1
|
Kiyotake EA, Iribagiza C, Pramod K, Gu T, Townsend JM, Detamore MS. Improved Mesenchymal Stem Cell Viability in High-Stiffness, Translational Cartilage Matrix Hydrogels. Tissue Eng Part A 2025; 31:152-163. [PMID: 39804700 DOI: 10.1089/ten.tea.2024.0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025] Open
Abstract
Scaffolds made from cartilage extracellular matrix are promising materials for articular cartilage repair, attributed to their intrinsic bioactivity that may promote chondrogenesis. While several cartilage matrix-based scaffolds have supported chondrogenesis in vitro and/or in vivo, it remains a challenge to balance the biological response (e.g., chondroinductivity) with structural (e.g., robust mechanical performance, >1 MPa in compressive stiffness) and translational (e.g., ease of surgical implantation) considerations. Few studies have evaluated encapsulated cell viability within high-stiffness (>1 MPa) hydrogels. We previously fabricated one formulation of a high-stiffness (>3 MPa) pentenoate-functionalized, solubilized, devitalized cartilage (PSDVC) hydrogel that possessed an injectable, paste-like precursor for easy surgical application. In the current study, the characterization of the PSDVC material was expanded by varying the degree of functionalization (i.e., 0.45-1.09 mmol/g) and amount of crosslinker, dithiothreitol (DTT), to improve the reproducibility of the high compressive moduli and evaluate the viability of encapsulated human bone marrow-derived mesenchymal stem cells (hBMSCs) in high-stiffness cartilage matrix hydrogels. Prior to crosslinking, specific formulations functionalized with 0.80 mmol/g or less of pentenoate groups retained a paste-like precursor rheology. After crosslinking, these formulations produced hydrogels with greater than 1 MPa compressive stiffness. However, hBMSCs encapsulated in PSDVC hydrogels with lower functionalization (i.e., 0.57 mmol/g, no crosslinker) had a higher stiffness (i.e., 1.4 MPa) but the lowest viability of encapsulated hBMSCs (i.e., 5%). The middle PSDVC functionalization (i.e., 0.70 mmol/g) with DTT (i.e., 0.50 mmol thiols/g) demonstrated high cell viability (77%), high mechanical performance (1.65 MPa, 31% failure strain), and translational features (i.e., paste-like precursor, 1.5 min crosslinking time). For future evaluations of PSDVC hydrogels in cartilage repair, a middle functionalization (i.e., 0.70-0.80 mmol/g) with the addition of a crosslinker (i.e., 0.50 mmol thiols/g) had a desirable balance of high mechanical performance (i.e., >1 MPa compressive stiffness), high viability, and paste-like precursor for surgical translation.
Collapse
Affiliation(s)
- Emi A Kiyotake
- C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Claudia Iribagiza
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Krisha Pramod
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Tingting Gu
- Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Jakob M Townsend
- C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Michael S Detamore
- C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Wu H, Yao Z, Li H, Zhang L, Zhao Y, Li Y, Wu Y, Zhang Z, Xie J, Ding F, Zhu H. Improving dermal fibroblast-to-epidermis communications and aging wound repair through extracellular vesicle-mediated delivery of Gstm2 mRNA. J Nanobiotechnology 2024; 22:307. [PMID: 38825668 PMCID: PMC11145791 DOI: 10.1186/s12951-024-02541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
Skin aging is characterized by the disruption of skin homeostasis and impaired skin injury repair. Treatment of aging skin has long been limited by the unclear intervention targets and delivery techniques. Engineering extracellular vesicles (EVs) as an upgraded version of natural EVs holds great potential in regenerative medicine. In this study, we found that the expression of the critical antioxidant and detoxification gene Gstm2 was significantly reduced in aging skin. Thus, we constructed the skin primary fibroblasts-derived EVs encapsulating Gstm2 mRNA (EVsGstm2), and found that EVsGstm2 could significantly improve skin homeostasis and accelerate wound healing in aged mice. Mechanistically, we found that EVsGstm2 alleviated oxidative stress damage of aging dermal fibroblasts by modulating mitochondrial oxidative phosphorylation, and promoted dermal fibroblasts to regulate skin epidermal cell function by paracrine secretion of Nascent Polypeptide-Associated Complex Alpha subunit (NACA). Furthermore, we confirmed that NACA is a novel skin epidermal cell protective molecule that regulates skin epidermal cell turnover through the ROS-ERK-ETS-Cyclin D pathway. Our findings demonstrate the feasibility and efficacy of EVs-mediated delivery of Gstm2 for aged skin treatment and unveil novel roles of GSTM2 and NACA for improving aging skin.
