1
|
Li CJ, Park JH, Jin GS, Mandakhbayar N, Yeo D, Lee JH, Lee JH, Kim HS, Kim HW. Strontium/Silicon/Calcium-Releasing Hierarchically Structured 3D-Printed Scaffolds Accelerate Osteochondral Defect Repair. Adv Healthc Mater 2024; 13:e2400154. [PMID: 38647029 DOI: 10.1002/adhm.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Articular cartilage defects are a global challenge, causing substantial disability. Repairing large defects is problematic, often exceeding cartilage's self-healing capacity and damaging bone structures. To tackle this problem, a scaffold-mediated therapeutic ion delivery system is developed. These scaffolds are constructed from poly(ε-caprolactone) and strontium (Sr)-doped bioactive nanoglasses (SrBGn), creating a unique hierarchical structure featuring macropores from 3D printing, micropores, and nanotopologies due to SrBGn integration. The SrBGn-embedded scaffolds (SrBGn-µCh) release Sr, silicon (Si), and calcium (Ca) ions, which improve chondrocyte activation, adhesion, proliferation, and maturation-related gene expression. This multiple ion delivery significantly affects metabolic activity and maturation of chondrocytes. Importantly, Sr ions may play a role in chondrocyte regulation through the Notch signaling pathway. Notably, the scaffold's structure and topological cues expedite the recruitment, adhesion, spreading, and proliferation of chondrocytes and bone marrow-derived mesenchymal stem cells. Si and Ca ions accelerate osteogenic differentiation and blood vessel formation, while Sr ions enhance the polarization of M2 macrophages. The findings show that SrBGn-µCh scaffolds accelerate osteochondral defect repair by delivering multiple ions and providing structural/topological cues, ultimately supporting host cell functions and defect healing. This scaffold holds great promise for osteochondral repair applications.
Collapse
Affiliation(s)
- Cheng Ji Li
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Gang Shi Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Donghyeon Yeo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
2
|
Bi M, Yang K, Yu T, Wu G, Li Q. Cell-based mechanisms and strategies of co-culture system both in vivo and vitro for bone tissue engineering. Biomed Pharmacother 2023; 169:115907. [PMID: 37984308 DOI: 10.1016/j.biopha.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
The lack of a functional vascular supply has been identified as a major challenge limiting the clinical introduction of stem cell-based bone tissue engineering (BTE) for the repair of large-volume bone defects (LVBD). Various approaches have been explored to improve the vascular supply in tissue-engineered constructs, and the development of strategies that could effectively induce the establishment of a functional vascular supply has become a major goal of BTE research. One of the state-of-the-art methods is to incorporate both angiogenic and osteogenic cells in co-culture systems. This review clarifies the key concepts involved, summarises the cell types and models used to date, and systematically evaluates their performance. We also discuss the cell-to-cell communication between these two cell types and the strategies explored in BTE constructs with angiogenic and osteogenic cells to optimise their functions. In addition, we outline unresolved issues and remaining obstacles that need to be overcome for further development in this field and eventual successful repair of LVBD.
Collapse
Affiliation(s)
- Mengning Bi
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology Shanghai, China
| | - Kaiwen Yang
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology &Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai, China
| | - Tao Yu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands.
| | - Qiong Li
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
3
|
Bosch-Rué È, Díez-Tercero L, Buitrago JO, Castro E, Pérez RA. Angiogenic and immunomodulation role of ions for initial stages of bone tissue regeneration. Acta Biomater 2023; 166:14-41. [PMID: 37302735 DOI: 10.1016/j.actbio.2023.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
It is widely known that bone has intrinsic capacity to self-regenerate after injury. However, the physiological regeneration process can be impaired when there is an extensive damage. One of the main reasons is due to the inability to establish a new vascular network that ensures oxygen and nutrient diffusion, leading to a necrotic core and non-junction of bone. Initially, bone tissue engineering (BTE) emerged to use inert biomaterials to just fill bone defects, but it eventually evolved to mimic bone extracellular matrix and even stimulate bone physiological regeneration process. In this regard, the stimulation of osteogenesis has gained a lot of attention especially in the proper stimulation of angiogenesis, being critical to achieve a successful osteogenesis for bone regeneration. Besides, the immunomodulation of a pro-inflammatory environment towards an anti-inflammatory one upon scaffold implantation has been considered another key process for a proper tissue restoration. To stimulate these phases, growth factors and cytokines have been extensively used. Nonetheless, they present some drawbacks such as low stability and safety concerns. Alternatively, the use of inorganic ions has attracted higher attention due to their higher stability and therapeutic effects with low side effects. This review will first focus in giving fundamental aspects of initial bone regeneration phases, focusing mainly on inflammatory and angiogenic ones. Then, it will describe the role of different inorganic ions in modulating the immune response upon biomaterial implantation towards a restorative environment and their ability to stimulate angiogenic response for a proper scaffold vascularization and successful bone tissue restoration. STATEMENT OF SIGNIFICANCE: The impairment of bone tissue regeneration when there is excessive damage has led to different tissue engineered strategies to promote bone healing. Significant importance has been given in the immunomodulation towards an anti-inflammatory environment together with proper angiogenesis stimulation in order to achieve successful bone regeneration rather than stimulating only the osteogenic differentiation. Ions have been considered potential candidates to stimulate these events due to their high stability and therapeutic effects with low side effects compared to growth factors. However, up to now, no review has been published assembling all this information together, describing individual effects of ions on immunomodulation and angiogenic stimulation, as well as their multifunctionality or synergistic effects when combined together.
Collapse
Affiliation(s)
- Èlia Bosch-Rué
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Leire Díez-Tercero
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Jenifer Olmos Buitrago
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Emilio Castro
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Roman A Pérez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain.
| |
Collapse
|
4
|
Wang H, Li X, Lai S, Cao Q, Liu Y, Li J, Zhu X, Fu W, Zhang X. Construction of Vascularized Tissue Engineered Bone with nHA-Coated BCP Bioceramics Loaded with Peripheral Blood-Derived MSC and EPC to Repair Large Segmental Femoral Bone Defect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:249-264. [PMID: 36548196 DOI: 10.1021/acsami.2c15000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The regenerative repair of segmental bone defect (SBD) is an urgent problem in the field of orthopedics. Rapid induction of angiogenesis and osteoinductivity after implantation of scaffold is critical. In this study, a unique tissue engineering strategy with mixture of peripheral blood-derived mesenchymal stem cells (PBMSC) and endothelial progenitor cells (PBEPC) was applied in a 3D-printed biphasic calcium phosphate (BCP) scaffold with highly bioactive nano hydroxyapatite (nHA) coating (nHA/BCP) to construct a novel vascularized tissue engineered bone (VTEB) for rabbit femoral SBD repair. The 2D coculture of PBMSC and PBEPC showed that they could promote the osteogenic or angiogenic differentiation of the cells from each other, especially in the group of PBEPC/PBMSC = 75:25. Besides, the 3D coculture results exhibited that the nHA coating could further promote PBEPC/PBMSC adhesion, proliferation, and osteogenic and angiogenic differentiation on the BCP scaffold. In vivo experiments showed that among the four groups (BCP, BCP-PBEPC/PBMSC, nHA/BCP, and nHA/BCP-PBEPC/PBMSC), the nHA/BCP-PBEPC/PBMSC group induced the best formation of blood vessels and new bone and, thus, the good repair of SBD. It revealed the synergistic effect of nHA and PBEPC/PBMSC on the angiogenesis and osteogenesis of the BCP scaffold. Therefore, the construction of VTEB in this study could provide a possibility for the regenerative repair of SBD.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Sike Lai
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Quanle Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yunyi Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jian Li
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Weili Fu
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
5
|
Tao J, Miao R, Liu G, Qiu X, Yang B, Tan X, Liu L, Long J, Tang W, Jing W. Spatiotemporal correlation between HIF-1α and bone regeneration. FASEB J 2022; 36:e22520. [PMID: 36065633 DOI: 10.1096/fj.202200329rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible factors (HIFs) are core regulators of the hypoxia response. HIF signaling is activated in the local physiological and pathological hypoxic environment, acting on downstream target genes to synthesize the corresponding proteins and regulate the hypoxic stress response. HIFs belong to the hypoxia-activated transcription family and contain two heterodimeric transcription factors, HIF-α and HIF-β. Under hypoxia, the dimer formed by HIF-α binding to HIF-β translocates into the nucleus and binds to the hypoxia response element (HRE) to induce transcription of a series of genes. HIF-1α plays an important role in innate bone development and acquired bone regeneration. HIF-1α promotes bone regeneration mainly through the following two pathways: (1) By regulating angiogenesis-osteoblast coupling to promote bone regeneration; and (2) by inducing metabolic reprogramming in osteoblasts, promoting cellular anaerobic glycolysis, ensuring the energy supply of osteoblasts under hypoxic conditions, and further promoting bone regeneration and repair. This article reviews recent basic research on HIF-1α and its role in promoting osteogenesis, discusses the possible molecular mechanisms, introduces the hypoxia-independent role of HIF-1α and reviews the application prospects of HIF-1α in tissue engineering.
Collapse
Affiliation(s)
- Junming Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rong Miao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Gang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoning Qiu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Baohua Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinzhi Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Long
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Mao B, Zhang Z, Lai S, Zhang K, Li J, Fu W. Demineralized Cortical Bone Matrix Augmented With Peripheral Blood-Derived Mesenchymal Stem Cells for Rabbit Medial Meniscal Reconstruction. Front Bioeng Biotechnol 2022; 10:855103. [PMID: 35573229 PMCID: PMC9091599 DOI: 10.3389/fbioe.2022.855103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
Tissue engineering is a promising treatment strategy for meniscal regeneration after meniscal injury. However, existing scaffold materials and seed cells still have many disadvantages. The objective of the present study is to explore the feasibility of peripheral blood-derived mesenchymal stem cells (PBMSCs) augmented with demineralized cortical bone matrix (DCBM) pretreated with TGF-β3 as a tissue-engineered meniscus graft and the repair effect. PBMSCs were collected from rabbit peripheral blood and subjected to three-lineage differentiation and flow cytometry identification. DCBM was prepared by decalcification, decellularization, and cross-linking rabbit cortical bone. Various characteristics such as biomechanical properties, histological characteristics, microstructure and DNA content were characterized. The cytotoxicity and the effects of DCBM on the adhesion and migration of PBMSCs were evaluated separately. The meniscus-forming ability of PBMSCs/DCBM complex in vitro induced by TGF-β3 was also evaluated at the molecular and genetic levels, respectively. Eventually, the present study evaluated the repair effect and cartilage protection effect of PBMSCs/DCBM as a meniscal graft in a rabbit model of medial meniscal reconstruction in 3 and 6 months. The results showed PBMSCs positively express CD29 and CD44, negatively express CD34 and CD45, and have three-lineage differentiation ability, thus can be used as tissue engineering meniscus seed cells. After the sample procedure, the cell and DNA contents of DCBM decreased, the tensile modulus did not decrease significantly, and the DCBM had a pore structure and no obvious cytotoxicity. PBMSCs could adhere and grow on the scaffold. Under induction of TGF-β3, PBMSCs/DCBM composites expressed glycosaminoglycan (GAG), and the related gene expression also increased. The results of the in vivo experiments that the PBMSCs/DCBM group had a better repair effect than the DCBM group and the control group at both 12 and 24 weeks, and the protective effect on cartilage was also better. Therefore, the application of DCBM augmented with PBMSCs for meniscus injury treatment is a preferred option for tissue-engineered meniscus.
