1
|
Friend NE, Beamish JA, Margolis EA, Schott NG, Stegemann JP, Putnam AJ. Pre-cultured, cell-encapsulating fibrin microbeads for the vascularization of ischemic tissues. J Biomed Mater Res A 2024; 112:549-561. [PMID: 37326361 PMCID: PMC10724379 DOI: 10.1002/jbm.a.37580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
There is a significant clinical need to develop effective vascularization strategies for tissue engineering and the treatment of ischemic pathologies. In patients afflicted with critical limb ischemia, comorbidities may limit common revascularization strategies. Cell-encapsulating modular microbeads possess a variety of advantageous properties, including the ability to support prevascularization in vitro while retaining the ability to be injected in a minimally invasive manner in vivo. Here, fibrin microbeads containing human umbilical vein endothelial cells (HUVEC) and bone marrow-derived mesenchymal stromal cells (MSC) were cultured in suspension for 3 days (D3 PC microbeads) before being implanted within intramuscular pockets in a SCID mouse model of hindlimb ischemia. By 14 days post-surgery, animals treated with D3 PC microbeads showed increased macroscopic reperfusion of ischemic foot pads and improved limb salvage compared to the cellular controls. Delivery of HUVEC and MSC via microbeads led to the formation of extensive microvascular networks throughout the implants. Engineered vessels of human origins showed evidence of inosculation with host vasculature, as indicated by erythrocytes present in hCD31+ vessels. Over time, the total number of human-derived vessels within the implant region decreased as networks remodeled and an increase in mature, pericyte-supported vascular structures was observed. Our findings highlight the potential therapeutic benefit of developing modular, prevascularized microbeads as a minimally invasive therapeutic for treating ischemic tissues.
Collapse
Affiliation(s)
- Nicole E. Friend
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| | - Jeffrey A. Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Emily A. Margolis
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| | | | - Jan P. Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| | - Andrew J. Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| |
Collapse
|
2
|
Gupta S, Sharma A, Petrovski G, Verma RS. Vascular reconstruction of the decellularized biomatrix for whole-organ engineering-a critical perspective and future strategies. Front Bioeng Biotechnol 2023; 11:1221159. [PMID: 38026872 PMCID: PMC10680456 DOI: 10.3389/fbioe.2023.1221159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Whole-organ re-engineering is the most challenging goal yet to be achieved in tissue engineering and regenerative medicine. One essential factor in any transplantable and functional tissue engineering is fabricating a perfusable vascular network with macro- and micro-sized blood vessels. Whole-organ development has become more practical with the use of the decellularized organ biomatrix (DOB) as it provides a native biochemical and structural framework for a particular organ. However, reconstructing vasculature and re-endothelialization in the DOB is a highly challenging task and has not been achieved for constructing a clinically transplantable vascularized organ with an efficient perfusable capability. Here, we critically and articulately emphasized factors that have been studied for the vascular reconstruction in the DOB. Furthermore, we highlighted the factors used for vasculature development studies in general and their application in whole-organ vascular reconstruction. We also analyzed in detail the strategies explored so far for vascular reconstruction and angiogenesis in the DOB for functional and perfusable vasculature development. Finally, we discussed some of the crucial factors that have been largely ignored in the vascular reconstruction of the DOB and the future directions that should be addressed systematically.
Collapse
Affiliation(s)
- Santosh Gupta
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences. Indian Institute of Technology Madras, Chennai, India
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Akriti Sharma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences. Indian Institute of Technology Madras, Chennai, India
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences. Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
3
|
Cell Replacement Therapy for Type 1 Diabetes Patients: Potential Mechanisms Leading to Stem-Cell-Derived Pancreatic β-Cell Loss upon Transplant. Cells 2023; 12:cells12050698. [PMID: 36899834 PMCID: PMC10000642 DOI: 10.3390/cells12050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Cell replacement therapy using stem-cell-derived insulin-producing β-like cells (sBCs) has been proposed as a practical cure for patients with type one diabetes (T1D). sBCs can correct diabetes in preclinical animal models, demonstrating the promise of this stem cell-based approach. However, in vivo studies have demonstrated that most sBCs, similarly to cadaveric human islets, are lost upon transplantation due to ischemia and other unknown mechanisms. Hence, there is a critical knowledge gap in the current field concerning the fate of sBCs upon engraftment. Here we review, discuss effects, and propose additional potential mechanisms that could contribute toward β-cell loss in vivo. We summarize and highlight some of the literature on phenotypic loss in β-cells under both steady, stressed, and diseased diabetic conditions. Specifically, we focus on β-cell death, dedifferentiation into progenitors, trans-differentiation into other hormone-expressing cells, and/or interconversion into less functional β-cell subtypes as potential mechanisms. While current cell replacement therapy efforts employing sBCs carry great promise as an abundant cell source, addressing the somewhat neglected aspect of β-cell loss in vivo will further accelerate sBC transplantation as a promising therapeutic modality that could significantly enhance the life quality of T1D patients.
Collapse
|
4
|
Pignatelli C, Campo F, Neroni A, Piemonti L, Citro A. Bioengineering the Vascularized Endocrine Pancreas: A Fine-Tuned Interplay Between Vascularization, Extracellular-Matrix-Based Scaffold Architecture, and Insulin-Producing Cells. Transpl Int 2022; 35:10555. [PMID: 36090775 PMCID: PMC9452644 DOI: 10.3389/ti.2022.10555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Intrahepatic islet transplantation is a promising β-cell replacement strategy for the treatment of type 1 diabetes. Instant blood-mediated inflammatory reactions, acute inflammatory storm, and graft revascularization delay limit islet engraftment in the peri-transplant phase, hampering the success rate of the procedure. Growing evidence has demonstrated that islet engraftment efficiency may take advantage of several bioengineering approaches aimed to recreate both vascular and endocrine compartments either ex vivo or in vivo. To this end, endocrine pancreas bioengineering is an emerging field in β-cell replacement, which might provide endocrine cells with all the building blocks (vascularization, ECM composition, or micro/macro-architecture) useful for their successful engraftment and function in vivo. Studies on reshaping either the endocrine cellular composition or the islet microenvironment have been largely performed, focusing on a single building block element, without, however, grasping that their synergistic effect is indispensable for correct endocrine function. Herein, the review focuses on the minimum building blocks that an ideal vascularized endocrine scaffold should have to resemble the endocrine niche architecture, composition, and function to foster functional connections between the vascular and endocrine compartments. Additionally, this review highlights the possibility of designing bioengineered scaffolds integrating alternative endocrine sources to overcome donor organ shortages and the possibility of combining novel immune-preserving strategies for long-term graft function.
Collapse
Affiliation(s)
- Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Campo
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessia Neroni
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
5
|
Aghazadeh Y, Poon F, Sarangi F, Wong FTM, Khan ST, Sun X, Hatkar R, Cox BJ, Nunes SS, Nostro MC. Microvessels support engraftment and functionality of human islets and hESC-derived pancreatic progenitors in diabetes models. Cell Stem Cell 2021; 28:1936-1949.e8. [PMID: 34480863 DOI: 10.1016/j.stem.2021.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 04/27/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022]
Abstract
Islet transplantation is a promising treatment for type 1 diabetes (T1D), yet the low donor pool, poor islet engraftment, and life-long immunosuppression prevent it from becoming the standard of care. Human embryonic stem cell (hESC)-derived pancreatic cells could eliminate donor shortages, but interventions to improve graft survival are needed. Here, we enhanced subcutaneous engraftment by employing a unique vascularization strategy based on ready-made microvessels (MVs) isolated from the adipose tissue. This resulted in improved cell survival and effective glucose response of both human islets and hESC-derived pancreatic cells, which ameliorated preexisting diabetes in three mouse models of T1D.
Collapse
Affiliation(s)
- Yasaman Aghazadeh
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Frankie Poon
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Deparment of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Farida Sarangi
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Frances T M Wong
- Deparment of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Safwat T Khan
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Xuetao Sun
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Rupal Hatkar
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Brian J Cox
- Deparment of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON M5G 1E2, Canada
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON M5S 3H2, Canada.
| | - M Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Deparment of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
6
|
Cell-based therapies for vascular regeneration: Past, present and future. Pharmacol Ther 2021; 231:107976. [PMID: 34480961 DOI: 10.1016/j.pharmthera.2021.107976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022]
Abstract
Tissue vascularization remains one of the outstanding challenges in regenerative medicine. Beyond its role in circulating oxygen and nutrients, the vasculature is critical for organ development, function and homeostasis. Importantly, effective vascular regeneration is key in generating large 3D tissues for regenerative medicine applications to enable the survival of cells post-transplantation, organ growth, and integration into the host system. Therefore, the absence of clinically applicable means of (re)generating vessels is one of the main obstacles in cell replacement therapy. In this review, we highlight cell-based vascularization strategies which demonstrate clinical potential, discuss their strengths and limitations and highlight the main obstacles hindering cell-based therapeutic vascularization.
