derived, Tissue-Engineered Pulmonary Artery Augmentation Patches In Vivo. Ann Thorac Surg 2008; 86:132-40; discussion 140-1. [DOI: 10.1016/j.athoracsur.2008.02.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 02/19/2008] [Accepted: 02/21/2008] [Indexed: 11/19/2022]
|
43
|
Kim S, von Recum H. Endothelial stem cells and precursors for tissue engineering: cell source, differentiation, selection, and application. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:133-47. [PMID: 18454639 DOI: 10.1089/teb.2007.0304] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endothelial cells are of great interest because of their potential in cell therapy for vascular diseases and ischemic tissue, tissue engineering for vascular grafts and vascularized tissue beds, and modeling for pharmaceutical transport across endothelial barriers. However, limited availability and proliferation capability of mature endothelial cells hampers development of these applications. Recent advances in stem cell technology have enabled researchers to derive endothelial or endothelial-like cells from stem cells or other precursor populations. The current state of these cell sources and their in vitro differentiation, selection, and applications are discussed in this review.
Collapse
Affiliation(s)
- Saejeong Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
44
|
Kim MJ, Kim JH, Yi G, Lim SH, Hong YS, Chung DJ. In vitro andin vivo application of PLGA nanofiber for artificial blood vessel. Macromol Res 2008. [DOI: 10.1007/bf03218527] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Stegemann JP, Kaszuba SN, Rowe SL. Review: advances in vascular tissue engineering using protein-based biomaterials. ACTA ACUST UNITED AC 2008; 13:2601-13. [PMID: 17961004 DOI: 10.1089/ten.2007.0196] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The clinical need for improved blood vessel substitutes, especially in small-diameter applications, drives the field of vascular tissue engineering. The blood vessel has a well-characterized structure and function, but it is a complex tissue, and it has proven difficult to create engineered tissues that are suitable for widespread clinical use. This review is focused on approaches to vascular tissue engineering that use proteins as the primary matrix or "scaffold" material for creating fully biological blood vessel replacements. In particular, this review covers four main approaches to vascular tissue engineering: 1) cell-populated protein hydrogels, 2) cross-linked protein scaffolds, 3) decellularized native tissues, and 4) self-assembled scaffolds. Recent advances in each of these areas are discussed, along with advantages of and drawbacks to these approaches. The first fully biological engineered blood vessels have entered clinical trials, but important challenges remain before engineered vascular tissues will have a wide clinical effect. Cell sourcing and recapitulating the biological and mechanical function of the native blood vessel continue to be important outstanding hurdles. In addition, the path to commercialization for such tissues must be better defined. Continued progress in several complementary approaches to vascular tissue engineering is necessary before blood vessel substitutes can achieve their full potential in improving patient care.
Collapse
Affiliation(s)
- Jan P Stegemann
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, NY 12180, USA.
| | | | | |
Collapse
|
46
|
O'Cearbhaill ED, Punchard MA, Murphy M, Barry FP, McHugh PE, Barron V. Response of mesenchymal stem cells to the biomechanical environment of the endothelium on a flexible tubular silicone substrate. Biomaterials 2008; 29:1610-9. [PMID: 18194813 DOI: 10.1016/j.biomaterials.2007.11.042] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 11/28/2007] [Indexed: 12/21/2022]
Abstract
Understanding the response of mesenchymal stem cells (MSCs) to forces in the vasculature is very important in the field of cardiovascular intervention for a number of reasons. These include the development of MSC seeded tissue engineered vascular grafts, targeted or systemic delivery of MSCs in the dynamic environment of the coronary artery and understanding the potential pathological calcifying role of mechanically conditioned multipotent cells already present in the vessel wall. In vivo, cells present in the coronary artery are exposed to the primary biomechanical forces of shear stress, radial stress and hoop stress. To date, many studies have examined the effect of these stresses in isolation, thereby not presenting the complete picture. Therefore, the main aim of this study is to examine the combined role of these stresses on MSC behaviour. To this end, a bioreactor was configured to expose MSCs seeded on flexible silicone substrates to physiological forces - namely, a pulsatile pressure between 40 and 120mmHg (5.33-1.6x10(4)Pa), radial distention of 5% and a shear stress of 10dyn/cm(2) (1Pa) at frequency of 1Hz for up to 24h. Thereafter, the 'pseudovessel' was assessed for changes in morphology, orientation and expression of endothelial and smooth muscle cell (SMC) specific markers. Hematoxylin and eosin (H&E) staining revealed that MSCs exhibit a similar mechanosensitive response to that of endothelial cells (ECs); they reorientate parallel with direction of flow and have adapted their morphology to be similar to that of ECs. However, gene expression results show the cells exhibit greater levels of SMC-associated markers alpha-smooth muscle actin and calponin (p<0.05).