Collapse
Affiliation(s)
- Beini Mao
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Zhong Zhang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthopaedics, No.3 People’s Hospital of Chengdu, Chengdu, China
| | - Sike Lai
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Kaibo Zhang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Weili Fu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Wang P, Zhu P, Yu C, Wu J. The Proliferation and Stemness of Peripheral Blood-Derived Mesenchymal Stromal Cells Were Enhanced by Hypoxia. Front Endocrinol (Lausanne) 2022; 13:873662. [PMID: 35634504 PMCID: PMC9134856 DOI: 10.3389/fendo.2022.873662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/05/2022] [Indexed: 01/08/2023] Open
Abstract
This study aimed to address the dilemma of low peripheral blood-derived mesenchymal stromal cell (PBMSC) activity and reduced phenotype in bone or cartilage tissue engineering. Rat PBMSCs (rPBMSCs) were obtained by density gradient centrifugation, and stromal cell characteristics were confirmed by flow cytometry (FCM) and multi-differentiation potential induction experiments. Cell growth curve, viability experiments, and clone formation experiments were performed by [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] (MTS) and cell counting, and the cell cycle was confirmed by cell FCM. The proliferation signal pathway and stemness-related proteins were detected by molecular methods including Western blot and real-time polymerase chain reaction. CD73, CD90, and CD105 were highly expressed, and CD14, CD19, CD34, CD45, and HLA-DR were barely expressed in rPBMSCs. rPBMSCs possessed the potential to differentiate into chondrocytes, adipocytes, and osteoblasts under their respective induction conditions. Cell growth curve and viability experiments were performed under hypoxic conditions: 19% O2, 5% O2, and 1% O2. Specifically, 5% O2 accelerated the proliferation and expression of the stemness of PBMSCs. Cycle experiments proved that hypoxia promoted the cell transition from the G1 phase to the S phase. Molecular experiments confirmed that 5% O2 hypoxia significantly elevated the expressions of hypoxia-inducible factor 1α and β-catenin and simultaneously the expressions of cycle-related genes including CyclinE/CDK2 and stemness-related genes including Nanog and SOX2. The appropriate concentration of hypoxia (i.e., 5% O2) enhanced the proliferation and stemness of rPBMSCs and increased the multidirectional differentiation potential of stromal cells. The proposed culture method could improve the viability and maintain the phenotype of rPBMSCs in cartilage or bone tissue engineering.
Collapse
Affiliation(s)
- Pengzhen Wang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
- *Correspondence: Pengzhen Wang,
| | - Pingping Zhu
- Department of Neurology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Chaosheng Yu
- Department of Otorhinolaryngology, Guangzhou Red Cross Medicine, Jinan University, Guangzhou, China
| | - Jian Wu
- Department of Otorhinolaryngology, Guangzhou Red Cross Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Zhao Z, Sun Y, Qiao Q, Zhang L, Xie X, Weir MD, Schneider A, Xu HHK, Zhang N, Zhang K, Bai Y. Human Periodontal Ligament Stem Cell and Umbilical Vein Endothelial Cell Co-Culture to Prevascularize Scaffolds for Angiogenic and Osteogenic Tissue Engineering. Int J Mol Sci 2021; 22:ijms222212363. [PMID: 34830243 PMCID: PMC8621970 DOI: 10.3390/ijms222212363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Vascularization remains a critical challenge in bone tissue engineering. The objective of this study was to prevascularize calcium phosphate cement (CPC) scaffold by co-culturing human periodontal ligament stem cells (hPDLSCs) and human umbilical vein endothelial cells (hUVECs) for the first time; (2) Methods: hPDLSCs and/or hUVECs were seeded on CPC scaffolds. Three groups were tested: (i) hUVEC group (hUVECs on CPC); (ii) hPDLSC group (hPDLSCs on CPC); (iii) co-culture group (hPDLSCs + hUVECs on CPC). Osteogenic differentiation, bone mineral synthesis, and microcapillary-like structures were evaluated; (3) Results: Angiogenic gene expressions of co-culture group were 6–9 fold those of monoculture. vWF expression of co-culture group was 3 times lower than hUVEC-monoculture group. Osteogenic expressions of co-culture group were 2–3 folds those of the hPDLSC-monoculture group. ALP activity and bone mineral synthesis of co-culture were much higher than hPDLSC-monoculture group. Co-culture group formed capillary-like structures at 14–21 days. Vessel length and junction numbers increased with time; (4) Conclusions: The hUVECs + hPDLSCs co-culture on CPC scaffold achieved excellent osteogenic and angiogenic capability in vitro for the first time, generating prevascularized networks. The hPDLSCs + hUVECs co-culture had much better osteogenesis and angiogenesis than monoculture. CPC scaffolds prevacularized via hPDLSCs + hUVECs are promising for dental, craniofacial, and orthopedic applications.
Collapse
Affiliation(s)
- Zeqing Zhao
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China; (Z.Z.); (Y.S.); (Q.Q.); (L.Z.); (X.X.); (K.Z.)
| | - Yaxi Sun
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China; (Z.Z.); (Y.S.); (Q.Q.); (L.Z.); (X.X.); (K.Z.)
| | - Qingchen Qiao
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China; (Z.Z.); (Y.S.); (Q.Q.); (L.Z.); (X.X.); (K.Z.)
| | - Li Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China; (Z.Z.); (Y.S.); (Q.Q.); (L.Z.); (X.X.); (K.Z.)
| | - Xianju Xie
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China; (Z.Z.); (Y.S.); (Q.Q.); (L.Z.); (X.X.); (K.Z.)
| | - Michael D. Weir
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; (M.D.W.); (H.H.K.X.)
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA;
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hockin H. K. Xu
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; (M.D.W.); (H.H.K.X.)
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China; (Z.Z.); (Y.S.); (Q.Q.); (L.Z.); (X.X.); (K.Z.)
- Correspondence: (N.Z.); (Y.B.)
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China; (Z.Z.); (Y.S.); (Q.Q.); (L.Z.); (X.X.); (K.Z.)
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China; (Z.Z.); (Y.S.); (Q.Q.); (L.Z.); (X.X.); (K.Z.)
- Correspondence: (N.Z.); (Y.B.)
| |
Collapse
|
9
|
Jamalpoor Z, Taromi N. Pre-vascularization of biomimetic 3-D scaffolds via direct co-culture of human umbilical cord derived osteogenic and angiogenic progenitor cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Jia Y, Zhang C, Zheng X, Gao M. Co-cultivation of progenitor cells enhanced osteogenic gene expression and angiogenesis potential in vitro. J Int Med Res 2021; 49:3000605211004024. [PMID: 33840248 PMCID: PMC8044578 DOI: 10.1177/03000605211004024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Objectives The efficiencies of osteogenesis and angiogenesis present challenges that need to be overcome before bone tissue engineering can be widely applied to clinical uses. We aimed to optimize an in vitro culture system to enhance osteogenesis and angiogenesis. We investigated if hematopoietic stem cells (HSCs) promoted osteogenesis in vitro when co-cultured with mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs). Methods MSC/HSC, MSC/EPC/HSC, and MSC/EPC co-cultures were incubated for 21 days. Alkaline phosphatase (ALP) activity and calcium content were analyzed to assess mineralization. Expression levels of genes encoding osteogenesis-related proteins (ALP (ALPL), collagen type IA (COL1A1), osteocalcin (BGLAP), and osteopontin (OSTP)) were also evaluated by measuring mRNA levels at day 28. Angiogenesis was evaluated by tube-formation assay. Results COL1A1, OSTP, ALPL, and BGLAP genes were upregulated in MSC/HSC and MSC/EPC/HSC co-cultures compared with the MSC/EPC group. Upregulation was strongest in the MSC/EPC/HSC co-cultures. There were no significant changes in ALP levels and calcium content, but ALP activity was slightly higher and calcium content was relatively lower in the MSC/EPC and MSC/EPC/HSC groups. Conclusions Co-culture of MSCs with HSCs or EPCs/HSCs upregulated the expression of osteogenesis-related genes but did not affect the efficiency of osteogenesis.
Collapse
Affiliation(s)
- Yongsheng Jia
- Thyroid and Neck Department, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Cuicui Zhang
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xiangqian Zheng
- Thyroid and Neck Department, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin. Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ming Gao
- Thyroid and Neck Department, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
11
|
Xu H, Wang C, Liu C, Peng Z, Li J, Jin Y, Wang Y, Guo J, Zhu L. Cotransplantation of mesenchymal stem cells and endothelial progenitor cells for treating steroid-induced osteonecrosis of the femoral head. Stem Cells Transl Med 2021; 10:781-796. [PMID: 33438370 PMCID: PMC8046137 DOI: 10.1002/sctm.20-0346] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/14/2020] [Accepted: 12/06/2020] [Indexed: 11/20/2022] Open
Abstract
Steroid-induced osteonecrosis of the femoral head (ONFH) is characterized by decreased osteogenesis, angiogenesis, and increased adipogenesis. While bone tissue engineering has been widely investigated to treat ONFH, its therapeutic effects remain unsatisfactory. Therefore, further studies are required to determine optimal osteogenesis, angiogenesis and adipogenesis in the necrotic area of the femoral head. In our study, we developed a carboxymethyl chitosan/alginate/bone marrow mesenchymal stem cell/endothelial progenitor cell (CMC/ALG/BMSC/EPC) composite implant, and evaluated its ability to repair steroid-induced ONFH. Our in vitro studies showed that BMSC and EPC coculture displayed enhanced osteogenic and angiogenic differentiation. When compared with single BMSC cultures, adipogenic differentiation in coculture systems was reduced. We also fabricated a three-dimensional (3D) CMC/ALG scaffold for loading cells, using a lyophilization approach, and confirmed its good cell compatibility characteristics, that is, high porosity, low cytotoxicity and favorable cell adhesion. 3D coculture of BMSCs and EPCs also promoted secretion of osteogenic and angiogenic factors. Then, we established an rabbit model of steroid-induced ONFH. The CMC/ALG/BMSC/EPC composite implant was transplanted into the bone tunnel of the rabbit femoral head after core decompression (CD) surgery. Twelve weeks later, radiographical and histological analyses revealed CMC/ALG/BMSC/EPC composite implants had facilitated the repair of steroid-induced ONFH, by promoting osteogenesis and angiogenesis, and reducing adipogenesis when compared with CD, CMC/ALG, CMC/ALG/BMSC and CMC/ALG/EPC groups. Thus, our data show that cotransplantation of BMSCs and EPCs in 3D scaffolds is beneficial in treating steroid-induced ONFH.
