1
|
Møller-Hansen M. Mesenchymal stem cell therapy in aqueous deficient dry eye disease. Acta Ophthalmol 2023; 101 Suppl 277:3-27. [PMID: 37840443 DOI: 10.1111/aos.15739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
ENGLISH SUMMARY Dry eye disease (DED) is characterized by ocular dryness, irritation and blurred vision and has a significant impact on the patient's quality of life. This condition can be particularly severe in patients with aqueous deficient dry eye disease (ADDE) due to Sjögren's syndrome (SS), an autoimmune disease that affects the lacrimal and salivary glands. Current treatments for ADDE are often limited to symptomatic relief. A literature review was conducted to explore the current surgical interventions used or tested in humans with ADDE (I). These interventions include procedures involving the eyelids and tear ducts, transplantation of amniotic membrane or salivary glands, injections around the tear ducts and cell-based injections into the lacrimal gland (LG). Each treatment has its advantages and disadvantages; however, treating dry eyes in patients with SS presents a particular challenge due to the systemic nature of the disease. Moreover, there is a need for new therapeutic options. Mesenchymal stem cells (MSCs) are a type of stem cell that have shown promise in regenerating damaged tissue and reducing inflammation in various diseases. Previous studies in animal models have suggested that MSCs could be effective in treating ADDE. Thus, this thesis aims to investigate the safety and efficacy of injecting MSCs into the LG as a treatment option for patients with ADDE secondary to SS. The study also aims to see this treatment in light of existing and novel investigational treatment options. The clinical studies conducted for this thesis are the first of their kind in humans. MSCs derived from healthy donors' adipose tissue (ASCs) were cultured in a laboratory, frozen and thawed ready for use. In the safety study, we performed the first human trial involving the administration of a single injection of ASCs into the LG of one eye in seven patients suffering from severe ADDE (II). The primary objective was to test the safety of this treatment, while the secondary objective was to assess improvements in subjective and objective signs of dry eye. The results of the trial showed no serious side effects within 4 months of follow-up after treatment. On average, there was a 40% reduction in dry eye symptoms assessed with the Ocular Surface Disease Index (OSDI) questionnaire. Additionally, in the treated eye, there was a significant decrease in tear osmolarity, an increase in tear film stability and an increase in tear production. To further investigate the efficacy of this treatment, our research group performed a clinical, randomized study aiming to compare the ASC injection into the LG with the injection of a vehicle (the excipient in which the ASCs are dissolved) and observation (no intervention) (III). The study involved 20 subjects receiving ASC injection, 20 subjects receiving vehicle injection and 14 patients being observed without intervention. The subjects were examined to assess the outcomes with a 12-month follow-up after treatment. Both intervention groups showed a significant reduction in subjective dry eye symptoms of approximately 40%. This improvement was evident at the 1-week follow-up and persisted until the 12-month follow-up. The observation group did not experience any change in OSDI score. The ASCs group exhibited a significant mean increase in non-invasive tear break-up time (NIKBUT) of 6.48 s (149%) at the four-week follow-up, which was significantly higher than that in the vehicle group (p = 0.04). Moreover, the ASCs group showed a significant increase in NIKBUT compared to that in the observation group at the 12-month follow-up (p = 0.004). In both the ASCs and vehicle group, a significant increase in Schirmer test scores at the 4-month follow-up and the 12-month follow-up was observed. In conclusion, this thesis contributes valuable findings with a new treatment option for patients with dry eye disease. Injection of ASCs into the LG was shown to be safe and to improve subjective dry eye symptoms and specifically the tear film stability in patients with ADDE due to SS. Compared to other treatment modalities of ADDE, this treatment has greater potential, as ASCs could potentially be used as an anti-inflammatory therapeutic option for managing DED of other causes as well. RESUMÉ (DANISH SUMMARY): Tørre øjne, karakteriseret ved tørhedsfornemmelse og irritation af øjnene samt sløret syn, har en betydelig indvirkning på patientens livskvalitet. Denne tilstand kan vaere saerligt alvorlig hos patienter med nedsat tåreproduktion (ADDE) som følge af Sjögrens syndrom (SS), en autoimmun sygdom, der påvirker tårekirtlerne og spytkirtlerne. Nuvaerende behandlinger for ADDE er ofte begraenset til symptomlindring. Vi gennemførte en litteraturgennemgang for at undersøge, hvilke nuvaerende kirurgiske behandlingsmetoder, der anvendes eller testes hos patienter med ADDE (I). Disse interventioner inkluderer procedurer, der involverer øjenlåg og tårekanaler, transplantation af amnionhinde eller spytkirtler, injektioner omkring tårekanalerne samt cellebaserede injektioner i tårekirtlen. Hver behandling har sine fordele og ulemper, men behandling af tørre øjne hos patienter med SS udgør en saerlig udfordring på grund af sygdommens systemiske udbredning, og der er behov for nye behandlingsmuligheder. Mesenkymale stamceller (MSCs) er en type stamcelle, der har vist lovende resultater med hensyn til at regenerere beskadiget vaev og reducere inflammation i forskellige sygdomme. Tidligere undersøgelser i dyremodeller har indikeret, at MSCs kan vaere en effektiv behandling af ADDE. Denne afhandling har til formål at undersøge sikkerheden og effekten af injektion af MSCs i tårekirtlen som en mulig behandling til patienter med ADDE som følge af SS. Afhandlingen sigter også mod at sammenligne denne behandling med andre eksisterende, kirurgiske behandlingsmuligheder af ADDE. Som led i dette projekt udførte vi de første kliniske forsøg af sin art i mennesker. MSCs fra raske donorers fedtvaev (ASCs) blev dyrket i et laboratorium, frosset ned og er optøet klar til brug. Det første mål var at teste sikkerheden ved denne behandling og sekundaert at undersøge behandlingens effekt. For at undersøge dette modtog syv forsøgspersoner med svaer ADDE én injektion med ASCs i tårekirtlen på det ene øje (II). Resultaterne af forsøget viste ingen alvorlige bivirkninger inden for fire måneders opfølgning efter behandlingen. I gennemsnit fandt vi yderligere en 40% reduktion i symptomer på tørre øjne vurderet med et spørgeskema, og en markant stigning i tåreproduktionen og af tårefilmens stabilitet i det behandlede øje. For yderligere at undersøge effekten af denne behandling udførte vi et klinisk, randomiseret forsøg med det formål at sammenligne injektion af ASCs i tårekirtlen med injektion af en kontrolopløsning (vaesken, hvor stamcellerne var opløst) og observation (ingen intervention) (III). Studiet omfattede 20 forsøgspersoner, der modtog ASC-injektion, 20 forsøgspersoner, der modtog injektion af kontrolopløsningen, og 14 forsøgspersoner i observationsgruppen. Forsøgspersonerne blev undersøgt med en opfølgningstid på 12 måneder efter behandling. Begge interventionsgrupper viste en betydelig reduktion på ca. 40% i subjektive symptomer på tørre øjne. Denne forbedring var betydelig allerede ved opfølgning efter en uge og varede ved 12 måneder efter behandling. Observationsgruppen oplevede ingen betydelig aendring i symptomer. ASCs gruppen viste desuden en signifikant stigning i tårefilmsstabiliteten (NIKBUT) på 6,48 sekunder (149%) ved opfølgning efter fire uger, hvilket var markant højere end efter injektion af kontrolopløsning (p = 0,04). Desuden viste ASCs gruppen en betydelig stigning i NIKBUT sammenlignet med observationsgruppen ved opfølgning efter 12 måneder (p = 0,004). Både injektion af ASCs og kontrolopløsning medførte en betydelig stigning i tåreproduktionen ved opfølgning fire måneder og 12 måneder efter behandling. Denne afhandling bidrager med vigtige resultater inden for en ny behandlingsmulighed af tørre øjne. Injektion af ASCs i tårekirtlen viste sig at vaere sikker, forbedrede subjektive symptomer på tørre øjne og øgede saerligt tårfilmens stabilitet hos patienter med ADDE på grund af SS. Sammenlignet med andre behandlingsmuligheder for ADDE har denne behandling vist et stort potentiale. ASCs kan muligvis også bruges som en anti-inflammatorisk behandling af tørre øjne af andre årsager i fremtiden.
