1
|
Liu JY, Liu JX, Li R, Zhang ZQ, Zhang XH, Xing SJ, Sui BD, Jin F, Ma B, Zheng CX. AMPK, a hub for the microenvironmental regulation of bone homeostasis and diseases. J Cell Physiol 2024; 239:e31393. [PMID: 39210747 DOI: 10.1002/jcp.31393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
AMP-activated protein kinase (AMPK), a crucial regulatory kinase, monitors energy levels, conserving ATP and boosting synthesis in low-nutrition, low-energy states. Its sensitivity links microenvironmental changes to cellular responses. As the primary support structure and endocrine organ, the maintenance, and repair of bones are closely associated with the microenvironment. While a series of studies have explored the effects of specific microenvironments on bone, there is lack of angles to comprehensively evaluate the interactions between microenvironment and bone cells, especially for bone marrow mesenchymal stem cells (BMMSCs) which mediate the differentiation of osteogenic lineage. It is noteworthy that accumulating evidence has indicated that AMPK may serve as a hub between BMMSCs and microenvironment factors, thus providing a new perspective for us to understand the biology and pathophysiology of stem cells and bone. In this review, we emphasize AMPK's pivotal role in bone microenvironment modulation via ATP, inflammation, reactive oxygen species (ROS), calcium, and glucose, particularly in BMMSCs. We further explore the use of AMPK-activating drugs in the context of osteoarthritis and osteoporosis. Moreover, building upon the foundation of AMPK, we elucidate a viewpoint that facilitates a comprehensive understanding of the dynamic relationship between the microenvironment and bone homeostasis, offering valuable insights for prospective investigations into stem cell biology and the treatment of bone diseases.
Collapse
Affiliation(s)
- Jin-Yu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Jie-Xi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Rang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Zi-Qi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xiao-Hui Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Shu-Juan Xing
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Bo Ma
- State Key Laboratory of National Security Specially Needed Medicines, Academy of Military Medical Sciences, Beijing, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Lee E, Nam JO. Anti-Obesity and Anti-Diabetic Effects of Ostericum koreanum (Ganghwal) Extract. Int J Mol Sci 2024; 25:4908. [PMID: 38732125 PMCID: PMC11084156 DOI: 10.3390/ijms25094908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
"Ganghwal" is a widely used herbal medicine in Republic of Korea, but it has not been reported as a treatment strategy for obesity and diabetes within adipocytes. In this study, we determined that Ostericum koreanum extract (OKE) exerts an anti-obesity effect by inhibiting adipogenesis and an anti-diabetic effect by increasing the expression of genes related to glucose uptake in adipocytes and inhibiting α-glucosidase activity. 3T3-L1 preadipocytes were differentiated for 8 days in methylisobutylxanthine, dexamethasone, and insulin medium, and the effect of OKE was confirmed by the addition of 50 and 100 µg/mL of OKE during the differentiation process. This resulted in a reduction in lipid accumulation and the expression of PPARγ (Peroxisome proliferator-activated receptor γ) and C/EBPα (CCAAT enhancer binding protein α). Significant activation of AMPK (AMP-activated protein kinase), increased expression of GLUT4 (Glucose Transporter Type 4), and inhibition of α-glucosidase activity were also observed. These findings provide the basis for the anti-obesity and anti-diabetic effects of OKE. In addition, OKE has a significant antioxidant effect. This study presents OKE as a potential natural product-derived material for the treatment of patients with metabolic diseases such as obesity- and obesity-induced diabetes.
Collapse
Affiliation(s)
- Eunbi Lee
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Ju-Ock Nam
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Deubiquitinating Enzyme USP7 Is Required for Self-Renewal and Multipotency of Human Bone Marrow-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2022; 23:ijms23158674. [PMID: 35955807 PMCID: PMC9369338 DOI: 10.3390/ijms23158674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
Ubiquitin-specific protease 7 (USP7) is highly expressed in a variety of malignant tumors. However, the role of USP7 in regulating self-renewal and differentiation of human bone marrow derived mesenchymal stromal cells (hBMSCs) remains unknown. Herein, we report that USP7 regulates self-renewal of hBMSCs and is required during the early stages of osteogenic, adipogenic, and chondrogenic differentiation of hBMSCs. USP7, a deubiquitinating enzyme (DUB), was found to be downregulated during hBMSC differentiation. Furthermore, USP7 is an upstream regulator of the self-renewal regulating proteins SOX2 and NANOG in hBMSCs. Moreover, we observed that SOX2 and NANOG are poly-ubiquitinated and their expression is downregulated in USP7-deficient hBMSCs. Overall, this study showed that USP7 is required for maintaining self-renewal and multipotency in cultured hBMSCs. Targeting USP7 might be a novel strategy to preserve the self-renewal capacity of hBMSCs intended for stem cell therapy.