Collapse
Affiliation(s)
- Haixia Xu
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Chengqiang Wang
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Chun Liu
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Ziyue Peng
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Jianjun Li
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Yanglei Jin
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Yihan Wang
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Jiasong Guo
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
- Department of Histology and EmbryologySouthern Medical UniversityGuangzhouPeople's Republic of China
- Key Laboratory of Tissue Construction and Detection of Guangdong ProvinceGuangzhouPeople's Republic of China
- Institute of Bone BiologyAcademy of Orthopaedics, Guangdong ProvinceGuangzhouPeople's Republic of China
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
12
|
Engineering an endothelialized, endocrine Neo-Pancreas: Evaluation of islet functionality in an ex vivo model. Acta Biomater 2020; 117:213-225. [PMID: 32949822 DOI: 10.1016/j.actbio.2020.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Islet-based recellularization of decellularized, repurposed rat livers may form a transplantable Neo-Pancreas. The aim of this study is the establishment of the necessary protocols, the evaluation of the organ structure and the analysis of the islet functionality ex vivo. After perfusion-based decellularization of rat livers, matrices were repopulated with endothelial cells and mesenchymal stromal cells, incubated for 8 days in a perfusion chamber, and finally repopulated on day 9 with intact rodent islets. Integrity and quality of re-endothelialization was assessed by histology and FITC-dextran perfusion assay. Functionality of the islets of Langerhans was determined on day 10 and day 12 via glucose stimulated insulin secretion. Blood gas analysis variables confirmed the stability of the perfusion cultivation. Histological staining showed that cells formed a monolayer inside the intact vascular structure. These findings were confirmed by electron microscopy. Islets infused via the bile duct could histologically be found in the parenchymal space. Adequate insulin secretion after glucose stimulation after 1-day and 3-day cultivation verified islet viability and functionality after the repopulation process. We provide the first proof-of-concept for the functionality of islets of Langerhans engrafted in a decellularized rat liver. Furthermore, a re-endothelialization step was implemented to provide implantability. This technique can serve as a bioengineered platform to generate implantable and functional endocrine Neo-Pancreases.
Collapse
|
13
|
Winkler S, Mutschall H, Biggemann J, Fey T, Greil P, Körner C, Weisbach V, Meyer-Lindenberg A, Arkudas A, Horch RE, Steiner D. Human Umbilical Vein Endothelial Cell Support Bone Formation of Adipose-Derived Stem Cell-Loaded and 3D-Printed Osteogenic Matrices in the Arteriovenous Loop Model. Tissue Eng Part A 2020; 27:413-423. [PMID: 32723066 DOI: 10.1089/ten.tea.2020.0087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction: For the regeneration of large volume tissue defects, the interaction between angiogenesis and osteogenesis is a crucial prerequisite. The surgically induced angiogenesis by means of an arteriovenous loop (AVL), is a powerful methodology to enhance vascularization of osteogenic matrices. Moreover, the AVL increases oxygen and nutrition supply, thereby supporting cell survival as well as tissue formation. Adipose-derived stem cells (ADSCs) are interesting cell sources because of their simple isolation, expansion, and their osteogenic potential. This study targets to investigate the coimplantation of human ADSCs after osteogenic differentiation and human umbilical vein endothelial cells (HUVECs), embedded in a vascularized osteogenic matrix of hydroxyapatite (HAp) ceramic for bone tissue engineering. Materials and Methods: An osteogenic matrix consisting of HAp granules and fibrin has been vascularized by means of an AVL. Trials in experimental groups of four settings were performed. Control experiments without any cells (A) and three cell-loaded groups using HUVECs (B), ADSCs (C), as well as the combination of ADSCs and HUVECs (D) were performed. The scaffolds were implanted in a porous titanium chamber, fixed subcutaneously in the hind leg of immunodeficient Rowett Nude rats and explanted after 6 weeks. Results: In all groups, the osteogenic matrix was strongly vascularized. Moreover, remodeling processes and bone formation in the cell-containing groups with more bone in the coimplantation group were proved successful. Conclusion: Vascularization and bone formation of osteogenic matrices consisting of ADSCs and HUVECs in the rat AVL model could be demonstrated successfully for the first time. Hence, the coimplantation of differentiated ADSCs with HUVECs may therefore be considered as a promising approach for bone tissue engineering.
Collapse
Affiliation(s)
- Sophie Winkler
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, München, Germany
| | - Hilkea Mutschall
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jonas Biggemann
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Fey
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Peter Greil
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carolin Körner
- Department of Materials Science and Engineering, Institute of Science and Technology of Metals, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine and Hemostaseology, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrea Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, München, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dominik Steiner
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
14
|
Yao T, Wieringa PA, Chen H, Amit C, Samal P, Giselbrecht S, Baker MB, Moroni L. Fabrication of a self-assembled honeycomb nanofibrous scaffold to guide endothelial morphogenesis. Biofabrication 2020; 12:045001. [PMID: 32498043 DOI: 10.1088/1758-5090/ab9988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Controlling angiogenesis within tissue engineered constructs remains a critical challenge, especially with regard to the guidance of pre-vascular network formation. Here, we aimed to regulate angiogenesis on a self-assembled honeycomb nanofibrous scaffold. Scaffolds with honeycombs patterns have several desirable properties for tissue engineering, including large surface area, high structural stability and good permeability. Furthermore, the honeycomb pattern resembles early vascular network formation. The self-assembly electrospinning approach to honeycomb scaffolds is a technically simple, rapid, and direct way to realize selective deposition of nanofibers. To evaluate cell compatibility, spreading, proliferation and tube formation, human umbilical vein endothelial cells (HUVECs) were cultured on honeycomb scaffolds, as well as on random scaffolds for comparison. The optimized honeycomb nanofibrous scaffolds were observed to better support cell proliferation and network formation, which can facilitate angiogenesis. Moreover, HUVECs cultured on the honeycomb scaffolds were observed to reorganize their cell bodies into tube-like structures containing a central lumen, while this was not observed on random scaffolds. This work has shown that the angiogenic response can be guided by honeycomb scaffolds, allowing improved early HUVECs organization. The guided organization via honeycomb scaffolds can be utilized for tissue engineering applications that require the formation of microvascular networks.
Collapse
Affiliation(s)
- Tianyu Yao
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht 6229 ER, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Role of biomechanics in vascularization of tissue-engineered bones. J Biomech 2020; 110:109920. [PMID: 32827778 DOI: 10.1016/j.jbiomech.2020.109920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/23/2022]
Abstract
Biomaterial based reconstruction is still the most commonly employed method of small bone defect reconstruction. Bone tissue-engineered techniques are improving, and adjuncts such as vascularization technologies allow re-evaluation of traditional reconstructive methods for healingofcritical-sized bone defect. Slow infiltration rate of vasculogenesis after cell-seeded scaffold implantation limits the use of clinically relevant large-sized scaffolds. Hence, in vitro vascularization within the tissue-engineered bone before implantation is required to overcome the serious challenge of low cell survival rate after implantation which affects bone tissue regeneration and osseointegration. Mechanobiological interactions between cells and microvascular mechanics regulate biological processes regarding cell behavior. In addition, load-bearing scaffolds demand mechanical stability properties after vascularization to have adequate strength while implanted. With the advent of bioreactors, vascularization has been greatly improved by biomechanical regulation of stem cell differentiation through fluid-induced shear stress and synergizing osteogenic and angiogenic differentiation in multispecies coculture cells. The benefits of vascularization are clear: avoidance of mass transfer limitation and oxygen deprivation, a significant decrease in cell necrosis, and consequently bone development, regeneration and remodeling. Here, we discuss specific techniques to avoid pitfalls and optimize vascularization results of tissue-engineered bone. Cell source, scaffold modifications and bioreactor design, and technique specifics all play a critical role in this new, and rapidly growing method for bone defect reconstruction. Given the crucial importance of long-term survival of vascular network in physiological function of 3D engineered-bone constructs, greater knowledge of vascularization approaches may lead to the development of new strategies towards stabilization of formed vascular structure.
Collapse
|
16
|
Mutschall H, Winkler S, Weisbach V, Arkudas A, Horch RE, Steiner D. Bone tissue engineering using adipose-derived stem cells and endothelial cells: Effects of the cell ratio. J Cell Mol Med 2020; 24:7034-7043. [PMID: 32394620 PMCID: PMC7299704 DOI: 10.1111/jcmm.15374] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 12/29/2022] Open
Abstract
The microvascular endothelial network is essential for bone formation and regeneration. In this context, endothelial cells not only support vascularization but also influence bone physiology via cell contact-dependent mechanisms. In order to improve vascularization and osteogenesis in tissue engineering applications, several strategies have been developed. One promising approach is the coapplication of endothelial and adipose derived stem cells (ADSCs). In this study, we aimed at investigating the best ratio of human umbilical vein endothelial cells (HUVECs) and osteogenic differentiated ADSCs with regard to proliferation, apoptosis, osteogenesis and angiogenesis. For this purpose, cocultures of ADSCs and HUVECs with ratios of 25%:75%, 50%:50% and 75%:25% were performed. We were able to prove that cocultivation supports proliferation whereas apoptosis was unidirectional decreased in cocultured HUVECs mediated by a p-BAD-dependent mechanism. Moreover, coculturing ADSCs and HUVECs stimulated matrix mineralization and the activity of alkaline phosphatase (ALP). Increased gene expression of the proangiogenic markers eNOS, Flt, Ang2 and MMP3 as well as sprouting phenomena in matrigel assays proved the angiogenic potential of the coculture. In summary, coculturing ADSCs and HUVECs stimulates proliferation, cell survival, osteogenesis and angiogenesis particularly in the 50%:50% coculture.