Collapse
Affiliation(s)
- Michael Møller-Hansen
- Department of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Wonski BT, Patel B, Tepper DG, Siddiqui A, Kabbani LS, Lam MT. Adipose-derived stem cells significantly increases collagen level and fiber maturity in patient-specific biological engineered blood vessels. PLoS One 2023; 18:e0291766. [PMID: 37738272 PMCID: PMC10516413 DOI: 10.1371/journal.pone.0291766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023] Open
Abstract
Tissue engineering has driven significant research in the strive to create a supply of tissues for patient treatment. Cell integration into engineered tissues maximizes functional capabilities, however, issues of rejection remain. Autologous cell sources able to solve this issue are difficult to identify for tissue engineering purposes. Here, we present the efficacy of patient-sourced cells derived from adipose (adipose-derived stem cells, ASCs) and skin tissue (dermal fibroblasts, PtFibs) to build a combined engineered tunica media and adventitia graft, respectively. Patient cells were integrated into our lab's vascular tissue engineering technique of forming vascular rings that are stacked into a tubular structure to create the vascular graft. For the media layer, ASCs were successfully differentiated into the smooth muscle phenotype using angiotensin II followed by culture in smooth muscle growth factors, evidenced by significantly increased expression of αSMA and myosin light chain kinase. Engineered media vessels composed of differentiated ASCs (ASC-SMCs) exhibited an elastic modulus (45.2 ± 18.9 kPa) between that of vessels of undifferentiated ASCs (71.8 ± 35.3 kPa) and control human aortic smooth muscle cells (HASMCs; 18.7 ± 5.49 kPa) (p<0.5). Tensile strength of vessels composed of ASCs (41.3 ± 15.7 kPa) and ASC-SMCs (37.3 ± 17.0 kPa) were higher compared to vessels of HASMCs (28.4 ± 11.2 kPa). ASC-based tissues exhibited a significant increase in collagen content and fiber maturity- both factors contribute to tissue strength and stability. Furthermore, vessels gained stability and a more-uniform single-tubular shape with longer-term 1-month culture. This work demonstrates efficacy of ASCs and PtFibs to create patient-specific vessels.
Collapse
Affiliation(s)
- Bryan T. Wonski
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| | - Bijal Patel
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| | - Donna G. Tepper
- Department of Plastic and Reconstructive Surgery, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Aamir Siddiqui
- Department of Plastic and Reconstructive Surgery, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Loay S. Kabbani
- Department of Vascular Surgery, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Mai T. Lam
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
3
|
Ding X, Zhang W, Xu P, Feng W, Tang X, Yang X, Wang L, Li L, Huang Y, Ji J, Chen D, Liu H, Fan Y. The Regulatory Effect of Braided Silk Fiber Skeletons with Differential Porosities on In Vivo Vascular Tissue Regeneration and Long-Term Patency. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9825237. [PMID: 36474603 PMCID: PMC9703915 DOI: 10.34133/2022/9825237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/11/2022] [Indexed: 06/21/2024]
Abstract
The development of small-diameter vascular grafts that can meet the long-term patency required for implementation in clinical practice presents a key challenge to the research field. Although techniques such as the braiding of scaffolds can offer a tunable platform for fabricating vascular grafts, the effects of braided silk fiber skeletons on the porosity, remodeling, and patency in vivo have not been thoroughly investigated. Here, we used finite element analysis of simulated deformation and compliance to design vascular grafts comprised of braided silk fiber skeletons with three different degrees of porosity. Following the synthesis of low-, medium-, and high-porosity silk fiber skeletons, we coated them with hemocompatible sulfated silk fibroin sponges and then evaluated the mechanical and biological functions of the resultant silk tubes with different porosities. Our data showed that high-porosity grafts exhibited higher elastic moduli and compliance but lower suture retention strength, which contrasted with low-porosity grafts. Medium-porosity grafts offered a favorable balance of mechanical properties. Short-term in vivo implantation in rats indicated that porosity served as an effective means to regulate blood leakage, cell infiltration, and neointima formation. High-porosity grafts were susceptible to blood leakage, while low-porosity grafts hindered graft cellularization and tended to induce intimal hyperplasia. Medium-porosity grafts closely mimicked the biomechanical behaviors of native blood vessels and facilitated vascular smooth muscle layer regeneration and polarization of infiltrated macrophages to the M2 phenotype. Due to their superior performance and lack of occlusion, the medium-porosity vascular grafts were evaluated in long-term (24-months) in vivo implantation. The medium-porosity grafts regenerated the vascular smooth muscle cell layers and collagen extracellular matrix, which were circumferentially aligned and resembled the native artery. Furthermore, the formed neoarteries pulsed synchronously with the adjacent native artery and demonstrated contractile function. Overall, our study underscores the importance of braided silk fiber skeleton porosity on long-term vascular graft performance and will help to guide the design of next-generation vascular grafts.
Collapse
Affiliation(s)
- Xili Ding
- School of Engineering Medicine, Beihang University, Beijing 100083, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Weirong Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Peng Xu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Wentao Feng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiaokai Tang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xianda Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Linhao Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yan Huang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Diansheng Chen
- eRobot Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China
| | - Haifeng Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- School of Engineering Medicine, Beihang University, Beijing 100083, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
4
|
Lorentz KL, Gupta P, Shehabeldin MS, Cunnane EM, Ramaswamy AK, Verdelis K, DiLeo MV, Little SR, Weinbaum JS, Sfeir CS, Mandal BB, Vorp DA. CCL2 loaded microparticles promote acute patency in silk-based vascular grafts implanted in rat aortae. Acta Biomater 2021; 135:126-138. [PMID: 34496284 PMCID: PMC8595801 DOI: 10.1016/j.actbio.2021.08.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 01/22/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide, often associated with coronary artery occlusion. A common intervention for arterial blockage utilizes a vascular graft to bypass the diseased artery and restore downstream blood flow; however, current clinical options exhibit high long-term failure rates. Our goal was to develop an off-the-shelf tissue-engineered vascular graft capable of delivering a biological payload based on the monocyte recruitment factor C-C motif chemokine ligand 2 (CCL2) to induce remodeling. Bi-layered silk scaffolds consisting of an inner porous and outer electrospun layer were fabricated using a custom blend of Antherea Assama and Bombyx Mori silk (lyogel). Lyogel silk scaffolds alone (LG), and lyogel silk scaffolds containing microparticles (LGMP) were tested. The microparticles (MPs) were loaded with either CCL2 (LGMP+) or water (LGMP-). Scaffolds were implanted as abdominal aortic interposition grafts in Lewis rats for 1 and 8 weeks. 1-week implants exhibited patency rates of 50% (7/14), 100% (10/10), and 100% (5/5) in the LGMP-, LGMP+, and LG groups, respectively. The significantly higher patency rate for the LGMP+ group compared to the LGMP- group (p = 0.0188) suggests that CCL2 can prevent acute occlusion. Immunostaining of the explants revealed a significantly higher density of macrophages (CD68+ cells) within the outer vs. inner layer of LGMP- and LGMP+ constructs but not in LG constructs. After 8 weeks, there were no significant differences in patency rates between groups. All patent scaffolds at 8 weeks showed signs of remodeling; however, stenosis was observed within the majority of explants. This study demonstrated the successful fabrication of a custom blended silk scaffold functionalized with cell-mimicking microparticles to facilitate controlled delivery of a biological payload improving their in vivo performance. STATEMENT OF SIGNIFICANCE: This study outlines the development of a custom blended silk-based tissue-engineered vascular graft (TEVG) for use in arterial bypass or replacement surgery. A custom mixture of silk was formulated to improve biocompatibility and cellular binding to the tubular scaffold. Many current approaches to TEVGs include cells that encourage graft cellularization and remodeling; however, our technology incorporates a microparticle based delivery platform capable of delivering bioactive molecules that can mimic the function of seeded cells. In this study, we load the TEVGs with microparticles containing a monocyte attractant and demonstrate improved performance in terms of unobstructed blood flow versus blank microparticles. The acellular nature of this technology potentially reduces risk, increases reproducibility, and results in a more cost-effective graft when compared to cell-based options.
