1
|
Bond A, Bruno V, Johnson J, George S, Ascione R. Development and Preliminary Testing of Porcine Blood-Derived Endothelial-like Cells for Vascular Tissue Engineering Applications: Protocol Optimisation and Seeding of Decellularised Human Saphenous Veins. Int J Mol Sci 2022; 23:ijms23126633. [PMID: 35743073 PMCID: PMC9223800 DOI: 10.3390/ijms23126633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 12/03/2022] Open
Abstract
Functional endothelial cells (EC) are a critical interface between blood vessels and the thrombogenic flowing blood. Disruption of this layer can lead to early thrombosis, inflammation, vessel restenosis, and, following coronary (CABG) or peripheral (PABG) artery bypass graft surgery, vein graft failure. Blood-derived ECs have shown potential for vascular tissue engineering applications. Here, we show the development and preliminary testing of a method for deriving porcine endothelial-like cells from blood obtained under clinical conditions for use in translational research. The derived cells show cobblestone morphology and expression of EC markers, similar to those seen in isolated porcine aortic ECs (PAEC), and when exposed to increasing shear stress, they remain viable and show mRNA expression of EC markers similar to PAEC. In addition, we confirm the feasibility of seeding endothelial-like cells onto a decellularised human vein scaffold with approximately 90% lumen coverage at lower passages, and show that increasing cell passage results in reduced endothelial coverage.
Collapse
|
2
|
Exploring Endothelial Colony-Forming Cells to Better Understand the Pathophysiology of Disease: An Updated Review. Stem Cells Int 2022; 2022:4460041. [PMID: 35615696 PMCID: PMC9126670 DOI: 10.1155/2022/4460041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial cell (EC) dysfunction has been implicated in a variety of pathological conditions. The collection of ECs from patients is typically conducted postmortem or through invasive procedures, such as surgery and interventional procedures, hampering efforts to clarify the role of ECs in disease onset and progression. In contrast, endothelial colony-forming cells (ECFCs), also termed late endothelial progenitor cells, late outgrowth endothelial cells, blood outgrowth endothelial cells, or endothelial outgrowth cells, are obtained in a minimally invasive manner, namely, by the culture of human peripheral blood mononuclear cells in endothelial growth medium. ECFCs resemble mature ECs phenotypically, genetically, and functionally, making them excellent surrogates for ECs. Numerous studies have been performed that examined ECFC function in conditions such as coronary artery disease, diabetes mellitus, hereditary hemorrhagic telangiectasia, congenital bicuspid aortic valve disease, pulmonary arterial hypertension, venous thromboembolic disease, and von Willebrand disease. Here, we provide an updated review of studies using ECFCs that were performed to better understand the pathophysiology of disease. We also discuss the potential of ECFCs as disease biomarkers and the standardized methods to culture, quantify, and evaluate ECFCs and suggest the future direction of research in this field.
Collapse
|
3
|
Sen A, Thakkar H, Vincent V, Rai S, Singh A, Mohanty S, Roy A, Ramakrishnan L. Endothelial colony forming cells' tetrahydrobiopterin level in coronary artery disease patients and its association with circulating endothelial progenitor cells. Can J Physiol Pharmacol 2022; 100:473-485. [PMID: 35180005 DOI: 10.1139/cjpp-2021-0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial colony forming cells (ECFCs) participate in neovascularization. Endothelial nitric oxide synthase (eNOS) derived NO· helps in homing of endothelial progenitor cells (EPCs) at the site of vascular injury. The enzyme cofactor tetrahydrobiopterin (BH4) stabilizes the catalytic active state of eNOS. Association of intracellular ECFCs biopterins and ratio of reduced to oxidized biopterin (BH4:BH2) with circulatory EPCs and ECFCs functionality have not been studied. We investigated ECFCs biopterin levels and its association with circulatory EPCs as well as ECFCs proliferative potential in terms of day of appearance in culture. Circulatory EPCs were enumerated by flowcytometry in 53 coronary artery disease (CAD) patients and 42 controls. ECFCs were cultured, characterized, and biopterin levels assessed by high performance liquid chromatography. Appearance of ECFCs' colony and their number were recorded. Circulatory EPCs were significantly lower in CAD and ECFCs appeared in 56% and 33% of CAD and control subjects, respectively. Intracellular BH4 and BH4:BH2 were significantly reduced in CAD. BH4:BH2 was positively correlated with circulatory EPCs (p = 0.01), and negatively with day of appearance of ECFCs (p = 0.04). Circulatory EPCs negatively correlated with ECFCs appearance (p = 0.02). These findings suggest the role of biopterins in maintaining circulatory EPCs and functional integrity of ECFCs.
Collapse
Affiliation(s)
- Atanu Sen
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Himani Thakkar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vinnyfred Vincent
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Rai
- Department of Laboratory Oncology, Institute of Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Center of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, India
| | - Ambuj Roy
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Sen A, Singh A, Roy A, Mohanty S, Naik N, Kalaivani M, Ramakrishnan L. Role of endothelial colony forming cells (ECFCs) Tetrahydrobiopterin (BH4) in determining ECFCs functionality in coronary artery disease (CAD) patients. Sci Rep 2022; 12:3076. [PMID: 35197509 PMCID: PMC8866483 DOI: 10.1038/s41598-022-06758-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/31/2022] [Indexed: 01/05/2023] Open
Abstract
Nitric oxide (NO.) is critical for functionality of endothelial colony forming cells (ECFCs). Dimerization of endothelial nitric oxide synthase (eNOS) is must to produce NO. and tetrahydrobiopterin (BH4) plays a crucial role in stabilizing this state. We investigated BH4 level in ECFCs and its effect on ECFCs functionality in CAD patients. Intracellular biopterin levels and ECFCs functionality in terms of cell viability, adhesion, proliferation, in vitro wound healing and angiogenesis were assessed. Guanosine Triphosphate Cyclohydrolase-1 (GTPCH-1) expression was studied in ECFCs. Serum total reactive oxygen/nitrogen species was measured and effect of nitrosative stress on ECFC's biopterins level and functionality were evaluated by treating with 3-morpholino sydnonimine (SIN-1). BH4 level was significantly lower in ECFCs from CAD patients. Cell proliferation, wound closure reflecting cellular migration as well as in vitro angiogenesis were impaired in ECFCs from CAD patients. Wound healing capacity and angiogenesis were positively correlated with ECFC's BH4. A negative effect of nitrosative stress on biopterins level and cell functionality was observed in SIN-1 treated ECFCs. ECFCs from CAD exhibited impaired functionality and lower BH4 level. Association of BH4 with wound healing capacity and angiogenesis suggest its role in maintaining ECFC's functionality. Oxidative stress may be a determinant of intracellular biopterin levels.
Collapse
Affiliation(s)
- Atanu Sen
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ambuj Roy
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Mohanty
- Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, India
| | - Nitish Naik
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Mani Kalaivani
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
5
|
Patient Endothelial Colony-Forming Cells to Model Coronary Artery Disease Susceptibility and Unravel the Role of Dysregulated Mitochondrial Redox Signalling. Antioxidants (Basel) 2021; 10:antiox10101547. [PMID: 34679682 PMCID: PMC8532880 DOI: 10.3390/antiox10101547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/02/2023] Open
Abstract
Mechanisms involved in the individual susceptibility to atherosclerotic coronary artery disease (CAD) beyond traditional risk factors are poorly understood. Here, we describe the utility of cultured patient-derived endothelial colony-forming cells (ECFCs) in examining novel mechanisms of CAD susceptibility, particularly the role of dysregulated redox signalling. ECFCs were selectively cultured from peripheral blood mononuclear cells from 828 patients from the BioHEART-CT cohort, each with corresponding demographic, clinical and CT coronary angiographic imaging data. Spontaneous growth occurred in 178 (21.5%) patients and was more common in patients with hypertension (OR 1.45 (95% CI 1.03-2.02), p = 0.031), and less likely in patients with obesity (OR 0.62 [95% CI 0.40-0.95], p = 0.027) or obstructive CAD (stenosis > 50%) (OR 0.60 [95% CI 0.38-0.95], p = 0.027). ECFCs from patients with CAD had higher mitochondrial production of superoxide (O2--MitoSOX assay). The latter was strongly correlated with the severity of CAD as measured by either coronary artery calcium score (R2 = 0.46; p = 0.0051) or Gensini Score (R2 = 0.67; p = 0.0002). Patient-derived ECFCs were successfully cultured in 3D culture pulsatile mini-vessels. Patient-derived ECFCs can provide a novel resource for discovering mechanisms of CAD disease susceptibility, particularly in relation to mitochondrial redox signalling.
Collapse
|
6
|
Seiffert N, Tang P, Keshi E, Reutzel-Selke A, Moosburner S, Everwien H, Wulsten D, Napierala H, Pratschke J, Sauer IM, Hillebrandt KH, Struecker B. In vitro recellularization of decellularized bovine carotid arteries using human endothelial colony forming cells. J Biol Eng 2021; 15:15. [PMID: 33882982 PMCID: PMC8059238 DOI: 10.1186/s13036-021-00266-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/07/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Many patients suffering from peripheral arterial disease (PAD) are dependent on bypass surgery. However, in some patients no suitable replacements (i.e. autologous or prosthetic bypass grafts) are available. Advances have been made to develop autologous tissue engineered vascular grafts (TEVG) using endothelial colony forming cells (ECFC) obtained by peripheral blood draw in large animal trials. Clinical translation of this technique, however, still requires additional data for usability of isolated ECFC from high cardiovascular risk patients. Bovine carotid arteries (BCA) were decellularized using a combined SDS (sodium dodecyl sulfate) -free mechanical-osmotic-enzymatic-detergent approach to show the feasibility of xenogenous vessel decellularization. Decellularized BCA chips were seeded with human ECFC, isolated from a high cardiovascular risk patient group, suffering from diabetes, hypertension and/or chronic renal failure. ECFC were cultured alone or in coculture with rat or human mesenchymal stromal cells (rMSC/hMSC). Decellularized BCA chips were evaluated for biochemical, histological and mechanical properties. Successful isolation of ECFC and recellularization capabilities were analyzed by histology. RESULTS Decellularized BCA showed retained extracellular matrix (ECM) composition and mechanical properties upon cell removal. Isolation of ECFC from the intended target group was successfully performed (80% isolation efficiency). Isolated cells showed a typical ECFC-phenotype. Upon recellularization, co-seeding of patient-isolated ECFC with rMSC/hMSC and further incubation was successful for 14 (n = 9) and 23 (n = 5) days. Reendothelialization (rMSC) and partial reendothelialization (hMSC) was achieved. Seeded cells were CD31 and vWF positive, however, human cells were detectable for up to 14 days in xenogenic cell-culture only. Seeding of ECFC without rMSC was not successful. CONCLUSION Using our refined decellularization process we generated easily obtainable TEVG with retained ECM- and mechanical quality, serving as a platform to develop small-diameter (< 6 mm) TEVG. ECFC isolation from the cardiovascular risk target group is possible and sufficient. Survival of diabetic ECFC appears to be highly dependent on perivascular support by rMSC/hMSC under static conditions. ECFC survival was limited to 14 days post seeding.