Collapse
Affiliation(s)
- Hilkea Mutschall
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sophie Winkler
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dominik Steiner
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
17
|
Xing F, Duan X, Liu M, Chen J, Long C, Chen R, Sun J, Wu S, Chen L, Xiang Z. [Construction and preliminary study on biological characteristics of composite cell sheets of mesenchymal stem cells and endothelial progenitor cells derived from peripheral blood]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:109-115. [PMID: 31939245 DOI: 10.7507/1002-1892.201901087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To separate peripheral blood mesenchymal stem cells (PBMSC) and peripheral blood endothelial progenitor cells (PBEPC) from peripheral blood, and investigate the biological characteristics of composite cell sheets of PBMSC and PBEPC. Methods The peripheral blood of healthy adult New Zealand white rabbits was extracted and PBMSC and PBEPC were separated by density gradient centrifugation. Morphological observation and identification of PBMSC and PBEPC were performed. The 3rd generation of PBMSC and PBEPC were used to construct a composite cell sheet at a ratio of 1∶1, and the 3rd generation of PBMSC was used to construct a single cell sheet as control. The distributions of cells in two kinds of cell sheets were observed by HE staining. In addition, the expression of alkaline phosphatase (ALP), osteocalcin (OCN), and vascular endothelial growth factor (VEGF) in the supernatants of cell sheets were observed by ELISA at 1, 5, and 10 days after osteogenic induction. Results The morphology of PBMSC was spindle-shaped or polygonal, and PBMSC had good abilities of osteogenic and adipogenic differentiation. The morphology of PBEPC was paved stone-like, and the tube-forming test of PBEPC was positive. Two kinds of cell sheets were white translucent. The results of HE staining showed that the composite cell sheet had more cell layers and higher cell density than the single cell sheet. The expressions of ALP, OCN, and VEGF in the supernatant of the two groups of cell sheets increased with the time of induction. The expression of OCN in the group of composite cell sheet was significantly higher than that in the group of single cell sheet on the 5th and 10th day, ALP on the 10th day was significantly higher than that in the group of single cell sheet, VEGF expression on the 1st, 5th, and 10th day was significantly higher than that in the group of single cell sheet, all showing significant differences ( P<0.05), and there was no significant difference between the two groups at other time points ( P>0.05). Conclusion PBMSC have stable differentiation ability, and they have good application prospects because of their minimally invasive access. Composite cell membranes constructed by co-culture of two kinds of cells and induction of membrane formation provides a new idea and exploration for tissue defect repair.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xin Duan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Jialei Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Cheng Long
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Ran Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Jiachen Sun
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Shuang Wu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Li Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
18
|
Xing F, Li L, Zhou C, Long C, Wu L, Lei H, Kong Q, Fan Y, Xiang Z, Zhang X. Regulation and Directing Stem Cell Fate by Tissue Engineering Functional Microenvironments: Scaffold Physical and Chemical Cues. Stem Cells Int 2019; 2019:2180925. [PMID: 31949436 PMCID: PMC6948329 DOI: 10.1155/2019/2180925] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023] Open
Abstract
It is well known that stem cells reside within tissue engineering functional microenvironments that physically localize them and direct their stem cell fate. Recent efforts in the development of more complex and engineered scaffold technologies, together with new understanding of stem cell behavior in vitro, have provided a new impetus to study regulation and directing stem cell fate. A variety of tissue engineering technologies have been developed to regulate the fate of stem cells. Traditional methods to change the fate of stem cells are adding growth factors or some signaling pathways. In recent years, many studies have revealed that the geometrical microenvironment played an essential role in regulating the fate of stem cells, and the physical factors of scaffolds including mechanical properties, pore sizes, porosity, surface stiffness, three-dimensional structures, and mechanical stimulation may affect the fate of stem cells. Chemical factors such as cell-adhesive ligands and exogenous growth factors would also regulate the fate of stem cells. Understanding how these physical and chemical cues affect the fate of stem cells is essential for building more complex and controlled scaffolds for directing stem cell fate.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Lang Li
- Department of Pediatric Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| | - Cheng Long
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| | - Haoyuan Lei
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| | - Qingquan Kong
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| |
Collapse
|
19
|
Xu F, Ren H, Zheng M, Shao X, Dai T, Wu Y, Tian L, Liu Y, Liu B, Gunster J, Liu Y, Liu Y. Development of biodegradable bioactive glass ceramics by DLP printed containing EPCs/BMSCs for bone tissue engineering of rabbit mandible defects. J Mech Behav Biomed Mater 2019; 103:103532. [PMID: 31756563 DOI: 10.1016/j.jmbbm.2019.103532] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/12/2023]
Abstract
Bioactive glass ceramics have excellent biocompatibility and osteoconductivity; and can form direct chemical bonds with human bones; thus, these ceramic are considered as "Smart" materials. In this study, we develop a new type of bioactive glass ceramic (AP40mod) as a scaffold containing Endothelial progenitor cells (EPCs) and Mesenchymal stem cells (BMSCs) to repair critical-sized bone defects in rabbit mandibles. For in vitro experiments: AP40mod was prepared by Dgital light processing (DLP) system and the optimal ratio of EPCs/BMSCs was screened by analyzing cell proliferation and ALP activity, as well as the influence of genes related to osteogenesis and angiogenesis by direct inoculation into scaffolds. The scaffold showed suitable mechanical properties, with a Bending strength 52.7 MPa and a good biological activity. Additionally, when EPCs/BMSCs ratio were combined at a ratio of 2:1 with AP40mod, the ALP activity, osteogenesis and angiogenesis were significantly increased. For in vivo experiments: application of AP40mod/EPCs/BMSCs (after 7 days of in vitro spin culture) to repair and reconstruct critical-sized mandible defect in rabbit showed that all scaffolds were successfully accurately implanted into the defect area. As revealed by macroscopically and CT at the end of 9 months, defects in the AP40mod/EPCs/BMSCs group were nearly completely covered by normal bone and the degradation rate was 29.9% compared to 20.1% in the AP40mod group by the 3D reconstruction. As revealed by HE and Masson staining analyses, newly formed blood vessels, bone marrow and collagen maturity were significantly increased in the AP40mod/EPCs/BMSCs group compared to those in the AP40mod group. We directly inoculated cells on the novel material to screen for the best inoculation ratio. It is concluded that the AP40mod combination of EPCs/BMSCs is a promising approach for repairing and reconstructing large load bearing bone defect.
Collapse
Affiliation(s)
- Fangfang Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Hui Ren
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mengjie Zheng
- Department of Oral and Maxillofacial Surgery,General Hospital of Northern Theater Command, Shen'yang, 110016, PR China
| | - Xiaoxi Shao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Taiqiang Dai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Yanlong Wu
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lei Tian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Yu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Bin Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Laboratory Animal Center, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Jens Gunster
- Division of Ceramic Processing and Biomaterials, BAM Federal Institute for Materials and Research and Testing, Unter Den Eichen 44-46, 12203, Berlin, Germany
| | - Yaxiong Liu
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yanpu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China.
| |
Collapse
|
20
|
França CM, Thrivikraman G, Athirasala A, Tahayeri A, Gower LB, Bertassoni LE. The influence of osteopontin-guided collagen intrafibrillar mineralization on pericyte differentiation and vascularization of engineered bone scaffolds. J Biomed Mater Res B Appl Biomater 2019; 107:1522-1532. [PMID: 30267638 PMCID: PMC6440878 DOI: 10.1002/jbm.b.34244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/25/2018] [Accepted: 08/25/2018] [Indexed: 12/17/2022]
Abstract
Biomimetically mineralized collagen scaffolds are promising for bone regeneration, but vascularization of these materials remains to be addressed. Here, we engineered mineralized scaffolds using an osteopontin-guided polymer-induced liquid-precursor mineralization method to recapitulate bone's mineralized nanostructure. SEM images of mineralized samples confirmed the presence of collagen with intrafibrillar mineral, also EDS spectra and FTIR showed high peaks of calcium and phosphate, with a similar mineral/matrix ratio to native bone. Mineralization increased collagen compressive modulus up to 15-fold. To evaluate vasculature formation and pericyte-like differentiation, HUVECs and hMSCs were seeded in a 4:1 ratio in the scaffolds for 7 days. Moreover, we used RT-PCR to investigate the gene expression of pericyte markers ACTA2, desmin, CD13, NG2, and PDGFRβ. Confocal images showed that both nonmineralized and mineralized scaffolds enabled endothelial capillary network formation. However, vessels in the nonmineralized samples had longer vessel length, a larger number of junctions, and a higher presence of αSMA+ mural cells. RT-PCR analysis confirmed the downregulation of pericytic markers in mineralized samples. In conclusion, although both scaffolds enabled endothelial capillary network formation, mineralized scaffolds presented less pericyte-supported vessels. These observations suggest that specific scaffold characteristics may be required for efficient scaffold vascularization in future bone tissue engineering strategies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1522-1532, 2019.
Collapse
Affiliation(s)
- Cristiane M. França
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
- Nove de Julho University, São Paulo, SP, Brazil
| | - Greeshma Thrivikraman
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Avathamsa Athirasala
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Anthony Tahayeri
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Laurie B. Gower
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
- Center for Regenerative Medicine, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
21
|
He R, Chen J, Jiang J, Liu B, Liang D, Zhou W, Chen W, Wang Y. Synergies of accelerating differentiation of bone marrow mesenchymal stem cells induced by low intensity pulsed ultrasound, osteogenic and endothelial inductive agent. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:674-684. [PMID: 30835554 DOI: 10.1080/21691401.2019.1576704] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In terms to investigate the effect of low-intensity pulsed ultrasound (LIPUS) for differentiation of bone marrow mesenchymal stem cells (BMSCs) and the feasibility of simultaneously inducing into osteoblasts and vascular endothelial cells within the cell culture medium in which two inductive agents are added at the same time with or without LIPUS. Cells were divided into a non-induced group, an osteoblast-induced group, a vascular endothelial-induced group, and a bidirectional differentiation-induced group. Each group was further subdivided into LIPUS and non-LIPUS groups. The cell proliferation in each group was measured by MTT assay. Cell morphological and ultrastructural changes were observed by inverted phase contrast microscopy and transmission electron microscopy. The differentiation of BMSCs was detected by confocal microscopy, flow cytometry and quantitative RT-PCR. Results demonstrated that both osteoblast and vascular endothelial cell differentiation markers were expressed in the bidirectional differentiation induction group and early osteogenesis and angiogenesis appeared. The cell proliferation, differentiation rate and expression of osteocalcin and vWF in the LIPUS groups were all significantly higher than those in the corresponding non-LIPUS group (p < .05), suggesting LIPUS treatment can promote the differentiation efficiency and rate of BMSCs, especially in the bidirectional differentiation induction group. This study suggests the combination of LIPUS and dual-inducing agents could induce and accelerate simultaneous differentiation of BMSCs to osteoblasts and vascular endothelial cells. These findings indicate the method could be applied to research on generating vascularized bone tissue with a shape and function that mimics natural bone to accelerate early osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Ruixin He
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China
| | - Junlin Chen
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China
| | - Jingwei Jiang
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China
| | - Baoru Liu
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China
| | - Dandan Liang
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China
| | - Weichen Zhou
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China
| | - Wenzhi Chen
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China.,b The Second Affiliated Hospital of Chongqing Medical University , Chongqing , P.R.China
| | - Yan Wang
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China
| |
Collapse
|
22
|
Jia Z, Guo H, Xie H, Zhou J, Wang Y, Bao X, Huang Y, Chen F. Construction of Pedicled Smooth Muscle Tissues by Combining the Capsule Tissue and Cell Sheet Engineering. Cell Transplant 2019; 28:328-342. [PMID: 30712374 PMCID: PMC6425107 DOI: 10.1177/0963689718821682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The survival of engineered tissue requires the formation of its own capillary network, which can anastomose with the host vasculature after transplantation. Currently, while many strategies, such as modifying the scaffold material, adding endothelial cells, or angiogenic factors, have been researched, engineered tissue implanted in vivo cannot timely access to sufficient blood supply, leading to ischemic apoptosis or shrinkage. Constructing vascularized engineered tissue with its own axial vessels and subsequent pedicled transfer is promising to solve the problem of vascularization in tissue engineering. In this study, we used the tissue expander capsule as a novel platform for vascularizing autologous smooth muscle cell (SMC) sheets and fabricating vascularized engineered tissue with its own vascular pedicle. First, we verified which time point was the most effective for constructing an axial capsule vascular bed. Second, we compared the outcome of SMC sheet transplantation onto the expander capsule and classical dorsal subcutaneous tissue, which was widely used in other studies for vascularization. Finally, we transplanted multilayered SMC sheets onto the capsule bed twice to verify the feasibility of fabricating thick pedicled engineered smooth muscle tissues. The results indicated that the axial capsule tissue could be successfully induced, and the capsule tissue 1 week after full expansion was the most vascularized. Quantitative comparisons of thickness, vessel density, and apoptosis of cell sheet grafts onto two vascular beds proved that the axial capsule vascular bed was more favorable to the growth and vascularization of transplants than classical subcutaneous tissue. Furthermore, thick vascularized smooth muscle tissues with the vascular pedicle could be constructed by multi-transplanting cell sheets onto the capsule bed. The combination of axial capsule vascular bed and cell sheet engineering may provide an efficient strategy to overcome the problem of slow or insufficient vascularization in tissue engineering.