Collapse
|
7
|
Abstract
BACKGROUND Autologous fat grafting is a dynamic modality used in plastic surgery as an adjunct to improve functional and aesthetic form. However, current practices in fat grafting for soft-tissue augmentation are plagued by tremendous variability in long-term graft retention, resulting in suboptimal outcomes and repetitive procedures. This systematic review identifies and critically appraises the evidence for various enrichment strategies that can be used to augment and improve the viability of fat grafts. METHODS A comprehensive literature search of the Medline and PubMed databases was conducted for animal and human studies published through October of 2017 with multiple search terms related to adipose graft enrichment agents encompassing growth factors, platelet-rich plasma, adipose-derived and bone marrow stem cells, gene therapy, tissue engineering, and other strategies. Data on level of evidence, techniques, complications, and outcomes were collected. RESULTS A total of 1382 articles were identified, of which 147 met inclusion criteria. The majority of enrichment strategies demonstrated positive benefit for fat graft survival, particularly with growth factors and adipose-derived stem cell enrichment. Platelet-rich plasma and adipose-derived stem cells had the strongest evidence to support efficacy in human studies and may demonstrate a dose-dependent effect. CONCLUSIONS Improved understanding of enrichment strategies contributing to fat graft survival can help to optimize safety and outcomes. Controlled clinical studies are lacking, and future studies should examine factors influencing graft survival through controlled clinical trials in order to establish safety and to obtain consistent outcomes.
Collapse
|
8
|
Advances in biomaterials for adipose tissue reconstruction in plastic surgery. NANOTECHNOLOGY REVIEWS 2020. [DOI: 10.1515/ntrev-2020-0028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Adipose tissue reconstruction is an important technique for soft tissue defects caused by facial plastic surgery and trauma. Adipose tissue reconstruction can be repaired by fat transplantation and biomaterial filling, but there are some problems in fat transplantation, such as second operation and limited resources. The application of advanced artificial biomaterials is a promising strategy. In this paper, injectable biomaterials and three-dimensional (3D) tissue-engineered scaffold materials for adipose tissue reconstruction in plastic surgery are reviewed. Injectable biomaterials include natural biomaterials and artificial biomaterials, which generally have problems such as high absorptivity of fillers, repeated injection, and rejection. In recent years, the technology of new 3D tissue-engineering scaffold materials with adipose-derived stem cells (ADSCs) and porous scaffold as the core has made good progress in fat reconstruction, which is expected to solve the current problem of clinical adipose tissue reconstruction, and various biomaterials preparation technology and transformation research also provide the basis for clinical transformation of fat tissue reconstruction.
Collapse
|
9
|
Bowers DT, Song W, Wang LH, Ma M. Engineering the vasculature for islet transplantation. Acta Biomater 2019; 95:131-151. [PMID: 31128322 PMCID: PMC6824722 DOI: 10.1016/j.actbio.2019.05.051] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/13/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
The microvasculature in the pancreatic islet is highly specialized for glucose sensing and insulin secretion. Although pancreatic islet transplantation is a potentially life-changing treatment for patients with insulin-dependent diabetes, a lack of blood perfusion reduces viability and function of newly transplanted tissues. Functional vasculature around an implant is not only necessary for the supply of oxygen and nutrients but also required for rapid insulin release kinetics and removal of metabolic waste. Inadequate vascularization is particularly a challenge in islet encapsulation. Selectively permeable membranes increase the barrier to diffusion and often elicit a foreign body reaction including a fibrotic capsule that is not well vascularized. Therefore, approaches that aid in the rapid formation of a mature and robust vasculature in close proximity to the transplanted cells are crucial for successful islet transplantation or other cellular therapies. In this paper, we review various strategies to engineer vasculature for islet transplantation. We consider properties of materials (both synthetic and naturally derived), prevascularization, local release of proangiogenic factors, and co-transplantation of vascular cells that have all been harnessed to increase vasculature. We then discuss the various other challenges in engineering mature, long-term functional and clinically viable vasculature as well as some emerging technologies developed to address them. The benefits of physiological glucose control for patients and the healthcare system demand vigorous pursuit of solutions to cell transplant challenges. STATEMENT OF SIGNIFICANCE: Insulin-dependent diabetes affects more than 1.25 million people in the United States alone. Pancreatic islets secrete insulin and other endocrine hormones that control glucose to normal levels. During preparation for transplantation, the specialized islet blood vessel supply is lost. Furthermore, in the case of cell encapsulation, cells are protected within a device, further limiting delivery of nutrients and absorption of hormones. To overcome these issues, this review considers methods to rapidly vascularize sites and implants through material properties, pre-vascularization, delivery of growth factors, or co-transplantation of vessel supporting cells. Other challenges and emerging technologies are also discussed. Proper vascular growth is a significant component of successful islet transplantation, a treatment that can provide life-changing benefits to patients.
Collapse
Affiliation(s)
- Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Wei Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Arderiu G, Peña E, Aledo R, Juan-Babot O, Crespo J, Vilahur G, Oñate B, Moscatiello F, Badimon L. MicroRNA-145 Regulates the Differentiation of Adipose Stem Cells Toward Microvascular Endothelial Cells and Promotes Angiogenesis. Circ Res 2019; 125:74-89. [PMID: 31219744 DOI: 10.1161/circresaha.118.314290] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Adipose-derived stem cells (ASCs) are a potential adult mesenchymal stem cell source for restoring endothelial function in ischemic tissues. However, the mechanism that promotes ASCs differentiation toward endothelial cells (ECs) is not known. OBJECTIVE To investigate the mechanisms of ASCs differentiation into ECs. METHODS AND RESULTS ASCs were isolated from clinical lipoaspirates and cultured with DMEM or endothelial cell-conditioned medium. Endothelial cell-conditioned medium induced downregulation of miR-145 in ASCs and promoted endothelial differentiation. We identified bFGF (basic fibroblast growth factor) released by ECs as inducer of ASCs differentiation through receptor-induced AKT (protein kinase B) signaling and phosphorylation of FOXO1 (forkhead box protein O1) suppressing its transcriptional activity and decreasing miR-145 expression. Blocking bFGF-receptor or PI3K/AKT signaling in ASCs increased miR-145 levels. Modulation of miR-145 in ASCs, using a miR-145 inhibitor, regulated their differentiation into ECs: increasing proliferation, migration, inducing expression of EC markers (VE-cadherin, VEGFR2 [vascular endothelial growth factor receptor 2], or VWF [von Willebrand Factor]), and tube-like formation. Furthermore, in vivo, downregulation of miR-145 in ASCs enhanced angiogenesis in subcutaneously implanted plugs in mice. In a murine hindlimb ischemia model injection of ASCs with downregulated miR-145 induced collateral flow and capillary formation evidenced by magnetic resonance angiography. Next, we identified ETS1 (v-ets avian erythroblastosis virus E26 oncogene homolog 1) as the target of miR-145. Upregulation of miR-145 in ASCs, by mimic miR-145, suppressed ETS1 expression and consequently abolished EC differentiation and the angiogenic properties of endothelial cell-conditioned medium-preconditioned ASCs; whereas, overexpression of ETS1 reversed the abrogated antiangiogenic capacity of miR-145. ETS1 overexpression induced similar results to those obtained with miR-145 knockdown. CONCLUSIONS bFGF released by ECs induces ASCs differentiation toward ECs through miR-145-regulated expression of ETS1. Downregulation of miR-145 in ASCs induce vascular network formation in ischemic muscle.
Collapse
Affiliation(s)
- Gemma Arderiu
- From the Cardiovascular-Program ICCC, IR-Hospital Santa Creu i Sant Pau, IIBSantPau Barcelona, Spain (G.A., E.P., R.A., O.J.-B., J.C., G.V., B.O., L.B.)
| | - Esther Peña
- From the Cardiovascular-Program ICCC, IR-Hospital Santa Creu i Sant Pau, IIBSantPau Barcelona, Spain (G.A., E.P., R.A., O.J.-B., J.C., G.V., B.O., L.B.)
- Ciber CV, Instituto Carlos III, Madrid, Spain (E.P., R.A., G.V., L.B.)
| | - Rosa Aledo
- From the Cardiovascular-Program ICCC, IR-Hospital Santa Creu i Sant Pau, IIBSantPau Barcelona, Spain (G.A., E.P., R.A., O.J.-B., J.C., G.V., B.O., L.B.)