Collapse
Affiliation(s)
- Eoin D O'Cearbhaill
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
47
|
Feng J, Chan-Park MB, Shen J, Chan V. Quick layer-by-layer assembly of aligned multilayers of vascular smooth muscle cells in deep microchannels. ACTA ACUST UNITED AC 2007; 13:1003-12. [PMID: 17316132 DOI: 10.1089/ten.2006.0223] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
One of the main challenges in vascular tissue engineering has been mimicking the complex native three-dimensional (3D) architecture of smooth muscle cells (SMCs). In the current study, we performed layer-by-layer (LBL) seeding of SMCs in a microchanneled scaffold, with or without interleaving a thin layer of collagen type I hydrogel, toward fabricating the 3D microarchitecture. This LBL process avoids the "steric hindrance" effect observed in direct 3D culture of SMCs in collagen hydrogel. More importantly, the LBL process enables the building up of multilayers of aligned and confluent SMCs. Within each layer, the SMCs as well as the SMC F-actin and alpha-actin filaments align along the direction of the scaffold microchannels, which would potentially improve the tensile and contractile strength of the tissue engineered construct, desirable properties for an engineered vasculature. In addition, rapid two-dimensional (2D) patterning of SMCs is possible with high seeding density, which makes the LBL method feasible for fabrication of multilayered structures in a short time, rendering it useful in clinical therapeutic applications.
Collapse
Affiliation(s)
- Jie Feng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | | | | | | |
Collapse
|
48
|
Zampetaki A, Zeng L, Xiao Q, Margariti A, Hu Y, Xu Q. Lacking cytokine production in ES cells and ES-cell-derived vascular cells stimulated by TNF-alpha is rescued by HDAC inhibitor trichostatin A. Am J Physiol Cell Physiol 2007; 293:C1226-38. [PMID: 17626239 DOI: 10.1152/ajpcell.00152.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation and TNF-alpha signaling play a central role in most of the pathological conditions where cell transplantation could be applied. As shown by initial experiments, embryonic stem (ES) cells and ES-cell derived vascular cells express very low levels of TNF-alpha receptor I (TNFRp55) and thus do not induce cytokine expression in response to TNF-alpha stimulation. Transient transfection analysis of wild-type or deletion variants of the TNFRp55 gene promoter showed a strong activity for a 250-bp fragment in the upstream region of the gene. This activity was abolished by mutations targeting the Sp1/Sp3 or AP1 binding sites. Moreover, treatment with trichostatin A (TSA) led to a pronounced increase in TNFRp55 mRNA and promoter activity. Overexpression of Sp1 or c-fos further enhanced the TSA-induced luciferase activity, and this response was attenuated by Sp3 or c-jun coexpression. Additional experiments revealed that TSA did not affect the Sp1/Sp3 ratio but caused transcriptional activation of the c-fos gene. Thus, we provide the first evidence that ES and ES-cell-derived vascular cells lack cytokine expression in response to TNF-alpha stimulation due to low levels of c-fos and transcriptional activation of Sp1 that can be regulated by inhibition of histone deacetylase activity.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Line
- Cells, Cultured
- Cytokines/genetics
- Embryonic Stem Cells/cytology
- Embryonic Stem Cells/drug effects
- Embryonic Stem Cells/metabolism
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Enzyme Inhibitors/pharmacology
- Gene Expression/drug effects
- Histone Deacetylase Inhibitors
- Histone Deacetylases/metabolism
- Hydroxamic Acids/pharmacology
- Interleukin-6/genetics
- Mice
- Mutation
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- Proto-Oncogene Proteins c-jun/genetics
- RNA, Small Interfering/genetics
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sp1 Transcription Factor/genetics
- Sp3 Transcription Factor/genetics
- Transfection
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Anna Zampetaki
- Cardiovascular Division, School of Medicine, King's College London, James Black Centre, London, UK.