Collapse
Affiliation(s)
- Zhiming Jia
- 1 Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hailin Guo
- 1 Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Xie
- 1 Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Junmei Zhou
- 2 Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yaping Wang
- 1 Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xingqi Bao
- 1 Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yichen Huang
- 1 Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Chen
- 1 Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
Jahangir S, Hosseini S, Mostafaei F, Sayahpour FA, Baghaban Eslaminejad M. 3D-porous β-tricalcium phosphate-alginate-gelatin scaffold with DMOG delivery promotes angiogenesis and bone formation in rat calvarial defects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 30:1. [PMID: 30564959 DOI: 10.1007/s10856-018-6202-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Hypoxia-inducible factor-1α (HIF-1α), a well-studied angiogenesis pathway, plays an essential role in angiogenesis-osteogenesis coupling. Targeting the HIF-1a pathway frequently leads to successful reconstruction of large-sized bone defects through promotion of angiogenesis. Dimethyloxalylglycine (DMOG) small molecule regulates the stability of HIF-1α at normal oxygen tension by mimicking hypoxia, which subsequently accelerates angiogenesis. The current study aims to develop a novel construct by seeding adipose derived mesenchymal stem cells (ADMSCs) onto a scaffold that contains DMOG to induce angiogenesis and regeneration of a critical size calvarial defect in a rat model. The spongy scaffolds have been synthesized in the presence and absence of DMOG and analyzed in terms of morphology, porosity, pore size, mechanical properties and DMOG release profile. The effect of DMOG delivery on cellular behaviors of adhesion, viability, osteogenic differentiation, and angiogenesis were subsequently evaluated under in vitro conditions. Histological analysis of cell-scaffold constructs were also performed following transplantation into the calvarial defect. Physical characteristics of fabricated scaffolds confirmed higher mechanical strength and surface roughness of DMOG-loaded scaffolds. Scanning electron microscopy (SEM) images and MTT assay demonstrated the attachment and viability of ADMSCs in the presence of DMOG, respectively. Osteogenic activity of ADMSCs that included alkaline phosphatase (ALP) activity and calcium deposition significantly increased in the DMOG-loaded scaffold. Computed tomography (CT) imaging combined with histomorphometry and immunohistochemistry analysis showed enhanced bone formation and angiogenesis in the DMOG-loaded scaffolds. Therefore, spongy scaffolds that contained DMOG and had angiogenesis ability could be utilized to enhance bone regeneration of large-sized bone defects.
Collapse
Affiliation(s)
- Shahrbanoo Jahangir
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
- Department of Tissue engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Farhad Mostafaei
- Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Tehran, 1665659911, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran.
| |
Collapse
|
24
|
Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials 2018; 185:240-275. [PMID: 30261426 PMCID: PMC6445367 DOI: 10.1016/j.biomaterials.2018.09.028] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
The development, maintenance of healthy bone and regeneration of injured tissue in the human body comprise a set of intricate and finely coordinated processes. However, an analysis of current bone regeneration strategies shows that only a small fraction of well-reported bone biology aspects has been used as inspiration and transposed into the development of therapeutic products. Specific topics that include inter-scale bone structural organization, developmental aspects of bone morphogenesis, bone repair mechanisms, role of specific cells and heterotypic cell contact in the bone niche (including vascularization networks and immune system cells), cell-cell direct and soluble-mediated contact, extracellular matrix composition (with particular focus on the non-soluble fraction of proteins), as well as mechanical aspects of native bone will be the main reviewed topics. In this Review we suggest a systematic parallelization of (i) fundamental well-established biology of bone, (ii) updated and recent advances on the understanding of biological phenomena occurring in native and injured tissue, and (iii) critical discussion of how those individual aspects have been translated into tissue regeneration strategies using biomaterials and other tissue engineering approaches. We aim at presenting a perspective on unexplored aspects of bone physiology and how they could be translated into innovative regeneration-driven concepts.
Collapse
Affiliation(s)
- Diana Lopes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Cláudia Martins-Cruz
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| |
Collapse
|
25
|
Xing F, Liu G, Duan X, Xiang Z. [The application of urine derived stem cells in regeneration of musculoskeletal system]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1477-1482. [PMID: 30417628 PMCID: PMC8414118 DOI: 10.7507/1002-1892.201804024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 10/13/2018] [Indexed: 02/05/2023]
Abstract
Objective To review the application of urine derived stem cells (USCs) in regeneration of musculoskeletal system. Methods The original literature about USCs in the regeneration of musculoskeletal system was extensively reviewed and analyzed. Results The source of USCs is noninvasive and extensive. USCs express MSCs surface markers with stable proliferative and multi-directional differentiation capabilities, and are widely used in bone, skin, nerve, and other skeletal and muscle system regeneration fields and show a certain repair capacity. Conclusion USCs from non-invasive sources have a wide application prospect in the regeneration of musculoskeletal system, but the definite biological mechanism of its repair needs further study.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Guoming Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xin Duan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
26
|
Xing F, Li L, Liu M, Duan X, Long Y, Xiang Z. [The application and research progress of in-situ tissue engineering technology in bone and cartilage repair]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1358-1364. [PMID: 30215487 DOI: 10.7507/1002-1892.201712118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the application and research progress of
in-situ tissue engineering technology in bone and cartilage repair. Methods The original articles about
in-situ tissue engineering technology in bone and cartilage repair were extensively reviewed and analyzed. Results In-situ tissue engineering have been shown to be effective in repairing bone defects and cartilage defects, but biological mechanisms are inadequate. At present, most of researches are mainly focused on animal experiments, and the effect of clinical repair need to be further studied. Conclusion In-situ tissue engineering technology has wide application prospects in bone and cartilage tissue engineering. However, further study on the mechanism of related cytokines need to be conducted.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Lang Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xin Duan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Ye Long
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
27
|
Roux BM, Akar B, Zhou W, Stojkova K, Barrera B, Brankov J, Brey EM. Preformed Vascular Networks Survive and Enhance Vascularization in Critical Sized Cranial Defects. Tissue Eng Part A 2018; 24:1603-1615. [PMID: 30019616 DOI: 10.1089/ten.tea.2017.0493] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vascular networks provide nutrients, oxygen, and progenitor cells that are essential for bone function. It has been proposed that a preformed vascular network may enhance the performance of engineered bone. In this study vascular networks were generated from human umbilical vein endothelial cell and mesenchymal stem cell spheroids encapsulated in fibrin scaffolds, and the stability of preformed vascular networks and their effect on bone regeneration were assessed in an in vivo bone model. Under optimized culture conditions, extensive vessel-like networks formed throughout the scaffolds in vitro. After vascular network formation, the vascularized scaffolds were implanted in a critical sized calvarial defect in nude rats. Immunohistochemical staining for CD31 showed that the preformed vascular networks survived and anastomosed with host tissue within 1 week of implantation. The prevascularized scaffolds enhanced overall vascularization after 1 and 4 weeks. Early bone formation around the perimeter of the defect area was visible in X-ray images of samples after 4 weeks. Prevascularized scaffolds may be a promising strategy for engineering vascularized bone.
Collapse
Affiliation(s)
- Brianna M Roux
- 1 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois.,2 Research Service, Edward Hines, Jr. V.A. Hospital , Hines, Illinois
| | - Banu Akar
- 1 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois.,2 Research Service, Edward Hines, Jr. V.A. Hospital , Hines, Illinois
| | - Wei Zhou
- 1 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois
| | - Katerina Stojkova
- 3 Department of Biomedical Engineering, University of Texas at San Antonio , San Antonio, Texas
| | - Beatriz Barrera
- 1 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois
| | - Jovan Brankov
- 4 Department of Electrical and Computer Engineering, Illinois Institute of Technology , Chicago, Illinois
| | - Eric M Brey
- 1 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois.,3 Department of Biomedical Engineering, University of Texas at San Antonio , San Antonio, Texas.,5 Research Service, Audie L. Murphy Memorial V.A. Hospital , San Antonio, Texas
| |
Collapse
|
28
|
Liu X, Jakus AE, Kural M, Qian H, Engler A, Ghaedi M, Shah R, Steinbacher DM, Niklason LE. Vascularization of Natural and Synthetic Bone Scaffolds. Cell Transplant 2018; 27:1269-1280. [PMID: 30008231 PMCID: PMC6434463 DOI: 10.1177/0963689718782452] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vascularization of engineered bone tissue is critical for ensuring its survival after implantation. In vitro pre-vascularization of bone grafts with endothelial cells is a promising strategy to improve implant survival. In this study, we pre-cultured human smooth muscle cells (hSMCs) on bone scaffolds for 3 weeks followed by seeding of human umbilical vein endothelial cells (HUVECs), which produced a desirable environment for microvasculature formation. The sequential cell-seeding protocol was successfully applied to both natural (decellularized native bone, or DB) and synthetic (3D-printed Hyperelastic "Bone" scaffolds, or HB) scaffolds, demonstrating a comprehensive platform for developing natural and synthetic-based in vitro vascularized bone grafts. Using this sequential cell-seeding process, the HUVECs formed lumen structures throughout the DB scaffolds as well as vascular tissue bridging 3D-printed fibers within the HB. The pre-cultured hSMCs were essential for endothelial cell (EC) lumen formation within DB scaffolds, as well as for upregulating EC-specific gene expression of HUVECs grown on HB scaffolds. We further applied this co-culture protocol to DB scaffolds using a perfusion bioreactor, to overcome the limitations of diffusive mass transport into the interiors of the scaffolds. Compared with static culture, panoramic histological sections of DB scaffolds cultured in bioreactors showed improved cellular density, as well as a nominal increase in the number of lumen structures formed by ECs in the interior regions of the scaffolds. In conclusion, we have demonstrated that the sequential seeding of hSMCs and HUVECs can serve to generate early microvascular networks that could further support the in vitro tissue engineering of naturally or synthetically derived bone grafts and in both random (DB) and ordered (HB) pore networks. Combined with the preliminary bioreactor study, this process also shows potential to generate clinically sized, vascularized bone scaffolds for tissue and regenerative engineering.