Collapse
Affiliation(s)
- Katherine L Lorentz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Prerak Gupta
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Mostafa S Shehabeldin
- Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA; Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; Department of Periodontics and Preventive Dentistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Eoghan M Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aneesh K Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Konstantinos Verdelis
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, United States
| | - Morgan V DiLeo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Steven R Little
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Charles S Sfeir
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA; Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; Department of Periodontics and Preventive Dentistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, India; School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, India.
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; The Clinical & Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA, United States; Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
5
|
Sivaraman S, Hedrick J, Ismail S, Slavin C, Rao RR. Generation and Characterization of Human Mesenchymal Stem Cell-Derived Smooth Muscle Cells. Int J Mol Sci 2021; 22:ijms221910335. [PMID: 34638675 PMCID: PMC8508589 DOI: 10.3390/ijms221910335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide. A completely autologous treatment can be achieved by using elastogenic mesenchymal stem cell (MSC)-derived smooth muscle cells (SMC) at the affected tissue site of vascular diseases such as abdominal aortic aneurysms (AAA). Thus, our work focused on evaluating the efficacy of (a) the combination of various growth factors, (b) different time periods and (c) different MSC lines to determine the treatment combination that generated SMCs that exhibited the greatest elastogenicity among the tested groups using Western blotting and flow cytometry. Additionally, total RNA sequencing was used to confirm that post-differentiation cells were upregulating SMC-specific gene markers. Results indicated that MSCs cultured for four days in PDGF + TGFβ1 (PT)-infused differentiation medium showed significant increases in SMC markers and decreases in MSC markers compared to MSCs cultured without differentiation factors. RNA Seq analysis confirmed the presence of vascular smooth muscle formation in MSCs differentiated in PT medium over a seven-day period. Overall, our results indicated that origin, growth factor treatment and culture period played a major role in influencing MSC differentiation to SMCs.
Collapse
Affiliation(s)
| | | | | | | | - Raj R. Rao
- Correspondence: ; Tel.: +1-(479)-575-8610
| |
Collapse
|
6
|
Kimicata M, Swamykumar P, Fisher JP. Extracellular Matrix for Small-Diameter Vascular Grafts. Tissue Eng Part A 2020; 26:1388-1401. [PMID: 33231135 PMCID: PMC7759287 DOI: 10.1089/ten.tea.2020.0201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/11/2020] [Indexed: 01/15/2023] Open
Abstract
To treat coronary heart disease, coronary artery bypass grafts are used to divert blood flow around blockages in the coronary arteries. Autologous grafts are the gold standard of care, but they are characterized by their lack of availability, low quality, and high failure rates. Alternatively, tissue-engineered small-diameter vascular grafts made from synthetic or natural polymers have not demonstrated adequate results to replace autologous grafts; synthetic grafts result in a loss of patency due to thrombosis and intimal hyperplasia, whereas scaffolds from natural polymers are generally unable to support the physiological conditions. Extracellular matrix (ECM) from a variety of sources, including cell-derived, 2D, and cannular tissues, has become an increasingly useful tool for this application. The current review examines the ECM-based methods that have recently been investigated in the field and comments on their viability for clinical applications.
Collapse
Affiliation(s)
- Megan Kimicata
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, and University of Maryland, College Park, Maryland, USA
| | - Prateek Swamykumar
- Center for Engineering Complex Tissues, and University of Maryland, College Park, Maryland, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - John P. Fisher
- Center for Engineering Complex Tissues, and University of Maryland, College Park, Maryland, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
7
|
Cunnane EM, Lorentz KL, Soletti L, Ramaswamy AK, Chung TK, Haskett DG, Luketich SK, Tzeng E, D'Amore A, Wagner WR, Weinbaum JS, Vorp DA. Development of a Semi-Automated, Bulk Seeding Device for Large Animal Model Implantation of Tissue Engineered Vascular Grafts. Front Bioeng Biotechnol 2020; 8:597847. [PMID: 33195168 PMCID: PMC7644804 DOI: 10.3389/fbioe.2020.597847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/07/2020] [Indexed: 01/22/2023] Open
Abstract
Vascular tissue engineering is a field of regenerative medicine that restores tissue function to defective sections of the vascular network by bypass or replacement with a tubular, engineered graft. The tissue engineered vascular graft (TEVG) is comprised of a biodegradable scaffold, often combined with cells to prevent acute thrombosis and initiate scaffold remodeling. Cells are most effectively incorporated into scaffolds using bulk seeding techniques. While our group has been successful in uniform, rapid, bulk cell seeding of scaffolds for TEVG testing in small animals using our well-validated rotational vacuum technology, this approach was not directly translatable to large scaffolds, such as those required for large animal testing or human implants. The objective of this study was to develop and validate a semi-automated cell seeding device that allows for uniform, rapid, bulk seeding of large scaffolds for the fabrication of TEVGs appropriately sized for testing in large animals and eventual translation to humans. Validation of our device revealed successful seeding of cells throughout the length of our tubular scaffolds with homogenous longitudinal and circumferential cell distribution. To demonstrate the utility of this device, we implanted a cell seeded scaffold as a carotid interposition graft in a sheep model for 10 weeks. Graft remodeling was demonstrated upon explant analysis using histological staining and mechanical characterization. We conclude from this work that our semi-automated, rotational vacuum seeding device can successfully seed porous tubular scaffolds suitable for implantation in large animals and provides a platform that can be readily adapted for eventual human use.
Collapse
Affiliation(s)
- Eoghan M Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Katherine L Lorentz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lorenzo Soletti
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Aneesh K Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy K Chung
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Darren G Haskett
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samuel K Luketich
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Edith Tzeng
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,RiMED Foundation, Palermo, Italy
| | - William R Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Clinical and Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Cunnane EM, Lorentz KL, Ramaswamy AK, Gupta P, Mandal BB, O'Brien FJ, Weinbaum JS, Vorp DA. Extracellular Vesicles Enhance the Remodeling of Cell-Free Silk Vascular Scaffolds in Rat Aortae. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26955-26965. [PMID: 32441910 DOI: 10.1021/acsami.0c06609] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Vascular tissue engineering is aimed at developing regenerative vascular grafts to restore tissue function by bypassing or replacing defective arterial segments with tubular biodegradable scaffolds. Scaffolds are often combined with stem or progenitor cells to prevent acute thrombosis and initiate scaffold remodeling. However, there are limitations to cell-based technologies regarding safety and clinical translation. Extracellular vesicles (EVs) are nanosized particles released by most cell types, including stem and progenitor cells, that serve to transmit protein and RNA cargo to target cells throughout the body. EVs have been shown to replicate the therapeutic effect of their parent cells; therefore, EVs derived from stem or progenitor cells may serve as a more translatable, cell-free, therapeutic base for vascular scaffolds. Our study aims to determine if EV incorporation provides a positive effect on graft patency and remodeling in vivo. We first assessed the effect of human adipose-derived mesenchymal stem cell (hADMSC) EVs on vascular cells using in vitro bioassays. We then developed an EV-functionalized vascular graft by vacuum-seeding EVs into porous silk-based tubular scaffolds. These constructs were implanted as aortic interposition grafts in Lewis rats, and their remodeling capacity was compared to that observed for hADMSC-seeded and blank (non-seeded) controls. The EV group demonstrated improved patency (100%) compared to the hADMSC (56%) and blank controls (82%) following eight weeks in vivo. The EV group also produced significantly more elastin (126.46%) and collagen (44.59%) compared to the blank group, while the hADMSC group failed to produce significantly more elastin (57.64%) or collagen (11.21%) compared to the blank group. Qualitative staining of the explanted neo-tissue revealed improved endothelium formation, increased smooth muscle cell infiltration, and reduced macrophage numbers in the EV group compared to the controls, which aids in explaining this group's favorable pre-clinical outcomes.