Collapse
|
4
|
Wang J, Wang T, Zhang F, Zhang Y, Guo Y, Jiang X, Yang B. Roles of circular RNAs in osteogenic differentiation of bone marrow mesenchymal stem cells (Review). Mol Med Rep 2022; 26:227. [PMID: 35593273 PMCID: PMC9178710 DOI: 10.3892/mmr.2022.12743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/10/2022] [Indexed: 11/06/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) can differentiate into osteoblasts, chondrocytes, adipocytes and even myoblasts, and are therefore defined as pluripotent cells. BMSCs have become extremely important seed cells in gene therapy, tissue engineering, cell replacement therapy and regenerative medicine due to their potential in multilineage differentiation, self‑renewal, immune regulation and other fields. Circular RNAs (circRNAs) are a class of non‑coding RNAs that are widely present in eukaryotic cells. Unlike standard linear RNAs, circRNAs form covalently closed continuous loops with no 5' or 3' polarity. circRNAs are abundantly expressed in cells and tissues, and are highly conserved and relatively stable during evolution. Numerous studies have shown that circRNAs play an important role in the osteogenic differentiation of BMSCs. Further studies on the role of circRNAs in the osteogenic differentiation of BMSCs can provide a new theoretical and experimental basis for bone tissue engineering and clinical treatment.
Collapse
Affiliation(s)
- Jicheng Wang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Tengyun Wang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Fujie Zhang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yangyang Zhang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yongzhi Guo
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Xin Jiang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Bo Yang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
5
|
Fatima S, Alfrayh R, Alrashed M, Alsobaie S, Ahmad R, Mahmood A. Selenium Nanoparticles by Moderating Oxidative Stress Promote Differentiation of Mesenchymal Stem Cells to Osteoblasts. Int J Nanomedicine 2021; 16:331-343. [PMID: 33488075 PMCID: PMC7814244 DOI: 10.2147/ijn.s285233] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Redox homeostasis plays an important role in the osteogenic differentiation of human mesenchymal stem cells (hMSCs) for bone engineering. Oxidative stress (OS) is believed to induce osteoporosis by changing bone homeostasis. Selenium nanoparticles (SeNPs), an antioxidant with pleiotropic pharmacological activity, prevent bone loss. However, the molecular mechanism underlying the osteogenic activity during hMSC–SeNP interaction is unclear. Methods This study assessed the effects of different concentrations (25, 50, 100, and 300 ng/mL) of SeNPs on the cell viability and differentiation ability of human embryonic stem cell-derived hMSCs. In addition, we analyzed OS markers and their effect on mitogen-activated protein kinase (MAPK) and Forkhead box O3 (FOXO3) during osteogenesis. Results SeNPs increased the cell viability of hMSCs and induced their differentiation toward an osteogenic over an adipogenic lineage by enhancing osteogenic transcription and mineralization, while inhibiting Nile red staining and adipogenic gene expression. By preventing excessive reactive oxygen species accumulation, SeNPs increased antioxidant levels in hMSCs undergoing osteogenesis compared to untreated cells. In addition, SeNPs significantly upregulated the gene and protein expression of phosphorylated c-Jun N-terminal kinase (JNK) and FOXO3a, with no significant change in the expression levels of extracellular signal-related kinase (ERK) and p38 MAPK. Conclusion The results approved that low concentrations of SeNPs might enhance the cell viability and osteogenic potential of hMSCs by moderating OS. Increased JNK and FOXO3a expression shows that SeNPs might enhance osteogenesis via activation of the JNK/FOXO3 pathway. In addition, SeNP co-supplementation might prevent bone loss by enhancing osteogenesis and, thus, can be an effective candidate for treating osteoporosis through cell-based therapy.