Collapse
Affiliation(s)
- Xi Liu
- 1 Plastic and Reconstructive Surgery, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - Adam E Jakus
- 2 Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA.,3 Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
| | - Mehmet Kural
- 4 Department of Anesthesiology, Yale University, New Haven, CT, USA.,5 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Hong Qian
- 4 Department of Anesthesiology, Yale University, New Haven, CT, USA.,5 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Alexander Engler
- 4 Department of Anesthesiology, Yale University, New Haven, CT, USA.,5 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mahboobe Ghaedi
- 4 Department of Anesthesiology, Yale University, New Haven, CT, USA.,5 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ramille Shah
- 2 Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA.,3 Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA.,6 Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA.,7 Division of Organ Transplantation, Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Derek M Steinbacher
- 1 Plastic and Reconstructive Surgery, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - Laura E Niklason
- 4 Department of Anesthesiology, Yale University, New Haven, CT, USA.,5 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
29
|
Liu H, Jiao Y, Zhou W, Bai S, Feng Z, Dong Y, Liu Q, Feng X, Zhao Y. Endothelial progenitor cells improve the therapeutic effect of mesenchymal stem cell sheets on irradiated bone defect repair in a rat model. J Transl Med 2018; 16:137. [PMID: 29788957 PMCID: PMC5964689 DOI: 10.1186/s12967-018-1517-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/16/2018] [Indexed: 12/19/2022] Open
Abstract
Background The reconstruction of bone defects is often impaired by radiotherapy since bone quality is compromised by radiation. This study aims to investigate the therapeutic efficacy of the composite cell sheets-bone marrow mesenchymal stem cell (BMSC) sheets cocultured with endothelial progenitor cells (EPCs)-in the healing of irradiated bone defects and the biological effects of EPCs on the osteogenic properties of BMSC sheets. Methods BMSCs and EPCs were isolated from rat bone marrow. BMSCs were used to form cell sheets by the vitamin C inducing method. EPCs were seeded on BMSC sheets to make EPCs–BMSC sheets. Osteogenesis of EPCs–BMSC sheets and BMSC sheets were tested. In vitro osteogenesis tests included ALP, Alizarin Red S, Sirius Red staining, qRT-PCR and Western blot analysis after 3 and 7 days of osteogenic incubation. Subcutaneous osteogenesis was tested by H&E staining and immunohistochemical staining 8 weeks after transplantation. EPCs–BMSC sheets and BMSC sheets were used in the 3 mm defects of non-irradiated and irradiated rat tibias. Micro-CT and histological analysis were used to test the healing of bone defects 4 and 8 weeks after transplantation. Results EPCs–BMSC sheets showed enhanced osteogenic differentiation in vitro with increased expression of osteoblastic markers and osteogenesis related staining compared with BMSC sheets. In subcutaneous osteogenesis test, EPCs–BMSC sheets formed larger areas of new bone and blood vessels. The EPCs–BMSC group had the highest volume of newly formed bone in the defect area of irradiated tibias. Conclusions EPCs improved the osteogenic differentiation of BMSC Sheets and enhanced the ectopic bone formation. EPCs–BMSC sheets promoted bone healing in irradiated rat tibias. EPCs–BMSC sheets are potentially useful in the reconstruction of bone defect after radiotherapy. Electronic supplementary material The online version of this article (10.1186/s12967-018-1517-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yang Jiao
- Department of Stomatology, PLA Army General Hospital, Beijing, 100700, China
| | - Wei Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shizhu Bai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zhihong Feng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yan Dong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Qian Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiaoke Feng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yimin Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
30
|
Baudequin T, Tabrizian M. Multilineage Constructs for Scaffold-Based Tissue Engineering: A Review of Tissue-Specific Challenges. Adv Healthc Mater 2018; 7. [PMID: 29193897 DOI: 10.1002/adhm.201700734] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/28/2017] [Indexed: 12/11/2022]
Abstract
There is a growing interest in the regeneration of tissue in interfacial regions, where biological, physical, and chemical attributes vary across tissue type. The simultaneous use of distinct cell lineages can help in developing in vitro structures, analogous to native composite tissues. This literature review gathers the recent reports that have investigated multiple cell types of various sources and lineages in a coculture system for tissue-engineered constructs. Such studies aim at mimicking the native organization of tissues and their interfaces, and/or to improve the development of complex tissue substitutes. This paper thus distinguishes itself from those focusing on technical aspects of coculturing for a single specific tissue. The first part of this review is dedicated to variables of cocultured tissue engineering such as scaffold, cells, and in vitro culture environment. Next, tissue-specific coculture methods and approaches are covered for the most studied tissues. Finally, cross-analysis is performed to highlight emerging trends in coculture principles and to discuss how tissue-specific challenges can inspire new approaches for regeneration of different interfaces to improve the outcomes of various tissue engineering strategies.
Collapse
Affiliation(s)
- Timothée Baudequin
- Faculty of Medicine; Biomat'X Laboratory; Department of Biomedical Engineering; McGill University; 740 ave. Dr. Penfield, Room 4300 Montréal QC H3A 0G1 Québec Canada
| | - Maryam Tabrizian
- Faculty of Medicine; Biomat'X Laboratory; Department of Biomedical Engineering; McGill University; 740 ave. Dr. Penfield, Room 4300 Montréal QC H3A 0G1 Québec Canada
- Faculty of Dentistry; McGill University; 3775 rue University, Room 313/308B Montréal QC H3A 2B4 Québec Canada
| |
Collapse
|
31
|
Guo J, Zhang H, Xia J, Hou J, Wang Y, Yang T, Wang S, Zhang X, Chen X, Wu X. Interleukin-1β induces intercellular adhesion molecule-1 expression, thus enhancing the adhesion between mesenchymal stem cells and endothelial progenitor cells via the p38 MAPK signaling pathway. Int J Mol Med 2018; 41:1976-1982. [PMID: 29393395 PMCID: PMC5810197 DOI: 10.3892/ijmm.2018.3424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 12/18/2017] [Indexed: 02/07/2023] Open
Abstract
Endothelial progenitor cells (EPCs) are an important component of stem-cell niches, which are able to promote the self-renewal and pluripotency of mesenchymal stem cells (MSCs). The biological functions of these two cell types is dependent on adhesion, and the adhesion between MSCs and EPCs is important due to their critical role in neovascularization and bone regeneration in tissue engineering. Intercellular adhesion molecule-1 (ICAM-1, also known as cluster of differentiation 54), is a member of the immunoglobulin supergene family, which functions in cell-cell and cell-matrix adhesive interactions. Compared with other adhesion molecules, ICAM-1 is expressed in hematopoietic and nonhematopoietic cells, and can mediate adhesive interactions. The present study aimed to investigate the importance of ICAM-1 in the adhesion of MSCs and EPCs, and demonstrated that adhesion between these cells could be regulated by interleukin (IL)-1β via the p38 mitogen-activated protein kinase pathway. In addition, the results confirmed that ICAM-1 served a critical role in regulation of adhesion between MSCs and EPCs. ELISA, cell immunofluorescence, western blot analysis and adhesion assay were used to confirm our theory from phenomenon to essence. The present study provided evidence to support and explain the adhesion between MSCs and EPCs. Furthermore, the present findings provide a theoretical basis for further stem-cell niche transplantation to increase understanding of the function of MSCs and the crosstalk between MSCs and EPCs in the stem-cell niche.
Collapse
Affiliation(s)
- Jun Guo
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Hongwei Zhang
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Jie Xia
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Jixue Hou
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Yixiao Wang
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Tao Yang
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Sibo Wang
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Xuyong Zhang
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Xuelin Chen
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Xiangwei Wu
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| |
Collapse
|
32
|
Zhou C, Xu AT, Wang DD, Lin GF, Liu T, He FM. The effects of Sr-incorporated micro/nano rough titanium surface on rBMSC migration and osteogenic differentiation for rapid osteointegration. Biomater Sci 2018; 6:1946-1961. [DOI: 10.1039/c8bm00473k] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MNT-Sr can promote rBMSC osteogenic differentiation and significantly enhance rBMSC migration and homing via activation of SDF-1α/CXCR4 signaling.
Collapse
Affiliation(s)
- Chuan Zhou
- Department of Oral Implantology and Prothodontics
- The Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - An-tian Xu
- Department of Oral Implantology and Prothodontics
- The Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Dan-dan Wang
- Department of Oral Implantology and Prothodontics
- The Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Guo-fen Lin
- Department of General Dentistry
- The Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Tie Liu
- Department of Oral Implantology
- The Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Fu-ming He
- Department of Oral Implantology and Prothodontics
- The Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| |
Collapse
|
33
|
Wang H, Cheng H, Tang X, Chen J, Zhang J, Wang W, Li W, Lin G, Wu H, Liu C. The synergistic effect of bone forming peptide-1 and endothelial progenitor cells to promote vascularization of tissue engineered bone. J Biomed Mater Res A 2017; 106:1008-1021. [PMID: 29115001 DOI: 10.1002/jbm.a.36287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/06/2017] [Accepted: 11/02/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Huaixi Wang
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Hao Cheng
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Xiangyu Tang
- Department of Radiology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Jingyuan Chen
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Jun Zhang
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Wei Wang
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Wenkai Li
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Guanlin Lin
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Hua Wu
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Chaoxu Liu
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| |
Collapse
|
34
|
Angiogenesis in a 3D model containing adipose tissue stem cells and endothelial cells is mediated by canonical Wnt signaling. Bone Res 2017; 5:17048. [PMID: 29263938 PMCID: PMC5727463 DOI: 10.1038/boneres.2017.48] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/25/2017] [Accepted: 04/10/2017] [Indexed: 02/05/2023] Open
Abstract
Adipose-derived stromal cells (ASCs) have gained great attention in regenerative medicine. Progress in our understanding of adult neovascularization further suggests the potential of ASCs in promoting vascular regeneration, although the specific cues that stimulate their angiogenic behavior remain controversial. In this study, we established a three-dimensional (3D) angiogenesis model by co-culturing ASCs and endothelial cells (ECs) in collagen gel and found that ASC-EC-instructed angiogenesis was regulated by the canonical Wnt pathway. Furthermore, the angiogenesis that occurred in implants collected after injections of our collagen gel-based 3D angiogenesis model into nude mice was confirmed to be functional and also regulated by the canonical Wnt pathway. Wnt regulation of angiogenesis involving changes in vessel length, vessel density, vessel sprout, and connection numbers occurred in our system. Wnt signaling was then shown to regulate ASC-mediated paracrine signaling during angiogenesis through the nuclear translocation of β-catenin after its cytoplasmic accumulation in both ASCs and ECs. This translocation enhanced the expression of nuclear co-factor Lef-1 and cyclin D1 and activated the angiogenic transcription of vascular endothelial growth factor A (VEGFA), basic fibroblast growth factor (bFGF), and insulin-like growth factor 1 (IGF-1). The angiogenesis process in the 3D collagen model appeared to follow canonical Wnt signaling, and this model can help us understand the importance of the canonical Wnt pathway in the use of ASCs in vascular regeneration.
Collapse
|
35
|
Liang T, Zhu L, Gao W, Gong M, Ren J, Yao H, Wang K, Shi D. Coculture of endothelial progenitor cells and mesenchymal stem cells enhanced their proliferation and angiogenesis through PDGF and Notch signaling. FEBS Open Bio 2017; 7:1722-1736. [PMID: 29123981 PMCID: PMC5666384 DOI: 10.1002/2211-5463.12317] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 01/06/2023] Open
Abstract
The beneficial effects of combined use of mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) on tissue repair and regeneration after injury have been demonstrated, but the underlying mechanism remains incompletely understood. This study aimed to investigate the effects of direct contact coculture of human bone marrow‐derived EPCs (hEPCs)/human bone marrow‐derived MSCs (hMSCs) on their proliferation and angiogenic capacities and the underlying mechanism. hEPCs and hMSCs were cocultured in a 2D mixed monolayer or a 3D transwell membrane cell‐to‐cell coculture system. Cell proliferation was determined by Cell Counting Kit‐8. Angiogenic capacity was evaluated by in vitro angiogenesis assay. Platelet‐derived growth factor‐BB (PDGF‐BB), PDGF receptor neutralizing antibody (AB‐PDGFR), and DAPT (a γ‐secretase inhibitor) were used to investigate PDGF and Notch signaling. Cell proliferation was significantly enhanced by hEPCs/hMSCs 3D‐coculture and PDGF‐BB treatment, but inhibited by AB‐PDGFR. Expression of cyclin D1, PDGFR, Notch1, and Hes1 was markedly enhanced by PDGF‐BB but inhibited by DAPT. In vitro angiogenesis assay showed that hEPCs/hMSCs coculture and PDGF‐BB significantly enhanced angiogenic capacity, whereas AB‐PDGFR significantly reduced the angiogenic capacity. PDGF‐BB increased the expression of kinase insert domain receptor (KDR, an endothelial marker) and activated Notch1 signaling in cocultured cells, while DAPT attenuated the promoting effect of PDGF‐BB on KDR expression of hEPCs/hMSCs coculture. hEPCs/hMSCs coculture enhanced their proliferation and angiogenic capacities. PDGF and Notch signaling pathways participated in the promoting effects of hEPCs/hMSCs coculture, and there was crosstalk between these two signaling pathways. Our findings should aid understanding of the mechanism of beneficial effects of hEPCs/hMSCs coculture.