Collapse
Affiliation(s)
- Haiyan Wu
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zuochao Yao
- Department of Plastic and Reconstructive Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Hongkun Li
- Department of Cardiology, Changzhi Medical College Affiliated Heji Hospital, Shanxi, 046000, China
| | - Laihai Zhang
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yuying Zhao
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yongwei Li
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yating Wu
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhenchun Zhang
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jiali Xie
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Feixue Ding
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People Hospital, School of Medicine, JiaoTong University, Shanghai, 200001, China
| | - Hongming Zhu
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
3
|
Vaporidou N, Peroni F, Restelli A, Jalil MN, Dye JF. Artificial Skin Therapies; Strategy for Product Development. Adv Wound Care (New Rochelle) 2023; 12:574-600. [PMID: 36680749 DOI: 10.1089/wound.2022.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Significance: Tissue-engineered artificial skin for clinical reconstruction can be regarded as an established practice. Bi-layered skin equivalents are available as established allogenic or autologous therapy, and various acellular skin replacements can support tissue repair. Moreover, there is considerable commonality between the skin and other soft tissue reconstruction products. This article presents an attempt to create a comprehensive global landscape review of advanced replacement materials and associated strategies for skin and soft tissue reconstruction. Recent Advances: There has been rapid growth in the number of commercial and pre-commercial products over the past decade. In this survey, 263 base products for advanced skin therapy have been identified, across 8 therapeutic categories, giving over 350 products in total. The largest market is in the United States, followed by the E.U. zone. However, despite these advances, and the investment of resources in each product development, there are key issues concerning the clinical efficacy, cost-benefit of products, and clinical impact. Each therapeutic strategy has relative merits and limitations. Critical Issues: A critical consideration in developing and evaluating products is the therapeutic modality, associated regulatory processes, and the potential for clinical adoption geographically, determined by regulatory territory, intellectual property, and commercial distribution factors. The survey identifies an opportunity for developments that improve basic efficacy or cost-benefit. Future Directions: The economic pressures on health care systems, compounded by the demands of our increasingly ageing population, and the imperative to distribute effective health care, create an urgent global need for effective and affordable products.