Collapse
Affiliation(s)
- Sabiha Fatima
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Rawan Alfrayh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - May Alrashed
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Sarah Alsobaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, King Saud University, College of Medicine, Riyadh 11472, Saudi Arabia
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh 11461, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Beijer NRM, Nauryzgaliyeva ZM, Arteaga EM, Pieuchot L, Anselme K, van de Peppel J, Vasilevich AS, Groen N, Roumans N, Hebels DGAJ, Boer JD. Dynamic adaptation of mesenchymal stem cell physiology upon exposure to surface micropatterns. Sci Rep 2019; 9:9099. [PMID: 31235713 PMCID: PMC6591423 DOI: 10.1038/s41598-019-45284-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/24/2019] [Indexed: 12/28/2022] Open
Abstract
Human mesenchymal stem (hMSCs) are defined as multi-potent colony-forming cells expressing a specific subset of plasma membrane markers when grown on flat tissue culture polystyrene. However, as soon as hMSCs are used for transplantation, they are exposed to a 3D environment, which can strongly impact cell physiology and influence proliferation, differentiation and metabolism. Strategies to control in vivo hMSC behavior, for instance in stem cell transplantation or cancer treatment, are skewed by the un-physiological flatness of the standard well plates. Even though it is common knowledge that cells behave differently in vitro compared to in vivo, only little is known about the underlying adaptation processes. Here, we used micrometer-scale defined surface topographies as a model to describe the phenotype of hMSCs during this adaptation to their new environment. We used well established techniques to compare hMSCs cultured on flat and topographically enhanced polystyreneand observed dramatically changed cell morphologies accompanied by shrinkage of cytoplasm and nucleus, a decreased overall cellular metabolism, and slower cell cycle progression resulting in a lower proliferation rate in cells exposed to surface topographies. We hypothesized that this reduction in proliferation rate effects their sensitivity to certain cancer drugs, which was confirmed by higher survival rate of hMSCs cultured on topographies exposed to paclitaxel. Thus, micro-topographies can be used as a model system to mimic the natural cell micro-environment, and be a powerful tool to optimize cell treatment in vitro.
Collapse
Affiliation(s)
- Nick R M Beijer
- Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Zarina M Nauryzgaliyeva
- Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Estela M Arteaga
- Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Laurent Pieuchot
- Institut de Sciences des Materiaux de Mulhouse, University of Haute-Alsace, CNRS UMR7361, Mulhouse, France
| | - Karine Anselme
- Institut de Sciences des Materiaux de Mulhouse, University of Haute-Alsace, CNRS UMR7361, Mulhouse, France
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Aliaksei S Vasilevich
- Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Nathalie Groen
- Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Nadia Roumans
- Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Dennie G A J Hebels
- Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jan de Boer
- Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands.
- Materiomics b.v., Maastricht, The Netherlands.
- BioInterface Science lab, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
7
|
Pan XH, Chen YH, Yang YK, Zhang XJ, Lin QK, Li ZA, Cai XM, Pang RQ, Zhu XQ, Ruan GP. Relationship between senescence in macaques and bone marrow mesenchymal stem cells and the molecular mechanism. Aging (Albany NY) 2019; 11:590-614. [PMID: 30673631 PMCID: PMC6366955 DOI: 10.18632/aging.101762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/05/2019] [Indexed: 04/18/2023]
Abstract
The relationship between bone marrow mesenchymal stem cells (BMSCs) and aging, as well as the antiaging effects of BMSCs, was observed. An aging macaque BMSC model was established. We isolated BMSCs from young and aged macaques and used RT-PCR and Western blot to confirm the aging-related mRNAs and their expression, revealing that TERT, SIRT1 and SIRT6 expression was decreased in the aged BMSCs. The morphology, immunophenotype, differentiation potential, proliferation potential, and antiaging effects of aged and young BMSCs on 293T cells were compared. The expression of aging-related genes and the difference between the secreted cytokines in natural aging and induced aging BMSCs were observed. The transcriptome of peripheral blood mononuclear cells from macaques was analyzed by high-throughput sequencing. Finally, the transcriptional characteristics and regulatory mechanisms of gene transcription in aging macaques were investigated.