Collapse
Affiliation(s)
- Eoghan M Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland D02 YN77
| | - Katherine L Lorentz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Aneesh K Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Prerak Gupta
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India 781039
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India 781039
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, India 781039
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland D02 YN77
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland D02 R590
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland D02 R590
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
9
|
Ni H, Zhao Y, Ji Y, Shen J, Xiang M, Xie Y. Adipose-derived stem cells contribute to cardiovascular remodeling. Aging (Albany NY) 2019; 11:11756-11769. [PMID: 31800397 PMCID: PMC6932876 DOI: 10.18632/aging.102491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/17/2019] [Indexed: 02/06/2023]
Abstract
Obesity is an independent risk factor for cardiovascular disease. Adipose tissue was initially thought to be involved in metabolism through paracrine. Recent researches discovered mesenchymal stem cells inside adipose tissue which could differentiate into vascular lineages in vitro and in vivo, participating vascular remodeling. However, there were few researches focusing on distinct characteristics and functions of adipose-derived stem cells (ADSCs) from different regions. This is the first comprehensive review demonstrating the variances of ADSCs from the perspective of their origins.
Collapse
Affiliation(s)
- Hui Ni
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiming Zhao
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongli Ji
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Shen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Ramaswamy AK, Sides RE, Cunnane EM, Lorentz KL, Reines LM, Vorp DA, Weinbaum JS. Adipose-derived stromal cell secreted factors induce the elastogenesis cascade within 3D aortic smooth muscle cell constructs. Matrix Biol Plus 2019; 4:100014. [PMID: 33543011 PMCID: PMC7852215 DOI: 10.1016/j.mbplus.2019.100014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Objective Elastogenesis within the medial layer of the aortic wall involves a cascade of events orchestrated primarily by smooth muscle cells, including transcription of elastin and a cadre of elastin chaperone matricellular proteins, deposition and cross-linking of tropoelastin coacervates, and maturation of extracellular matrix fiber structures to form mechanically competent vascular tissue. Elastic fiber disruption is associated with aortic aneurysm; in aneurysmal disease a thin and weakened wall leads to a high risk of rupture if left untreated, and non-surgical treatments for small aortic aneurysms are currently limited. This study analyzed the effect of adipose-derived stromal cell secreted factors on each step of the smooth muscle cell elastogenesis cascade within a three-dimensional fibrin gel culture platform. Approach and results We demonstrate that adipose-derived stromal cell secreted factors induce an increase in smooth muscle cell transcription of tropoelastin, fibrillin-1, and chaperone proteins fibulin-5, lysyl oxidase, and lysyl oxidase-like 1, formation of extracellular elastic fibers, insoluble elastin and collagen protein fractions in dynamically-active 30-day constructs, and a mechanically competent matrix after 30 days in culture. Conclusion Our results reveal a potential avenue for an elastin-targeted small aortic aneurysm therapeutic, acting as a supplement to the currently employed passive monitoring strategy. Additionally, the elastogenesis analysis workflow explored here could guide future mechanistic studies of elastin formation, which in turn could lead to new non-surgical treatment strategies. Stromal cells stimulate smooth muscle cells (SMC) using paracrine signals. Stimulated SMC make RNA for both elastin and associated proteins. After protein synthesis, new elastic fibers form that contain insoluble elastin. Stromal cell products could promote elastin production in vivo.
Collapse
Key Words
- AA, aortic aneurysm
- ACA, epsilon-amino caproic acid
- ASC, adipose-derived stromal cell
- ASC-SF, ASC secreted factors
- Aneurysm
- Aorta
- ECM, extracellular matrix
- Elastin
- Extracellular matrix
- FBS, fetal bovine serum
- LOX, lysyl oxidase
- LOXL-1, LOX-like 1
- LTBP, latent TGF-β binding protein
- NCM, non-conditioned media
- NT, no treatment
- PBS, phosphate buffered saline
- RT, reverse transcriptase
- SMC, smooth muscle cell
- TGF-β, transforming growth factor-β
- Vascular regeneration
- qPCR, quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Aneesh K. Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Rachel E. Sides
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Eoghan M. Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Katherine L. Lorentz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Leila M. Reines
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - David A. Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Justin S. Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Corresponding author at: Department of Bioengineering, University of Pittsburgh, Center for Bioengineering, Suite 300, 300 Technology Drive, Pittsburgh, PA 15261, United States of America.
| |
Collapse
|
11
|
Lau S, Klingenberg M, Mrugalla A, Helms F, Sedding D, Haverich A, Wilhelmi M, Böer U. Biochemical Myogenic Differentiation of Adipogenic Stem Cells Is Donor Dependent and Requires Sound Characterization. Tissue Eng Part A 2019; 25:936-948. [PMID: 30648499 DOI: 10.1089/ten.tea.2018.0172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPACT STATEMENT We here showed that even under optimized conditions for biochemical differentiation of adipose-derived stem cells (with respect to a pronounced marker protein expression for a reasonable period of time) it was not possible to obtain functional smooth muscle cells from all donors. Moreover, an underestimated role may play the effect of the scaffold material on smooth muscle cell functionality. Both aspects are crucial for the successful tissue engineering of the vascular medial layer combining autologous cells with a suitable scaffold material and thus should be thoroughly addressed in each individualized therapeutic approach.
Collapse
Affiliation(s)
- Skadi Lau
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,2Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Melanie Klingenberg
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,2Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Anna Mrugalla
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Florian Helms
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Daniel Sedding
- 3Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,2Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Mathias Wilhelmi
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,2Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ulrike Böer
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,2Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
12
|
Cunnane EM, Weinbaum JS, O'Brien FJ, Vorp DA. Future Perspectives on the Role of Stem Cells and Extracellular Vesicles in Vascular Tissue Regeneration. Front Cardiovasc Med 2018; 5:86. [PMID: 30018970 PMCID: PMC6037696 DOI: 10.3389/fcvm.2018.00086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
Vascular tissue engineering is an area of regenerative medicine that attempts to create functional replacement tissue for defective segments of the vascular network. One approach to vascular tissue engineering utilizes seeding of biodegradable tubular scaffolds with stem (and/or progenitor) cells wherein the seeded cells initiate scaffold remodeling and prevent thrombosis through paracrine signaling to endogenous cells. Stem cells have received an abundance of attention in recent literature regarding the mechanism of their paracrine therapeutic effect. However, very little of this mechanistic research has been performed under the aegis of vascular tissue engineering. Therefore, the scope of this review includes the current state of TEVGs generated using the incorporation of stem cells in biodegradable scaffolds and potential cell-free directions for TEVGs based on stem cell secreted products. The current generation of stem cell-seeded vascular scaffolds are based on the premise that cells should be obtained from an autologous source. However, the reduced regenerative capacity of stem cells from certain patient groups limits the therapeutic potential of an autologous approach. This limitation prompts the need to investigate allogeneic stem cells or stem cell secreted products as therapeutic bases for TEVGs. The role of stem cell derived products, particularly extracellular vesicles (EVs), in vascular tissue engineering is exciting due to their potential use as a cell-free therapeutic base. EVs offer many benefits as a therapeutic base for functionalizing vascular scaffolds such as cell specific targeting, physiological delivery of cargo to target cells, reduced immunogenicity, and stability under physiological conditions. However, a number of points must be addressed prior to the effective translation of TEVG technologies that incorporate stem cell derived EVs such as standardizing stem cell culture conditions, EV isolation, scaffold functionalization with EVs, and establishing the therapeutic benefit of this combination treatment.