| | | | | | | | | | | |
Collapse
|
49
|
DiMuzio P, Tulenko T. Tissue engineering applications to vascular bypass graft development: the use of adipose-derived stem cells. J Vasc Surg 2007; 45 Suppl A:A99-103. [PMID: 17544030 PMCID: PMC1941665 DOI: 10.1016/j.jvs.2007.02.046] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 02/16/2007] [Indexed: 12/15/2022]
Abstract
The burgeoning field of vascular tissue engineering holds promise for the creation of a practical and successful small-diameter arterial bypass graft. Many creative combinations of autologous cells and scaffolds exist along with an equally long list of microenvironmental cues used to create a functional arterial conduit. This review outlines our work using abdominal wall fat as a source of autologous stem cells for vascular tissue engineering, focusing specifically on this stem cell's availability and potency to differentiate into endothelial-like cells. In a series of 49 patients undergoing elective peripheral vascular surgery, an abundant quantity of adult stem cells was harvested from fat obtained by liposuction. The efficacy of the isolation did not appear influenced by advanced age, obesity, renal failure, or vascular disease, although fat from diabetic patients yielded significantly less stem cells. In addition, these adipose-derived stem cells acquired several morphologic and molecular endothelial phenotypes when exposed to growth factors (endothelial cell growth supplement and vascular endothelial growth factor) and physiologic shear stress in vitro. Taken together, these studies suggest that fat appears to be a viable source of autologous stem cells for use in vascular tissue engineering.
Collapse
Affiliation(s)
- Paul DiMuzio
- Division of Vascular Surgery, Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA.
| | | |
Collapse
|
50
|
Pasquinelli G, Tazzari PL, Vaselli C, Foroni L, Buzzi M, Storci G, Alviano F, Ricci F, Bonafè M, Orrico C, Bagnara GP, Stella A, Conte R. Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells 2007; 25:1627-34. [PMID: 17446560 DOI: 10.1634/stemcells.2006-0731] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The clinical use of endothelial progenitor cells is hampered by difficulties in obtaining an adequate number of functional progenitors. This study aimed to establish whether human thoracic aortas harvested from healthy multiorgan donors can be a valuable source of angiogenic progenitors. Immunohistochemical tissue studies showed that two distinct cell populations with putative stem cell capabilities, one composed of CD34+ cells and the other of c-kit+ cells, are present in between the media and adventitia of human thoracic aortas. Ki-67+ cells with high growth potential were located in an area corresponding to the site of CD34+ and c-kit+ cell residence. We thus isolated cells (0.5 approximately 2.0 x 10(4) aortic progenitors per 25 cm2) which, upon culturing, coexpressed molecules of mesenchymal stromal cells (i.e., CD44+, CD90+, CD105+) and showed a transcript expression of stem cell markers (e.g., OCT4, c-kit, BCRP-1, Interleukin-6) and BMI-1. Cell expansion was adequate for use in a clinical setting. A subset of cultured cells acquired the phenotype of endothelial cells in the presence of vascular endothelial growth factor (e.g., increased expression of KDR and von Willebrand factor positivity), as documented by flow cytometry, immunofluorescence, electron microscopy, and reverse transcription-polymerase chain reaction assays. An in vitro angiogenesis test kit revealed that cells were able to form capillary-like structures within 6 hours of seeding. This study demonstrates that thoracic aortas from multiorgan donors yield mesenchymal stromal cells with the ability to differentiate in vitro into endothelial cells. These cells can be used for the creation of an allogenic bank of angiogenic progenitors, thus providing new options for restoring vascularization at ischemic sites. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
|