Collapse
Affiliation(s)
- Nicolai Seiffert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.,Department for Trauma and Orthopedic Surgery, Vivantes-Hospital Spandau, Berlin, Germany
| | - Peter Tang
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Eriselda Keshi
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Anja Reutzel-Selke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Simon Moosburner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hannah Everwien
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Dag Wulsten
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hendrik Napierala
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Johann Pratschke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Igor M Sauer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Karl H Hillebrandt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Benjamin Struecker
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany.,Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| |
Collapse
|
7
|
Yang G, Mahadik B, Choi JY, Fisher JP. Vascularization in tissue engineering: fundamentals and state-of-art. ACTA ACUST UNITED AC 2020; 2. [PMID: 34308105 DOI: 10.1088/2516-1091/ab5637] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascularization is among the top challenges that impede the clinical application of engineered tissues. This challenge has spurred tremendous research endeavor, defined as vascular tissue engineering (VTE) in this article, to establish a pre-existing vascular network inside the tissue engineered graft prior to implantation. Ideally, the engineered vasculature can be integrated into the host vasculature via anastomosis to supply nutrient to all cells instantaneously after surgery. Moreover, sufficient vascularization is of great significance in regenerative medicine from many other perspectives. Due to the critical role of vascularization in successful tissue engineering, we aim to provide an up-to-date overview of the fundamentals and VTE strategies in this article, including angiogenic cells, biomaterial/bio-scaffold design and bio-fabrication approaches, along with the reported utility of vascularized tissue complex in regenerative medicine. We will also share our opinion on the future perspective of this field.
Collapse
Affiliation(s)
- Guang Yang
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| | - Bhushan Mahadik
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| | - Ji Young Choi
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America
| | - John P Fisher
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| |
Collapse
|
8
|
Mathur T, Singh KA, R Pandian NK, Tsai SH, Hein TW, Gaharwar AK, Flanagan JM, Jain A. Organ-on-chips made of blood: endothelial progenitor cells from blood reconstitute vascular thromboinflammation in vessel-chips. LAB ON A CHIP 2019; 19:2500-2511. [PMID: 31246211 PMCID: PMC6650325 DOI: 10.1039/c9lc00469f] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Development of therapeutic approaches to treat vascular dysfunction and thrombosis at disease- and patient-specific levels is an exciting proposed direction in biomedical research. However, this cannot be achieved with animal preclinical models alone, and new in vitro techniques, like human organ-on-chips, currently lack inclusion of easily obtainable and phenotypically-similar human cell sources. Therefore, there is an unmet need to identify sources of patient primary cells and apply them in organ-on-chips to increase personalized mechanistic understanding of diseases and to assess drugs. In this study, we provide a proof-of-feasibility of utilizing blood outgrowth endothelial cells (BOECs) as a disease-specific primary cell source to analyze vascular inflammation and thrombosis in vascular organ-chips or "vessel-chips". These blood-derived BOECs express several factors that confirm their endothelial identity. The vessel-chips are cultured with BOECs from healthy or diabetic patients and form an intact 3D endothelial lumen. Inflammation of the BOEC endothelium with exogenous cytokines reveals vascular dysfunction and thrombosis in vitro similar to in vivo observations. Interestingly, our study with vessel-chips also reveals that unstimulated BOECs of type 1 diabetic pigs show phenotypic behavior of the disease - high vascular dysfunction and thrombogenicity - when compared to control BOECs or normal primary endothelial cells. These results demonstrate the potential of organ-on-chips made from autologous endothelial cells obtained from blood in modeling vascular pathologies and therapeutic outcomes at a disease and patient-specific level.
Collapse
Affiliation(s)
- Tanmay Mathur
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, College Station, TX 77843, USA.
| | - Kanwar Abhay Singh
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, College Station, TX 77843, USA.
| | - Navaneeth K R Pandian
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, College Station, TX 77843, USA.
| | - Shu-Huai Tsai
- Department of Medical Physiology, Texas A&M University System Health Science Center, Temple, USA
| | - Travis W Hein
- Department of Medical Physiology, Texas A&M University System Health Science Center, Temple, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, College Station, TX 77843, USA. and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, USA and Department of Materials Science and Engineering, Texas A&M University, College Station, USA
| | - Jonathan M Flanagan
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, College Station, TX 77843, USA.
| |
Collapse
|
9
|
Ardila DC, Liou JJ, Maestas D, Slepian MJ, Badowski M, Wagner WR, Harris D, Vande Geest JP. Surface Modification of Electrospun Scaffolds for Endothelialization of Tissue-Engineered Vascular Grafts Using Human Cord Blood-Derived Endothelial Cells. J Clin Med 2019; 8:E185. [PMID: 30720769 PMCID: PMC6416564 DOI: 10.3390/jcm8020185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering has gained attention as an alternative approach for developing small diameter tissue-engineered vascular grafts intended for bypass surgery, as an option to treat coronary heart disease. To promote the formation of a healthy endothelial cell monolayer in the lumen of the graft, polycaprolactone/gelatin/fibrinogen scaffolds were developed, and the surface was modified using thermoforming and coating with collagen IV and fibronectin. Human cord blood-derived endothelial cells (hCB-ECs) were seeded onto the scaffolds and the important characteristics of a healthy endothelial cell layer were evaluated under static conditions using human umbilical vein endothelial cells as a control. We found that polycaprolactone/gelatin/fibrinogen scaffolds that were thermoformed and coated are the most suitable for endothelial cell growth. hCB-ECs can proliferate, produce endothelial nitric oxide synthase, respond to interleukin 1 beta, and reduce platelet deposition.
Collapse
Affiliation(s)
| | - Jr-Jiun Liou
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - David Maestas
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Marvin J Slepian
- Sarver Heart Center, The University of Arizona, Tucson, AZ 85721, USA.
- The Arizona Center for Accelerated BioMedical Innovation, University of Arizona, Tucson, AZ 85721, USA.
- BIO5 Institute for Biocollaborative Research, The University of Arizona, Tucson, AZ 85721, USA.
- Interventional Cardiology, University of Arizona, Tucson, AZ 85721, USA.
| | - Michael Badowski
- Arizona Health Science Center Biorepository, University of Arizona, Tucson, AZ 85724, USA.
| | - William R. Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - David Harris
- Arizona Health Science Center Biorepository, University of Arizona, Tucson, AZ 85724, USA.
- Department of Immunobiology, Arizona Health Science Center Biorepository, University of Arizona, Tucson, AZ 85724, USA.
| | - Jonathan P Vande Geest
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
10
|
Wang K, Lin RZ, Melero-Martin JM. Bioengineering human vascular networks: trends and directions in endothelial and perivascular cell sources. Cell Mol Life Sci 2019; 76:421-439. [PMID: 30315324 PMCID: PMC6349493 DOI: 10.1007/s00018-018-2939-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022]
Abstract
Tissue engineering holds great promise in regenerative medicine. However, the field of tissue engineering faces a myriad of difficulties. A major challenge is the necessity to integrate vascular networks into bioengineered constructs to enable physiological functions including adequate oxygenation, nutrient delivery, and removal of waste products. The last two decades have seen remarkable progress in our collective effort to bioengineer human-specific vascular networks. Studies have included both in vitro and in vivo investigations, and multiple methodologies have found varying degrees of success. What most approaches to bioengineer human vascular networks have in common, however, is the synergistic use of both (1) endothelial cells (ECs)-the cells used to line the lumen of the vascular structures and (2) perivascular cells-usually used to support EC function and provide perivascular stability to the networks. Here, we have highlighted trends in the use of various cellular sources over the last two decades of vascular network bioengineering research. To this end, we comprehensively reviewed all life science and biomedical publications available at the MEDLINE database up to 2018. Emphasis was put on selective studies that definitively used human ECs and were specifically related to bioengineering vascular networks. To facilitate this analysis, all papers were stratified by publication year and then analyzed according to their use of EC and perivascular cell types. This study provides an illustrating discussion on how each alternative source of cells has come to be used in the field. Our intention was to reveal trends and to provide new insights into the trajectory of vascular network bioengineering with regard to cellular sources.
Collapse
Affiliation(s)
- Kai Wang
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Ruei-Zeng Lin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
11
|
Chu HR, Sun YC, Gao Y, Guan XM, Yan H, Cui XD, Zhang XY, Li X, Li H, Cheng M. Function of Krüppel‑like factor 2 in the shear stress‑induced cell differentiation of endothelial progenitor cells to endothelial cells. Mol Med Rep 2019; 19:1739-1746. [PMID: 30628700 DOI: 10.3892/mmr.2019.9819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 10/15/2018] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to evaluate the effects of Krüppel‑like factor 2 (KLF2) on the differentiation of endothelial progenitor cells (EPCs) to endothelial cells (ECs) induced by shear stress, and to investigate the corresponding mechanisms. Cultured rat late EPCs were exposed to shear stress (12 dyn/cm2) for different lengths of time. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was used to measure the initial KLF2 mRNA levels in each group. Subsequently, the EPCs were treated with anti‑integrin β1 or β3 antibodies to block integrin β1 and β3, respectively, or cytochalasin D to destroy F‑actin, and the subsequent expression levels of KLF2 in EPCs were measured. Then, KLF2 small interfering RNAs (siRNAs) were transfected into EPCs, and RT‑qPCR was used to measure the mRNA expression level of KLF2. Additionally, flow cytometry was applied to evaluate the protein levels of cluster of differentiation 31 (CD31) and the von Willebrand factor (vWF), and the regulatory effects of KLF2 in the promoter region of vWF were determined via a luciferase assay. High shear stress upregulated KLF2 expression, while blocking integrin β1/β3 or destroying F‑actin resulted in a corresponding decrease in KLF2 expression. Downregulation of KLF2 expression by siKLF2 inhibited the differentiation of EPCs to ECs under shear stress conditions, while the expression of EC‑specific markers decreased, including CD31 and vWF. Various lengths of the vWF promoter region induced vWF expression, and EPCs co‑transfected with KLF2 significantly increased the vWF expression levels compared with the group treated with vWF alone (P<0.01). In conclusion, shear stress may upregulate KLF2 expression, which may be associated with the integrin‑actin cytoskeleton system. Most importantly, the shear stress‑induced differentiation of EPCs may be mediated by KLF2.