Collapse
Affiliation(s)
- Eoghan M Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Haskett DG, Saleh KS, Lorentz KL, Josowitz AD, Luketich SK, Weinbaum JS, Kokai LE, D'Amore A, Marra KG, Rubin JP, Wagner WR, Vorp DA. An exploratory study on the preparation and evaluation of a "same-day" adipose stem cell-based tissue-engineered vascular graft. J Thorac Cardiovasc Surg 2018; 156:1814-1822.e3. [PMID: 30057192 DOI: 10.1016/j.jtcvs.2018.05.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/17/2018] [Accepted: 05/31/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Tissue-engineered vascular grafts containing adipose-derived mesenchymal stem cells offer an alternative to small-diameter vascular grafts currently used in cardiac and lower-extremity revascularization procedures. Adipose-derived, mesenchymal stem cell-infused, tissue-engineered vascular grafts have been shown to promote remodeling and vascular homeostasis in vivo and offer a possible treatment solution for those with cardiovascular disease. Unfortunately, the time needed to cultivate adipose-derived mesenchymal stem cells remains a large hurdle for tissue-engineered vascular grafts as a treatment option. The purpose of this study was to determine if stromal vascular fraction (known to contain progenitor cells) seeded tissue-engineered vascular grafts would remain patent in vivo and remodel, allowing for a "same-day" process for tissue-engineered vascular graft fabrication and implantation. METHODS Stromal vascular fraction, obtained from adult human adipose tissue, was seeded within 4 hours after acquisition from the patient onto poly(ester urethane)urea bilayered scaffolds using a customized rotational vacuum seeding device. Constructs were then surgically implanted as abdominal aortic interposition grafts in Lewis rats. RESULTS Findings revealed patency in 5 of 7 implanted scaffolds at 8 weeks, along with neotissue formation and remodeling occurring in patent tissue-engineered vascular grafts. Patency was documented using angiography and gross inspection, and remodeling and vascular components were detected using immunofluorescent chemistry. CONCLUSIONS A "same-day" cell-seeded, tissue-engineered vascular graft can remain patent after implantation in vivo, with neotissue formation and remodeling occurring by 8 weeks.
Collapse
Affiliation(s)
- Darren G Haskett
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pa; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Kamiel S Saleh
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa
| | - Katherine L Lorentz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa
| | | | - Samuel K Luketich
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pa
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Department of Pathology, University of Pittsburgh, Pittsburgh, Pa
| | - Lauren E Kokai
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pa
| | - Antonio D'Amore
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pa; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pa; RiMED Foundation, Palermo, Italy
| | - Kacey G Marra
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pa
| | - J Peter Rubin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pa
| | - William R Wagner
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pa; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pa; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, Pa
| | - David A Vorp
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pa; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pa; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, Pa; Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
14
|
van Rhijn-Brouwer FCC, Gremmels H, Fledderus JO, Verhaar MC. Mesenchymal Stromal Cell Characteristics and Regenerative Potential in Cardiovascular Disease: Implications for Cellular Therapy. Cell Transplant 2018; 27:765-785. [PMID: 29895169 PMCID: PMC6047272 DOI: 10.1177/0963689717738257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Administration of mesenchymal stromal cells (MSCs) is a promising strategy to treat cardiovascular disease (CVD). As progenitor cells may be negatively affected by both age and comorbidity, characterization of MSC function is important to guide decisions regarding use of allogeneic or autologous cells. Definitive answers on which factors affect MSC function can also aid in selecting which MSC donors would yield the most therapeutically efficacious MSCs. Here we provide a narrative review of MSC function in CVD based on a systematic search. A total of 41 studies examining CVD-related MSC (dys)function were identified. These data show that MSC characteristics and regenerative potential are often affected by CVD. However, studies presented conflicting results, and directed assessment of MSC parameters relevant to regenerative medicine applications was lacking in many studies. The predictive ability of in vitro assays for in vivo efficacy was rarely assessed. There was no correlation between quality of study reporting and study findings. Age mismatch was also not associated with study findings or effect size. Future research should focus on assays that assess regenerative potential in MSCs and parameters that relate to clinical success.
Collapse
Affiliation(s)
- F C C van Rhijn-Brouwer
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Gremmels
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J O Fledderus
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M C Verhaar
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
15
|
Chen G, Li Q, Luo Y, Liu T, Zhou S, Pan E, Peng L. Effect of Notoginsenoside R1 on autologous adipose graft in rats. Mol Med Rep 2018; 17:5928-5933. [PMID: 29436657 DOI: 10.3892/mmr.2018.8596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 04/04/2017] [Indexed: 11/06/2022] Open
Abstract
Autologous fat particle transplantation has been widely used by surgeons. The present study evaluated the effect of Notoginsenoside R1 (NR1) treatment on rat autologous fat graft, along with the quality and retention rates. Male Sprague‑Dawley rats (n=60) received fat particle auto‑transplantation from the left abdominal cavity into lateral dorsum. A total of 14 days after surgery, NR1 in different doses (50, 100 and 200 mg/kg/day) was injected into rats, following which blood and fat graft samples were harvested at days 7, 14 and 28. Assessments were carried out by hematoxylin and eosin staining, western blotting, ELISA and immunohistochemistry (IHC). The survival rate of fat grafts was increased in three experimental groups, as detected by weight measurement. Histological scoring demonstrated that there were significant differences in tissue integrity between the 100 mg/kg/day group and the other 3 groups. hepatocyte growth factor, vascular endothelial growth factor, fibroblast growth factor, angiotensin and S100 levels in the 100 mg/kg/day NR1 group was increased compared with the other 2 treatment groups; however, all 3 treatment groups demonstrated increased expression of these proteins compared with the control group. Additionally, cluster of differentiation (CD)68 exhibited negative expression and CD31 showed weakly positive expression in all three experiments, as assessed by IHC. In conclusion, 100 mg/kg/day NR1 may potentially promote the retention rate and enhance the quality of autologous fat grafts via increasing vascularity in the recipient site. These results implicate NR1 as a therapeutic strategy for the improvement of outcome following fat graft surgery.
Collapse
Affiliation(s)
- Guizong Chen
- Department of Plastic Surgery, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qin Li
- Department of Plastic Surgery, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yanping Luo
- Department of Plastic Surgery, Guangzhou Mylike Aesthetic Surgery Hospital, Guangzhou, Guangdong 510000, P.R. China
| | - Tao Liu
- Department of Plastic Surgery, Guangzhou Mylike Aesthetic Surgery Hospital, Guangzhou, Guangdong 510000, P.R. China
| | - Shaolong Zhou
- Department of Plastic Surgery, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Er Pan
- Department of Plastic Surgery, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510000, P.R. China
| | - Lixia Peng
- Department of Plastic Surgery, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
16
|
Li Y, Wan S, Liu G, Cai W, Huo D, Li G, Yang M, Wang Y, Guan G, Ding N, Liu F, Zeng W, Zhu C. Netrin-1 Promotes Inflammation Resolution to Achieve Endothelialization of Small-Diameter Tissue Engineering Blood Vessels by Improving Endothelial Progenitor Cells Function In Situ. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700278. [PMID: 29270340 PMCID: PMC5738088 DOI: 10.1002/advs.201700278] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/07/2017] [Indexed: 05/05/2023]
Abstract
The transplant of small-diameter tissue engineering blood vessels (small-diameter TEBVs) (<6 mm) in vascular replacement therapy often fails because of early onset thrombosis and long-standing chronic inflammation. The specific inflammation state involved in small-diameter TEBVs transplants remains unclear, and whether promoting inflammation resolution would be useful for small-diameter TEBVs therapy need study. The neural protuberant orientation factor 1 (Netrin-1) is found present in endothelial cells of natural blood vessels and has anti-inflammatory effects. This work generates netrin-1-modified small-diameter TEBVs by using layer-by-layer self-assembly to resolve the inflammation. The results show that netrin-1 reprograms macrophages (MΦ) to assume an anti-inflammatory phenotype and promotes the infiltration and subsequent efflux of MΦ from inflamed sites over time, which improves the local microenvironment and the function of early homing endothelial progenitor cells (EPCs). Small-diameter TEBVs modified by netrin-1 achieve endothelialization after 30 d and retain patency at 14 months. These findings suggest that promoting the resolution of inflammation in time is necessary to induce endothelialization of small-diameter TEBVs and prevent early thrombosis and problems associated with chronic inflammation. Furthermore, this work finds that the MΦ-derived exosomes can target and regulate EPCs, which may serve as a useful treatment for other inflammatory diseases.