- Ciber CV, Instituto Carlos III, Madrid, Spain (E.P., R.A., G.V., L.B.)
| | - Oriol Juan-Babot
- From the Cardiovascular-Program ICCC, IR-Hospital Santa Creu i Sant Pau, IIBSantPau Barcelona, Spain (G.A., E.P., R.A., O.J.-B., J.C., G.V., B.O., L.B.)
| | - Javier Crespo
- From the Cardiovascular-Program ICCC, IR-Hospital Santa Creu i Sant Pau, IIBSantPau Barcelona, Spain (G.A., E.P., R.A., O.J.-B., J.C., G.V., B.O., L.B.)
| | - Gemma Vilahur
- From the Cardiovascular-Program ICCC, IR-Hospital Santa Creu i Sant Pau, IIBSantPau Barcelona, Spain (G.A., E.P., R.A., O.J.-B., J.C., G.V., B.O., L.B.)
- Ciber CV, Instituto Carlos III, Madrid, Spain (E.P., R.A., G.V., L.B.)
| | - Blanca Oñate
- From the Cardiovascular-Program ICCC, IR-Hospital Santa Creu i Sant Pau, IIBSantPau Barcelona, Spain (G.A., E.P., R.A., O.J.-B., J.C., G.V., B.O., L.B.)
| | | | - Lina Badimon
- From the Cardiovascular-Program ICCC, IR-Hospital Santa Creu i Sant Pau, IIBSantPau Barcelona, Spain (G.A., E.P., R.A., O.J.-B., J.C., G.V., B.O., L.B.)
- Ciber CV, Instituto Carlos III, Madrid, Spain (E.P., R.A., G.V., L.B.)
| |
Collapse
|
11
|
Lam GC, Sefton MV. Hypoxia-Inducible Factor Drives Vascularization of Modularly Assembled Engineered Tissue. Tissue Eng Part A 2019; 25:1127-1136. [PMID: 30585759 DOI: 10.1089/ten.tea.2018.0294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
IMPACT STATEMENT Using two inhibitory methods, we demonstrated that hypoxia-inducible factor (HIF) plays an important role in vascularizing and oxygenating modularly-assembled engineered tissues. Each inhibitory technique elucidated a different mechanism by which this occurred. Whereas systemic inhibition negatively impacted early recruitment of host-derived cells, genetic inhibition in grafted endothelial cells was detrimental to their survival. Taken together, our study suggests that methods of HIF-mediated mechanisms could be harnessed to tune the extent and rate of vascularization in engineered tissue constructs.
Collapse
Affiliation(s)
- Gabrielle C Lam
- 1Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Michael V Sefton
- 1Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,2Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
West ME, Sefton EJ, Sefton MV. Bone Marrow-Derived Macrophages Enhance Vessel Stability in Modular Engineered Tissues. Tissue Eng Part A 2019; 25:911-923. [DOI: 10.1089/ten.tea.2018.0222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Michael E.D. West
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Elana J.B. Sefton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Michael V. Sefton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Proulx M, Mayrand D, Vincent C, Boisvert A, Aubin K, Trottier V, Fradette J. Short-term post-implantation dynamics of in vitro engineered human microvascularized adipose tissues. ACTA ACUST UNITED AC 2018; 13:065013. [PMID: 30277888 DOI: 10.1088/1748-605x/aadff7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Engineered adipose tissues are developed for their use as substitutes for tissue replacement in reconstructive surgery. To ensure a timely perfusion of the grafted substitutes, different strategies can be used such as the incorporation of an endothelial component. In this study, we engineered human adipose tissue substitutes comprising of functional adipocytes as well as a natural extracellular matrix using the self-assembly approach, without the use of exogenous scaffolding elements. Human microvascular endothelial cells (hMVECs) were incorporated during tissue production in vitro and we hypothesized that their presence would favor the early connection with the host vascular network translating into functional enhancement after implantation into nude mice in comparison to the substitutes that were not enriched in hMVECs. In vitro, no significant differences were observed between the substitutes in terms of histological aspects. After implantation, both groups presented numerous adipocytes and an abundant matrix in addition to the presence of host capillaries within the grafts. The substitutes thickness and volume were not significantly different between groups over the short-term time course of 14 days (d). For the microvascularized adipose tissues, human CD31 staining revealed a human capillary network connecting with the host microvasculature as early as 3 d after grafting. The detection of murine red blood cells within human CD31+ structures confirmed the functionality of the human capillary network. By analyzing the extent of the global vascularization achieved, a tendency towards increased total capillary network surface and volume was revealed for prevascularized tissues over 14 d. Therefore, applying this strategy on thicker reconstructed adipose tissues with rate-limiting oxygen diffusion might procure added benefits and prove useful to provide voluminous substitutes for patients suffering from adipose tissue loss or defects.
Collapse
Affiliation(s)
- Maryse Proulx
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, CMDGT/LOEX, Aile-R, Hôpital Enfant-Jésus, 1401, 18e Rue, Québec, Qc, G1J 1Z4, Canada. Division of Regenerative Medicine, CHU de Québec-Université Laval Research Center, 1401, 18e Rue, Québec, Qc, G1J 1Z4, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Cho KH, Uthaman S, Park IK, Cho CS. Injectable Biomaterials in Plastic and Reconstructive Surgery: A Review of the Current Status. Tissue Eng Regen Med 2018; 15:559-574. [PMID: 30603579 PMCID: PMC6171701 DOI: 10.1007/s13770-018-0158-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Injectable biomaterials have attracted increasing attention for volume restoration and tissue regeneration. The main aim of this review is to discuss the current status of the injectable biomaterials for correction of tissue defects in plastic and reconstructive surgery. METHODS Requirements of injectable biomaterials, mechanism of in situ gelation, characteristics, and the combinational usage of adipose-derived stem cells (ADSCs) and growth factors were reviewed. RESULTS The ideal injectable biomaterials should be biocompatible, non-toxic, easy to use, and cost-effective. Additionally, it should possess adequate mechanical properties and stability. In situ gelation method includes physical, chemical, enzymatic and photo-initiated methods. Natural and synthetic biomaterials carry their pros and cons due to their inherent properties. The combined use of ADSCs and growth factors provides enhanced potential for adipose tissue regeneration. CONCLUSIONS The usage of injectable biomaterials has been increasing for the tissue restoration and regeneration. The future of incorporating ADSCs and growth factors into the injectable biomaterials is promising.
Collapse
Affiliation(s)
- Ki-Hyun Cho
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju, 61469 Republic of Korea
| | - Chong-Su Cho
- Research Institute for Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| |
Collapse
|
15
|
Moussa L, Usunier B, Demarquay C, Benderitter M, Tamarat R, Sémont A, Mathieu N. Bowel Radiation Injury: Complexity of the Pathophysiology and Promises of Cell and Tissue Engineering. Cell Transplant 2018; 25:1723-1746. [PMID: 27197023 DOI: 10.3727/096368916x691664] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ionizing radiation is effective to treat malignant pelvic cancers, but the toxicity to surrounding healthy tissue remains a substantial limitation. Early and late side effects not only limit the escalation of the radiation dose to the tumor but may also be life-threatening in some patients. Numerous preclinical studies determined specific mechanisms induced after irradiation in different compartments of the intestine. This review outlines the complexity of the pathogenesis, highlighting the roles of the epithelial barrier in the vascular network, and the inflammatory microenvironment, which together lead to chronic fibrosis. Despite the large number of pharmacological molecules available, the studies presented in this review provide encouraging proof of concept regarding the use of mesenchymal stromal cell (MSC) therapy to treat radiation-induced intestinal damage. The therapeutic efficacy of MSCs has been demonstrated in animal models and in patients, but an enormous number of cells and multiple injections are needed due to their poor engraftment capacity. Moreover, it has been observed that although MSCs have pleiotropic effects, some intestinal compartments are less restored after a high dose of irradiation. Future research should seek to optimize the efficacy of the injected cells, particularly with regard to extending their life span in the irradiated tissue. Moreover, improving the host microenvironment, combining MSCs with other specific regenerative cells, or introducing new tissue engineering strategies could be tested as methods to treat the severe side effects of pelvic radiotherapy.