Collapse
Affiliation(s)
- Xing-hua Pan
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan Province, China
- Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
| | - Yu-hao Chen
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan Province, China
- Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
| | - Yu-kun Yang
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan Province, China
- Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
| | - Xue-juan Zhang
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan Province, China
- Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
| | - Qing-keng Lin
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan Province, China
- Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
| | - Zi-an Li
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan Province, China
- Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
| | - Xue-min Cai
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan Province, China
- Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
| | - Rong-qing Pang
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan Province, China
- Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
| | - Xiang-qing Zhu
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan Province, China
- Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
| | - Guang-ping Ruan
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan Province, China
- Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
| |
Collapse
|
8
|
Li X, Xie H, Jiang Q, Wei G, Lin L, Li C, Ou X, Yang L, Xie Y, Fu Z, Liu Y, Chen D. The mechanism of (+) taxifolin's protective antioxidant effect for •OH-treated bone marrow-derived mesenchymal stem cells. Cell Mol Biol Lett 2017; 22:31. [PMID: 29299033 PMCID: PMC5745628 DOI: 10.1186/s11658-017-0066-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/15/2017] [Indexed: 01/26/2023] Open
Abstract
The natural dihydroflavonol (+) taxifolin was investigated for its protective effect on Fenton reagent-treated bone marrow-derived mesenchymal stem cells (bmMSCs). Various antioxidant assays were used to determine the possible mechanism. These included •OH-scavenging, 2-phenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide radical-scavenging (PTIO•-scavenging), 1, 1-diphenyl-2-picryl-hydrazl radical-scavenging (DPPH•-scavenging), 2, 2′-azino-bis (3-ethylbenzo-thiazoline-6-sulfonic acid) radical-scavenging (ABTS+•-scavenging), Fe3+-reducing, and Cu2+-reducing assays. The Fe2+-binding reaction was also investigated using UV-Vis spectra. The results revealed that cell viability was fully restored, even increasing to 142.9 ± 9.3% after treatment with (+) taxifolin. In the antioxidant assays, (+) taxifolin was observed to efficiently scavenge •OH, DPPH• and ABTS+• radicals, and to increase the relative Cu2+- and Fe3+-reducing levels. In the PTIO•-scavenging assay, its IC50 values varied with pH. In the Fe2+-binding reaction, (+) taxifolin was found to yield a green solution with two UV-Vis absorbance peaks: λmax = 433 nm (ε =5.2 × 102 L mol−1 cm −1) and λmax = 721 nm (ε = 5.1 × 102 L mol−1 cm −1). These results indicate that (+) taxifolin can act as an effective •OH-scavenger, protecting bmMSCs from •OH-induced damage. Its •OH-scavenging action consists of direct and indirect antioxidant effects. Direct antioxidation occurs via multiple pathways, including ET, PCET or HAT. Indirect antioxidation involves binding to Fe2+.
Collapse
Affiliation(s)
- Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuang East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China.,Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Hong Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuang East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China.,Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Qian Jiang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuang East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China
| | - Gang Wei
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuang East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China.,Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Lishan Lin
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuang East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China
| | - Changying Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuang East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China
| | - Xingmei Ou
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuang East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China
| | - Lichan Yang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuang East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China
| | - Yulu Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuang East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China.,Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Zhen Fu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China.,The Research Center of Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Yamei Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China.,The Research Center of Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Dongfeng Chen
- The Research Center of Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| |
Collapse
|
9
|
|
10
|
Aminizadeh N, Tiraihi T, Mesbah-Namin SA, Taheri T. A Comparative Study of the Effects of Sodium Selenite and Glutathione Mono Ethyl Ester on Aged Adipose-Derived Stem Cells: The Telomerase and Cellular Responses. Rejuvenation Res 2017. [PMID: 28622077 DOI: 10.1089/rej.2017.1961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The proliferation and differentiation potential of adipose-derived stem cells (ADSCs) decline with aging. Moreover, Alzheimer's disease is associated with progressive decline in cholinergic neurons. The purpose of this study is to enhance the proliferation potential of aged rat ADSCs and their differentiation into cholinergic neurons. The ADSCs were collected from aged male rats cultured and treated with different concentrations of sodium selenite for 3 days or glutathione mono ethyl ester (GSH-MEE) for 1 day. Incubating the ADSCs with 27 nM sodium selenite for 3 days significantly increased the relative cell proliferation, compared with the control, without any change in the telomerase activity, the related telomerase gene expression, and the telomere length, but it does improve differentiation of the aged ADSCs to cholinergic neuron-like cells. GSH-MEE at a concentration of 2 mM for 1 day resulted in increased relative cell proliferation, but it did not change the telomerase activity, the related telomerase gene expression, the telomere length, and differentiation potential. Sodium selenite is more effective than GSH-MEE in improving the aged ADSCs' properties. However, both did not have any effect on telomerase activity.