Collapse
Affiliation(s)
- Tangzhao Liang
- Department of Orthopaedic Surgery the Third Affiliated Hospital of Sun Yat-sen University Guangzhou China
| | - Lei Zhu
- Department of Plastic and Reconstructive Surgery the Third Affiliated Hospital of Sun Yat-sen University Guangzhou China
| | - Wenling Gao
- Department of Periodontology Faculty of Dentistry Prince Philip Dental Hospital The University of Hong Kong China
| | - Ming Gong
- Department of Orthopedic Surgery Shenzhen Hospital of Southern Medical University China
| | - Jianhua Ren
- Department of Orthopaedic Surgery the Third Affiliated Hospital of Sun Yat-sen University Guangzhou China
| | - Hui Yao
- Department of Orthopaedic Surgery the Third Affiliated Hospital of Sun Yat-sen University Guangzhou China
| | - Kun Wang
- Department of Orthopaedic Surgery the Third Affiliated Hospital of Sun Yat-sen University Guangzhou China
| | - Dehai Shi
- Department of Orthopaedic Surgery the Third Affiliated Hospital of Sun Yat-sen University Guangzhou China
| |
Collapse
|
36
|
Zhang C, Hu K, Liu X, Reynolds MA, Bao C, Wang P, Zhao L, Xu HH. Novel hiPSC-based tri-culture for pre-vascularization of calcium phosphate scaffold to enhance bone and vessel formation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Le Pape F, Richard G, Porchet E, Sourice S, Dubrana F, Férec C, Polard V, Pace R, Weiss P, Zal F, Delépine P, Leize E. Adhesion, proliferation and osteogenic differentiation of human MSCs cultured under perfusion with a marine oxygen carrier on an allogenic bone substitute. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:95-107. [DOI: 10.1080/21691401.2017.1365724] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fiona Le Pape
- Functional Genetics Department, INSERM Research Unit 1078, University of Western Brittany, European Brittany University, Brest, France
- HEMARINA SA, Aeropole Center, Biotechnopole, Morlaix, France
| | - Gaëlle Richard
- Functional Genetics Department, INSERM Research Unit 1078, University of Western Brittany, European Brittany University, Brest, France
- French Blood Service-Brittany, Brest, France
| | - Emmanuelle Porchet
- Functional Genetics Department, INSERM Research Unit 1078, University of Western Brittany, European Brittany University, Brest, France
| | - Sophie Sourice
- INSERM Research Unit 791, Center for Osteoarticular and Dental Tissue Engineering, University of Nantes, Nantes, France
- Regional University Hospital Center of Nantes, Nantes, France
| | | | - Claude Férec
- Functional Genetics Department, INSERM Research Unit 1078, University of Western Brittany, European Brittany University, Brest, France
- French Blood Service-Brittany, Brest, France
- Regional University Hospital Center, Brest, France
| | - Valérie Polard
- HEMARINA SA, Aeropole Center, Biotechnopole, Morlaix, France
| | - Richard Pace
- INSERM Research Unit 791, Center for Osteoarticular and Dental Tissue Engineering, University of Nantes, Nantes, France
| | - Pierre Weiss
- INSERM Research Unit 791, Center for Osteoarticular and Dental Tissue Engineering, University of Nantes, Nantes, France
| | - Franck Zal
- HEMARINA SA, Aeropole Center, Biotechnopole, Morlaix, France
| | - Pascal Delépine
- Functional Genetics Department, INSERM Research Unit 1078, University of Western Brittany, European Brittany University, Brest, France
- French Blood Service-Brittany, Brest, France
| | - Elisabeth Leize
- Functional Genetics Department, INSERM Research Unit 1078, University of Western Brittany, European Brittany University, Brest, France
- Prosthesis Department, Research and Formation Unit of Odontology, Regional University Hospital Center of Brest, Brest, France
| |
Collapse
|
38
|
Microlens topography combined with vascular endothelial growth factor induces endothelial differentiation of human mesenchymal stem cells into vasculogenic progenitors. Biomaterials 2017; 131:68-85. [DOI: 10.1016/j.biomaterials.2017.03.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/09/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
|
39
|
Cell Sheets of Co-cultured Endothelial Progenitor Cells and Mesenchymal Stromal Cells Promote Osseointegration in Irradiated Rat Bone. Sci Rep 2017; 7:3038. [PMID: 28596582 PMCID: PMC5465198 DOI: 10.1038/s41598-017-03366-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
Abstract
Irradiated bone has a greater risk of implant failure than nonirradiated bone. The purpose of this study was to investigate the influence of cell sheets composed of co-cultured bone marrow mesenchymal stromal cells (BMSCs) and endothelial progenitor cells (EPCs) on implant osseointegration in irradiated bone. Cell sheets (EPCs, BMSCs or co-cultured EPCs and BMSCs) were wrapped around titanium implants to make cell sheet-implant complexes. The co-cultured group showed the highest osteogenic differentiation potential in vitro, as indicated by the extracellular matrix mineralization and the expression of osteogenesis related genes at both mRNA and protein levels. The co-cultured cells promoted ectopic bone formation as indicated by micro-computed tomography (Micro-CT) and histological analysis. In the irradiated tibias of rats, implants of the co-cultured group showed enhanced osseointegration by Micro-CT evaluation and histological observation. Co-cultured EPCs and BMSCs also up-regulated the expression of osteogenesis related genes in bone fragments in close contact with implants. In conclusion, cell sheets of co-cultured EPCs and BMSCs could promote osseous healing around implants and are potentially useful to improve osseointegration process for patients after radiotherapy.
Collapse
|
40
|
Liu X, Chen W, Zhang C, Thein-Han W, Hu K, Reynolds MA, Bao C, Wang P, Zhao L, Xu HHK. Co-Seeding Human Endothelial Cells with Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells on Calcium Phosphate Scaffold Enhances Osteogenesis and Vascularization in Rats. Tissue Eng Part A 2017; 23:546-555. [PMID: 28287922 DOI: 10.1089/ten.tea.2016.0485] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A major challenge in repairing large bone defects with tissue-engineered constructs is the poor vascularization in the defect. The lack of vascular networks leads to insufficient oxygen and nutrients supply, which compromises the survival of seeded cells. To achieve favorable regenerative effects, prevascularization of tissue-engineered constructs by co-culturing of endothelial cells and bone cells is a promising strategy. The aim of this study was to investigate the effects of human-induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs) co-cultured with human umbilical vein endothelial cells (HUVECs) for prevascularization of calcium phosphate cement (CPC) scaffold on bone regeneration in vivo for the first time. HUVECs co-cultured with hiPSC-MSCs formed microcapillary-like structures in vitro. HUVECs promoted mineralization of hiPSC-MSCs on CPC scaffolds. Four groups were tested in a cranial bone defect model in nude rats: (1) CPC scaffold alone (CPC control); (2) HUVEC-seeded CPC (CPC-HUVEC); (3) hiPSC-MSC-seeded CPC (CPC-hiPSC-MSC); and (4) HUVECs co-cultured with hiPSC-MSCs on CPC scaffolds (co-culture group). After 12 weeks, the co-culture group achieved the greatest new bone area percentage of 46.38% ± 3.8% among all groups (p < 0.05), which was more than four folds of the 10.61% ± 1.43% of CPC control. In conclusion, HUVECs co-cultured with hiPSC-MSCs substantially promoted bone regeneration. The novel construct of HUVECs co-cultured with hiPSC-MSCs delivered via CPC scaffolds is promising to enhance bone and vascular regeneration in orthopedic applications.
Collapse
Affiliation(s)
- Xian Liu
- 1 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan, China .,2 Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry , Baltimore, Maryland
| | - Wenchuan Chen
- 1 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan, China .,2 Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry , Baltimore, Maryland
| | - Chi Zhang
- 1 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan, China .,2 Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry , Baltimore, Maryland
| | - Wahwah Thein-Han
- 2 Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry , Baltimore, Maryland
| | - Kevin Hu
- 2 Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry , Baltimore, Maryland
| | - Mark A Reynolds
- 2 Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry , Baltimore, Maryland
| | - Chongyun Bao
- 1 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan, China
| | - Ping Wang
- 2 Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry , Baltimore, Maryland
| | - Liang Zhao
- 2 Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry , Baltimore, Maryland.,3 Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong, China
| | - Hockin H K Xu
- 2 Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry , Baltimore, Maryland.,4 Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine , Baltimore, Maryland.,5 Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland.,6 Mechanical Engineering Department, University of Maryland , Baltimore County, Maryland
| |
Collapse
|
41
|
Hao Z, Song Z, Huang J, Huang K, Panetta A, Gu Z, Wu J. The scaffold microenvironment for stem cell based bone tissue engineering. Biomater Sci 2017; 5:1382-1392. [DOI: 10.1039/c7bm00146k] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bone tissue engineering uses the principles and methods of engineering and life sciences to study bone structure, function and growth mechanism for the purposes of repairing, maintaining and improving damaged bone tissue.
Collapse
Affiliation(s)
- Zhichao Hao
- Guanghua School of Stomatology
- Hospital of Stomatology
- Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Stomatology
- Guangzhou 510055
| | - Zhenhua Song
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Jun Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Keqing Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | | | - Zhipeng Gu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| |
Collapse
|
42
|
Comparison of Endothelial Differentiation Capacities of Human and Rat Adipose-Derived Stem Cells. Plast Reconstr Surg 2016; 138:1231-1241. [DOI: 10.1097/prs.0000000000002791] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Microengineered platforms for co-cultured mesenchymal stem cells towards vascularized bone tissue engineering. Tissue Eng Regen Med 2016; 13:465-474. [PMID: 30603428 DOI: 10.1007/s13770-016-9080-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/08/2015] [Accepted: 12/18/2015] [Indexed: 12/11/2022] Open
Abstract
Bone defects are common disease requiring thorough treatments since the bone is a complex vascularized tissue that is composed of multiple cell types embedded within an intricate extracellular matrix (ECM). For past decades, tissue engineering using cells, proteins, and scaffolds has been suggested as one of the promising approaches for effective bone regeneration. Recently, many researchers have been interested in designing effective platform for tissue regeneration by orchestrating factors involved in microenvironment around tissues. Among factors affecting bone formation, vascularization during bone development and after minor insults via endochondral and intramembranous ossification is especially critical for the long-term support for functional bone. In order to create vascularized bone constructs, the interactions between human mesenchymal stem cells (MSCs) and endothelial cells (ECs) have been investigated using both direct and indirect co-culture studies. Recently, various culture methods including micropatterning techniques, three dimensional scaffolds, and microfluidics have been developed to create micro-engineered platforms that mimic the nature of vascularized bone formation, leading to the creation of functional bone structures. This review focuses on MSCs co-cultured with endothelial cells and microengineered platforms to determine the underlying interplay between co-cultured MSCs and vascularized bone constructs, which is ultimately necessary for adequate regeneration of bone defects.