Collapse
Affiliation(s)
- Lara Moussa
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Benoît Usunier
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Christelle Demarquay
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Radia Tamarat
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Alexandra Sémont
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Noëlle Mathieu
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| |
Collapse
|
16
|
Doi R, Tsuchiya T, Mitsutake N, Nishimura S, Matsuu-Matsuyama M, Nakazawa Y, Ogi T, Akita S, Yukawa H, Baba Y, Yamasaki N, Matsumoto K, Miyazaki T, Kamohara R, Hatachi G, Sengyoku H, Watanabe H, Obata T, Niklason LE, Nagayasu T. Transplantation of bioengineered rat lungs recellularized with endothelial and adipose-derived stromal cells. Sci Rep 2017; 7:8447. [PMID: 28814761 PMCID: PMC5559597 DOI: 10.1038/s41598-017-09115-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 07/24/2017] [Indexed: 01/08/2023] Open
Abstract
Bioengineered lungs consisting of a decellularized lung scaffold that is repopulated with a patient's own cells could provide desperately needed donor organs in the future. This approach has been tested in rats, and has been partially explored in porcine and human lungs. However, existing bioengineered lungs are fragile, in part because of their immature vascular structure. Herein, we report the application of adipose-derived stem/stromal cells (ASCs) for engineering the pulmonary vasculature in a decellularized rat lung scaffold. We found that pre-seeded ASCs differentiated into pericytes and stabilized the endothelial cell (EC) monolayer in nascent pulmonary vessels, thereby contributing to EC survival in the regenerated lungs. The ASC-mediated stabilization of the ECs clearly reduced vascular permeability and suppressed alveolar hemorrhage in an orthotopic transplant model for up to 3 h after extubation. Fibroblast growth factor 9, a mesenchyme-targeting growth factor, enhanced ASC differentiation into pericytes but overstimulated their proliferation, causing a partial obstruction of the vasculature in the regenerated lung. ASCs may therefore provide a promising cell source for vascular regeneration in bioengineered lungs, though additional work is needed to optimize the growth factor or hormone milieu for organ culture.
Collapse
Affiliation(s)
- Ryoichiro Doi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Tomoshi Tsuchiya
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan.
- Translational Research Center, Research Institute for Science & Technology, Tokyo University of Science, Chiba, 278-8510, Japan.
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Satoshi Nishimura
- Department of Cardiovascular Medicine, Translational Systems Biology and Medicine Initiative, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8654, Japan
- Center for Molecular Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Mutsumi Matsuu-Matsuyama
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Yuka Nakazawa
- Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Sadanori Akita
- Department of Plastic Surgery, Wound Repair and Regeneration, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Hiroshi Yukawa
- FIRST Research Center for Innovative Nanobiodevices, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yoshinobu Baba
- FIRST Research Center for Innovative Nanobiodevices, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Naoya Yamasaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
- Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Keitaro Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
- Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Takuro Miyazaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Ryotaro Kamohara
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Go Hatachi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Hideyori Sengyoku
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Hironosuke Watanabe
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Tomohiro Obata
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Laura E Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Anesthesia, Yale University, New Haven, CT, 06520, USA
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan.
- Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan.
| |
Collapse
|
17
|
Modular tissue engineering for the vascularization of subcutaneously transplanted pancreatic islets. Proc Natl Acad Sci U S A 2017; 114:9337-9342. [PMID: 28814629 DOI: 10.1073/pnas.1619216114] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The transplantation of pancreatic islets, following the Edmonton Protocol, is a promising treatment for type I diabetics. However, the need for multiple donors to achieve insulin independence reflects the large loss of islets that occurs when islets are infused into the portal vein. Finding a less hostile transplantation site that is both minimally invasive and able to support a large transplant volume is necessary to advance this approach. Although the s.c. site satisfies both these criteria, the site is poorly vascularized, precluding its utility. To address this problem, we demonstrate that modular tissue engineering results in an s.c. vascularized bed that enables the transplantation of pancreatic islets. In streptozotocin-induced diabetic SCID/beige mice, the injection of 750 rat islet equivalents embedded in endothelialized collagen modules was sufficient to restore and maintain normoglycemia for 21 days; the same number of free islets was unable to affect glucose levels. Furthermore, using CLARITY, we showed that embedded islets became revascularized and integrated with the host's vasculature, a feature not seen in other s.c. STUDIES Collagen-embedded islets drove a small (albeit not significant) shift toward a proangiogenic CD206+MHCII-(M2-like) macrophage response, which was a feature of module-associated vascularization. While these results open the potential for using s.c. islet delivery as a treatment option for type I diabetes, the more immediate benefit may be for the exploration of revascularized islet biology.
Collapse
|
18
|
Mahou R, Vlahos AE, Shulman A, Sefton MV. Interpenetrating Alginate-Collagen Polymer Network Microspheres for Modular Tissue Engineering. ACS Biomater Sci Eng 2017; 4:3704-3712. [DOI: 10.1021/acsbiomaterials.7b00356] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Redouan Mahou
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Alexander E Vlahos
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Avital Shulman
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Michael V. Sefton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
19
|
Merfeld-Clauss S, Lease BR, Lu H, March KL, Traktuev DO. Adipose stromal cells differentiation toward smooth muscle cell phenotype diminishes their vasculogenic activity due to induction of activin A secretion. J Tissue Eng Regen Med 2016; 11:3145-3156. [DOI: 10.1002/term.2223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/17/2016] [Accepted: 04/19/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Stephanie Merfeld-Clauss
- Department of Medicine; Indiana Center for Vascular Biology and Medicine
- Krannert Institute of Cardiology; Indiana University School of Medicine; Indianapolis IN 46202 USA
- VA Center for Regenerative Medicine; R.L. Roudebush VA Medical Center; Indianapolis IN 46202 USA
| | - Benjamin R. Lease
- VA Center for Regenerative Medicine; R.L. Roudebush VA Medical Center; Indianapolis IN 46202 USA
| | - Hongyan Lu
- Department of Medicine; Indiana Center for Vascular Biology and Medicine
- Krannert Institute of Cardiology; Indiana University School of Medicine; Indianapolis IN 46202 USA
- VA Center for Regenerative Medicine; R.L. Roudebush VA Medical Center; Indianapolis IN 46202 USA
| | - Keith L. March
- Department of Medicine; Indiana Center for Vascular Biology and Medicine
- Krannert Institute of Cardiology; Indiana University School of Medicine; Indianapolis IN 46202 USA
- VA Center for Regenerative Medicine; R.L. Roudebush VA Medical Center; Indianapolis IN 46202 USA
- Department of Cellular and Integrative Physiology; Indiana University School of Medicine; Indianapolis IN 46202 USA
| | - Dmitry O. Traktuev
- Department of Medicine; Indiana Center for Vascular Biology and Medicine
- Krannert Institute of Cardiology; Indiana University School of Medicine; Indianapolis IN 46202 USA
- VA Center for Regenerative Medicine; R.L. Roudebush VA Medical Center; Indianapolis IN 46202 USA
| |
Collapse
|
20
|
Montali M, Barachini S, Panvini FM, Carnicelli V, Fulceri F, Petrini I, Pacini S. Growth Factor Content in Human Sera Affects the Isolation of Mesangiogenic Progenitor Cells (MPCs) from Human Bone Marrow. Front Cell Dev Biol 2016; 4:114. [PMID: 27800477 PMCID: PMC5065953 DOI: 10.3389/fcell.2016.00114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/29/2016] [Indexed: 12/31/2022] Open
Abstract
Mesangiogenic Progenitor Cells (MPCs) are human bone marrow-derived multipotent cells, isolated in vitro under selective culture conditions and shown to retain both mesengenic and angiogenic potential. MPCs also co-isolated with multipotent stromal cells (MSCs) when bone marrow primary cultures were set up for clinical applications, using human serum (HS) in place of fetal bovine serum (FBS). MPC culture purity (over 95%) is strictly dependent on HS supplementation with significant batch-to-batch variability. In the present paper we screened different sources of commercially available pooled human AB type serum (PhABS) for their ability to promote MPC production under selective culture conditions. As the majority of "contaminating" cells in MPC cultures were represented by MSC-like cells, we hypothesized a role by differentiating agents present in the sera. Therefore, we tested a number of growth factors (hGF) and found that higher concentrations of FGF-2, EGF, PDGF-AB, and VEGF-A as well as lower concentration of IGF-1 give sub-optimal MPC recovery. Gene expression analysis of hGF receptors was also carried out both in MSCs and MPCs, suggesting that FGF-2, EGF, and PDGF-AB could act promoting MSC proliferation, while VEGF-A contribute to MSC-like cell contamination, triggering MPC differentiation. Here we demonstrated that managing hGF contents, together with applying specific receptors inhibitors (Erlotinib-HCl and Nintedanib), could significantly mitigate the batch-to-batch variability related to serum supplementation. These data represent a fundamental milestone in view of manufacturing MPC-based medicinal products.