Collapse
Affiliation(s)
- Hai-Rong Chu
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yu-Cong Sun
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yu Gao
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiu-Mei Guan
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Hong Yan
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiao-Dong Cui
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiao-Yun Zhang
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xin Li
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Hong Li
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Min Cheng
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
12
|
Paschalaki KE, Randi AM. Recent Advances in Endothelial Colony Forming Cells Toward Their Use in Clinical Translation. Front Med (Lausanne) 2018; 5:295. [PMID: 30406106 PMCID: PMC6205967 DOI: 10.3389/fmed.2018.00295] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022] Open
Abstract
The term “Endothelial progenitor cell” (EPC) has been used to describe multiple cell populations that express endothelial surface makers and promote vascularisation. However, the only population that has all the characteristics of a real “EPC” is the Endothelial Colony Forming Cells (ECFC). ECFC possess clonal proliferative potential, display endothelial and not myeloid cell surface markers, and exhibit pronounced postnatal vascularisation ability in vivo. ECFC have been used to investigate endothelial molecular dysfunction in several diseases, as they give access to endothelial cells from patients in a non-invasive way. ECFC also represent a promising tool for revascularization of damaged tissue. Here we review the translational applications of ECFC research. We discuss studies which have used ECFC to investigate molecular endothelial abnormalities in several diseases and review the evidence supporting the use of ECFC for autologous cell therapy, gene therapy and tissue regeneration. Finally, we discuss ways to improve the therapeutic efficacy of ECFC in clinical applications, as well as the challenges that must be overcome to use ECFC in clinical trials for regenerative approaches.
Collapse
Affiliation(s)
- Koralia E Paschalaki
- Vascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Anna M Randi
- Vascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Diaz Quiroz JF, Rodriguez PD, Erndt-Marino JD, Guiza V, Balouch B, Graf T, Reichert WM, Russell B, Höök M, Hahn MS. Collagen-Mimetic Proteins with Tunable Integrin Binding Sites for Vascular Graft Coatings. ACS Biomater Sci Eng 2018; 4:2934-2942. [DOI: 10.1021/acsbiomaterials.8b00070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Juan Felipe Diaz Quiroz
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Patricia Diaz Rodriguez
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Josh D. Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Viviana Guiza
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Bailey Balouch
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Tyler Graf
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - William M. Reichert
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Brooke Russell
- Institute of Biosciences and Technology, Texas A&M Health Science Center, College Station, Texas 77843, United States
| | - Magnus Höök
- Institute of Biosciences and Technology, Texas A&M Health Science Center, College Station, Texas 77843, United States
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
14
|
Point-of-Care Rapid-Seeding Ventricular Assist Device with Blood-Derived Endothelial Cells to Create a Living Antithrombotic Coating. ASAIO J 2017; 62:447-53. [PMID: 26809085 DOI: 10.1097/mat.0000000000000351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The most promising alternatives to heart transplantation are left ventricular assist devices and artificial hearts; however, their use has been limited by thrombotic complications. To reduce these, sintered titanium (Ti) surfaces were developed, but thrombosis still occurs in approximately 7.5% of patients. We have invented a rapid-seeding technology to minimize the risk of thrombosis by rapid endothelialization of sintered Ti with human cord blood-derived endothelial cells (hCB-ECs). Human cord blood-derived endothelial cells were seeded within minutes onto sintered Ti and exposed to thrombosis-prone low fluid flow shear stresses. The hCB-ECs adhered and formed a confluent endothelial monolayer on sintered Ti. The exposure of sintered Ti to 4.4 dynes/cm for 20 hr immediately after rapid seeding resulted in approximately 70% cell adherence. The cell adherence was not significantly increased by additional ex vivo static culture of rapid-seeded sintered Ti before flow exposure. In addition, adherent hCB-ECs remained functional on sintered Ti, as indicated by flow-induced increase in nitric oxide secretion and reduction in platelet adhesion. After 15 day ex vivo static culture, the adherent hCB-ECs remained metabolically active, expressed endothelial cell functional marker thrombomodulin, and reduced platelet adhesion. In conclusion, our results demonstrate the feasibility of rapid-seeding sintered Ti with blood-derived hCB-ECs to generate a living antithrombotic surface.
Collapse
|
15
|
Seeto WJ, Tian Y, Winter RL, Caldwell FJ, Wooldridge AA, Lipke EA. Encapsulation of Equine Endothelial Colony Forming Cells in Highly Uniform, Injectable Hydrogel Microspheres for Local Cell Delivery. Tissue Eng Part C Methods 2017; 23:815-825. [DOI: 10.1089/ten.tec.2017.0233] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Wen J. Seeto
- Department of Chemical Engineering, Auburn University, Auburn, Alabama
| | - Yuan Tian
- Department of Chemical Engineering, Auburn University, Auburn, Alabama
| | - Randolph L. Winter
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Fred J. Caldwell
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Anne A. Wooldridge
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | | |
Collapse
|
16
|
Munoz-Pinto DJ, Erndt-Marino JD, Becerra-Bayona SM, Guiza-Arguello VR, Samavedi S, Malmut S, Reichert WM, Russell B, Höök M, Hahn MS. Evaluation of late outgrowth endothelial progenitor cell and umbilical vein endothelial cell responses to thromboresistant collagen-mimetic hydrogels. J Biomed Mater Res A 2017; 105:1712-1724. [PMID: 28218444 DOI: 10.1002/jbm.a.36045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/01/2017] [Accepted: 02/16/2017] [Indexed: 01/01/2023]
Abstract
Bioactive coatings which support the adhesion of late-outgrowth peripheral blood endothelial progenitor cells (EOCs) are actively being investigated as a means to promote rapid endothelialization of "off-the-shelf," small-caliber arterial graft prostheses following implantation. In the present work, we evaluated the behavior of EOCs on thromboresistant graft coatings based on the collagen-mimetic protein Scl2-2 and poly(ethylene glycol) (PEG) diacrylate. Specifically, the attachment, proliferation, migration, and phenotype of EOCs on PEG-Scl2-2 hydrogels were evaluated as a function of Scl2-2 concentration (4, 8, and 12 mg/mL) relative to human umbilical vein endothelial cells (HUVECs). Results demonstrate the ability of each PEG-Scl2-2 hydrogel formulation to support EOC and HUVEC adhesion, proliferation, and spreading. However, only the 8 and 12 mg/mL PEG-Scl2-2 hydrogels were able to support stable EOC and HUVEC confluence. These PEG-Scl2-2 formulations were, therefore, selected for evaluation of their impact on EOC and HUVEC phenotype relative to PEG-collagen hydrogels. Cumulatively, both gene and protein level data indicated that 8 mg/mL PEG-Scl2-2 hydrogels supported similar or improved levels of EOC maturation relative to PEG-collagen controls based on evaluation of CD34, VEGFR2, PECAM-1, and VE-Cadherin. The 8 mg/mL PEG-Scl2-2 hydrogels also appeared to support similar or improved levels of EOC homeostatic marker expression relative to PEG-collagen hydrogels based on von Willebrand factor, collagen IV, NOS3, thrombomodulin, and E-selectin assessment. Combined, the present results indicate that PEG-Scl2-2 hydrogels warrant further investigation as "off-the-shelf" graft coatings. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1712-1724, 2017.
Collapse
Affiliation(s)
- Dany J Munoz-Pinto
- Department of Engineering Science, Trinity University, San Antonio, Texas
| | - Josh D Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | | | - Satyavrata Samavedi
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Sarah Malmut
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - William M Reichert
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Brooke Russell
- Center for Infectious and Inflammatory Diseases, TAM Health Science Center, Houston, Texas
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, TAM Health Science Center, Houston, Texas
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
17
|
Hsia K, Yang MJ, Chen WM, Yao CL, Lin CH, Loong CC, Huang YL, Lin YT, Lander AD, Lee H, Lu JH. Sphingosine-1-phosphate improves endothelialization with reduction of thrombosis in recellularized human umbilical vein graft by inhibiting syndecan-1 shedding in vitro. Acta Biomater 2017; 51:341-350. [PMID: 28110073 DOI: 10.1016/j.actbio.2017.01.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 12/31/2022]
Abstract
Sphingosine-1-phosphate (S1P) has been known to promote endothelial cell (EC) proliferation and protect Syndecan-1 (SDC1) from shedding, thereby maintaining this antithrombotic signal. In the present study, we investigated the effect of S1P in the construction of a functional tissue-engineered blood vessel by using human endothelial cells and decellularized human umbilical vein (DHUV) scaffolds. Both human umbilical vein endothelial cells (HUVEC) and human cord blood derived endothelial progenitor cells (EPC) were seeded onto the scaffold with or without the S1P treatment. The efficacy of re-cellularization was determined by using the fluorescent marker CellTracker CMFDA and anti-CD31 immunostaining. The antithrombotic effect of S1P was examined by the anti-aggregation tests measuring platelet adherence and clotting time. Finally, we altered the expression of SDC1, a major glycocalyx protein on the endothelial cell surface, using MMP-7 digestion to explore its role using platelet adhesion tests in vitro. The result showed that S1P enhanced the attachment of HUVEC and EPC. Based on the anti-aggregation tests, S1P-treated HUVEC recellularized vessels when grafted showed reduced thrombus formation compared to controls. Our results also identified reduced SDC1 shedding from HUVEC responsible for inhibition of platelet adherence. However, no significant antithrombogenic effect of S1P was observed on EPC. In conclusion, S1P is an effective agent capable of decreasing thrombotic risk in engineered blood vessel grafts. STATEMENT OF SIGNIFICANCE Sphingosine-1phosphate (S1P) is a low molecular-weight phospholipid mediator that regulates diverse biological activities of endothelial cell, including survival, proliferation, cell barrier integrity, and also influences the development of the vascular system. Based on these characters, we the first time to use it as an additive during the process of a small caliber blood vessel construction by decellularized human umbilical vein and endothelial cell/endothelial progenitor. We further explored the function and mechanism of S1P in promoting revascularization and protection against thrombosis in this tissue engineered vascular grafts. The results showed that S1P could not only accelerate the generation but also reduce thrombus formation of small caliber blood vessel.
Collapse
|
18
|
Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema. PLoS One 2017; 12:e0173446. [PMID: 28291826 PMCID: PMC5349667 DOI: 10.1371/journal.pone.0173446] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 02/21/2017] [Indexed: 01/19/2023] Open
Abstract
Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema.
Collapse
|
19
|
Chen L, He H, Wang M, Li X, Yin H. Surface Coating of Polytetrafluoroethylene with Extracellular Matrix and Anti-CD34 Antibodies Facilitates Endothelialization and Inhibits Platelet Adhesion Under Sheer Stress. Tissue Eng Regen Med 2017; 14:359-370. [PMID: 30603492 DOI: 10.1007/s13770-017-0044-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Expanded polytetrafluoroethylene (ePTFE) polymers do not support endothelialization because of nonconductive characteristics towards cellular attachment. Inner surface modification of the grafts can improve endothelialization and increase the long-term patency rate of the ePTFE vascular grafts. Here we reported a method of inner-surface modification of ePTFE vascular graft with extracellular matrix (ECM) and CD34 monoclonal antibodies (CD34 mAb) to stimulate the adhesion and proliferation of circulating endothelial progenitor cells on ePTFE graft to enhance graft endothelialization. The inner surface of ECM-coated ePTFE grafts were linked with CD34 mAb in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide (EDC/NHS) solution and the physicochemical properties, surface morphology, biocompatibility, and hemocompatibility of the grafts were studied. The hydrophilicity of CD34 mAb-coated graft inner surface was significantly improved. Fourier transform infrared spectroscopy analysis confirmed ECM and CD34 mAb cross-linking in the ePTFE vascular grafts with our method. Scanning electron microscopy analysis showed protein layer covering uniformly on the inner surface of the modified grafts. The cell-counting kit-8 (CCK-8) assay confirmed that the modified graft has no obvious cytotoxicity. The modified graft showed a low hemolytic rate (0.9%) in the direct contact hemolysis test, suggesting the modification improved hemocompatibility of biopolymers. The modification also decreased adhesion of platelets, while significantly increased the adhesion of endothelial cells on the grafts. We conclude that our method enables ePTFE polymers modification with ECM and CD34 mAb, facilitates endothelialization, and inhibits platelet adhesion on the grafts, thus may increase the long-term patency rate of the prosthetic bypass grafts.
