1
|
Human endothelial cells form an endothelium in freestanding collagen hollow filaments fabricated by direct extrusion printing. BIOMATERIALS AND BIOSYSTEMS 2022; 8:100067. [PMID: 36824376 PMCID: PMC9934428 DOI: 10.1016/j.bbiosy.2022.100067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022] Open
Abstract
Fiber-shaped materials have great potential for tissue engineering applications as they provide structural support and spatial patterns within a three-dimensional construct. Here we demonstrate the fabrication of mechanically stable, meter-long collagen hollow filaments by a direct extrusion printing process. The fibres are permeable for oxygen and proteins and allow cultivation of primary human endothelial cells (ECs) at the inner surface under perfused conditions. The cells show typical characteristics of a well-organized EC lining including VE-cadherin expression, cellular response to flow and ECM production. The results demonstrate that the collagen tubes are capable of creating robust soft tissue filaments. The mechanical properties and the biofunctionality of these collagen hollow filaments facilitate the engineering of prevascularised tissue engineering constructs.
Collapse
|
2
|
Blauvelt DG, Abada EN, Oishi P, Roy S. Advances in extracorporeal membrane oxygenator design for artificial placenta technology. Artif Organs 2021; 45:205-221. [PMID: 32979857 PMCID: PMC8513573 DOI: 10.1111/aor.13827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/28/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Extreme prematurity, defined as a gestational age of fewer than 28 weeks, is a significant health problem worldwide. It carries a high burden of mortality and morbidity, in large part due to the immaturity of the lungs at this stage of development. The standard of care for these patients includes support with mechanical ventilation, which exacerbates lung pathology. Extracorporeal life support (ECLS), also called artificial placenta technology when applied to extremely preterm (EPT) infants, offers an intriguing solution. ECLS involves providing gas exchange via an extracorporeal device, thereby doing the work of the lungs and allowing them to develop without being subjected to injurious mechanical ventilation. While ECLS has been successfully used in respiratory failure in full-term neonates, children, and adults, it has not been applied effectively to the EPT patient population. In this review, we discuss the unique aspects of EPT infants and the challenges of applying ECLS to these patients. In addition, we review recent progress in artificial placenta technology development. We then offer analysis on design considerations for successful engineering of a membrane oxygenator for an artificial placenta circuit. Finally, we examine next-generation oxygenators that might advance the development of artificial placenta devices.
Collapse
Affiliation(s)
- David G. Blauvelt
- Department of Pediatrics, University of California, San Francisco, California
| | - Emily N. Abada
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Peter Oishi
- Department of Pediatrics, University of California, San Francisco, California
| | - Shuvo Roy
- Department of Pediatrics, University of California, San Francisco, California
| |
Collapse
|
3
|
Arık YB, de Sa Vivas A, Laarveld D, van Laar N, Gemser J, Visscher T, van den Berg A, Passier R, van der Meer AD. Collagen I Based Enzymatically Degradable Membranes for Organ-on-a-Chip Barrier Models. ACS Biomater Sci Eng 2021; 7:2998-3005. [PMID: 33625834 PMCID: PMC8278385 DOI: 10.1021/acsbiomaterials.0c00297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Organs-on-chips are microphysiological in vitro models of human organs and tissues that rely on culturing cells in a well-controlled microenvironment that has been engineered to include key physical and biochemical parameters. Some systems contain a single perfused microfluidic channel or a patterned hydrogel, whereas more complex devices typically employ two or more microchannels that are separated by a porous membrane, simulating the tissue interface found in many organ subunits. The membranes are typically made of synthetic and biologically inert materials that are then coated with extracellular matrix (ECM) molecules to enhance cell attachment. However, the majority of the material remains foreign and fails to recapitulate the native microenvironment of the barrier tissue. Here, we study microfluidic devices that integrate a vitrified membrane made of collagen-I hydrogel (VC). The biocompatibility of this membrane was confirmed by growing a healthy population of stem cell derived endothelial cells (iPSC-EC) and immortalized retinal pigment epithelium (ARPE-19) on it and assessing morphology by fluorescence microscopy. Moreover, VC membranes were subjected to biochemical degradation using collagenase II. The effects of this biochemical degradation were characterized by the permeability changes to fluorescein. Topographical changes on the VC membrane after enzymatic degradation were also analyzed using scanning electron microscopy. Altogether, we present a dynamically bioresponsive membrane integrated in an organ-on-chip device with which disease-related ECM remodeling can be studied.