Collapse
Affiliation(s)
- Najmeh Aminizadeh
- 1 Department of Anatomical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Taki Tiraihi
- 1 Department of Anatomical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Seyed Alireza Mesbah-Namin
- 2 Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Taher Taheri
- 3 Shefa Neuroscience Research Center , Khatam Alanbia Hospital, Tehran, Iran
| |
Collapse
|
11
|
Quang Le B, Van Blitterswijk C, De Boer J. An Approach to In Vitro Manufacturing of Hypertrophic Cartilage Matrix for Bone Repair. Bioengineering (Basel) 2017; 4:bioengineering4020035. [PMID: 28952514 PMCID: PMC5590482 DOI: 10.3390/bioengineering4020035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022] Open
Abstract
Devitalized hypertrophic cartilage matrix (DCM) is an attractive concept for an off-the-shelf bone graft substitute. Upon implantation, DCM can trigger the natural endochondral ossification process, but only when the hypertrophic cartilage matrix has been reconstituted correctly. In vivo hypertrophic differentiation has been reported for multiple cell types but up-scaling and in vivo devitalization remain a big challenge. To this end, we developed a micro tissue-engineered cartilage (MiTEC) model using the chondrogenic cell line ATDC5. Micro-aggregates of ATDC5 cells (approximately 1000 cells per aggregate) were cultured on a 3% agarose mold consisting of 1585 microwells, each measuring 400 µm in diameter. Chondrogenic differentiation was strongly enhanced using media supplemented with combinations of growth factors e.g., insulin, transforming growth factor beta and dexamethasone. Next, mineralization was induced by supplying the culture medium with beta-glycerophosphate, and finally we boosted the secretion of proangiogenic growth factors using the hypoxia mimetic phenanthroline in the final stage of in vivo culture. Then, ATDC5 aggregates were devitalized by freeze/thawing or sodium dodecyl sulfate treatment before co-culturing with human mesenchymal stromal cells (hMSCs). We observed a strong effect on chondrogenic differentiation of hMSCs. Using this MiTEC model, we were able to not only upscale the production of cartilage to a clinically relevant amount but were also able to vary the cartilage matrix composition in different ways, making MiTEC an ideal model to develop DCM as a bone graft substitute.
Collapse
Affiliation(s)
- Bach Quang Le
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus 217, 7500 AE Enschede, The Netherlands.
| | - Clemens Van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus 217, 7500 AE Enschede, The Netherlands.
- Department of Complex Tissue Regeneration, MERLN Institute, University of Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Jan De Boer
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus 217, 7500 AE Enschede, The Netherlands.
- Laboratory for Cell Biology-inspired Tissue Engineering, MERLN Institute, University of Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
12
|
Liu Y, Yi L, Wang L, Chen L, Chen X, Wang Y. Ginsenoside Rg1 protects human umbilical cord blood-derived stromal cells against tert-Butyl hydroperoxide-induced apoptosis through Akt-FoxO3a-Bim signaling pathway. Mol Cell Biochem 2016; 421:75-87. [PMID: 27522666 DOI: 10.1007/s11010-016-2786-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
Human umbilical cord blood-derived stromal cells (hUCBDSCs) possess strong capability of supporting hematopoiesis and immune regulation, whereas some stress conditions cause reactive oxygen species (ROS) accumulation and then lead to oxidative injury and cell apoptosis. Ginsenoside Rg1 (G-Rg1) has been demonstrated to exert antioxidative and prosurvival effects in many cell types. In this study, the tert-Butyl hydroperoxide (t-BHP), an analog of hydroperoxide, was utilized to mimic the oxidative damage to hUCBDSCs. We aimed to investigate the effects of Ginsenoside Rg1 on protecting hUCBDSCs from t-BHP-induced oxidative injury and apoptosis, as well as the possible signaling pathway involved. It was shown that the treatment of hUCBDSCs with G-Rg1 markedly restored the t-BHP-induced cell viability loss, promoted the CFU-F formation, and inhibited cell apoptosis. G-Rg1 also caused a reduced production of LDH and MDA while significantly enhancing the activity of SOD. Mechanistically, G-Rg1 promoted the phosphorylation of Akt and FoxO3a and led to the cytoplasmic translocation of FoxO3a, which in turn suppressed FoxO3a-modulated expression of proapoptotic Bim and elevated the ratio of Bcl-2 to Bax. All these results suggest that G-Rg1 enhances the survival of t-BHP-induced hUCBDSCs and protects them against apoptosis at least partially through Akt-FoxO3a-Bim signaling pathway.