Collapse
Affiliation(s)
- Lei Chen
- 1Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 China
| | - Haipeng He
- 2Department of Vascular Surgery, The First Affiliated Hospital of Ji'nan University, Guangzhou, 510630 China
| | - Mian Wang
- 1Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 China
| | - Xiaoxi Li
- 1Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 China
| | - Henghui Yin
- 3Department of Vascular Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China
| |
Collapse
|
20
|
Stefopoulos G, Robotti F, Falk V, Poulikakos D, Ferrari A. Endothelialization of Rationally Microtextured Surfaces with Minimal Cell Seeding Under Flow. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4113-4126. [PMID: 27346806 DOI: 10.1002/smll.201503959] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/19/2016] [Indexed: 06/06/2023]
Abstract
The generation of a confluent and functional endothelium at the luminal surface of cardiovascular devices represents the ideal solution to avoid contact between blood and synthetic materials thus allowing the long-term body integration of the implants. Due to the foreseen paucity of source cells in cardiovascular patients, surface engineering strategies to achieve full endothelialization, while minimizing the amount of endothelial cells required to seed the surface leading to prompt and full coverage with an endothelium are necessary. A stable endothelialization is the result of the interplay between endothelial cells, the flow-generated walls shear stress and the substrate topography. Here a novel strategy is designed and validated based on the use of engineered surface textures combined with confined islands of seeded endothelial cells. Upon release of the confinement, the cell island populations are able to migrate on the texture and merge under physiological flow conditions to promptly generate a fully connected endothelium. The interaction between endothelial cells and surface textures supports the process of endothelialization through the stabilization of cell-to-substrate adhesions and cell-to-cell junctions. It is shown that with this approach, when ≈50% of a textured surface is initially covered with cell seeding, the time to full endothelialization compared to an untextured surface is almost halved, underpinning the viability and effectiveness of the method for the quick and stable coverage of cardiovascular implants.
Collapse
Affiliation(s)
- Georgios Stefopoulos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland
| | - Francesco Robotti
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland
| |
Collapse
|
21
|
Zhao J, Mitrofan CG, Appleby SL, Morrell NW, Lever AML. Disrupted Endothelial Cell Layer and Exposed Extracellular Matrix Proteins Promote Capture of Late Outgrowth Endothelial Progenitor Cells. Stem Cells Int 2016; 2016:1406304. [PMID: 27413378 PMCID: PMC4927957 DOI: 10.1155/2016/1406304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/12/2016] [Accepted: 05/29/2016] [Indexed: 01/11/2023] Open
Abstract
Late outgrowth endothelial progenitor cells (LO-EPC) possess a high proliferative potential, differentiate into vascular endothelial cells (EC), and form networks, suggesting they play a role in vascular repair. However, due to their scarcity in the circulation there is a requirement for ex vivo expansion before they could provide a practical cell therapy and it is currently unclear if they would home and engraft to an injury site. Using an in vitro flow system we studied LO-EPC under simulated injury conditions including EC activation, ischaemia, disrupted EC integrity, and exposed basement membrane. Perfused LO-EPC adhered to discontinuous EC paracellularly at junctional regions between adjacent cells under shear stress 0.7 dyn/cm(2). The interaction was not adhesion molecule-dependent and not enhanced by EC activation. LO-EPC expressed high levels of the VE-Cadherin which may explain these findings. Ischaemia reperfusion injury decreased the interaction with LO-EPC due to cell retraction. LO-EPC interacted with exposed extracellular matrix (ECM) proteins, fibronectin and vitronectin. The interaction was mediated by integrins α5β3, αvβ1, and αvβ3. This study has demonstrated that an injured local environment presents sufficient adhesive signals to capture flow perfused LO-EPC in vitro and that LO-EPC have properties consistent with their potential role in vascular repair.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Sarah L. Appleby
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Nicholas W. Morrell
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Andrew M. L. Lever
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
22
|
Chan HF, Zhang Y, Leong KW. Efficient One-Step Production of Microencapsulated Hepatocyte Spheroids with Enhanced Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2720-30. [PMID: 27038291 PMCID: PMC4982767 DOI: 10.1002/smll.201502932] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/09/2016] [Indexed: 04/14/2023]
Abstract
Hepatocyte spheroids microencapsulated in hydrogels can contribute to liver research in various capacities. The conventional approach of microencapsulating spheroids produces a variable number of spheroids per microgel and requires an extra step of spheroid loading into the gel. Here, a microfluidics technology bypassing the step of spheroid loading and controlling the spheroid characteristics is reported. Double-emulsion droplets are used to generate microencapsulated homotypic or heterotypic hepatocyte spheroids (all as single spheroids <200 μm in diameter) with enhanced functions in 4 h. The composition of the microgel is tunable as demonstrated by improved hepatocyte functions during 24 d culture (albumin secretion, urea secretion, and cytochrome P450 activity) when alginate-collagen composite hydrogel is used instead of alginate. Hepatocyte spheroids in alginate-collagen also perform better than hepatocytes cultured in collagen-sandwich configuration. Moreover, hepatocyte functions are significantly enhanced when hepatocytes and endothelial progenitor cells (used as a novel supporting cell source) are co-cultured to form composite spheroids at an optimal ratio of 5:1, which could be further boosted when encapsulated in alginate-collagen. This microencapsulated-spheroid formation technology with high yield, versatility, and uniformity is envisioned to be an enabling technology for liver tissue engineering as well as biomanufacturing.
Collapse
|
23
|
Dauwe D, Pelacho B, Wibowo A, Walravens AS, Verdonck K, Gillijns H, Caluwe E, Pokreisz P, van Gastel N, Carmeliet G, Depypere M, Maes F, Vanden Driessche N, Droogne W, Van Cleemput J, Vanhaecke J, Prosper F, Verfaillie C, Luttun A, Janssens S. Neovascularization Potential of Blood Outgrowth Endothelial Cells From Patients With Stable Ischemic Heart Failure Is Preserved. J Am Heart Assoc 2016; 5:e002288. [PMID: 27091182 PMCID: PMC4843533 DOI: 10.1161/jaha.115.002288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Blood outgrowth endothelial cells (BOECs) mediate therapeutic neovascularization in experimental models, but outgrowth characteristics and functionality of BOECs from patients with ischemic cardiomyopathy (ICMP) are unknown. We compared outgrowth efficiency and in vitro and in vivo functionality of BOECs derived from ICMP with BOECs from age‐matched (ACON) and healthy young (CON) controls. Methods and Results We isolated 3.6±0.6 BOEC colonies/100×106 mononuclear cells (MNCs) from 60‐mL blood samples of ICMP patients (n=45; age: 66±1 years; LVEF: 31±2%) versus 3.5±0.9 colonies/100×106MNCs in ACON (n=32; age: 60±1 years) and 2.6±0.4 colonies/100×106MNCs in CON (n=55; age: 34±1 years), P=0.29. Endothelial lineage (VEGFR2+/CD31+/CD146+) and progenitor (CD34+/CD133−) marker expression was comparable in ICMP and CON. Growth kinetics were similar between groups (P=0.38) and not affected by left ventricular systolic dysfunction, maladaptive remodeling, or presence of cardiovascular risk factors in ICMP patients. In vitro neovascularization potential, assessed by network remodeling on Matrigel and three‐dimensional spheroid sprouting, did not differ in ICMP from (A)CON. Secretome analysis showed a marked proangiogenic profile, with highest release of angiopoietin‐2 (1.4±0.3×105 pg/106ICMP‐BOECs) and placental growth factor (5.8±1.5×103 pg/106ICMP BOECs), independent of age or ischemic disease. Senescence‐associated β‐galactosidase staining showed comparable senescence in BOECs from ICMP (5.8±2.1%; n=17), ACON (3.9±1.1%; n=7), and CON (9.0±2.8%; n=13), P=0.19. High‐resolution microcomputed tomography analysis in the ischemic hindlimb of nude mice confirmed increased arteriogenesis in the thigh region after intramuscular injections of BOECs from ICMP (P=0.025; n=8) and CON (P=0.048; n=5) over vehicle control (n=8), both to a similar extent (P=0.831). Conclusions BOECs can be successfully culture‐expanded from patients with ICMP. In contrast to impaired functionality of ICMP‐derived bone marrow MNCs, BOECs retain a robust proangiogenic profile, both in vitro and in vivo, with therapeutic potential for targeting ischemic disease.
Collapse
Affiliation(s)
- Dieter Dauwe
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - Beatriz Pelacho
- Cell Therapy Department, Center for Applied Medicine Research, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Arief Wibowo
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - Ann-Sophie Walravens
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - Kristoff Verdonck
- Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Hilde Gillijns
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - Ellen Caluwe
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - Peter Pokreisz
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - Nick van Gastel
- Department of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Department of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Maarten Depypere
- Department of Electrical Engineering, Center for the Processing of Speech and Images, KU Leuven, Leuven, Belgium
| | - Frederik Maes
- Department of Electrical Engineering, Center for the Processing of Speech and Images, KU Leuven, Leuven, Belgium
| | - Nina Vanden Driessche
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - Walter Droogne
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - Johan Van Cleemput
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - Johan Vanhaecke
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - Felipe Prosper
- Cell Therapy Department, Center for Applied Medicine Research, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain Hematology Department, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven, Belgium
| | - Aernout Luttun
- Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Stefan Janssens
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Repeat remote ischaemic pre-conditioning for improved cardiovascular function in humans: A systematic review. IJC HEART & VASCULATURE 2016; 11:55-58. [PMID: 28616526 PMCID: PMC5441349 DOI: 10.1016/j.ijcha.2016.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/04/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND Single exposure to remote ischaemic pre-conditioning (RIPC) has been shown to be effective in reducing major adverse events during cardiac surgery. We evaluated the efficacy of repeated exposure RIPC to elicit improvements in cardiovascular function. METHODS A systematic search was conducted up until May 1st, 2015, using the following databases: EMBASE, PubMed (Medline), Web of Science and the Cochrane Central Registry of Controlled Trials (CENTRAL). Data was extracted and synthesized from published studies of repeat RIPC. RESULTS Data from seven studies showed evidence of improvements in vascular function and anti-hypertensive effects of systolic, diastolic and mean arterial blood pressure following repeat RIPC. Currently existing work justifies a systematic review but not data pooling of individual study data. Repeat RIPC has also produced evidence of improvements in endothelial dependent vasodilation, but not non-endothelial dependent vasodilation, cutaneous vascular conductance or cardiorespiratory fitness. CONCLUSION Repeated RIPC exposure has produced evidence of improvements in endothelial dependent vasodilation, ulcer healing and blood pressure but no benefit in non-endothelial dependent vasodilation, cutaneous vascular conductance or cardiorespiratory fitness. The optimal delivery of RIPC remains unclear, but at least 3 or preferably 4, 5 min exposures appears to be most beneficial, at least for reducing blood pressure. Aside from those undertaking cardiac surgery, other study populations with endothelial dysfunction may benefit from repeat exposure to RIPC.