Collapse
Affiliation(s)
- Yusuf B Arık
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, PO Box 217, Enschede 7500 AE, The Netherlands.,BIOS Lab on a Chip group, Technical Medical Centre, MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Aisen de Sa Vivas
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, PO Box 217, Enschede 7500 AE, The Netherlands.,BIOS Lab on a Chip group, Technical Medical Centre, MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Daphne Laarveld
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, PO Box 217, Enschede 7500 AE, The Netherlands
| | - Neri van Laar
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, PO Box 217, Enschede 7500 AE, The Netherlands
| | - Jesse Gemser
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, PO Box 217, Enschede 7500 AE, The Netherlands
| | - Thomas Visscher
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, PO Box 217, Enschede 7500 AE, The Netherlands
| | - Albert van den Berg
- BIOS Lab on a Chip group, Technical Medical Centre, MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Robert Passier
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, PO Box 217, Enschede 7500 AE, The Netherlands.,Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Andries D van der Meer
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, PO Box 217, Enschede 7500 AE, The Netherlands
| |
Collapse
|
4
|
Dabaghi M, Rochow N, Saraei N, Fusch G, Monkman S, Da K, Shahin‐Shamsabadi A, Brash JL, Predescu D, Delaney K, Fusch C, Selvaganapathy PR. A Pumpless Microfluidic Neonatal Lung Assist Device for Support of Preterm Neonates in Respiratory Distress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001860. [PMID: 33173732 PMCID: PMC7610273 DOI: 10.1002/advs.202001860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/16/2020] [Indexed: 05/19/2023]
Abstract
Premature neonates suffer from respiratory morbidity as their lungs are immature, and current supportive treatment such as mechanical ventilation or extracorporeal membrane oxygenation causes iatrogenic injuries. A non-invasive and biomimetic concept known as the "artificial placenta" (AP) would be beneficial to overcome complications associated with the current respiratory support of preterm infants. Here, a pumpless oxygenator connected to the systemic circulation supports the lung function to relieve respiratory distress. In this paper, the first successful operation of a microfluidic, artificial placenta type neonatal lung assist device (LAD) on a newborn piglet model, which is the closest representation of preterm human infants, is demonstrated. This LAD has high oxygenation capability in both pure oxygen and room air as the sweep gas. The respiratory distress that the newborn piglet is put under during experimentation, repeatedly and over a significant duration of time, is able to be relieved. These findings indicate that this LAD has a potential application as a biomimetic artificial placenta to support the respiratory needs of preterm neonates.
Collapse
Affiliation(s)
| | - Niels Rochow
- Department of PediatricsMcMaster UniversityHamiltonONCanada
- Paracelsus Medical UniversityDepartment of PediatricsUniversity Hospital NurembergNurembergGermany
| | - Neda Saraei
- Department of Mechanical EngineeringMcMaster UniversityHamiltonONCanada
| | - Gerhard Fusch
- Department of PediatricsMcMaster UniversityHamiltonONCanada
| | | | - Kevin Da
- Department of Chemical EngineeringMcMaster UniversityHamiltonONCanada
| | | | - John L. Brash
- School of Biomedical EngineeringMcMaster UniversityHamiltonONCanada
- Department of Chemical EngineeringMcMaster UniversityHamiltonONCanada
| | | | - Kathleen Delaney
- Central Animal Facility DepartmentMcMaster UniversityHamiltonONCanada
| | - Christoph Fusch
- School of Biomedical EngineeringMcMaster UniversityHamiltonONCanada
- Department of PediatricsMcMaster UniversityHamiltonONCanada
- Paracelsus Medical UniversityDepartment of PediatricsUniversity Hospital NurembergNurembergGermany
| | - P. Ravi Selvaganapathy
- School of Biomedical EngineeringMcMaster UniversityHamiltonONCanada
- Department of Mechanical EngineeringMcMaster UniversityHamiltonONCanada
| |
Collapse
|
5
|
Hellmann A, Klein S, Hesselmann F, Djeljadini S, Schmitz‐Rode T, Jockenhoevel S, Cornelissen CG, Thiebes AL. EndOxy: Mid‐term stability and shear stress resistance of endothelial cells on PDMS gas exchange membranes. Artif Organs 2020; 44:E419-E433. [DOI: 10.1111/aor.13712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/10/2020] [Accepted: 04/16/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Ariane Hellmann
- Department of Biohybrid & Medical Textiles (BioTex) AME – Institute of Applied Medical Engineering Helmholtz Institute RWTH Aachen University Aachen Germany
| | - Sarah Klein
- Department of Biohybrid & Medical Textiles (BioTex) AME – Institute of Applied Medical Engineering Helmholtz Institute RWTH Aachen University Aachen Germany
- Faculty of Science and Engineering Aachen‐Maastricht Institute for Biobased Materials Maastricht University Geleen The Netherlands
| | - Felix Hesselmann
- Department of Cardiovascular Engineering (CVE) AME – Institute of Applied Medical Engineering Helmholtz Institute RWTH Aachen University Aachen Germany
| | | | - Thomas Schmitz‐Rode
- Department of Biohybrid & Medical Textiles (BioTex) AME – Institute of Applied Medical Engineering Helmholtz Institute RWTH Aachen University Aachen Germany
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex) AME – Institute of Applied Medical Engineering Helmholtz Institute RWTH Aachen University Aachen Germany
- Faculty of Science and Engineering Aachen‐Maastricht Institute for Biobased Materials Maastricht University Geleen The Netherlands
| | - Christian G. Cornelissen
- Department of Biohybrid & Medical Textiles (BioTex) AME – Institute of Applied Medical Engineering Helmholtz Institute RWTH Aachen University Aachen Germany