Collapse
Affiliation(s)
- Marina Montali
- Department of Clinical and Experimental Medicine, University of Pisa Pisa, Italy
| | - Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa Pisa, Italy
| | - Francesca M Panvini
- Department of Clinical and Experimental Medicine, University of Pisa Pisa, Italy
| | - Vittoria Carnicelli
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa Pisa, Italy
| | - Franca Fulceri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Iacopo Petrini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa Pisa, Italy
| | - Simone Pacini
- Department of Clinical and Experimental Medicine, University of Pisa Pisa, Italy
| |
Collapse
|
21
|
Lam GC, Sefton MV. Harnessing gene and drug delivery for vascularizing engineered tissue platforms. Drug Discov Today 2016; 21:1532-1539. [PMID: 27319292 DOI: 10.1016/j.drudis.2016.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 01/19/2023]
Abstract
Enhancement of tissue vascularization is a therapeutic target for many ischemic conditions, and is crucial for successful engraftment of therapeutic cells for tissue regeneration. The authors present opportunities for using these platforms for dissecting the role of angiogenic mechanisms and highlight recent gene and drug delivery strategies for enhancing vascularization of engineered tissues. Modular tissue engineering is featured as an example.
Collapse
Affiliation(s)
- Gabrielle C Lam
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Michael V Sefton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Modular Tissue Assembly Strategies for Biofabrication of Engineered Cartilage. Ann Biomed Eng 2016; 45:100-114. [DOI: 10.1007/s10439-016-1609-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/02/2016] [Indexed: 12/19/2022]
|
23
|
Merfeld-Clauss S, Lupov IP, Lu H, March KL, Traktuev DO. Adipose Stromal Cell Contact with Endothelial Cells Results in Loss of Complementary Vasculogenic Activity Mediated by Induction of Activin A. Stem Cells 2015; 33:3039-51. [PMID: 26037810 DOI: 10.1002/stem.2074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/07/2015] [Indexed: 12/30/2022]
Abstract
Adipose stem/stromal cells (ASCs) after isolation produce numerous angiogenic growth factors. This justifies their use to promote angiogenesis per transplantation. In parallel, local coimplantation of ASC with endothelial cells (ECs) leading to formation of functional vessels by the donor cells suggests the existence of a mechanism responsible for fine-tuning ASC paracrine activity essential for vasculogenesis. As expected, conditioned media (CM) from ASC promoted ECs survival, proliferation, migration, and vasculogenesis. In contrast, media from EC-ASC cocultures had neutral effects upon EC responses. Media from cocultures exhibited lower levels of vascular endothelial growth factor (VEGF), hepatic growth factor, angiopoietin-1, and stromal cell-derived factor-1 compared with those in ASC CM. Activin A was induced in ASC in response to EC exposure and was responsible for overall antivasculogenic activity of EC-ASC CM. Except for VEGF, activin A diminished secretion of all tested factors by ASC. Activin A mediated induction of VEGF expression in ASC, but also upregulated expression of VEGF scavenger receptor FLT-1 in EC in EC-ASC cocultures. Blocking the FLT-1 expression in EC led to an increase in VEGF concentration in CM. In vitro pre-exposure of ASC to low number of EC before subcutaneous coimplantation with EC resulted in decrease in vessel density in the implants. In vitro tests suggested that activin A was partially responsible for this diminished ASC activity. This study shows that neovessel formation is associated with induction of activin A expression in ASC; this factor, by affecting the bioactivity of both ASC and EC, directs the crosstalk between these complementary cell types to establish stable vessels.
Collapse
Affiliation(s)
- Stephanie Merfeld-Clauss
- Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,VA Center for Regenerative Medicine, R.L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Ivan P Lupov
- Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,VA Center for Regenerative Medicine, R.L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Hongyan Lu
- Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,VA Center for Regenerative Medicine, R.L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Keith L March
- Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,VA Center for Regenerative Medicine, R.L. Roudebush VA Medical Center, Indianapolis, Indiana, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dmitry O Traktuev
- Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,VA Center for Regenerative Medicine, R.L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
24
|
Kepecs DM, Zhang Y, Thai K, Advani SL, Yuen DA, Connelly KA, Kosanam H, Diamandis E, Sefton MV, Gilbert RE. Application of Modular Therapy for Renoprotection in Experimental Chronic Kidney Disease. Tissue Eng Part A 2015; 21:1963-72. [PMID: 25661544 DOI: 10.1089/ten.tea.2014.0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cell-based regenerative therapies offer a new alternative approach to the treatment of chronic disease. Specifically, studies by our laboratory and others have shown that a subpopulation of cells derived from the bone marrow, known as early outgrowth cells (EOCs), are able to attenuate the progression of chronic kidney disease (CKD). In this study we examined the efficacy of a tissue engineering system, in which EOCs were embedded into submillimeter-sized collagen cylinders. These small individual units are referred to as modules and together form a functional microtissue. Due to their resemblance to endothelial cells, late outgrowth cells (LOCs) were used to coat the module surface, hypothesizing that as such they would promote vascularization and enhance engraftment of the encapsulated EOCs. These coated modules were transplanted subcutaneously into the subtotally nephrectomized rat model of CKD. While coated module therapy significantly improved both renal structure and function, noncoated modules with embedded EOCs were unable to reproduce these salutary effects on the kidney. Nevertheless, in both treatments, the embedded EOCs quickly degraded the modular environment and were seen to migrate to the liver, spleen, and bone marrow as early as 6 days after transplantation. With the efflux of EOCs, and unexpectedly no evidence of vascularization, we hypothesized that the LOCs did not enhance EOC engraftment, but rather augmented the renoprotection provided by EOCs by secretion of their own soluble and potent antifibrotic factors. To the best of our knowledge, this is the first study to document an effective subcutaneous approach for renoprotection.
Collapse
Affiliation(s)
- David M Kepecs
- 1 Keenan Research Centre for Biomedical Science of St. Michael's Hospital , Toronto, Canada
| | - Yanling Zhang
- 1 Keenan Research Centre for Biomedical Science of St. Michael's Hospital , Toronto, Canada
| | - Kerri Thai
- 1 Keenan Research Centre for Biomedical Science of St. Michael's Hospital , Toronto, Canada
| | - Suzanne L Advani
- 1 Keenan Research Centre for Biomedical Science of St. Michael's Hospital , Toronto, Canada
| | - Darren A Yuen
- 1 Keenan Research Centre for Biomedical Science of St. Michael's Hospital , Toronto, Canada
| | - Kim A Connelly
- 1 Keenan Research Centre for Biomedical Science of St. Michael's Hospital , Toronto, Canada
| | - Hari Kosanam
- 2 Department of Pathology and Laboratory Medicine, Mt. Sinai Hospital , Toronto, Canada
| | - Eleftherios Diamandis
- 2 Department of Pathology and Laboratory Medicine, Mt. Sinai Hospital , Toronto, Canada
| | - Michael V Sefton
- 3 Donnelly Centre for Cellular and Biomedical Research, University of Toronto , Toronto, Canada
| | - Richard E Gilbert
- 1 Keenan Research Centre for Biomedical Science of St. Michael's Hospital , Toronto, Canada
| |
Collapse
|
25
|
Khan OF, Voice DN, Leung BM, Sefton MV. A novel high-speed production process to create modular components for the bottom-up assembly of large-scale tissue-engineered constructs. Adv Healthc Mater 2015; 4:113-20. [PMID: 24895070 PMCID: PMC4254903 DOI: 10.1002/adhm.201400150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/18/2014] [Indexed: 01/24/2023]
Abstract
To replace damaged or diseased tissues, large tissue-engineered constructs can be prepared by assembling modular components in a bottom-up approach. However, a high-speed method is needed to produce sufficient numbers of these modules for full-sized tissue substitutes. To this end, a novel production technique is devised, combining air shearing and a plug flow reactor-style design to rapidly produce large quantities of hydrogel-based (here type I collagen) cylindrical modular components with tunable diameters and length. Using this technique, modules containing NIH 3T3 cells show greater than 95% viability while endothelial cell surface attachment and confluent monolayer formation are demonstrated. Additionally, the rapidly produced modules are used to assemble large tissue constructs (>1 cm(3) ) in vitro. Module building blocks containing luciferase-expressing L929 cells are packed in full size adult rat-liver-shaped bioreactors and perfused with cell medium, to demonstrate the capacity to build organ-shaped constructs; bioluminescence demonstrates sustained viability over 3 d. Cardiomyocyte-embedded modules are also used to assemble electrically stimulatable contractile tissue.