Collapse
|
25
|
Jamiolkowski RM, Kang SD, Rodriguez AK, Haseltine JM, Galinat LJ, Jantzen AE, Carlon TA, Darrabie MD, Arciniegas AJ, Mantilla JG, Haley NR, Noviani M, Allen JD, Stabler TV, Frederiksen JW, Alzate O, Keil LG, Liu S, Lin FH, Truskey GA, Achneck HE. Increased yield of endothelial cells from peripheral blood for cell therapies and tissue engineering. Regen Med 2016; 10:447-60. [PMID: 26022764 DOI: 10.2217/rme.15.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
AIM Peripheral blood-derived endothelial cells (pBD-ECs) are an attractive tool for cell therapies and tissue engineering, but have been limited by their low isolation yield. We increase pBD-EC yield via administration of the chemokine receptor type 4 antagonist AMD3100, as well as via a diluted whole blood incubation (DWBI). MATERIALS & METHODS Porcine pBD-ECs were isolated using AMD3100 and DWBI and tested for EC markers, acetylated LDL uptake, growth kinetics, metabolic activity, flow-mediated nitric oxide production and seeded onto titanium tubes implanted into vessels of pigs. RESULTS DWBI increased the yield of porcine pBD-ECs 6.6-fold, and AMD3100 increased the yield 4.5-fold. AMD3100-mobilized ECs were phenotypically indistinguishable from nonmobilized ECs. In porcine implants, the cells expressed endothelial nitric oxide synthase, reduced thrombin-antithrombin complex systemically and prevented thrombosis. CONCLUSION Administration of AMD3100 and the DWBI method both increase pBD-EC yield.
Collapse
Affiliation(s)
| | - Sa Do Kang
- 1Department of Surgery, Duke University Medical Center, NC, USA
| | | | - Justin M Haseltine
- 1Department of Surgery, Duke University Medical Center, NC, USA.,2Department of Biomedical Engineering, Duke University, NC, USA
| | - Lauren J Galinat
- 1Department of Surgery, Duke University Medical Center, NC, USA.,2Department of Biomedical Engineering, Duke University, NC, USA
| | | | - Tim A Carlon
- 1Department of Surgery, Duke University Medical Center, NC, USA.,2Department of Biomedical Engineering, Duke University, NC, USA
| | | | | | - Jose G Mantilla
- 1Department of Surgery, Duke University Medical Center, NC, USA
| | | | - Maria Noviani
- 1Department of Surgery, Duke University Medical Center, NC, USA.,4Duke-National University of Singapore Graduate Medical School, Singapore
| | - Jason D Allen
- 5Department of Community and Family Medicine, Duke University Medical Center, NC, USA.,6Duke Molecular Physiology Institute, Duke University Medical Center, NC, USA
| | - Thomas V Stabler
- 6Duke Molecular Physiology Institute, Duke University Medical Center, NC, USA
| | | | - Oscar Alzate
- 8University of North Carolina, School of Medicine, NC, USA
| | - Lukas G Keil
- 8University of North Carolina, School of Medicine, NC, USA
| | - Siyao Liu
- 8University of North Carolina, School of Medicine, NC, USA
| | - Fu-Hsiung Lin
- 1Department of Surgery, Duke University Medical Center, NC, USA
| | | | - Hardean E Achneck
- 1Department of Surgery, Duke University Medical Center, NC, USA.,9Department of Pathology, Duke University Medical Center, NC, USA
| |
Collapse
|
26
|
Fernandez CE, Yen RW, Perez SM, Bedell HW, Povsic TJ, Reichert WM, Truskey GA. Human Vascular Microphysiological System for in vitro Drug Screening. Sci Rep 2016; 6:21579. [PMID: 26888719 PMCID: PMC4757887 DOI: 10.1038/srep21579] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/27/2016] [Indexed: 01/03/2023] Open
Abstract
In vitro human tissue engineered human blood vessels (TEBV) that exhibit vasoactivity can be used to test human toxicity of pharmaceutical drug candidates prior to pre-clinical animal studies. TEBVs with 400–800 μM diameters were made by embedding human neonatal dermal fibroblasts or human bone marrow-derived mesenchymal stem cells in dense collagen gel. TEBVs were mechanically strong enough to allow endothelialization and perfusion at physiological shear stresses within 3 hours after fabrication. After 1 week of perfusion, TEBVs exhibited endothelial release of nitric oxide, phenylephrine-induced vasoconstriction, and acetylcholine-induced vasodilation, all of which were maintained up to 5 weeks in culture. Vasodilation was blocked with the addition of the nitric oxide synthase inhibitor L-NG-Nitroarginine methyl ester (L-NAME). TEBVs elicited reversible activation to acute inflammatory stimulation by TNF-α which had a transient effect upon acetylcholine-induced relaxation, and exhibited dose-dependent vasodilation in response to caffeine and theophylline. Treatment of TEBVs with 1 μM lovastatin for three days prior to addition of Tumor necrosis factor – α (TNF-α) blocked the injury response and maintained vasodilation. These results indicate the potential to develop a rapidly-producible, endothelialized TEBV for microphysiological systems capable of producing physiological responses to both pharmaceutical and immunological stimuli.
Collapse
Affiliation(s)
- C E Fernandez
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - R W Yen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - S M Perez
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - H W Bedell
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - T J Povsic
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC 27708
| | - W M Reichert
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - G A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| |
Collapse
|
27
|
Bou Khzam L, Bouchereau O, Boulahya R, Hachem A, Zaid Y, Abou-Saleh H, Merhi Y. Early outgrowth cells versus endothelial colony forming cells functions in platelet aggregation. J Transl Med 2015; 13:353. [PMID: 26552480 PMCID: PMC4640203 DOI: 10.1186/s12967-015-0723-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/02/2015] [Indexed: 12/26/2022] Open
Abstract
Background Endothelial progenitor cells (EPCs) have been implicated in neoangiogenesis, endothelial repair and cell-based therapies for cardiovascular diseases. We have previously shown that the recruitment of EPCs to sites of vascular lesions is facilitated by platelets where EPCs, in turn, modulate platelet function and thrombosis. However, EPCs encompass a heterogeneous population of progenitor cells that may exert different effects on platelet function. Recent evidence suggests the existence of two EPC subtypes: early outgrowth cells (EOCs) and endothelial colony-forming cells (ECFCs). We aimed at characterizing these two EPC subtypes and at identifying their role in platelet aggregation. Methods EOCs and ECFCs were generated from human peripheral blood mononuclear cells (PBMCs) seeded in conditioned media on fibronectin and collagen, respectively. The morphological, phenotypical and functional characteristics of EOCs and ECFCs were assessed by optical and confocal laser scanning microscopes, cell surface markers expression, and Matrigel tube formation. The impact of EOCs and ECFCs on platelet aggregation was monitored in collagen-induced optical aggregometry and compared with PBMCs and human umbilical vein endothelial cells (HUVECs). The levels of the anti-platelet agents’ nitric oxide (NO) and prostacyclin (PGI2) released from cultured cells as well as the expression of their respective producing enzymes NO synthases (NOS) and cyclooxygenases (COX) were also assessed. Results We showed that EOCs display a monocytic-like phenotype whereas ECFCs have an endothelial-like phenotype. We demonstrated that both EOCs and ECFCs and their supernatants inhibited platelet aggregation; however ECFCs were more efficient than EOCs. This could be related to the release of significantly higher amounts of NO and PGI2 from ECFCs, in comparison to EOCs. Indeed, ECFCs, like HUVECs, constitutively express the endothelial (eNOS)—and inducible (iNOS)—NOS isoforms, and COX-1 and weakly express COX-2, whereas EOCs do not constitutively express these NO and PGI2 producing enzymes. Conclusion The different morphological, phenotypic and more importantly the release of the anti-aggregating agents PGI2 and NO in each EPC subtype are implicated in their respective roles in platelet function and thus, may be linked to the increased efficiency of ECFCs in inhibiting platelet aggregation as compared to EOCs.
Collapse
Affiliation(s)
- Lara Bou Khzam
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, QC, H1T 1C8, Canada. .,Department of Biochemistry, Weill Cornell Medical College in Qatar, Doha, Qatar.
| | - Olivier Bouchereau
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, QC, H1T 1C8, Canada.
| | - Rahma Boulahya
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, QC, H1T 1C8, Canada.
| | - Ahmed Hachem
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, QC, H1T 1C8, Canada.
| | - Younes Zaid
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, QC, H1T 1C8, Canada.
| | | | - Yahye Merhi
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, QC, H1T 1C8, Canada. .,Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
28
|
Determination of Early and Late Endothelial Progenitor Cells in Peripheral Circulation and Their Clinical Association with Coronary Artery Disease. Int J Vasc Med 2015; 2015:674213. [PMID: 26451256 PMCID: PMC4588339 DOI: 10.1155/2015/674213] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/25/2015] [Accepted: 08/30/2015] [Indexed: 11/17/2022] Open
Abstract
The clinical implications of early and late endothelial progenitor cells (EPCs) in coronary artery disease (CAD) remain unclear. We investigated endothelial dysfunction in CAD by simultaneously examining early and late EPC colony formation and gene expression of specific surface markers in EPCs. EPCs were extracted from a total of 83 subjects with (n = 47) and without (n = 36) CAD. Early and late EPC colonies were formed from mononuclear cells extracted from peripheral blood. We found that fewer early EPC colonies were produced in the CAD group (7.2 ± 3.l/well) than those in the control group (12.4 ± 1.4/well, p < 0.05), and more late EPC colonies were produced in the CAD group (0.8 ± 0.2/well) than those in the control group (0.25 ± 0.02/well, p < 0.05). In the CAD group, the relative expression of CD31 and KDR of early and late EPCs was lower than in the control group. These results demonstrate that CAD patients could have increased late EPC density and that early and late EPCs in CAD patients exhibited immature endothelial characteristics. We suggest that changes in EPC colony count and gene expression of endothelial markers may have relation with development of CAD.