Collapse
Affiliation(s)
- Ying Liu
- Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Long Yi
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Lu Wang
- Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Linbo Chen
- Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiongbin Chen
- Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yaping Wang
- Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
13
|
p53-Dependent Senescence in Mesenchymal Stem Cells under Chronic Normoxia Is Potentiated by Low-Dose γ-Irradiation. Stem Cells Int 2015; 2016:6429853. [PMID: 26788069 PMCID: PMC4695678 DOI: 10.1155/2016/6429853] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/02/2015] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a source of adult multipotent cells important in tissue regeneration. Murine MSCs are known to proliferate poorly in vitro under normoxia. The aim of this study is to analyze the interaction of nonphysiological high oxygen and low-dose γ-irradiation onto growth, senescence, and DNA damage. Tri-potent bone marrow-derived MSCs from p53 wildtype and p53−/− mice were cultured under either 21% or 2% O2. Long-term observations revealed a decreasing ability of wildtype mMSCs to proliferate and form colonies under extended culture in normoxia. This was accompanied by increased senescence under normoxia but not associated with telomere shortening. After low-dose γ-irradiation, the normoxic wildtype cells further increased the level of senescence. The number of radiation-induced γH2AX DNA repair foci was higher in mMSCs kept under normoxia but not in p53−/− cells. P53-deficient MSCs additionally showed higher clonogeneity, lower senescence levels, and fewer γH2AX repair foci per cell as compared to their p53 wildtype counterparts irrespective of oxygen levels. These results reveal that oxygen levels together with γ-irradiation and p53 status are interconnected factors modulating growth capacity of BM MSCs in long-term culture. These efforts help to better understand and optimize handling of MSCs prior to their therapeutic use.
Collapse
|
14
|
Hafizi M, Hajarizadeh A, Atashi A, Kalanaky S, Fakharzadeh S, Masoumi Z, Nazaran MH, Soleimani M. Nanochelating based nanocomplex, GFc7, improves quality and quantity of human mesenchymal stem cells during in vitro expansion. Stem Cell Res Ther 2015; 6:226. [PMID: 26597909 PMCID: PMC4657224 DOI: 10.1186/s13287-015-0216-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 04/30/2015] [Accepted: 10/28/2015] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Human mesenchymal stem cells (hMSCs) have been approved for therapeutic applications. Despite the advances in this field, in vitro approaches are still required to improve the essential indices that would pave the way to a bright horizon for an efficient transplantation in the future. Nanotechnology could help to improve these approaches. Studies signified the important role of iron in stem cell metabolism and efficiency of copper chelation application for stem cell expansion METHODS For the first time, based on novel Nanochelating technology, we design an iron containing copper chelator nano complex, GFc7 and examined on hMSCs during in vitro expansion. In this study, the hMSCs were isolated, characterized and expanded in vitro in two media (with or without GFc7). Then proliferation, cell viability, cell cycle analysis, surface markers, HLADR, pluripotency genes expression, homing and antioxidative defense at genes and protein expression were investigated. Also we analyzed the spontaneous differentiation and examined osteogenic and lipogenic differentiation. RESULTS GFc7 affected the expression of key genes, improving both the stemness and fitness of the cells in a precise and balanced manner. We observed significant increases in cell proliferation, enhanced expression of pluripotency genes and homing markers, improved antioxidative defense, repression of genes involved in spontaneous differentiation and exposing the hMSCs to differentiation medium indicated that pretreatment with GFc7 increased the quality and rate of differentiation. CONCLUSIONS Thus, GFc7 appears to be a potential new supplement for cell culture medium for increasing the efficiency of transplantation.
Collapse
Affiliation(s)
- Maryam Hafizi
- Stem Cell Technology Research Center, Tehran, Iran.
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran.
| | | | - Amir Atashi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran.
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran.
| | | | | | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
15
|
Le BQ, Fernandes H, Bouten CV, Karperien M, van Blitterswijk C, de Boer J. High-Throughput Screening Assay for the Identification of Compounds Enhancing Collagenous Extracellular Matrix Production by ATDC5 Cells. Tissue Eng Part C Methods 2015; 21:726-36. [DOI: 10.1089/ten.tec.2014.0088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Bach q. Le
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Hugo Fernandes
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Carlijn V.C. Bouten
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Clemens van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jan de Boer
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
16
|
Decreased osteogenesis of adult mesenchymal stem cells by reactive oxygen species under cyclic stretch: a possible mechanism of age related osteoporosis. Bone Res 2015; 3:15003. [PMID: 26273536 PMCID: PMC4413016 DOI: 10.1038/boneres.2015.3] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 02/05/2023] Open
Abstract
Age related defect of the osteogenic differentiation of mesenchymal stem cells (MSCs) plays a key role in osteoporosis. Mechanical loading is one of the most important physical stimuli for osteoblast differentiation. Here, we compared the osteogenic potential of MSCs from young and adult rats under three rounds of 2 h of cyclic stretch of 2.5% elongation at 1 Hz on 3 consecutive days. Cyclic stretch induced a significant osteogenic differentiation of MSCs from young rats, while a compromised osteogenesis in MSCs from the adult rats. Accordingly, there were much more reactive oxygen species (ROS) production in adult MSCs under cyclic stretch compared to young MSCs. Moreover, ROS scavenger N-acetylcysteine rescued the osteogenic differentiation of adult MSCs under cyclic stretch. Gene expression analysis revealed that superoxide dismutase 1 (SOD1) was significantly downregulated in those MSCs from adult rats. In summary, our data suggest that reduced SOD1 may result in excessive ROS production in adult MSCs under cyclic stretch, and thus manipulation of the MSCs from the adult donors with antioxidant would improve their osteogenic ability.