Collapse
Affiliation(s)
- Omar F. Khan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Derek N. Voice
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Brendan M. Leung
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Michael V. Sefton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| |
Collapse
|
26
|
Aubin K, Vincent C, Proulx M, Mayrand D, Fradette J. Creating capillary networks within human engineered tissues: impact of adipocytes and their secretory products. Acta Biomater 2015; 11:333-45. [PMID: 25278444 DOI: 10.1016/j.actbio.2014.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/03/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022]
Abstract
The development of tissue-engineered substitutes of substantial volume is closely associated with the need to ensure rapid vascularization upon grafting. Strategies promoting angiogenesis include the in vitro formation of capillary-like networks within engineered substitutes. We generated both connective and adipose tissues based on a cell sheet technology using human adipose-derived stromal cells. This study evaluates the morphology and extent of the capillary networks that developed upon seeding of human microvascular endothelial cells during tissue production. We posited that adipocyte presence/secretory products could modulate the resulting capillary network when compared to connective substitutes. Analyses including confocal imaging of CD31-labeled capillary-like networks indicated slight differences in their morphological appearance. However, the total volume occupied by the networks as well as the frequency distribution of the structure's volumes were similar between connective and adipose tissues. The average diameter of the capillary structures tended to be 20% higher in reconstructed adipose tissues. Quantification of pro-angiogenic molecules in conditioned media showed greater amounts of leptin (15×), angiopoietin-1 (3.4×) and HGF (1.7×) secreted from adipose than connective tissues at the time of endothelial cell seeding. However, this difference was attenuated during the following coculture period in endothelial cell-containing media, correlating with the minor differences noted between the networks. Taken together, we developed a protocol allowing reconstruction of both connective and adipose tissues featuring well-developed capillary networks in vitro. We performed a detailed characterization of the network architecture within engineered tissues that is relevant for graft assessment before implantation as well as for in vitro screening of angiogenic modulators using three-dimensional models.
Collapse
|
27
|
Lam GC, Sefton MV. Tuning graft- and host-derived vascularization in modular tissue constructs: a potential role of HIF1 activation. Tissue Eng Part A 2014; 21:803-16. [PMID: 25379774 DOI: 10.1089/ten.tea.2014.0315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A better understanding of the factors governing the vascularization of engineered tissues is crucial for their advancement as therapeutic platforms. Here, we studied the effect of implant volume and cell densities on the in vivo vascularization of modular engineered tissue constructs. Sub-millimeter collagen modules containing adipose-derived mesenchymal stromal cells (adMSC) and enveloped by human umbilical vein endothelial cells (HUVEC) were subcutaneously implanted in severe-combined immunodeficient mice with a beige-mutation (SCID-bg) mice. Implant volume and cell density was varied relative to a base case, defined as a 0.01 mL implant containing 1.5×10(7) adMSC/mL and 3.9×10(6) HUVEC/mL. At 7 and 14 days post-transplantation, the constructs were harvested for immunohistochemical analysis of total (CD31(+)) and graft-derived (UEA1(+)) vessel formation, hypoxia-inducible factor 1-alpha (HIF1α) expression, infiltration of host-derived leukocytes (CD45), and macrophages (F4/80). Implant volume and cell density affected the relative contributions of host- versus graft-derived vascularization, highlighting that different mechanisms underlie the two processes. Graft-derived vessel formation was most rapid and robust in implants with high HIF1α expression, namely large volume implants and implants with high adMSC and HUVEC density (p<0.01 compared to base case at day 7). Many HIF1α(+) cells were vessel-lining HUVEC, suggesting that HIF1 activation may be key to vessel assembly in the graft. Host vessel ingrowth, however, dominated the vascularization of small volume implants (of high and low adMSC density alike), which showed low HIF1α expression at day 7. Host vessels were sustained to day 14 when adMSC density alone was increased, presumably due to increased paracrine secretions. This study points to a potential role of HIF1 activation in the vascularization of tissue constructs, which may be harnessed to engineer robust vessels for therapeutic applications.
Collapse
Affiliation(s)
- Gabrielle C Lam
- 1 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| | | |
Collapse
|
28
|
Merfeld-Clauss S, Lupov IP, Lu H, Feng D, Compton-Craig P, March KL, Traktuev DO. Adipose stromal cells differentiate along a smooth muscle lineage pathway upon endothelial cell contact via induction of activin A. Circ Res 2014; 115:800-9. [PMID: 25114097 DOI: 10.1161/circresaha.115.304026] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RATIONALE Adipose stromal cells (ASC) are therapeutically potent progenitor cells that possess properties of pericytes. In vivo, ASC in combination with endothelial cells (EC) establish functional multilayer vessels, in which ASC form the outer vessel layer and differentiate into mural cells. OBJECTIVE To identify factors responsible for ASC differentiation toward the smooth muscle cell phenotype via interaction with EC. METHODS AND RESULTS An in vitro model of EC cocultivation with ASC was used, in which EC organized into vascular cords, accompanied by ASC migration toward EC and upregulation of α-smooth muscle actin, SM22α, and calponin expression. Conditioned media from EC-ASC, but not from EC cultures, induced smooth muscle cell protein expression in ASC monocultures. EC-ASC cocultivation induced marked accumulation of activin A but not transforming growth factor-β1 in conditioned media. This was attributed to induction of activin A expression in ASC on contact with EC. Although transforming growth factor-β and activin A were individually sufficient to initiate expression of smooth muscle cell antigens in ASC, only activin A IgG blocked the effect of EC-ASC conditioned media. Although transforming growth factor-β was able to induce activin A expression in ASC, in cocultures this induction was transforming growth factor-β independent. In EC-ASC cocultures, activin A IgG or ALK4/5/7 receptor inhibitors blocked expression of α-smooth muscle actin in ASC in the absence of direct EC-cord contact, but this inhibition was circumvented in ASC by direct EC contact. CONCLUSIONS EC initiate a smooth muscle cell differentiation program in adjacent ASC and propagate this differentiation in distant ASC by induction of activin A expression.
Collapse
Affiliation(s)
- Stephanie Merfeld-Clauss
- From Indiana Center for Vascular Biology and Medicine, Department of Medicine (S.M.-C., I.P.L., H.L., D.F., P.C.-C., K.L.M., D.O.T.) and Department of Cellular and Integrative Physiology (K.L.M.) at Indiana University School of Medicine, Indianapolis; and VA Center for Regenerative Medicine, Department of Research and Development at R.L. Roudebush VA Medical Center, Indianapolis, IN (S.M.-C., I.P.L., H.L., D.F., P.C.-C., K.L.M., D.O.T.)
| | - Ivan P Lupov
- From Indiana Center for Vascular Biology and Medicine, Department of Medicine (S.M.-C., I.P.L., H.L., D.F., P.C.-C., K.L.M., D.O.T.) and Department of Cellular and Integrative Physiology (K.L.M.) at Indiana University School of Medicine, Indianapolis; and VA Center for Regenerative Medicine, Department of Research and Development at R.L. Roudebush VA Medical Center, Indianapolis, IN (S.M.-C., I.P.L., H.L., D.F., P.C.-C., K.L.M., D.O.T.)
| | - Hongyan Lu
- From Indiana Center for Vascular Biology and Medicine, Department of Medicine (S.M.-C., I.P.L., H.L., D.F., P.C.-C., K.L.M., D.O.T.) and Department of Cellular and Integrative Physiology (K.L.M.) at Indiana University School of Medicine, Indianapolis; and VA Center for Regenerative Medicine, Department of Research and Development at R.L. Roudebush VA Medical Center, Indianapolis, IN (S.M.-C., I.P.L., H.L., D.F., P.C.-C., K.L.M., D.O.T.)
| | - Dongni Feng
- From Indiana Center for Vascular Biology and Medicine, Department of Medicine (S.M.-C., I.P.L., H.L., D.F., P.C.-C., K.L.M., D.O.T.) and Department of Cellular and Integrative Physiology (K.L.M.) at Indiana University School of Medicine, Indianapolis; and VA Center for Regenerative Medicine, Department of Research and Development at R.L. Roudebush VA Medical Center, Indianapolis, IN (S.M.-C., I.P.L., H.L., D.F., P.C.-C., K.L.M., D.O.T.)
| | - Peter Compton-Craig
- From Indiana Center for Vascular Biology and Medicine, Department of Medicine (S.M.-C., I.P.L., H.L., D.F., P.C.-C., K.L.M., D.O.T.) and Department of Cellular and Integrative Physiology (K.L.M.) at Indiana University School of Medicine, Indianapolis; and VA Center for Regenerative Medicine, Department of Research and Development at R.L. Roudebush VA Medical Center, Indianapolis, IN (S.M.-C., I.P.L., H.L., D.F., P.C.-C., K.L.M., D.O.T.)
| | - Keith L March
- From Indiana Center for Vascular Biology and Medicine, Department of Medicine (S.M.-C., I.P.L., H.L., D.F., P.C.-C., K.L.M., D.O.T.) and Department of Cellular and Integrative Physiology (K.L.M.) at Indiana University School of Medicine, Indianapolis; and VA Center for Regenerative Medicine, Department of Research and Development at R.L. Roudebush VA Medical Center, Indianapolis, IN (S.M.-C., I.P.L., H.L., D.F., P.C.-C., K.L.M., D.O.T.)