Collapse
Affiliation(s)
- Yanzhao Li
- Department of AnatomyNational and Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory for Vascular ImplantsKey Lab for Biomechanics and Tissue Engineering of ChongqingState Key Laboratory of Trauma, burn and Combined injuryThird Military Medical UniversityChongqing400038China
| | - Simin Wan
- Department of AnatomyNational and Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory for Vascular ImplantsKey Lab for Biomechanics and Tissue Engineering of ChongqingState Key Laboratory of Trauma, burn and Combined injuryThird Military Medical UniversityChongqing400038China
| | - Ge Liu
- Department of AnatomyNational and Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory for Vascular ImplantsKey Lab for Biomechanics and Tissue Engineering of ChongqingState Key Laboratory of Trauma, burn and Combined injuryThird Military Medical UniversityChongqing400038China
| | - Wang Cai
- Department of AnatomyNational and Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory for Vascular ImplantsKey Lab for Biomechanics and Tissue Engineering of ChongqingState Key Laboratory of Trauma, burn and Combined injuryThird Military Medical UniversityChongqing400038China
| | - Da Huo
- Department of AnatomyNational and Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory for Vascular ImplantsKey Lab for Biomechanics and Tissue Engineering of ChongqingState Key Laboratory of Trauma, burn and Combined injuryThird Military Medical UniversityChongqing400038China
| | - Gang Li
- Department of AnatomyNational and Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory for Vascular ImplantsKey Lab for Biomechanics and Tissue Engineering of ChongqingState Key Laboratory of Trauma, burn and Combined injuryThird Military Medical UniversityChongqing400038China
| | - Mingcan Yang
- Department of AnatomyNational and Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory for Vascular ImplantsKey Lab for Biomechanics and Tissue Engineering of ChongqingState Key Laboratory of Trauma, burn and Combined injuryThird Military Medical UniversityChongqing400038China
| | - Yuxin Wang
- Department of AnatomyNational and Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory for Vascular ImplantsKey Lab for Biomechanics and Tissue Engineering of ChongqingState Key Laboratory of Trauma, burn and Combined injuryThird Military Medical UniversityChongqing400038China
| | - Ge Guan
- Department of AnatomyNational and Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory for Vascular ImplantsKey Lab for Biomechanics and Tissue Engineering of ChongqingState Key Laboratory of Trauma, burn and Combined injuryThird Military Medical UniversityChongqing400038China
| | - Ning Ding
- Department of AnatomyNational and Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory for Vascular ImplantsKey Lab for Biomechanics and Tissue Engineering of ChongqingState Key Laboratory of Trauma, burn and Combined injuryThird Military Medical UniversityChongqing400038China
| | - Feila Liu
- Department of AnatomyNational and Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory for Vascular ImplantsKey Lab for Biomechanics and Tissue Engineering of ChongqingState Key Laboratory of Trauma, burn and Combined injuryThird Military Medical UniversityChongqing400038China
| | - Wen Zeng
- Department of AnatomyNational and Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory for Vascular ImplantsKey Lab for Biomechanics and Tissue Engineering of ChongqingState Key Laboratory of Trauma, burn and Combined injuryThird Military Medical UniversityChongqing400038China
| | - Chuhong Zhu
- Department of AnatomyNational and Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory for Vascular ImplantsKey Lab for Biomechanics and Tissue Engineering of ChongqingState Key Laboratory of Trauma, burn and Combined injuryThird Military Medical UniversityChongqing400038China
| |
Collapse
|
17
|
Liu J, Ren J, Su L, Cheng S, Zhou J, Ye X, Dong Y, Sun S, Qi F, Liu Z, Pleat J, Zhai H, Zhu N. Human adipose tissue-derived stem cells inhibit the activity of keloid fibroblasts and fibrosis in a keloid model by paracrine signaling. Burns 2017; 44:370-385. [PMID: 29029852 DOI: 10.1016/j.burns.2017.08.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Human adipose tissue-derived mesenchymal stem cells (ASCs) have potential utility as modulators of the regeneration of tissue that is inflamed or scarred secondary to injuries such as burns or trauma. However, the effect of ASCs on one particular type of scarring, keloidal disease, remains unknown. The absence of an optimal model for investigation has hindered the development of an effective therapy using ASCs for keloids. OBJECTIVE To investigate the influence of ASCs on angiogenesis, extracellular matrix deposition, and inflammatory cell influx in keloids. METHODS We analyzed the proliferation, migration, and apoptosis of human keloid-derived fibroblasts treated with a starvation-induced, conditioned medium from ASCs (ASCs-CM). This was achieved by Brdu proliferation assay, a validated co-culture migration assay, and flow cytometry, respectively. To assess the change in phenotype to a pro-fibrotic state, fibroblasts were analyzed by real-time PCR and contraction assay. A keloid implantation animal model was used to assess the paracrine effect of ASCs histochemically and immunohistochemically on scar morphology, collagen deposition, inflammatory cell composition, and blood vessel density. In tandem, an antibody-based array was used to identify protein concentration in the presence of ASCs-CM at time point 0, 24, and 48h. RESULTS ASCs-CM inhibited the proliferation and collagen synthesis of human keloid-derived fibroblasts. ASCs-CM was associated with reduced inflammation and fibrosis in the keloid implantation model. Thirty-four cytokines were differentially regulated by ASCs-CM at 24h. These included molecules associated with apoptosis, matrix metalloproteases, and their inhibitors. The same molecules were present at relatively higher concentrations at the 48h timepoint. CONCLUSION These results suggest that ASCs are associated with the inhibition of fibrosis in keloids by a paracrine effect. This phenomenon may have utility as a therapeutic approach in the clinical environment.
Collapse
Affiliation(s)
- Jianlan Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jie Ren
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lina Su
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shimeng Cheng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Zhou
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaolu Ye
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yabin Dong
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Silei Sun
- Department of Emergency Intensive Care Unit, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fazhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Shanghai, China
| | - Zhifei Liu
- Plastic Surgery Department, Peking Union Medical Hospital, Chinese Academy of Medical Sciences, Beijing 100032, China
| | - Jonathon Pleat
- Department of Plastic, Reconstructive and Burns Surgery, Southmead Hospital & University of Bristol, Bristol, UK
| | - Hongjun Zhai
- Anshan Hospital of The First Hospital of China Medical University, China.
| | - Ningwen Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
18
|
Krawiec JT, Liao HT, Kwan LL, D'Amore A, Weinbaum JS, Rubin JP, Wagner WR, Vorp DA. Evaluation of the stromal vascular fraction of adipose tissue as the basis for a stem cell-based tissue-engineered vascular graft. J Vasc Surg 2017; 66:883-890.e1. [PMID: 28017585 PMCID: PMC5481505 DOI: 10.1016/j.jvs.2016.09.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/07/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE One of the rate-limiting barriers within the field of vascular tissue engineering is the lengthy fabrication time associated with expanding appropriate cell types in culture. One particularly attractive cell type for this purpose is the adipose-derived mesenchymal stem cell (AD-MSC), which is abundant and easily harvested from liposuction procedures. Even this cell type has its drawbacks, however, including the required culture period for expansion, which could pose risks of cellular transformation or contamination. Eliminating culture entirely would be ideal to avoid these concerns. In this study, we used the raw population of cells obtained after digestion of human liposuction aspirates, known as the stromal vascular fraction (SVF), as an abundant, culture-free cell source for tissue-engineered vascular grafts (TEVGs). METHODS SVF cells and donor-paired cultured AD-MSCs were first assessed for their abilities to differentiate into vascular smooth muscle cells (SMCs) after angiotensin II stimulation and to secrete factors (eg, conditioned media) that promote SMC migration. Next, both cell types were incorporated into TEVG scaffolds, implanted as an aortic graft in a Lewis rat model, and assessed for their patency and composition. RESULTS In general, the human SVF cells were able to perform the same functions as AD-MSCs isolated from the same donor by culture expansion. Specifically, cells within the SVF performed two important functions; namely, they were able to differentiate into SMCs (SVF calponin expression: 16.4% ± 7.7% vs AD-MSC: 19.9%% ± 1.7%) and could secrete promigratory factors (SVF migration rate relative to control: 3.1 ± 0.3 vs AD-MSC: 2.5 ± 0.5). The SVF cells were also capable of being seeded within biodegradable, elastomeric, porous scaffolds that, when implanted in vivo for 8 weeks, generated patent TEVGs (SVF: 83% patency vs AD-MSC: 100% patency) populated with primary vascular components (eg, SMCs, endothelial cells, collagen, and elastin). CONCLUSIONS Human adipose tissue can be used as a culture-free cell source to create TEVGs, laying the groundwork for the rapid production of cell-seeded grafts.