Collapse
|
17
|
Liu Y, Ma T. Metabolic regulation of mesenchymal stem cell in expansion and therapeutic application. Biotechnol Prog 2014; 31:468-81. [PMID: 25504836 DOI: 10.1002/btpr.2034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/28/2014] [Indexed: 12/13/2022]
Abstract
Human mesenchymal or stromal cells (hMSCs) isolated from various adult tissues are primary candidates in cell therapy and tissue regeneration. Despite promising results in preclinical studies, robust therapeutic responses to MSC treatment have not been reproducibly demonstrated in clinical trials. In the translation of MSC-based therapy to clinical application, studies of MSC metabolism have significant implication in optimizing bioprocessing conditions to obtain therapeutically competent hMSC population for clinical application. In addition, understanding the contribution of metabolic cues in directing hMSC fate also provides avenues to potentiate their therapeutic effects by modulating their metabolic properties. This review focuses on MSC metabolism and discusses their unique metabolic features in the context of common metabolic properties shared by stem cells. Recent advances in the fundamental understanding of MSC metabolic characteristics in relation to their in vivo origin and metabolic regulation during proliferation, lineage-specific differentiation, and exposure to in vivo ischemic conditions are summarized. Metabolic strategies in directing MSC fate to enhance their therapeutic potential in tissue engineering and regenerative medicine are discussed.
Collapse
Affiliation(s)
- Yijun Liu
- Dept. of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, 32310
| | | |
Collapse
|
18
|
Tan JJ, Azmi SM, Yong YK, Cheah HL, Lim V, Sandai D, Shaharuddin B. Tualang honey improves human corneal epithelial progenitor cell migration and cellular resistance to oxidative stress in vitro. PLoS One 2014; 9:e96800. [PMID: 24802273 PMCID: PMC4011849 DOI: 10.1371/journal.pone.0096800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 04/11/2014] [Indexed: 12/24/2022] Open
Abstract
Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3 ± 0.4%) were observed compared to the untreated population (20.5 ± 0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells in vitro.
Collapse
Affiliation(s)
- Jun Jie Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
- * E-mail:
| | - Siti Maisura Azmi
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Serdang, Selangor Darul Ehsan, Malaysia
| | - Hong Leong Cheah
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Doblin Sandai
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Bakiah Shaharuddin
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| |
Collapse
|
19
|
Bajerová P, Adam M, Bajer T, Ventura K. Comparison of various techniques for the extraction and determination of antioxidants in plants. J Sep Sci 2014; 37:835-44. [DOI: 10.1002/jssc.201301139] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Petra Bajerová
- University of PardubiceFaculty of Chemical TechnologyDepartment of Analytical Chemistry Pardubice Czech Republic
| | - Martin Adam
- University of PardubiceFaculty of Chemical TechnologyDepartment of Analytical Chemistry Pardubice Czech Republic
| | - Tomáš Bajer
- University of PardubiceFaculty of Chemical TechnologyDepartment of Analytical Chemistry Pardubice Czech Republic
| | - Karel Ventura
- University of PardubiceFaculty of Chemical TechnologyDepartment of Analytical Chemistry Pardubice Czech Republic
| |
Collapse
|
20
|
In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells. Stem Cell Res 2014; 12:428-40. [DOI: 10.1016/j.scr.2013.12.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 12/25/2022] Open
|
21
|
Chen H, Liu X, Chen H, Cao J, Zhang L, Hu X, Wang J. Role of SIRT1 and AMPK in mesenchymal stem cells differentiation. Ageing Res Rev 2014; 13:55-64. [PMID: 24333965 DOI: 10.1016/j.arr.2013.12.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/18/2013] [Accepted: 12/02/2013] [Indexed: 12/21/2022]
Abstract
The differentiation capabilities of mesenchymal stem cells (MSCs) compromise with age and with in vitro passages which could impair the efficacy of cell therapy and tissue engineering. However, how to maintain these capabilities is not fully understood. Calorie restriction (CR, decreasing caloric intake by 30-40%) could extend longevity and reduce aging-related diseases. Recent studies revealed that CR could influence the lineage determination of stem cells including MSCs. Two important mediators of CR might be silent mating type information regulation 2 homolog 1 (SIRT1), a NAD(+)-dependent deacetylase, and AMP-activated protein kinase (AMPK), an energy-sensing kinase. Evidences are mounting that both SIRT1 and AMPK play important roles in cell fate determination of MSCs. Herein, we intend to sum up our understanding about the role of SIRT1 and AMPK in osteogenic and adipogenic potential of MSCs. Metabolic process of MSCs differentiation and the putative interplay of SIRT1 and AMPK in this process was also discussed.