Collapse
|
29
|
Jantzen AE, Noviani M, Mills JS, Baker KM, Lin FH, Truskey GA, Achneck HE. Point-of-care seeding of nitinol stents with blood-derived endothelial cells. J Biomed Mater Res B Appl Biomater 2015; 104:1658-1665. [PMID: 26340233 DOI: 10.1002/jbm.b.33510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/09/2015] [Accepted: 08/14/2015] [Indexed: 01/21/2023]
Abstract
Nitinol-based vascular devices, for example, peripheral and intracranial stents, are limited by thrombosis and restenosis. To ameliorate these complications, we developed a technology to promote vessel healing by rapidly seeding (QuickSeeding) autologous blood-derived endothelial cells (ECs) onto modified self-expanding nitinol stent delivery systems immediately before implantation. Several thousand micropores were laser-drilled into a delivery system sheath surrounding a commercial nitinol stent to allow for exit of an infused cell suspension. As suspension medium flowed outward through the micropores, ECs flowed through the delivery system attaching to the stent surface. The QuickSeeded ECs adhered to and spread on the stent surface following 24-h in vitro culture under static or flow conditions. Further, QuickSeeded ECs on stents that were deployed into porcine carotid arteries spread to endothelialize stent struts within 48 h (n = 4). The QuickSeeded stent struts produced significantly more nitric oxide in ex vivo flow circuits after 24 h, as compared to static conditions (n = 5). In conclusion, ECs QuickSeeded onto commercial nitinol stents within minutes of implantation spread to form a functional layer in vitro and in vivo, providing proof of concept that the novel QuickSeeding method with modified delivery systems can be used to seed functional autologous endothelium at the point of care. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1658-1665, 2016.
Collapse
Affiliation(s)
- Alexandra E Jantzen
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Maria Noviani
- Department of Surgery, Duke University Medical Center, Durham, North Carolina.,Duke-National University of Singapore Graduate Medical School Singapore Cardiovascular & Metabolic Disorders Program, Singapore
| | - James S Mills
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - Fu-Hsiung Lin
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Hardean E Achneck
- Department of Surgery, Duke University Medical Center, Durham, North Carolina. .,Duke-National University of Singapore Graduate Medical School Singapore Cardiovascular & Metabolic Disorders Program, Singapore. .,Department of Pathology, Duke University Medical Center, Durham, North Carolina. .,Hemostemix Inc., Ness Ziona, Israel, Calgary, Alberta, Canada.
| |
Collapse
|
30
|
Glynn JJ, Jones CM, Anderson DEJ, Pavcnik D, Hinds MT. In vivo assessment of two endothelialization approaches on bioprosthetic valves for the treatment of chronic deep venous insufficiency. J Biomed Mater Res B Appl Biomater 2015; 104:1610-1621. [PMID: 26316151 DOI: 10.1002/jbm.b.33507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/06/2015] [Accepted: 08/14/2015] [Indexed: 12/28/2022]
Abstract
Chronic deep venous insufficiency is a debilitating disease with limited therapeutic interventions. A bioprosthetic venous valve could not only replace a diseased valve, but has the potential to fully integrate into the patient with a minimally invasive procedure. Previous work with valves constructed from small intestinal submucosa (SIS) showed improvements in patients' symptoms in clinical studies; however, substantial thickening of the implanted valve leaflets also occurred. As endothelial cells are key regulators of vascular homeostasis, their presence on the SIS valves may reduce the observed thickening. This work tested an off-the-shelf approach to capture circulating endothelial cells in vivo using biotinylated antikinase insert domain receptor antibodies in a suspended leaflet ovine model. The antibodies on SIS were oriented to promote cell capture and showed positive binding to endothelial cells in vitro; however, no differences were observed in leaflet thickness in vivo between antibody-modified and unmodified SIS. In an alternative approach, valves were pre-seeded with autologous endothelial cells and tested in vivo. Nearly all the implanted pre-seeded valves were patent and functioning; however, no statistical difference was observed in valve thickness with cell pre-seeding. Additional cell capture schemes or surface modifications should be examined to find an optimal method for encouraging SIS valve endothelialization to improve long-term valve function in vivo. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1610-1621, 2016.
Collapse
Affiliation(s)
- Jeremy J Glynn
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, 97239
| | - Casey M Jones
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, 97239.,Department of Chemistry, Lewis & Clark College, Portland, Oregon, 97219
| | - Deirdre E J Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, 97239
| | - Dusan Pavcnik
- Dotter Interventional Institute, Oregon Health & Science University, Portland, Oregon, 97239
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, 97239. .,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, 97239. .,Department of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006.
| |
Collapse
|
31
|
Minami Y, Nakajima T, Ikutomi M, Morita T, Komuro I, Sata M, Sahara M. Angiogenic potential of early and late outgrowth endothelial progenitor cells is dependent on the time of emergence. Int J Cardiol 2015; 186:305-14. [PMID: 25838182 DOI: 10.1016/j.ijcard.2015.03.166] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/18/2015] [Accepted: 03/16/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Recent studies have suggested that late-outgrowth endothelial progenitor cells (EPCs) derived from human peripheral blood mononuclear cells (hPBMNCs) might have higher angiogenic potential than classically-defined early-outgrowth EPCs (EOCs). However, it still remains unclear which of "so-called" EPC subpopulations defined in a variety of ways has the highest angiogenic potential. METHODS AND RESULTS We classified hPBMNC-derived EPC subpopulations by the time of their emergence in culture. EOCs were defined as attached cells on culture days 3-7. Late-outgrowth EPCs, defined as the cell forming colonies with cobblestone appearance since day 10, were further classified as follows: "moderate"-outgrowth EPCs (MOCs) emerging on days 10-16, "late"-outgrowth EPCs (LOCs) on days 17-23, and "very late"-outgrowth EPCs (VOCs) on days 24-30. Flow cytometry analyses showed the clear differences of hematopoietic/endothelial markers between EOC (CD31(+)VE-cadherin(-)CD34(-)CD14(+)CD45(+)) and LOC (CD31(+)VE-cadherin(+)CD34(+)CD14(-)CD45(-)). We found that LOCs had the highest proliferation and tube formation capabilities in vitro along with the highest expression of angiogenic genes including KDR and eNOS. To investigate the in vivo therapeutic efficacies, each EPC subpopulation was intravenously transplanted into immunocompromised mice (total 4 × 10(5) cells) after unilateral hindlimb ischemia surgery. The LOC-treated mice exhibited significantly-enhanced blood flow recovery (flow ratios of ischemic/non-ischemic leg: 0.99±0.02 [LOC group] versus 0.67 ± 0.07 to 0.78 ± 0.09 [other groups]; P < 0.05) and augmented capillary collateral formation in ischemic leg, which were attributable to their direct engraftment into host angiogenic vessels (approximately 10%) and paracrine effects. CONCLUSION hPBMNC-derived late-outgrowth EPCs emerging on culture days 17-23 are superior to other EPC subpopulations with regard to therapeutic angiogenic potential.
Collapse
Affiliation(s)
- Yoshiyasu Minami
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Ischemic Circulatory Physiology, 22nd Century Medical and Research Center, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Ischemic Circulatory Physiology, 22nd Century Medical and Research Center, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masayasu Ikutomi
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Cardiovascular Medicine, Teikyo University Chiba Medical Center, 3426-3 Anegasaki, Ichihara 299-0111, Japan
| | - Toshihiro Morita
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Ischemic Circulatory Physiology, 22nd Century Medical and Research Center, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School of Medicine, 2-10-1 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Makoto Sahara
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Medicine-Cardiology/Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
32
|
Glynn JJ, Hinds MT. Endothelial outgrowth cells regulate coagulation, platelet accumulation, and respond to tumor necrosis factor similar to carotid endothelial cells. Tissue Eng Part A 2014; 21:174-82. [PMID: 24965131 DOI: 10.1089/ten.tea.2014.0032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Endothelial cells (ECs) are central regulators of hemostasis, inflammation, and other vascular processes. ECs have been used to cover vascular graft materials in an attempt to improve the biological integration of the grafts with the surrounding tissue. Although EC seeded grafts demonstrated improved patency, the invasive nature of EC harvest has limited the clinical translation of this technique. Endothelial outgrowth cells (EOCs) can be derived from circulating endothelial progenitor cells, which are noninvasively isolated from a peripheral blood draw. Although EOCs have been presumed to regulate hemostasis and inflammation similarly to arterial ECs, there has been limited research that directly compares EOCs to arterial ECs, particularly using pairs of donor-matched cells. This study provides a multifaceted characterization of hemostasis regulation by baboon EOCs and carotid ECs, both in the presence and absence of an inflammatory stimulus, tumor necrosis factor α (TNFα). The expression of genes involved in thrombosis and inflammation was highly similar between ECs and EOCs at a basal state and following TNFα stimulation. ECs and EOCs activated similar levels of protein C and Factor X (FX) at a basal state. Following TNFα treatment, EOCs had less of an increase in tissue factor activity than ECs. Cell-seeded expanded polytetrafluoroethylene vascular grafts demonstrated no significant differences between ECs and EOCs in platelet accumulation or fibrinogen incorporation in a baboon femoral arteriovenous shunt loop. This work demonstrates that EOCs regulate thrombus formation and respond to an inflammatory stimulus similar to ECs, and supports utilizing EOCs as a source for an autologous endothelium in tissue engineering applications.
Collapse
Affiliation(s)
- Jeremy J Glynn
- Department of Biomedical Engineering, Oregon Health & Science University , Portland, Oregon
| | | |
Collapse
|
33
|
Differentiation of endothelial progenitor cells into endothelial cells by heparin-modified supramolecular pluronic nanogels encapsulating bFGF and complexed with VEGF165 genes. Biomaterials 2014; 35:4716-28. [DOI: 10.1016/j.biomaterials.2014.02.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/20/2014] [Indexed: 12/13/2022]
|
34
|
Zhao J, Bolton EM, Randle L, Bradley JA, Lever AML. Functional characterization of late outgrowth endothelial progenitor cells in patients with end-stage renal failure. Transpl Int 2014; 27:437-51. [PMID: 24471420 PMCID: PMC4229358 DOI: 10.1111/tri.12277] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/07/2013] [Accepted: 01/23/2014] [Indexed: 12/31/2022]
Abstract
Renal transplantation is potentially curative in renal failure, but long-term efficacy is limited by untreatable chronic rejection. Endothelial damage contributes to chronic rejection and is potentially repairable by circulating endothelial progenitor cells (EPC). The frequency and function of EPC are variably influenced by end-stage renal failure (ESRF). Here, we isolated and functionally characterized the late outgrowth EPC (LO-EPC) from ESRF patients to investigate their potential for endothelial repair. Patients with ESRF generated more LO-EPC colonies than healthy controls and had higher plasma levels of IL-1rα, IL-16, IL-6, MIF, VEGF, Prolactin, and PLGF. Patients' LO-EPC displayed normal endothelial cell morphology, increased secretion of PLGF, MCP-1, and IL-1β, and normal network formation in vitro and in vivo. They demonstrated decreased adhesion to extracellular matrix. Integrin gene profiles and protein expression were comparable in patients and healthy volunteers. In some patients, mesenchymal stem cells (MSC) were co-isolated and could be differentiated into adipocytes and osteocytes in vitro. This is the first study to characterize LO-EPC from patients with ESRF. Their behavior in vitro reflects the presence of elevated trophic factors; their ability to proliferate in vitro and angiogenic function makes them candidates for prevention of chronic rejection. Their impaired adhesion and the presence of MSC are areas for potential therapeutic intervention.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
35
|
Fernandez CE, Obi-onuoha IC, Wallace CS, Satterwhite LL, Truskey GA, Reichert WM. Late-outgrowth endothelial progenitors from patients with coronary artery disease: endothelialization of confluent stromal cell layers. Acta Biomater 2014; 10:893-900. [PMID: 24140604 DOI: 10.1016/j.actbio.2013.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/16/2013] [Accepted: 10/09/2013] [Indexed: 12/20/2022]
Abstract
Patients with coronary artery disease (CAD) are the primary candidates to receive small-diameter tissue-engineered blood vessels (TEBVs). Peripheral blood derived endothelial progenitor cells (EPCs) from CAD patients (CAD EPCs) represent a minimally invasive source of autologous cells for TEBV endothelialization. We have previously shown that human CAD EPCs are highly proliferative and express many of the hallmarks of mature and healthy endothelial cells; however, their behavior on stromal cells that comprise the media of TEBVs has not yet been evaluated. Primary CAD EPCs or control human aortic endothelial cells (HAECs) were seeded over confluent, quiescent layers of human smooth muscle cells (SMCs) using a direct co-culture model. The percent coverage, adhesion strength, alignment under flow and generation of flow-induced nitric oxide of the seeded CAD EPCs were compared to that of HAECs. The integrin-binding profile of CAD EPCs was also evaluated over a layer of confluent, quiescent SMCs. Direct comparison of our CAD EPC results to analogous co-culture studies with cord blood EPCs show that both types of blood-derived EPCs are viable options for endothelialization of TEBVs.