Collapse
MESH Headings
- Adipose Tissue/blood supply
- Adult
- Angiotensin II/pharmacology
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Abdominal/surgery
- Bioprosthesis
- Blood Vessel Prosthesis
- Blood Vessel Prosthesis Implantation/instrumentation
- Blood Vessel Prosthesis Implantation/methods
- Cell Differentiation
- Cell Movement
- Cell Separation
- Cells, Cultured
- Female
- Humans
- Lipectomy
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/transplantation
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/transplantation
- Phenotype
- Rats, Inbred Lew
- Stromal Cells/drug effects
- Stromal Cells/metabolism
- Stromal Cells/transplantation
- Time Factors
- Tissue Engineering/methods
- Tissue Scaffolds
Collapse
Affiliation(s)
- Jeffrey T Krawiec
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Han-Tsung Liao
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pa; Division of Trauma Plastic Surgery, Department of Plastic and Reconstructive Surgery, Craniofacial Research Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - LaiYee Lily Kwan
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pa
| | - Antonio D'Amore
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Department of Surgery, University of Pittsburgh, Pittsburgh, Pa; Ri.MED Foundation, Palermo, Italy; Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica (DICGIM), University of Palermo, Palermo, Italy
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - J Peter Rubin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pa
| | - William R Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Department of Surgery, University of Pittsburgh, Pittsburgh, Pa
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Department of Surgery, University of Pittsburgh, Pittsburgh, Pa; Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
19
|
Wissing TB, Bonito V, Bouten CVC, Smits AIPM. Biomaterial-driven in situ cardiovascular tissue engineering-a multi-disciplinary perspective. NPJ Regen Med 2017; 2:18. [PMID: 29302354 PMCID: PMC5677971 DOI: 10.1038/s41536-017-0023-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022] Open
Abstract
There is a persistent and growing clinical need for readily-available substitutes for heart valves and small-diameter blood vessels. In situ tissue engineering is emerging as a disruptive new technology, providing ready-to-use biodegradable, cell-free constructs which are designed to induce regeneration upon implantation, directly in the functional site. The induced regenerative process hinges around the host response to the implanted biomaterial and the interplay between immune cells, stem/progenitor cell and tissue cells in the microenvironment provided by the scaffold in the hemodynamic environment. Recapitulating the complex tissue microstructure and function of cardiovascular tissues is a highly challenging target. Therein the scaffold plays an instructive role, providing the microenvironment that attracts and harbors host cells, modulating the inflammatory response, and acting as a temporal roadmap for new tissue to be formed. Moreover, the biomechanical loads imposed by the hemodynamic environment play a pivotal role. Here, we provide a multidisciplinary view on in situ cardiovascular tissue engineering using synthetic scaffolds; starting from the state-of-the art, the principles of the biomaterial-driven host response and wound healing and the cellular players involved, toward the impact of the biomechanical, physical, and biochemical microenvironmental cues that are given by the scaffold design. To conclude, we pinpoint and further address the main current challenges for in situ cardiovascular regeneration, namely the achievement of tissue homeostasis, the development of predictive models for long-term performances of the implanted grafts, and the necessity for stratification for successful clinical translation.
Collapse
Affiliation(s)
- Tamar B Wissing
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Valentina Bonito
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
20
|
Promoting Limb Salvage through Multi-Disciplinary Care of the Diabetic Patient. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:55. [PMID: 28567565 DOI: 10.1007/s11936-017-0547-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OPINION STATEMENT Despite an explosion in the number of options available for helping diabetic patients heal wounds, major amputation remains a critical issue for these persons. Since diabetes prematurely ages tissues and no organ system is immune to its presence, it makes inherent sense that multi-disciplinary team approaches to these patients is necessary to make significant strides forward. Here, we present literature from the fields of podiatric surgery/medicine, vascular and plastic surgery and introduce the successes that a multi-disciplinary limb salvage center can have on the lives and limbs of patients with diabetes.
Collapse
|
21
|
Hsia K, Yao CL, Chen WM, Chen JH, Lee H, Lu JH. Scaffolds and Cell-Based Tissue Engineering for Blood Vessel Therapy. Cells Tissues Organs 2016; 202:281-295. [PMID: 27548610 DOI: 10.1159/000448169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2016] [Indexed: 11/19/2022] Open
Abstract
The increasing morbidity of cardiovascular diseases in modern society has made it crucial to develop a small-caliber blood vessel. In the absence of appropriate autologous vascular grafts, an alternative prosthesis must be constructed for cardiovascular disease patients. The aim of this article is to describe the advances in making cell-seeded cardiovascular prostheses. It also discusses the combinations of types of scaffolds and cells, especially autologous stem cells, which are suitable for application in tissue-engineered vessels with the favorable properties of mechanical strength, antithrombogenicity, biocompliance, anti-inflammation, fatigue resistance and long-term durability. This article highlights the advancements in cellular tissue-engineered vessels in recent years.
Collapse
|
22
|
Krawiec JT, Weinbaum JS, Liao HT, Ramaswamy AK, Pezzone DJ, Josowitz AD, D'Amore A, Rubin JP, Wagner WR, Vorp DA. In Vivo Functional Evaluation of Tissue-Engineered Vascular Grafts Fabricated Using Human Adipose-Derived Stem Cells from High Cardiovascular Risk Populations. Tissue Eng Part A 2016; 22:765-75. [PMID: 27079751 PMCID: PMC4876541 DOI: 10.1089/ten.tea.2015.0379] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/12/2016] [Indexed: 12/15/2022] Open
Abstract
Many preclinical evaluations of autologous small-diameter tissue-engineered vascular grafts (TEVGs) utilize cells from healthy humans or animals. However, these models hold minimal relevance for clinical translation, as the main targeted demographic is patients at high cardiovascular risk such as individuals with diabetes mellitus or the elderly. Stem cells such as adipose-derived mesenchymal stem cells (AD-MSCs) represent a clinically ideal cell type for TEVGs, as these can be easily and plentifully harvested and offer regenerative potential. To understand whether AD-MSCs sourced from diabetic and elderly donors are as effective as those from young nondiabetics (i.e., healthy) in the context of TEVG therapy, we implanted TEVGs constructed with human AD-MSCs from each donor type as an aortic interposition graft in a rat model. The key failure mechanism observed was thrombosis, and this was most prevalent in grafts using cells from diabetic patients. The remainder of the TEVGs was able to generate robust vascular-like tissue consisting of smooth muscle cells, endothelial cells, collagen, and elastin. We further investigated a potential mechanism for the thrombotic failure of AD-MSCs from diabetic donors; we found that these cells have a diminished potential to promote fibrinolysis compared to those from healthy donors. Together, this study served as proof of concept for the development of a TEVG based on human AD-MSCs, illustrated the importance of testing cells from realistic patient populations, and highlighted one possible mechanistic explanation as to the observed thrombotic failure of our diabetic AD-MSC-based TEVGs.