Collapse
Affiliation(s)
- Nephelie Vaporidou
- Division of Surgery and Interdisciplinary Sciences, University College London, London, United Kingdom
- Oxartis Ltd., Oxford, United Kingdom
| | | | | | - M Nauman Jalil
- Oxartis Ltd., Oxford, United Kingdom
- MADE Cymru, University of Wales Trinity Saint David, Swansea, Wales, United Kingdom
| | - Julian F Dye
- Oxartis Ltd., Oxford, United Kingdom
- Research Strategy and Development, University College London, London, United Kingdom
| |
Collapse
|
4
|
Corral-Nájera K, Chauhan G, Serna-Saldívar SO, Martínez-Chapa SO, Aeinehvand MM. Polymeric and biological membranes for organ-on-a-chip devices. MICROSYSTEMS & NANOENGINEERING 2023; 9:107. [PMID: 37649779 PMCID: PMC10462672 DOI: 10.1038/s41378-023-00579-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/18/2023] [Accepted: 06/20/2023] [Indexed: 09/01/2023]
Abstract
Membranes are fundamental elements within organ-on-a-chip (OOC) platforms, as they provide adherent cells with support, allow nutrients (and other relevant molecules) to permeate/exchange through membrane pores, and enable the delivery of mechanical or chemical stimuli. Through OOC platforms, physiological processes can be studied in vitro, whereas OOC membranes broaden knowledge of how mechanical and chemical cues affect cells and organs. OOCs with membranes are in vitro microfluidic models that are used to replace animal testing for various applications, such as drug discovery and disease modeling. In this review, the relevance of OOCs with membranes is discussed as well as their scaffold and actuation roles, properties (physical and material), and fabrication methods in different organ models. The purpose was to aid readers with membrane selection for the development of OOCs with specific applications in the fields of mechanistic, pathological, and drug testing studies. Mechanical stimulation from liquid flow and cyclic strain, as well as their effects on the cell's increased physiological relevance (IPR), are described in the first section. The review also contains methods to fabricate synthetic and ECM (extracellular matrix) protein membranes, their characteristics (e.g., thickness and porosity, which can be adjusted depending on the application, as shown in the graphical abstract), and the biological materials used for their coatings. The discussion section joins and describes the roles of membranes for different research purposes and their advantages and challenges.
Collapse
Affiliation(s)
- Kendra Corral-Nájera
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Gaurav Chauhan
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Sergio O. Serna-Saldívar
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Sergio O. Martínez-Chapa
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Mohammad Mahdi Aeinehvand
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| |
Collapse
|
5
|
Oleksy M, Dynarowicz K, Aebisher D. Advances in Biodegradable Polymers and Biomaterials for Medical Applications-A Review. Molecules 2023; 28:6213. [PMID: 37687042 PMCID: PMC10488517 DOI: 10.3390/molecules28176213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
The introduction of new materials for the production of various types of constructs that can connect directly to tissues has enabled the development of such fields of science as medicine, tissue, and regenerative engineering. The implementation of these types of materials, called biomaterials, has contributed to a significant improvement in the quality of human life in terms of health. This is due to the constantly growing availability of new implants, prostheses, tools, and surgical equipment, which, thanks to their specific features such as biocompatibility, appropriate mechanical properties, ease of sterilization, and high porosity, ensure an improvement of living. Biodegradation ensures, among other things, the ideal rate of development for regenerated tissue. Current tissue engineering and regenerative medicine strategies aim to restore the function of damaged tissues. The current gold standard is autografts (using the patient's tissue to accelerate healing), but limitations such as limited procurement of certain tissues, long operative time, and donor site morbidity have warranted the search for alternative options. The use of biomaterials for this purpose is an attractive option and the number of biomaterials being developed and tested is growing rapidly.
Collapse
Affiliation(s)
- Małgorzata Oleksy
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
6
|
Dubus M, Scomazzon L, Chevrier J, Montanede A, Baldit A, Terryn C, Quilès F, Thomachot-Schneider C, Gangloff SC, Bouland N, Gindraux F, Rammal H, Mauprivez C, Kerdjoudj H. Decellularization of Wharton’s Jelly Increases Its Bioactivity and Antibacterial Properties. Front Bioeng Biotechnol 2022; 10:828424. [PMID: 35360386 PMCID: PMC8963334 DOI: 10.3389/fbioe.2022.828424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/08/2022] [Indexed: 12/31/2022] Open
Abstract
The field of regenerative medicine has recently seen an emerging trend toward decellularized extracellular matrix (ECM) as a biological scaffold for stem cell-delivery. Human umbilical cord represents a valuable opportunity from both technical and ethical point of view to obtain allogenic ECM. Herein, we established a protocol, allowing the full removal of cell membranes and nuclei moieties from Wharton’s jelly (WJ) tissue. No alterations in the ECM components (i.e., collagen, GAG content, and growth factors), physical (i.e., porosity and swelling) and mechanical (i.e., linear tensile modulus) properties were noticed following WJ processing. Furthermore, no effect of the tissue processing on macromolecules and growth factors retention was observed, assuring thus a suitable bioactive matrix for cell maintenance upon recellularization. Based on the in vitro and in vivo biodegradability and stromal cell homing capabilities, decellularized WJ could provide an ideal substrate for stromal cells adhesion and colonization. Interestingly, the tissue processing increased the antibacterial and antiadhesive properties of WJ against Staphylococcus aureus and Staphylococcus epidermidis pathogens. Altogether, our results indicate that decellularized WJ matrix is able to limit Staphylococcus-related infections and to promote stromal cell homing, thus offering a versatile scaffold for tissue regenerative medicine.