| | - Dmitry O Traktuev
- From Indiana Center for Vascular Biology and Medicine, Department of Medicine (S.M.-C., I.P.L., H.L., D.F., P.C.-C., K.L.M., D.O.T.) and Department of Cellular and Integrative Physiology (K.L.M.) at Indiana University School of Medicine, Indianapolis; and VA Center for Regenerative Medicine, Department of Research and Development at R.L. Roudebush VA Medical Center, Indianapolis, IN (S.M.-C., I.P.L., H.L., D.F., P.C.-C., K.L.M., D.O.T.).
| |
Collapse
|
29
|
Chamberlain MD, West MED, Lam GC, Sefton MV. In vivo remodelling of vascularizing engineered tissues. Ann Biomed Eng 2014; 43:1189-200. [PMID: 25297985 DOI: 10.1007/s10439-014-1146-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/27/2014] [Indexed: 12/15/2022]
Abstract
A critical aspect of creating vascularized tissues is the remodelling that occurs in vivo, driven in large part by the host response to the tissue construct. Rather than a simple inflammatory response, a beneficial tissue remodelling response results in the formation of vascularised tissue. The characteristics and dynamics of this response are slowly being elucidated, especially as they are modulated by the complex interaction between the biomaterial and cellular components of the tissue constructs and the host. This process has elements that are similar to both wound healing and tumour development, and its features are illustrated by reference to the bottom-up generation of a tissue using modular constructs. These modular constructs consist of mesenchymal stromal cells (MSC) embedded in endothelial cell (EC)-covered collagen gel rods that are a few hundred microns in size. Particular attention is paid to the role of hypoxia and macrophage recruitment, as well as the paracrine effects of the MSC and EC in this host response.
Collapse
Affiliation(s)
- M Dean Chamberlain
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada
| | | | | | | |
Collapse
|
30
|
Peterson AW, Caldwell DJ, Rioja AY, Rao RR, Putnam AJ, Stegemann JP. Vasculogenesis and Angiogenesis in Modular Collagen-Fibrin Microtissues. Biomater Sci 2014; 2:1497-1508. [PMID: 25177487 PMCID: PMC4145346 DOI: 10.1039/c4bm00141a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The process of new blood vessel formation is critical in tissue development, remodeling and regeneration. Modular tissue engineering approaches have been developed to enable the bottom-up assembly of more complex tissues, including vascular networks. In this study, collagen-fibrin composite microbeads (100-300 μm in diameter) were fabricated using a water-in-oil emulsion technique. Human endothelial cells and human fibroblasts were embedded directly in the microbead matrix at the time of fabrication. Microbead populations were characterized and cultured for 14 days either as free-floating populations or embedded in a surrounding fibrin gel. The collagen-fibrin matrix efficiently entrapped cells and supported their viability and spreading. By 7 days in culture, endothelial cell networks were evident within microbeads, and these structures became more prominent by day 14. Fibroblasts co-localized with endothelial cells, suggesting a pericyte-like function, and laminin deposition indicated maturation of the vessel networks over time. Microbeads embedded in a fibrin gel immediately after fabrication showed the emergence of cells and the coalescence of vessel structures in the surrounding matrix by day 7. By day 14, inosculation of neighboring cords and prominent vessel structures were observed. Microbeads pre-cultured for 7 days prior to embedding in fibrin gave rise to vessel networks that emanated radially from the microbead by day 7, and developed into connected networks by day 14. Lumen formation in endothelial cell networks was confirmed using confocal sectioning. These data show that collagen-fibrin composite microbeads support vascular network formation. Microbeads embedded directly after fabrication emulated the process of vasculogenesis, while the branching and joining of vessels from pre-cultured microbeads resembled angiogenesis. This modular microtissue system has utility in studying the processes involved in new vessel formation, and may be developed into a therapy for the treatment of ischemic conditions.
Collapse
Affiliation(s)
- A W Peterson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - D J Caldwell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - A Y Rioja
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - R R Rao
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - A J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - J P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
31
|
Montgomery M, Zhang B, Radisic M. Cardiac Tissue Vascularization: From Angiogenesis to Microfluidic Blood Vessels. J Cardiovasc Pharmacol Ther 2014; 19:382-393. [PMID: 24764132 DOI: 10.1177/1074248414528576] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myocardial infarction results from a blockage of a major coronary artery that shuts the delivery of oxygen and nutrients to a region of the myocardium, leading to massive cardiomyocytes death and regression of microvasculature. Growth factor and cell delivery methods have been attempted to revascularize the ischemic myocardium and prevent further cell death. Implantable cardiac tissue patches were engineered to directly revascularize as well as remuscularize the affected muscle. However, inadequate vascularization in vitro and in vivo limits the efficacy of these new treatment options. Breakthroughs in cardiac tissue vascularization will profoundly impact ischemic heart therapies. In this review, we discuss the full spectrum of vascularization approaches ranging from biological angiogenesis to microfluidic blood vessels as related to cardiac tissue engineering.
Collapse
Affiliation(s)
- Miles Montgomery
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Boyang Zhang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
SLIT3-ROBO4 activation promotes vascular network formation in human engineered tissue and angiogenesis in vivo. J Mol Cell Cardiol 2014; 64:124-31. [PMID: 24090675 DOI: 10.1016/j.yjmcc.2013.09.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 08/27/2013] [Accepted: 09/06/2013] [Indexed: 11/23/2022]
Abstract
Successful implantation and long-term survival of engineered tissue grafts hinges on adequate vascularization of the implant. Endothelial cells are essential for patterning vascular structures, but they require supportive mural cells such as pericytes/mesenchymal stem cells (MSCs) to generate stable, functional blood vessels. While there is evidence that the angiogenic effect of MSCs is mediated via the secretion of paracrine signals, the identity of these signals is unknown. By utilizing two functionally distinct human MSC clones, we found that so-called "pericytic" MSCs secrete the pro-angiogenic vascular guidance molecule SLIT3, which guides vascular development by directing ROBO4-positive endothelial cells to form networks in engineered tissue. In contrast, "non-pericytic" MSCs exhibit reduced activation of the SLIT3/ROBO4 pathway and do not support vascular networks. Using live cell imaging of organizing 3D vascular networks, we show that siRNA knockdown of SLIT3 in MSCs leads to disorganized clustering of ECs. Knockdown of its receptor ROBO4 in ECs abolishes the generation of functional human blood vessels in an in vivo xenogenic implant. These data suggest that the SLIT3/ROBO4 pathway is required for MSC-guided vascularization in engineered tissues. Heterogeneity of SLIT3 expression may underlie the variable clinical success of MSCs for tissue repair applications.
Collapse
|
33
|
Walters BD, Stegemann JP. Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales. Acta Biomater 2014; 10:1488-501. [PMID: 24012608 PMCID: PMC3947739 DOI: 10.1016/j.actbio.2013.08.038] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/17/2013] [Accepted: 08/28/2013] [Indexed: 12/16/2022]
Abstract
Collagen type I is a widely used natural biomaterial that has found utility in a variety of biological and medical applications. Its well-characterized structure and role as an extracellular matrix protein make it a highly relevant material for controlling cell function and mimicking tissue properties. Collagen type I is abundant in a number of tissues, and can be isolated as a purified protein. This review focuses on hydrogel biomaterials made by reconstituting collagen type I from a solubilized form, with an emphasis on in vitro studies in which collagen structure can be controlled. The hierarchical structure of collagen from the nanoscale to the macroscale is described, with an emphasis on how structure is related to function across scales. Methods of reconstituting collagen into hydrogel materials are presented, including molding of macroscopic constructs, creation of microscale modules and electrospinning of nanoscale fibers. The modification of collagen biomaterials to achieve the desired structures and functions is also addressed, with particular emphasis on mechanical control of collagen structure, creation of collagen composite materials and crosslinking of collagenous matrices. Biomaterials scientists have made remarkable progress in rationally designing collagen-based biomaterials and in applying them both to the study of biology and for therapeutic benefit. This broad review illustrates recent examples of techniques used to control collagen structure and thereby to direct its biological and mechanical functions.