Collapse
|
22
|
Gotman I, Ben-David D, Unger RE, Böse T, Gutmanas EY, Kirkpatrick CJ. Mesenchymal stem cell proliferation and differentiation on load-bearing trabecular Nitinol scaffolds. Acta Biomater 2013; 9:8440-8. [PMID: 23747323 DOI: 10.1016/j.actbio.2013.05.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 11/16/2022]
Abstract
Bone tissue regeneration in load-bearing regions of the body requires high-strength porous scaffolds capable of supporting angiogenesis and osteogenesis. 70% porous Nitinol (NiTi) scaffolds with a regular 3-D architecture resembling trabecular bone were produced from Ni foams using an original reactive vapor infiltration technique. The "trabecular Nitinol" scaffolds possessed a high compressive strength of 79 MPa and high permeability of 6.9×10(-6) cm2. The scaffolds were further modified to produce a near Ni-free surface layer and evaluated in terms of Ni ion release and human mesenchymal stem cell (hMSC) proliferation (AlamarBlue), differentiation (alkaline phosphatase activity, ALP) and mineralization (Alizarin Red S staining). Scanning electron microscopy was employed to qualitatively corroborate the results. hMSCs were able to adhere and proliferate on both as-produced and surface-modified trabecular NiTi scaffolds, to acquire an osteoblastic phenotype and produce a mineralized extracellular matrix. Both ALP activity and mineralization were increased on porous scaffolds compared to control polystyrene plates. Experiments in a model coculture system of microvascular endothelial cells and hMSCs demonstrated the formation of prevascular structures in trabecular NiTi scaffolds. These data suggest that load-bearing trabecular Nitinol scaffolds could be effective in regenerating damaged or lost bone tissue.
Collapse
Affiliation(s)
- Irena Gotman
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | | | | | | | | | | |
Collapse
|
23
|
Nonviral gene targeting at rDNA locus of human mesenchymal stem cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:135189. [PMID: 23762822 PMCID: PMC3666425 DOI: 10.1155/2013/135189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/18/2013] [Indexed: 01/01/2023]
Abstract
Background. Genetic modification, such as the addition of exogenous genes to the MSC genome, is crucial to their use as cellular vehicles. Due to the risks associated with viral vectors such as insertional mutagenesis, the safer nonviral vectors have drawn a great deal of attention. Methods. VEGF, bFGF, vitamin C, and insulin-transferrin-selenium-X were supplemented in the MSC culture medium. The cells' proliferation and survival capacity was measured by MTT, determination of the cumulative number of cells, and a colony-forming efficiency assay. The plasmid pHr2-NL was constructed and nucleofected into MSCs. The recombinants were selected using G418 and characterized using PCR and Southern blotting. Results. BFGF is critical to MSC growth and it acted synergistically with vitamin C, VEGF, and ITS-X, causing the cells to expand significantly. The neomycin gene was targeted to the rDNA locus of human MSCs using a nonviral human ribosomal targeting vector. The recombinant MSCs retained multipotential differentiation capacity, typical levels of hMSC surface marker expression, and a normal karyotype, and none were tumorigenic in nude mice. Conclusions. Exogenous genes can be targeted to the rDNA locus of human MSCs while maintaining the characteristics of MSCs. This is the first nonviral gene targeting of hMSCs.
Collapse
|