Collapse
Affiliation(s)
- M. Dubus
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, Reims, France
| | - L. Scomazzon
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
| | - J. Chevrier
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
| | - A. Montanede
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
| | - A. Baldit
- Laboratoire d’étude des Microstructures et de Mécanique des Matériaux (LEM3), UMR CNRS 7239, Université de Lorraine, Metz, France
| | - C. Terryn
- Plateau Technique PICT, Université de Reims Champagne Ardenne, Reims, France
| | - F. Quilès
- CNRS, LCPME, Université de Lorraine, Nancy, France
| | - C. Thomachot-Schneider
- Groupe d’Étude des Géomatériaux et Environnement Naturels, Anthropiques et Archéologiques (GEGENAA), Université de Reims Champagne Ardenne, Reims, France
| | - S. C. Gangloff
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
- UFR de Pharmacie, Université de Reims Champagne Ardenne, Reims, France
| | - N. Bouland
- Service d’anatomopathologie, UFR de Médecine, Université de Reims Champagne Ardenne, Reims, France
| | - F. Gindraux
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique, Université Bourgogne Franche-Comté, Besançon, France
| | - H. Rammal
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, Reims, France
| | - C. Mauprivez
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, Reims, France
- Centre Hospitalier Universitaire de Reims, Pôle Médecine Bucco-dentaire, Hôpital Maison Blanche, Reims, France
| | - H. Kerdjoudj
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, Reims, France
- *Correspondence: H. Kerdjoudj,
| |
Collapse
|
7
|
Sun J, Xing F, Zou M, Gong M, Li L, Xiang Z. Comparison of chondrogenesis-related biological behaviors between human urine-derived stem cells and human bone marrow mesenchymal stem cells from the same individual. Stem Cell Res Ther 2021; 12:366. [PMID: 34183056 PMCID: PMC8240221 DOI: 10.1186/s13287-021-02370-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stem cells are the main choice for seed cells in tissue engineering, but using most traditional stem cells requires invasive and complicated procedures. Human urine-derived stem cells (hUSCs) are an alternative stem cell source with the advantages of being isolated noninvasively and repetitively from the same individual. The aim of this study was to compare chondrogenesis-related biological behaviors between hUSCs and human bone marrow mesenchymal stem cells (hBMSCs) from the same individual. METHODS hUSCs and hBMSCs were isolated from six patients who underwent iliac bone grafting. Cell morphology, proliferation, colony-forming, migration, and multidifferentiation analyses were performed in vitro. Then, acellular cartilage extracellular matrix (ACM) scaffolds were fabricated for in vivo implantation. The comparisons of cell viability, morphology, proliferation, and chondrogenesis between hUSCs and hBMSCs cultured on scaffolds were performed before implantation. The scaffolds loaded with hUSCs or hBMSCs were implanted into a rabbit knee model to repair cartilage defects. Magnetic resonance imaging (MRI) and micro-computed tomography (μCT) Analyses, inflammation and toxicity assays, gross observation, and histological evaluation were performed to evaluate the cartilage repair effects. RESULTS In in vitro experiments, hUSCs had better capacity for proliferation, colony-forming, and migration compared to hBMSCs in the same passage, while hBMSCs had greater osteogenic, adipogenic, and chondrogenic abilities compared to hUSCs in the same passage. Both hUSCs and hBMSCs at passage 3 had the strongest potential for proliferation, colony-forming, and multilineage differentiation compared to cells in other passages. The ACM scaffolds loaded with hUSCs or hBMSCs both significantly promoted the repair of cartilage defects