Collapse
Affiliation(s)
- B D Walters
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - J P Stegemann
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
34
|
Ciucurel EC, Sefton MV. Del-1 overexpression in endothelial cells increases vascular density in tissue-engineered implants containing endothelial cells and adipose-derived mesenchymal stromal cells. Tissue Eng Part A 2014; 20:1235-52. [PMID: 24151812 PMCID: PMC3993021 DOI: 10.1089/ten.tea.2013.0242] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 10/22/2013] [Indexed: 02/01/2023] Open
Abstract
We used a combination of strategies to stimulate the vascularization of tissue-engineered constructs in vivo including a modular approach to build larger tissues from individual building blocks ("modules") mixed together. Each building block included vascular cells by design; modules were submillimeter-sized collagen gels with an outer layer of endothelial cells (ECs), and with embedded adipose-derived mesenchymal stromal cells (adMSCs) to support EC survival and blood vessel maturation in vivo. We transduced the ECs that coat the modules with a lentiviral construct to overexpress the angiogenic extracellular matrix (ECM) protein Developmental endothelial locus-1 (Del-1). Upon injection of modules in a subcutaneous SCID/Bg mouse model, there was an increase in the number of blood vessels for implants with ECs transduced to overexpress Del-1 compared with control implants (with enhanced green fluorescent protein [eGFP]-transduced ECs) over the 21-day duration of the study. The greatest difference between Del-1 and eGFP implants and the highest number of blood vessels were observed 7 days after transplantation. The day-7 Del-1 implants also had increased SMA+ staining compared with control, suggesting increased blood vessel maturation through recruitment of SMA+ smooth muscle cells or pericytes to stabilize the newly formed blood vessels. Perfusion studies (microcomputed tomography, ultrasound imaging, and systemic injection of fluorescent UEA-1 or dextran) showed that some of the newly formed blood vessels (both donor derived and host derived, in both Del-1 and eGFP implants) were perfused and connected to the host vasculature as early as 7 days after transplantation, and at later time points as well. Nevertheless, perfusion of the implants was limited in some cases, suggesting that further improvements are necessary to normalize the vasculature at the implant site.
Collapse
Affiliation(s)
- Ema C. Ciucurel
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Michael V. Sefton
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
35
|
Ciucurel EC, Vlahos AE, Sefton MV. Using Del-1 to tip the angiogenic balance in endothelial cells in modular constructs. Tissue Eng Part A 2014; 20:1222-34. [PMID: 24138448 DOI: 10.1089/ten.tea.2013.0241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Modular tissue engineering is a method of building vascularized tissue-engineered constructs. Submillimeter-sized collagen pieces (modules) coated with a layer of endothelial cells (EC; vascular component), and with embedded functional cells, are self-assembled into a larger, three-dimensional tissue. In this study, we examined the use of developmental endothelial locus-1 (Del-1), an extracellular matrix protein with proangiogenic properties, as a means of tipping the angiogenic balance in human umbilical vein endothelial cells incorporated in modular tissue-engineered constructs. The motivation was to enhance the vascularization of these constructs upon transplantation in vivo, in this case, without the use of exogenous mesenchymal stromal cells. EC were transduced using a lentiviral construct to overexpress Del-1. The Del-1 EC formed more sprouts in a fibrin gel sprouting assay in vitro compared with eGFP (control) transduced EC, as expected. Del-1 EC had a distinct profile of gene expression (upregulation of matrix metalloproteinase-9 [MMP-9], urokinase-type plasminogen activator [uPA/PLAU], vascular endothelial growth factor [VEGF-A], and intercellular adhesion molecule-1 [ICAM-1]; downregulation of angiopoietin-2 [Ang2]), also supporting the notion of "tipping the angiogenic balance". On the other hand, contrary to our expectations, when Del-1 EC-coated modules were implanted subcutaneously in a severe combined immunodeficient/beige animal model, the proangiogenic effect of Del-1 was less remarkable. There was only a small increase in the number of blood vessels formed in Del-1 implants compared with the eGFP implants, and only few blood vessels formed at the implant site in both cases. This was presumed due to limited EC survival after transplantation. We speculate that if we could improve EC survival in our study (for example, by adding other prosurvival factors or supporting cells), we would see a greater Del-1-induced angiogenic benefit in vivo as a consequence of increased Del-1 secretion by a higher number of surviving cells.
Collapse
Affiliation(s)
- Ema C Ciucurel
- 1 Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Canada
| | | | | |
Collapse
|
36
|
McFadden T, Duffy G, Allen A, Stevens H, Schwarzmaier S, Plesnila N, Murphy J, Barry F, Guldberg R, O’Brien F. The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen-glycosaminoglycan scaffold in vivo. Acta Biomater 2013; 9:9303-16. [PMID: 23958783 DOI: 10.1016/j.actbio.2013.08.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 08/01/2013] [Accepted: 08/09/2013] [Indexed: 01/26/2023]
Abstract
This paper demonstrates a method to engineer, in vitro, a nascent microvasculature within a collagen-glycosaminoglycan scaffold with a view to overcoming the major issue of graft failure due to avascular necrosis of tissue-engineered constructs. Human umbilical vein endothelial cells (ECs) were cultured alone and in various co-culture combinations with human mesenchymal stem cells (MSCs) to determine their vasculogenic abilities in vitro. Results demonstrated that the delayed addition of MSCs to pre-formed EC networks, whereby MSCs act as pericytes to the nascent vessels, resulted in the best developed vasculature. The results also demonstrate that the crosstalk between ECs and MSCs during microvessel formation occurs in a highly regulated, spatio-temporal fashion, whereby the initial seeding of ECs results in platelet derived growth factor (PDGF) release; the subsequent addition of MSCs 3 days later leads to a cessation in PDGF production, coinciding with increased vascular endothelial cell growth factor expression and enhanced vessel formation. Functional assessment of these pre-engineered constructs in a subcutaneous rat implant model demonstrated anastomosis between the in vitro engineered vessels and the host vasculature, with significantly increased vascularization occurring in the co-culture group. This study has thus provided new information on the process of in vitro vasculogenesis within a three-dimensional porous scaffold for tissue engineering and demonstrates the potential for using these vascularized scaffolds in the repair of critical sized bone defects.
Collapse
|
37
|
Portalska KJ, Chamberlain MD, Lo C, van Blitterswijk C, Sefton MV, de Boer J. Collagen modules forin situdelivery of mesenchymal stromal cell-derived endothelial cells for improved angiogenesis. J Tissue Eng Regen Med 2013; 10:363-73. [DOI: 10.1002/term.1738] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 01/23/2013] [Accepted: 01/30/2013] [Indexed: 02/02/2023]
Affiliation(s)
- Karolina Janeczek Portalska
- MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede The Netherlands
| | - M. Dean Chamberlain
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Ontario Canada
| | - Chuen Lo
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Ontario Canada
| | - Clemens van Blitterswijk
- MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede The Netherlands
| | - Michael V Sefton
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Ontario Canada
| | - Jan de Boer
- MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede The Netherlands
| |
Collapse
|
38
|
Ciucurel EC, Chamberlain MD, Sefton MV. The Modular Approach. Biofabrication 2013. [DOI: 10.1016/b978-1-4557-2852-7.00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Liu JS, Gartner ZJ. Directing the assembly of spatially organized multicomponent tissues from the bottom up. Trends Cell Biol 2012; 22:683-91. [PMID: 23067679 PMCID: PMC3505240 DOI: 10.1016/j.tcb.2012.09.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/02/2012] [Accepted: 09/10/2012] [Indexed: 12/21/2022]
Abstract
The complexity of the human body derives from numerous modular building blocks assembled hierarchically across multiple length scales. These building blocks, spanning sizes ranging from single cells to organs, interact to regulate development and normal organismal function but become disorganized during disease. Here, we review methods for the bottom-up and directed assembly of modular, multicellular, and tissue-like constructs in vitro. These engineered tissues will help refine our understanding of the relationship between form and function in the human body, provide new models for the breakdown in tissue architecture that accompanies disease, and serve as building blocks for the field of regenerative medicine.
Collapse
Affiliation(s)
- Jennifer S Liu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 95108, USA
| | | |
Collapse
|
40
|
Yao R, Zhang R, Lin F, Luan J. Injectable cell/hydrogel microspheres induce the formation of fat lobule-like microtissues and vascularized adipose tissue regeneration. Biofabrication 2012; 4:045003. [PMID: 23075755 DOI: 10.1088/1758-5082/4/4/045003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this paper, we demonstrated that collagen/alginate microspheres could be generated by a non-contact microfabrication device and serve as excellent cell embedding and delivery devices as they were porous, injectable and able to provide growth- and differentiation-supporting matrix for human adipose-derived stem cells (hASCs). The microsphere matrix demonstrated highly porous structure and mechanical stability for as long as 90 days. hASCs demonstrated high viability after microsphere formation as well as higher proliferation and more mature adipocytes induction compared to two-dimensional culture. After four weeks culture in adipogenic differentiation medium, adipocytes/collagen/alginate microspheres highly mimicking natural fat lobules were obtained and injected subcutaneously into the head of node mice. The in vivo study demonstrated vascularized adipose tissue formation in four weeks. The regenerated vasculature among the transplantation showed functional anastomosis with host vasculature, suggesting that these cell/hydrogel microspheres present injectable adipocytes delivery devices capable of generating vascularized adipose tissue in vivo and thus suitable for cell transplantation and tissue regeneration.
Collapse
Affiliation(s)
- Rui Yao
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
| | | | | | | |
Collapse
|