- Clinic for Pneumology and Internistic Intensive Medicine (Medical Clinic V) University Hospital Aachen Aachen Germany
| | - Anja Lena Thiebes
- Department of Biohybrid & Medical Textiles (BioTex) AME – Institute of Applied Medical Engineering Helmholtz Institute RWTH Aachen University Aachen Germany
- Faculty of Science and Engineering Aachen‐Maastricht Institute for Biobased Materials Maastricht University Geleen The Netherlands
| |
Collapse
|
6
|
Klein S, Hesselmann F, Djeljadini S, Berger T, Thiebes AL, Schmitz-Rode T, Jockenhoevel S, Cornelissen CG. EndOxy: Dynamic Long-Term Evaluation of Endothelialized Gas Exchange Membranes for a Biohybrid Lung. Ann Biomed Eng 2020; 48:747-756. [PMID: 31754901 PMCID: PMC6949203 DOI: 10.1007/s10439-019-02401-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
In the concept of a biohybrid lung, endothelial cells seeded on gas exchange membranes form a non-thrombogenic an anti-inflammatory surface to overcome the lacking hemocompatibility of today's oxygenators during extracorporeal membrane oxygenation. To evaluate this concept, the long-term stability and gas exchange performance of endothelialized RGD-conjugated polydimethylsiloxane (RGD-PDMS) membranes was evaluated. Human umbilical vein endothelial cells (ECs) were cultured on RGD-PDMS in a model system under physiological wall shear stress (WSS) of 0.5 Pa for up to 33 days. Gas exchange performance was tested with three biological replicates under elevated WSS of 2.5 Pa using porcine blood adjusted to venous values following ISO 7199 and blood gas analysis. EC morphology was assessed by immunocytochemistry (n = 3). RGD-PDMS promoted endothelialization and stability of endothelialized membranes was shown for at least 33 days and for a maximal WSS of 2.5 Pa. Short-term exposure to porcine blood did not affect EC integrity. The gas transfer tests provided evidence for the oxygenation and decarboxylation of the blood across endothelialized membranes with a decrease of transfer rates over time that needs to be addressed in further studies with larger sample sizes. Our results demonstrate the general suitability of RGD-PDMS for biohybrid lung applications, which might enable long-term support of patients with chronic lung failure in the future.
Collapse
Affiliation(s)
- Sarah Klein
- Department of Biohybrid & Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
- Faculty of Science and Engineering, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, 6167 RD, Geleen, The Netherlands
| | - Felix Hesselmann
- Department of Cardiovascular Engineering (CVE), AME - Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Suzana Djeljadini
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Tanja Berger
- Department of Medical Statistics, RWTH Aachen University Hospital, Pauwelsstraße 19, 52074, Aachen, Germany
| | - Anja Lena Thiebes
- Department of Biohybrid & Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
- Faculty of Science and Engineering, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, 6167 RD, Geleen, The Netherlands
| | - Thomas Schmitz-Rode
- Department of Biohybrid & Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany.
- Faculty of Science and Engineering, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, 6167 RD, Geleen, The Netherlands.
| | - Christian G Cornelissen
- Department of Biohybrid & Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
- Department of Pneumology and Internal Intensive Care Medicine, Medical Clinic V, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
7
|
Mondrinos MJ, Yi YS, Wu NK, Ding X, Huh D. Native extracellular matrix-derived semipermeable, optically transparent, and inexpensive membrane inserts for microfluidic cell culture. LAB ON A CHIP 2017; 17:3146-3158. [PMID: 28809418 PMCID: PMC5782796 DOI: 10.1039/c7lc00317j] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Semipermeable cell culture membranes are commonly used in multilayered microfluidic devices to mimic the basement membrane in vivo and to create compartmentalized microenvironments for physiological cell growth and differentiation. However, existing membranes are predominantly made up of synthetic polymers, providing limited capacity to replicate cellular interactions with native extracellular matrices that play a crucial role in the induction of physiological phenotypes. Here we describe a new type of cell culture membranes engineered from native extracellular matrix (ECM) materials that are thin, semipermeable, optically transparent, and amenable to integration into microfluidic cell culture devices. Facile and cost-effective fabrication of these membranes was achieved by controlled sequential steps of vitrification that transformed three-dimensional (3D) ECM hydrogels into structurally stable thin films. By modulating the composition of the ECM, our technique provided a means to tune key membrane properties such as optical transparency, stiffness, and porosity. For microfluidic cell culture, we constructed a multilayered microdevice consisting of two parallel chambers separated by a thin membrane insert derived from different types of ECM. This study showed that our ECM membranes supported attachment and growth of various types of cells (epithelial, endothelial, and mesenchymal cells) under perfusion culture conditions. Our data also revealed the promotive effects of the membranes on adhesion-associated intracellular signaling that mediates cell-ECM interactions. Moreover, we demonstrated the use of these membranes for constructing compartmentalized microfluidic cell culture systems to induce physiological tissue differentiation or to replicate interfaces between different tissue types. Our approach provides a robust platform to produce and engineer biologically active cell culture substrates that serve as promising alternatives to conventional synthetic membrane inserts. This strategy may contribute to the development of physiologically relevant in vitro cell culture models for a wide range of applications.