Collapse
|
36
|
Fernandez CE, Achneck HE, Reichert WM, Truskey GA. Biological and engineering design considerations for vascular tissue engineered blood vessels (TEBVs). Curr Opin Chem Eng 2014; 3:83-90. [PMID: 24511460 DOI: 10.1016/j.coche.2013.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Considerable advances have occurred in the development of tissue-engineered blood vessels (TEBVs) to repair or replace injured blood vessels, or as in vitro systems for drug toxicity testing. Here we summarize approaches to produce TEBVs and review current efforts to (1) identify suitable cell sources for the endothelium and vascular smooth muscle cells, (2) design the scaffold to mimic the arterial mechanical properties and (3) regulate the functional state of the cells of the vessel wall. Initial clinical studies have established the feasibility of this approach and challenges that make TEBVs a viable alternative for vessel replacement are identified.
Collapse
Affiliation(s)
| | - Hardean E Achneck
- Departments of Surgery and Pathology, Duke University Medical Center
| | | | | |
Collapse
|
37
|
Blood outgrowth endothelial cells alter remodeling of completely biological engineered grafts implanted into the sheep femoral artery. J Cardiovasc Transl Res 2014; 7:242-9. [PMID: 24429838 DOI: 10.1007/s12265-013-9539-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/20/2013] [Indexed: 12/26/2022]
Abstract
Hemocompatibility of tissue-engineered vascular grafts remains a major hurdle to clinical utility for small-diameter grafts. Here we assessed the feasibility of using autologous blood outgrowth endothelial cells to create an endothelium via lumenal seeding on completely biological, decellularized engineered allografts prior to implantation in the sheep femoral artery. The 4-mm-diameter, 2- to 3-cm-long grafts were fabricated from fibrin gel remodeled into an aligned tissue tube in vitro by ovine dermal fibroblasts prior to decellularization. Decellularized grafts pre-seeded with blood outgrowth endothelial cells (n = 3) retained unprecedented (>95 %) monolayer coverage 1 h post-implantation and had greater endothelial coverage, smaller wall thickness, and more basement membrane after 9-week implantation, including a final week without anti-coagulation therapy, compared with contralateral non-seeded controls. These results support the use of autologous blood outgrowth endothelial cells as a viable source of endothelial cells for creating an endothelium with biological function on decellularized engineered allografts made from fibroblast-remodeled fibrin.
Collapse
|
38
|
Geenen IL, Verbruggen S, Molin DG, Spronk HM, Maessen JG, Meesters B, Schurink GW, Post MJ. Phenotypic fitness of primary endothelial cells cultured from patients with high cardiovascular risk or chronic kidney disease for vascular tissue engineering. Tissue Eng Part A 2013; 20:1049-59. [PMID: 24279825 DOI: 10.1089/ten.tea.2013.0163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vascular tissue engineering relies on the combination of patient-derived cells and biomaterials to create new vessels. For clinical application, data regarding the function and behavior of patient-derived cells are needed. We investigated cell growth and functional characteristics of human venous endothelial cells (HVECs) from coronary arterial bypass graft (CABG), chronic kidney disease (CKD), and control patients. HVECs were isolated from venous specimens that were obtained during elective surgical procedures by means of collagenase digestion. Gene expression, proliferation, migration, secretory functions, and thrombogenic characteristics were evaluated using high-throughput assays. A total of 48 cell batches (14 control, 19 CABG, and 15 CKD subjects) were assessed. Proliferation, population doubling times, and migration of HVECs derived from CABG and CKD patients did not differ from controls. Thrombomodulin expression was higher in CABG-HVECs compared with controls. HVEC-induced thrombin formation in plasma did not differ between groups, and the contact activation pathway was the major contributor to coagulation. Patient-derived HVECs were able to attach and survive on polycaprolactone scaffolds that were coated with fibrin. HVECs from cardiovascular-diseased and CKD patients showed comparable functional characteristics with HVECs derived from uncompromised patients. We, therefore, conclude that endothelial cells from aged patients with comorbidities can be safely used for isolation and in vitro expansion for vascular tissue engineering.
Collapse
Affiliation(s)
- Irma L Geenen
- 1 Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center , Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Li S, Sengupta D, Chien S. Vascular tissue engineering: from in vitro to in situ. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 6:61-76. [PMID: 24151038 DOI: 10.1002/wsbm.1246] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 01/02/2023]
Abstract
Blood vessels transport blood to deliver oxygen and nutrients. Vascular diseases such as atherosclerosis may result in obstruction of blood vessels and tissue ischemia. These conditions require blood vessel replacement to restore blood flow at the macrocirculatory level, and angiogenesis is critical for tissue regeneration and remodeling at the microcirculatory level. Vascular tissue engineering has focused on addressing these two major challenges. We provide a systematic review on various approaches for vascular graft tissue engineering. To create blood vessel substitutes, bioengineers and clinicians have explored technologies in cell engineering, materials science, stem cell biology, and medicine. The scaffolds for vascular grafts can be made from native matrix, synthetic polymers, or other biological materials. Besides endothelial cells, smooth muscle cells, and fibroblasts, expandable cells types such as adult stem cells, pluripotent stem cells, and reprogrammed cells have also been used for vascular tissue engineering. Cell-seeded functional tissue-engineered vascular grafts can be constructed in bioreactors in vitro. Alternatively, an autologous vascular graft can be generated in vivo by harvesting the capsule layer formed around a rod implanted in soft tissues. To overcome the scalability issue and make the grafts available off-the-shelf, nonthrombogenic vascular grafts have been engineered that rely on the host cells to regenerate blood vessels in situ. The rapid progress in the field of vascular tissue engineering has led to exciting preclinical and clinical trials. The advancement of micro-/nanotechnology and stem cell engineering, together with in-depth understanding of vascular regeneration mechanisms, will enable the development of new strategies for innovative therapies.
Collapse
Affiliation(s)
- Song Li
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | | |
Collapse
|
40
|
Glynn JJ, Hinds MT. Endothelial outgrowth cells: function and performance in vascular grafts. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:294-303. [PMID: 24004404 DOI: 10.1089/ten.teb.2013.0285] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The clinical need for vascular grafts continues to grow. Tissue engineering strategies have been employed to develop vascular grafts for patients lacking sufficient autologous vessels for grafting. Restoring a functional endothelium on the graft lumen has been shown to greatly improve the long-term patency of small-diameter grafts. However, obtaining an autologous source of endothelial cells for in vitro endothelialization is invasive and often not a viable option. Endothelial outgrowth cells (EOCs), derived from circulating progenitor cells in peripheral blood, provide an alternative cell source for engineering an autologous endothelium. This review aims at highlighting the role of EOCs in the regulation of processes that are central to vascular graft performance. To characterize EOC performance in vascular grafts, this review identifies the characteristics of EOCs, defines functional performance criteria for EOCs in vascular grafts, and summarizes the existing work in developing vascular grafts with EOCs.
Collapse
Affiliation(s)
- Jeremy J Glynn
- Department of Biomedical Engineering, Oregon Health & Science University , Portland, Oregon
| | | |
Collapse
|
41
|
A ‘tête-à tête’ between cancer stem cells and endothelial progenitor cells in tumor angiogenesis. Clin Transl Oncol 2013; 16:115-21. [DOI: 10.1007/s12094-013-1103-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/07/2013] [Indexed: 01/05/2023]
|
42
|
Lin RZ, Moreno-Luna R, Muñoz-Hernandez R, Li D, Jaminet SCS, Greene AK, Melero-Martin JM. Human white adipose tissue vasculature contains endothelial colony-forming cells with robust in vivo vasculogenic potential. Angiogenesis 2013; 16:735-44. [PMID: 23636611 DOI: 10.1007/s10456-013-9350-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 04/24/2013] [Indexed: 12/25/2022]
Abstract
Blood-derived endothelial colony-forming cells (ECFCs) have robust vasculogenic potential that can be exploited to bioengineer long-lasting human vascular networks in vivo. However, circulating ECFCs are exceedingly rare in adult peripheral blood. Because the mechanism by which ECFCs are mobilized into circulation is currently unknown, the reliability of peripheral blood as a clinical source of ECFCs remains a concern. Thus, there is a need to find alternative sources of autologous ECFCs. Here we aimed to determine whether ECFCs reside in the vasculature of human white adipose tissue (WAT) and to evaluate if WAT-derived ECFCs have equal clinical potential to blood-derived ECFCs. We isolated the complete endothelial cell (EC) population from intact biopsies of normal human subcutaneous WAT by enzymatic digestion and selection of CD31(+) cells. Subsequently, we extensively compared WAT-derived EC phenotype and functionality to bonafide ECFCs derived from both umbilical cord blood and adult peripheral blood. We demonstrated that human WAT is indeed a dependable source of ECFCs with indistinguishable properties to adult peripheral blood ECFCs, including hierarchical clonogenic ability, large expansion potential, stable endothelial phenotype, and robust in vivo blood vessel-forming capacity. Considering the unreliability and low rate of occurrence of ECFCs in adult blood and that biopsies of WAT can be obtained with minimal intervention in an ambulatory setting, our results indicate WAT as a more practical alternative to obtain large amounts of readily available autologous ECFCs for future vascular cell therapies.