Collapse
|
44
|
Wang SJ, Yin MH, Jiang D, Zhang ZZ, Qi YS, Wang HJ, Yu JK. The Chondrogenic Potential of Progenitor Cells Derived from Peripheral Blood: A Systematic Review. Stem Cells Dev 2016; 25:1195-207. [PMID: 27353075 DOI: 10.1089/scd.2016.0055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Shao-Jie Wang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Department of Joint Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Meng-Hong Yin
- Department of Sports Medicine, Dalian Medical University, Liaoning, China
| | - Dong Jiang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Zheng-Zheng Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Yan-Song Qi
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Hai-Jun Wang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Jia-Kuo Yu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| |
Collapse
|
45
|
Chen J, Zhang D, Li Q, Yang D, Fan Z, Ma D, Ren L. Effect of different cell sheet ECM microenvironment on the formation of vascular network. Tissue Cell 2016; 48:442-51. [PMID: 27561623 DOI: 10.1016/j.tice.2016.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Abstract
The repair and reconstruction of large bone defects remains as a significant clinical challenge mainly due to the insufficient vascularization. The prefabrication of vascular network based on cell sheet technique brings a promising potential for sufficient vascularization due to rich extracellular matrix (ECM) of cell sheets. However, the effect of different cell sheet ECM micro-environment on the formation of a vascular network has not been well understood. Here our goal is to study the effect of different cell sheets on the formation of a vascular network. First we cultured human bone marrow mesenchymal stem cells (hBMSCs) under two culture conditions to obtain osteogenic differentiated cell sheet (ODCS) and undifferentiated cell sheet (UDCS), respectively. Then the human umbilical vein endothelial cells (HUVECs) were seeded onto the surface of the two sheets at different seeding densities to fabricate pre-vascularized cell sheets. Our results indicated that the two sheets facilitated the alignment of HUVECs and promoted the formation of vascular networks. Quantitative analysis showed that the number of networks in ODCS was higher than that in the UDCS. The ECM of the two sheets was remodeled and rearranged during the tubulogenesis process. Furthermore, results showed that the optimal seeding density of HUVECs was 5×10(4)cell/cm(2). In summary, these results suggest that the vascularized ODCS has a promising potential to construct pre-vascularized tissue for bone repair.
Collapse
Affiliation(s)
- Jia Chen
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China; Hospital of Stomatology, General Hospital of Ningxia Medical University, Yingchuan, Ningxia, 750004, China
| | - Dan Zhang
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Qin Li
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dan Yang
- Department of Stomatology, The First people's Hospital of Jiayuguan, Jiayuguan, Gansu, 735100, China
| | - Zengjie Fan
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dongyang Ma
- Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, Gansu 730050, China
| | - Liling Ren
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
46
|
Calcium Phosphates and Angiogenesis: Implications and Advances for Bone Regeneration. Trends Biotechnol 2016; 34:983-992. [PMID: 27481474 DOI: 10.1016/j.tibtech.2016.07.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/10/2023]
Abstract
Calcium phosphates (CaPs) are among the most utilized synthetic biomaterials for bone regeneration, largely owing to their established osteoconductive and osteoinductive properties. While angiogenesis is a crucial prerequisite to bone formation, research and applications for CaPs have not appreciated its crucial role. This review discusses how CaPs influence angiogenesis, and highlights promising strategies that address this topic. The objective is to draw attention to the gap in the literature and to highlight the importance of angiogenesis in CaP research, development, and use.
Collapse
|
47
|
Fu JY, Lim SY, He PF, Fan CJ, Wang DA. Osteogenic Treatment Initiating a Tissue-Engineered Cartilage Template Hypertrophic Transition. Ann Biomed Eng 2016; 44:2957-2970. [PMID: 27066786 DOI: 10.1007/s10439-016-1615-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/06/2016] [Indexed: 12/15/2022]
Abstract
Hypertrophic chondrocytes play a critical role in endochondral bone formation as well as the progress of osteoarthritis (OA). An in vitro cartilage hypertrophy model can be used as a platform to study complex molecular mechanisms involved in these processes and screen new drugs for OA. To develop an in vitro cartilage hypertrophy model, we treated a tissue-engineered cartilage template, living hyaline cartilaginous graft (LhCG), with osteogenic medium for hypertrophic induction. In addition, endothelial progenitor cells (EPCs) were seeded onto LhCG constructs to mimic vascular invasion. The results showed that osteogenic treatment significantly inhibited the synthesis of endostatin in LhCG constructs and enhanced expression of hypertrophic marker-collagen type X (Col X) and osteogenic markers, as well as calcium deposition in vitro. Upon subcutaneous implantation, osteogenic medium-treated LhCG constructs all stained positive for Col X and showed significant calcium deposition and blood vessel invasion. Col X staining and calcium deposition were most obvious in osteogenic medium-treated only group, while there was no difference between EPC-seeded and non-seeded group. These results demonstrated that osteogenic treatment was of the primary factor to induce hypertrophic transition of LhCG constructs and this model may contribute to the establishment of an in vitro cartilage hypertrophy model.
Collapse
Affiliation(s)
- J Y Fu
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore
| | - S Y Lim
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore
| | - P F He
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore
| | - C J Fan
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore
| | - D A Wang
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore.
| |
Collapse
|
48
|
Amini AR, Xu TO, Chidambaram RM, Nukavarapu SP. Oxygen Tension-Controlled Matrices with Osteogenic and Vasculogenic Cells for Vascularized Bone Regeneration In Vivo. Tissue Eng Part A 2016; 22:610-20. [PMID: 26914219 PMCID: PMC4841084 DOI: 10.1089/ten.tea.2015.0310] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/23/2016] [Indexed: 12/23/2022] Open
Abstract
Despite recent progress, segmental bone defect repair is still a significant challenge in orthopedic surgery. While bone tissue engineering approaches using biodegradable matrices along with bone/blood vessel forming cells offered improved possibilities, current regenerative strategies lack the ability to achieve vascularized bone regeneration in critical-sized/segmental bone defects. In this study, we introduced and evaluated a two-pronged approach for vascularized bone regeneration in vivo. The goal was to demonstrate vascularized bone formation using oxygen tension-controlled (OTC) matrices seeded with bone and blood vessel forming cells. OTC matrices were coimplanted with rabbit mesenchymal stem cells (MSCs) and peripheral blood-derived endothelial progenitor cells (PB-EPCs) to demonstrate the osteogenic and vasculogenic differentiation of these cells, postseeding on a matrix, especially deep inside the matrix pore structure. Matrices coimplanted with varied rabbit MSC and PB-EPC ratios (1:4, 1:1, and 4:1) were assessed in a nude mouse subcutaneous implantation model to determine a coimplantation ratio with superior osteogenic as well as vasculogenic properties. The implants were analyzed, at week 8, for endothelial (CD31 and Von Willebrand factor [vWF]) and osteogenic marker (RunX2 and Col I) staining qualitatively and collagen deposition and number of vessel formation quantitatively. Results from these experiments established MSC-to-PB-EPC ratio 1:1 as the best coimplantation ratio. OTC matrix with 1:1 coimplantation ratio was assessed for segmental bone defect repair in a rabbit critical-sized bone defect model. The group under investigation was OTC matrix, and the matrix was seeded with MSCs, EPCs, or MSCs:EPCs in a 1:1 ratio. Explants at week 12 were evaluated for bone defect repair via micro-CT and histology. Results from rabbit in vivo experiments show enhanced mineralization and vascularization for the 1:1 coimplantation group. Overall, the study establishes a two-pronged approach involving OTC matrix and effective progenitors for large-area and vascularized bone regeneration.
Collapse
Affiliation(s)
- Ami R. Amini
- Oral and Maxillofacial Surgery, Massachusetts General Hospital, Boston, Massachusetts
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut
| | - Thomas O. Xu
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Ramaswamy M. Chidambaram
- Center for Comparative Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - Syam P. Nukavarapu
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, Connecticut
- Department of Materials Science & Engineering, University of Connecticut, Storrs, Connecticut
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
49
|
Zou T, Fan J, Fartash A, Liu H, Fan Y. Cell-based strategies for vascular regeneration. J Biomed Mater Res A 2016; 104:1297-314. [PMID: 26864677 DOI: 10.1002/jbm.a.35660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 01/12/2023]
Abstract
Vascular regeneration is known to play an essential role in the repair of injured tissues mainly through accelerating the repair of vascular injury caused by vascular diseases, as well as the recovery of ischemic tissues. However, the clinical vascular regeneration is still challenging. Cell-based therapy is thought to be a promising strategy for vascular regeneration, since various cells have been identified to exert important influences on the process of vascular regeneration such as the enhanced endothelium formation on the surface of vascular grafts, and the induction of vessel-like network formation in the ischemic tissues. Here are a vast number of diverse cell-based strategies that have been extensively studied in vascular regeneration. These strategies can be further classified into three main categories, including cell transplantation, construction of tissue-engineered grafts, and surface modification of scaffolds. Cells used in these strategies mainly refer to terminally differentiated vascular cells, pluripotent stem cells, multipotent stem cells, and unipotent stem cells. The aim of this review is to summarize the reported research advances on the application of various cells for vascular regeneration, yielding insights into future clinical treatment for injured tissue/organ.
Collapse
Affiliation(s)
- Tongqiang Zou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Jiabing Fan
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095
| | - Armita Fartash
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China.,National Research Center for Rehabilitation Technical Aids, Beijing, 100176, People's Republic of China
| |
Collapse
|
50
|
Wei H, Zhao X, Yuan R, Dai X, Li Y, Liu L. Effects of PB-EPCs on Homing Ability of Rabbit BMSCs via Endogenous SDF-1 and MCP-1. PLoS One 2015; 10:e0145044. [PMID: 26660527 PMCID: PMC4682485 DOI: 10.1371/journal.pone.0145044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 11/29/2015] [Indexed: 01/07/2023] Open
Abstract
Traumas, infections, tumors, and some congenital malformations can lead to bone defects or even bone loss. The goal of the present study was to investigate whether inclusion of endothelial progenitor cells derived from peripheral blood (PB–EPCs) in cell-seeded partially deproteinized bone (PDPB) implants would stimulate recruitment of systemically injected bone marrow stromal cells (BMSCs) to the implant. Methods: BMSCs were injected intravenously with lentiviral expression vector expressing enhanced green fluorescent protein (eGFP) for tracing. Recruitment of eGFP-positive BMSCs was tested for the following implant configurations: 1) seeded with both BMSC and PB-EPC, 2) BMSC alone, 3) PB-EPC alone, and 4) unseeded PDPB. Protein and mRNA levels of endogenous stromal-derived factor-1 (SDF-1) and its receptor CXCR4, as well as monocyte chemotactic protein-1 (MCP-1) and its receptor CCR2, were evaluated on the 8th week. Immunohistochemical staining was performed to determine eGFP-positive areas at the defective sites. Masson’s trichrome staining was conducted to observe the distribution of collagen deposition and evaluate the extent of osteogenesis. Results: The mRNA and protein levels of SDF-1 and CXCR4 in the co-culture group were higher than those in other groups (p < 0.05) 8 weeks after the surgery. MCP-1 mRNA level in the co-culture group was also higher than that in the other groups (p < 0.05). Immunohistochemical assays revealed that the area covered by eGFP-positive cells was larger in the co-culture group than in the other groups (p < 0.05) after 4 weeks. Masson’s trichrome staining revealed better osteogenic potential of the co-culture group compared to the other groups (p < 0.05). Conclusion: These experiments demonstrate an association between PB-EPC and BMSC recruitment mediated by the SDF-1/CXCR4 axis that can enhance repair of bone defects.
Collapse
Affiliation(s)
- Hanxiao Wei
- Department of Plastic Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR of China
| | - Xian Zhao
- Department of Plastic Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR of China
| | - Ruihong Yuan
- Department of Plastic Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR of China
| | - Xiaoming Dai
- Department of Plastic Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR of China
| | - Yisong Li
- Department of Plastic Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR of China
| | - Liu Liu
- Department of Plastic Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR of China
- * E-mail:
| |
Collapse
|