Collapse
Affiliation(s)
- Jeffrey T. Krawiec
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Justin S. Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Han-Tsung Liao
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Trauma Plastic Surgery, Department of Plastic and Reconstructive Surgery, Craniofacial Research Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Aneesh K. Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dominic J. Pezzone
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Antonio D'Amore
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- RiMED Foundation and DICGIM, University of Palermo, Italy
| | - J. Peter Rubin
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William R. Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A. Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Co-combination of islets with bone marrow mesenchymal stem cells promotes angiogenesis. Biomed Pharmacother 2016; 78:156-164. [PMID: 26898437 DOI: 10.1016/j.biopha.2016.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/22/2015] [Accepted: 01/13/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Islet transplantation is a commonly therapeutic strategy for diabetes mellitus. However, avascular phase and the poor formation of blood vessels in the late period lead to islet allograft loss which contributed to inefficiency and short-acting of islet transplantation. Recently, to speed up new angiogenesis and increase the density of blood vessels around transplanted islets became the hotspot in research of islet transplantation. METHODS In this study, we undergone co-combination transplantation of allogeneic islet and bone marrow mesenchymal stem cells (BM-MSCs) into non-obese diabetic (NOD) mice and investigated the influence of BM-MSCs in transplanted islet function and neovascularization. RESULTS In mice of co-combination transplantation of islet with BM-MSCs, level of blood glucose was improved compared with only BM-MSCs transplanted mice; proliferation of islet cell was enhanced while apoptosis of islet cell was reduced; 2, 4, and 8 weeks post transplantation, peripheral vascular density of islet grafts were significantly more than the islet transplantation group alone; donor lymphocytic chimerism in graft was increased. In result of immunofluorescence analysis, we observed that BM-MSCs can migrate to transplanted islet, differentiate into vascular smooth muscle cells (VSMC) and vascular endothelial cells (VEC), and also secrete vascular endothelial growth factor (VEGF). CONCLUSION BM-MSCs can migrate to transplanted islet and promote neovascularization. Also, it enhanced allograft immune tolerance of islet grafts via increasing donor lymphocytic chimerism.
Collapse
|
24
|
Tao H, Han Z, Han ZC, Li Z. Proangiogenic Features of Mesenchymal Stem Cells and Their Therapeutic Applications. Stem Cells Int 2016; 2016:1314709. [PMID: 26880933 PMCID: PMC4736816 DOI: 10.1155/2016/1314709] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/04/2015] [Accepted: 11/29/2015] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have shown their therapeutic potency for treatment of cardiovascular diseases owing to their low immunogenicity, ease of isolation and expansion, and multipotency. As multipotent progenitors, MSCs have revealed their ability to differentiate into various cell types and could promote endogenous angiogenesis via microenvironmental modulation. Studies on cardiovascular diseases have demonstrated that transplanted MSCs could engraft at the injured sites and differentiate into cardiomyocytes and endothelial cells as well. Accordingly, several clinical trials using MSCs have been performed and revealed that MSCs may improve relevant clinical parameters in patients with vascular diseases. To fully comprehend the characteristics of MSCs, understanding their intrinsic property and associated modulations in tuning their behaviors as well as functions is indispensable for future clinical translation of MSC therapy. This review will focus on recent progresses on endothelial differentiation and potential clinical application of MSCs, with emphasis on therapeutic angiogenesis for treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Hongyan Tao
- Department of Pathophysiology, Nankai University School of Medicine, Tianjin 300071, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University College of Life Science, Tianjin 300071, China
| | - Zhibo Han
- State Key Lab of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China
| | - Zhong Chao Han
- State Key Lab of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China
| | - Zongjin Li
- Department of Pathophysiology, Nankai University School of Medicine, Tianjin 300071, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University College of Life Science, Tianjin 300071, China
| |
Collapse
|
25
|
Wang L, Hu J, Sorek CE, Chen EY, Ma PX, Yang B. Fabrication of tissue-engineered vascular grafts with stem cells and stem cell-derived vascular cells. Expert Opin Biol Ther 2015; 16:317-30. [PMID: 26560995 PMCID: PMC4928489 DOI: 10.1517/14712598.2016.1118460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cardiovascular disease is the leading cause of mortality worldwide. Current surgical treatments for cardiovascular disease include vascular bypass grafting and replacement with autologous blood vessels or synthetic vascular grafts. However, there is a call for better alternative biological grafts. AREAS COVERED Tissue-engineered vascular grafts (TEVGs) are promising novel alternatives to replace diseased vessels. However, obtaining enough functional and clinically usable vascular cells for fabrication of TEVGs remains a major challenge. New findings in adult stem cells and recent advances in pluripotent stem cells have opened a new avenue for stem cell-based vascular engineering. In this review, recent advances on stem cell sourcing for TEVGs including the use of adult stem cells and pluripotent stem cells and advantages, disadvantages, and possible future implementations of different types of stem cells will be discussed. In addition, current strategies used during the fabrication of TEVGs will be highlighted. EXPERT OPINION The application of patient-specific TEVGs constructed with vascular cells derived from immune-compatible stem cells possesses huge clinical potential. Advances in lineage-specific differentiation approaches and innovative vascular engineering strategies will promote the vascular regeneration field from bench to bedside.
Collapse
Affiliation(s)
- Lunchang Wang
- a Cardiac Surgery, University of Michigan , Ann Arbor , MI , USA
- b Vascular Surgery, The Second Xiangya Hospital , Xiangya School of Medicine, Central South University , Hunan , China
| | - Jiang Hu
- c Biologic and Materials Sciences, University of Michigan , Ann Arbor , MI , USA
| | - Claire E Sorek
- a Cardiac Surgery, University of Michigan , Ann Arbor , MI , USA
| | - Eugene Y Chen
- a Cardiac Surgery, University of Michigan , Ann Arbor , MI , USA
| | - Peter X Ma
- c Biologic and Materials Sciences, University of Michigan , Ann Arbor , MI , USA
- d Biomedical Engineering, University of Michigan , Ann Arbor , MI , USA
- e Macromolecular Science and Engineering Center, University of Michigan , Ann Arbor , MI , USA
- f Materials Science and Engineering, University of Michigan , Ann Arbor , MI , USA
| | - Bo Yang
- a Cardiac Surgery, University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
26
|
Development of mRuby2-Transfected C3H10T1/2 Fibroblasts for Musculoskeletal Tissue Engineering. PLoS One 2015; 10:e0139054. [PMID: 26407291 PMCID: PMC4583363 DOI: 10.1371/journal.pone.0139054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/07/2015] [Indexed: 11/19/2022] Open
Abstract
Mouse C3H10T1/2 fibroblasts are multipotent, mesenchymal stem cell (MSC)-like progenitor cells that are widely used in musculoskeletal research. In this study, we have established a clonal population of C3H10T1/2 cells stably-transfected with mRuby2, an orange-red fluorescence reporter gene. Flow cytometry analysis and fluorescence imaging confirmed successful transfection of these cells. Cell counting studies showed that untransfected C3H10T1/2 cells and mRuby2-transfected C3H10T1/2 cells proliferated at similar rates. Adipogenic differentiation experiments demonstrated that untransfected C3H10T1/2 cells and mRuby2-transfected C3H10T1/2 cells stained positive for Oil Red O and showed increased expression of adipogenic genes including adiponectin and lipoprotein lipase. Chondrogenic differentiation experiments demonstrated that untransfected C3H10T1/2 cells and mRuby2-transfected C3H10T1/2 cells stained positive for Alcian Blue and showed increased expression of chondrogenic genes including aggrecan. Osteogenic differentiation experiments demonstrated that untransfected C3H10T1/2 cells and mRuby2-transfected C3H10T1/2 cells stained positive for alkaline phosphatase (ALP) as well as Alizarin Red and showed increased expression of osteogenic genes including alp, ocn and osf-1. When seeded on calcium phosphate-based ceramic scaffolds, mRuby2-transfected C3H10T1/2 cells maintained even fluorescence labeling and osteogenic differentiation. In summary, mRuby2-transfected C3H10T1/2 cells exhibit mRuby2 fluorescence and showed little-to-no difference in terms of cell proliferation and differentiation as untransfected C3H10T1/2 cells. These cells will be available from American Type Culture Collection (ATCC; CRL-3268™) and may be a valuable tool for preclinical studies.
Collapse
|