Collapse
Affiliation(s)
- Ruei-Zeng Lin
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA, 02115, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Isolation of functional human endothelial cells from small volumes of umbilical cord blood. Ann Biomed Eng 2013; 41:2181-92. [PMID: 23604849 DOI: 10.1007/s10439-013-0807-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 04/04/2013] [Indexed: 12/11/2022]
Abstract
Endothelial cells (ECs) isolated from endothelial progenitor cells in blood have great potential as a therapeutic tool to promote vasculogenesis and angiogenesis and treat cardiovascular diseases. However, current methods to isolate ECs are limited by a low yield with few colonies appearing during isolation. In order to utilize blood-derived ECs for therapeutic applications, a simple method is needed that can produce a high yield of ECs from small volumes of blood without the addition of animal-derived products. For the first time, we show that human ECs can be isolated without the prior separation of blood components through the technique of diluted whole blood incubation (DWBI) utilizing commercially available human serum. We isolated ECs from small volumes of blood (~10 mL) via DWBI and characterized them with flow cytometry, immunohistochemistry, and uptake of DiI-labeled acetylated low density lipoprotein (DiI-Ac-LDL). These ECs are functional as demonstrated by their ability to form tubular networks in Matrigel, adhere and align with flow under physiological fluid shear stress, and produce increased nitric oxide under fluid flow. An average of 7.0 ± 2.5 EC colonies that passed all functional tests described above were obtained per 10 mL of blood as compared to only 0.3 ± 0.1 colonies with the traditional method based on density centrifugation. The time until first colony appearance was 8.3 ± 1.2 days for ECs isolated with the DWBI method and 12 ± 1.4 days for ECs isolated with the traditional isolation method. A simplified method, such as DWBI, in combination with advances in isolation yield could enable the use of blood-derived ECs in clinical practice.
Collapse
|
44
|
Jantzen AE, Achneck HE, Truskey GA. Surface projections of titanium substrates increase antithrombotic endothelial function in response to shear stress. J Biomed Mater Res A 2013; 101:3181-91. [PMID: 23554161 DOI: 10.1002/jbm.a.34613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/21/2012] [Accepted: 01/22/2013] [Indexed: 11/06/2022]
Abstract
Despite the therapeutic benefits of both mechanical circulatory assist devices and nitinol stents with titanium (Ti) outer surfaces, problems remain with thrombosis at the blood-contacting surface. Covering these surfaces with a layer of endothelium would mimic the native lining of the cardiovascular system, potentially decreasing thrombotic complications. Since surface topography is known to affect the phenotype of a seeded cell layer and since stents and ventricular assist devices exhibit surface protrusions, we tested the hypothesis that endothelial cells (ECs) have altered function on Ti surfaces with protrusions of 1.25, 3, and 5 μm height, compared with smooth Ti surfaces. ECs and nuclei were more aligned and ECs were more elongated on all patterned surfaces. Cell area was reduced on the 3 and 5 μm features. Expression of eNOS and COX2 was not altered by patterned surfaces, but expression of KLF-2 was higher on 1.25 and 5 μm features. Nitric oxide production following exposure to flow was higher on the 5 μm features. These results show that some antithrombogenic functions of ECs are significantly enhanced for ECs cultured on surface protrusions, and no functions are diminished, informing the future design of implant surfaces for endothelialization.
Collapse
Affiliation(s)
- Alexandra E Jantzen
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708
| | | | | |
Collapse
|
45
|
Krawiec JT, Vorp DA. Adult stem cell-based tissue engineered blood vessels: A review. Biomaterials 2012; 33:3388-400. [DOI: 10.1016/j.biomaterials.2012.01.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/05/2012] [Indexed: 12/20/2022]
|
46
|
Stroncek J, Ren L, Klitzman B, Reichert W. Patient-derived endothelial progenitor cells improve vascular graft patency in a rodent model. Acta Biomater 2012; 8:201-8. [PMID: 21945828 DOI: 10.1016/j.actbio.2011.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/23/2011] [Accepted: 09/01/2011] [Indexed: 01/03/2023]
Abstract
Late outgrowth endothelial progenitor cells (EPCs) derived from the peripheral blood of patients with significant coronary artery disease were sodded into the lumens of small diameter expanded polytetrafluoroethylene (ePTFE) vascular grafts. Grafts (1mm inner diameter) were denucleated and sodded either with native EPCs or with EPCs transfected with an adenoviral vector containing the gene for human thrombomodulin (EPC+AdTM). EPC+AdTM was shown to increase the in vitro rate of graft activated protein C (APC) production 4-fold over grafts sodded with untransfected EPCs (p<0.05). Unsodded control and EPC-sodded and EPC+AdTM-sodded grafts were implanted bilaterally into the femoral arteries of athymic rats for 7 or 28 days. Unsodded control grafts, both with and without denucleation treatment, each exhibited 7 day patency rates of 25%. Unsodded grafts showed extensive thrombosis and were not tested for patency over 28 days. In contrast, grafts sodded with untransfected EPCs or EPC+AdTM both had 7 day patency rates of 88-89% and 28 day patency rates of 75-88%. Intimal hyperplasia was observed near both the proximal and distal anastomoses in all sodded graft conditions but did not appear to be the primary occlusive failure event. This in vivo study suggests autologous EPCs derived from the peripheral blood of patients with coronary artery disease may improve the performance of synthetic vascular grafts, although no differences were observed between untransfected EPCs and TM transfected EPCs.
Collapse
|
47
|
Ensley AE, Nerem RM, Anderson DEJ, Hanson SR, Hinds MT. Fluid shear stress alters the hemostatic properties of endothelial outgrowth cells. Tissue Eng Part A 2011; 18:127-36. [PMID: 21787250 DOI: 10.1089/ten.tea.2010.0290] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Surface endothelialization is an attractive means to improve the performance of small diameter vascular grafts. While endothelial outgrowth cells (EOCs) are considered a promising source of autologous endothelium, the ability of EOCs to modulate coagulation-related blood activities is not well understood. The goal of this study was to assess the role of arterial flow conditions on the thrombogenic phenotype of EOCs. EOCs derived from baboon peripheral blood, as well as mature arterial endothelial cells from baboons, were seeded onto adsorbed collagen, then exposed to physiologic levels of fluid shear stress. For important hemostatic pathways, cellular responses to shear stress were characterized at the gene and protein level and confirmed with a functional assay for activated protein C (APC) activity. For EOCs, fluid shear stress upregulated gene and protein expression of anticoagulant and platelet inhibitory factors, including thrombomodulin, tissue factor pathway inhibitor, and nitric oxide synthase 3 (eNOS). Fluid shear stress significantly altered the functional activity of EOCs by increasing APC levels. This study demonstrates that fluid shear stress is an important determinant of EOC hemostatic properties. Accordingly, manipulation of EOC phenotype by mechanical forces may be important for the development of thrombo-resistant surfaces on engineered vascular implants.
Collapse
Affiliation(s)
- Ann E Ensley
- Parker H. Petit Institute for Bioengineering and Bioscience and Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
48
|
Ahmann KA, Johnson SL, Hebbel RP, Tranquillo RT. Shear stress responses of adult blood outgrowth endothelial cells seeded on bioartificial tissue. Tissue Eng Part A 2011; 17:2511-21. [PMID: 21599543 DOI: 10.1089/ten.tea.2011.0055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human blood outgrowth endothelial cells (HBOECs) are expanded from circulating endothelial progenitor cells in peripheral blood and thus could provide a source of autologous endothelial cells for tissue-engineered vascular grafts. To examine the suitability of adult HBOECs for use in vascular tissue engineering, the shear stress responsiveness of these cells was examined on bioartificial tissue formed from dermal fibroblasts entrapped in tubular fibrin gels. HBOECs adhered to this surface, deposited collagen IV and laminin, and remained adherent when exposed to 15 dyn/cm(2) shear stress for 24 h. The shear stress responses of HBOECs were compared to human umbilical vein endothelial cells (HUVECs). As with HUVECs, HBOECs upregulated vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 when exposed to tumor necrosis factor (TNF)-α and shear stress decreased the expression of these adhesion molecules on TNF-α-activated monolayers. Nitric oxide production was elevated by shear stress, but did not vary between cell types. Both cell types decreased platelet adhesion to the bioartificial tissue, whereas pre-exposing the cells to flow decreased platelet adhesion further. These results illustrate the potential utility for HBOECs in vascular tissue engineering, as not only do the cells adhere to bioartificial tissue and remain adherent under physiological shear stress, they are also responsive to shear stress signaling.
Collapse
Affiliation(s)
- Katherine A Ahmann
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
49
|
Stroncek JD, Xue Y, Haque N, Lawson JH, Reichert WM. In vitro functional testing of endothelial progenitor cells that overexpress thrombomodulin. Tissue Eng Part A 2011; 17:2091-100. [PMID: 21466416 DOI: 10.1089/ten.tea.2010.0631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study investigated the augmentation of endothelial progenitor cell (EPC) thromboresistance by using gene therapy to overexpress thrombomodulin (TM), an endothelial cell membrane glycoprotein that has potent anti-coagulant properties. Late outgrowth EPCs were isolated from peripheral blood of patients with documented coronary artery disease and transfected with an adenoviral vector containing human TM. EPC transfection conditions for maximizing TM expression, transfection efficiency, and cell viability were employed. TM-overexpressing EPCs had a fivefold increase in the rate of activated protein C production over native EPCs and EPCs transfected with an adenoviral control vector expressing β-galactosidase (p<0.05). TM upregulation caused a significant threefold reduction in platelet adhesion compared to native EPCs, and a 12-fold reduction compared to collagen I-coated wells. Additionally, the clotting time of TM-transfected EPCs incubated with whole blood was significantly extended by 19% over native cells (p<0.05). These data indicate that TM-overexpression has the potential to improve the antithrombotic performance of patient-derived EPCs for endothelialization applications.
Collapse
Affiliation(s)
- John D Stroncek
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| | | | | | | | | |
Collapse
|
50
|
Decellularized tissue-engineered blood vessel as an arterial conduit. Proc Natl Acad Sci U S A 2011; 108:9214-9. [PMID: 21571635 DOI: 10.1073/pnas.1019506108] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Arterial tissue-engineering techniques that have been reported previously typically involve long waiting times of several months while cells from the recipient are cultured to create the engineered vessel. In this study, we developed a different approach to arterial tissue engineering that can substantially reduce the waiting time for a graft. Tissue-engineered vessels (TEVs) were grown from banked porcine smooth muscle cells that were allogeneic to the intended recipient, using a biomimetic perfusion system. The engineered vessels were then decellularized, leaving behind the mechanically robust extracellular matrix of the graft wall. The acellular grafts were then seeded with cells that were derived from the intended recipient--either endothelial progenitor cells (EPC) or endothelial cell (EC)--on the graft lumen. TEV were then implanted as end-to-side grafts in the porcine carotid artery, which is a rigorous testbed due to its tendency for graft occlusion. The EPC- and EC-seeded TEV all remained patent for 30 d in this study, whereas the contralateral control vein grafts were patent in only 3/8 implants. Going along with the improved patency, the cell-seeded TEV demonstrated less neointimal hyperplasia and fewer proliferating cells than did the vein grafts. Proteins in the mammalian target of rapamycin signaling pathway tended to be decreased in TEV compared with vein grafts, implicating this pathway in the TEV's resistance to occlusion from intimal hyperplasia. These results indicate that a readily available, decellularized tissue-engineered vessel can be seeded with autologous endothelial progenitor cells to provide a biological vascular graft that resists both clotting and intimal hyperplasia. In addition, these results show that engineered connective tissues can be grown from banked cells, rendered acellular, and then used for tissue regeneration in vivo.
Collapse
|