Collapse
Affiliation(s)
- Mark J Mondrinos
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, PA, USA.
| | | | | | | | | |
Collapse
|
8
|
Towards a Biohybrid Lung: Endothelial Cells Promote Oxygen Transfer through Gas Permeable Membranes. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5258196. [PMID: 28913354 PMCID: PMC5587952 DOI: 10.1155/2017/5258196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/24/2017] [Indexed: 11/18/2022]
Abstract
In patients with respiratory failure, extracorporeal lung support can ensure the vital gas exchange via gas permeable membranes but its application is restricted by limited long-term stability and hemocompatibility of the gas permeable membranes, which are in contact with the blood. Endothelial cells lining these membranes promise physiological hemocompatibility and should enable prolonged application. However, the endothelial cells increase the diffusion barrier of the blood-gas interface and thus affect gas transfer. In this study, we evaluated how the endothelial cells affect the gas exchange to optimize performance while maintaining an integral cell layer. Human umbilical vein endothelial cells were seeded on gas permeable cell culture membranes and cultivated in a custom-made bioreactor. Oxygen transfer rates of blank and endothelialized membranes in endothelial culture medium were determined. Cell morphology was assessed by microscopy and immunohistochemistry. Both setups provided oxygenation of the test fluid featuring small standard deviations of the measurements. Throughout the measuring range, the endothelial cells seem to promote gas transfer to a certain extent exceeding the blank membranes gas transfer performance by up to 120%. Although the underlying principles hereof still need to be clarified, the results represent a significant step towards the development of a biohybrid lung.
Collapse
|
9
|
Pham P, Vo T, Luo X. Steering air bubbles with an add-on vacuum layer for biopolymer membrane biofabrication in PDMS microfluidics. LAB ON A CHIP 2017; 17:248-255. [PMID: 27942655 DOI: 10.1039/c6lc01362g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Membrane functionality is crucial in microfluidics for realizing operations such as filtration, separation, concentration, signaling among cells and gradient generation. Currently, common methods often sandwich commercially available membranes in multi-layer devices, or use photopolymerization or temperature-induced gelation to fabricate membrane structures in one-layer devices. Biofabrication offers an alternative to forming membrane structures with biomimetic materials and mechanisms in mild conditions. We have recently developed a biofabrication strategy to form parallel biopolymer membranes in gas-permeable polydimethylsiloxane (PDMS) microfluidic devices, which used positive pressure to dissipate air bubbles through PDMS to initiate membrane formation but required careful pressure balancing between two flows. Here, we report a technical innovation by simply placing as needed an add-on PDMS vacuum layer on PDMS microfluidic devices to dissipate air bubbles and guide the biofabrication of biopolymer membranes. Vacuuming through PDMS was simply achieved by either withdrawing a syringe or releasing a squeezed nasal aspirator. Upon vacuuming, air bubbles dissipated within minutes, membranes were effortlessly formed, and the add-on vacuum layer can be removed. Subsequent membrane growth could be robustly controlled with the flows and pH of solutions. This new process is user-friendly and has achieved a 100% success rate in more than 200 trials in membrane biofabrication.
Collapse
Affiliation(s)
- Phu Pham
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C. 20064, USA.
| | - Thanh Vo
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C. 20064, USA.
| | - Xiaolong Luo
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C. 20064, USA.
| |
Collapse
|
10
|
Sharma M, Bhowmick R, Gappa-Fahlenkamp H. Drug-Loaded Nanoparticles Embedded in a Biomembrane Provide a Dual-Release Mechanism for Drug Delivery to the Eye. J Ocul Pharmacol Ther 2016; 32:565-573. [DOI: 10.1089/jop.2016.0050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Munish Sharma
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma
| | - Rudra Bhowmick
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma
| | | |
Collapse
|