in the rabbit knee model at 12 weeks' postimplantation, and the new tissue was mainly hyaline cartilage. However, there was no significant difference in cartilage repair effects between hUSCs and hBMSCs. CONCLUSIONS In in vitro experiments, hUSCs presented better capacity for proliferation, while hBMSCs had greater chondrogenic ability. However, hUSCs and hBMSCs had similar cartilage repair effects in vivo. Results indicated that hUSCs can be a stem cell alternative for cartilage regeneration and provide a powerful platform for cartilage tissue engineering and clinical transformation.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Fei Xing
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Zou
- Department of Orthopedics, NO. 1 People's Hospital of Chengdu, Chengdu, Sichuan, 610016, People's Republic of China
| | - Min Gong
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, People's Republic of China
| | - Lang Li
- Department of Orthopaedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
8
|
Khajavi M, Hajimoradloo A, Zandi M, Pezeshki-Modaress M, Bonakdar S, Zamani A. Fish cartilage: A promising source of biomaterial for biological scaffold fabrication in cartilage tissue engineering. J Biomed Mater Res A 2021; 109:1737-1750. [PMID: 33738960 DOI: 10.1002/jbm.a.37169] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Here, engineered cartilage-like scaffold using an extracellular matrix (ECM) from sturgeon fish cartilage provided a chondroinductive environment to stimulate cartilaginous matrix synthesis in human adipose stem cells (hASCs). Three dimensional porous and degradable fish cartilage ECM-derived scaffold (FCS) was produced using a protocol containing chemical decellularization, enzymatic solubilization, freeze-drying and EDC-crosslinking treatments and the effect of different ECM concentrations (10, 20, 30, and 40 mg/ml) on prepared scaffolds was investigated through physical, mechanical and biological analysis. The histological and scanning electron microscopy analysis revealed the elimination of the cell fragments and a 3-D interconnected porous structure, respectively. Cell viability assay displayed no cytotoxic effects. The prepared porous constructs of fish cartilage ECM were seeded with hASCs for 21 days and compared to collagen (Col) and collagen-10% hyaluronic acid (Col-HA) scaffolds. Cell culture results evidenced that the fabricated scaffolds could provide a proper 3-D structure to support the adhesion, proliferation and chondrogenic differentiation of hASCs considering the synthesis of specific proteins of cartilage, collagen type II (Col II) and aggrecan (ACAN). Based on the results of the present study, it can be concluded that the porous scaffold derived from fish cartilage ECM possesses an excellent potential for cartilage tissue engineering.
Collapse
Affiliation(s)
- Maryam Khajavi
- Department of Fisheries, Faculty of Fisheries and Environmental Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Abdolmajid Hajimoradloo
- Department of Fisheries, Faculty of Fisheries and Environmental Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mojgan Zandi
- Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | | | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Abbas Zamani
- Department of Fisheries, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran
| |
Collapse
|
9
|
Foroushani ZH, Mahdavi SS, Abdekhodaie MJ, Baradaran-Rafii A, Tabatabei MR, Mehrvar M. A hybrid scaffold of gelatin glycosaminoglycan matrix and fibrin as a carrier of human corneal fibroblast cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111430. [PMID: 33255025 DOI: 10.1016/j.msec.2020.111430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
A hybrid scaffold of gelatin-glycosaminoglycan matrix and fibrin (FGG) has been synthesized to improve the mechanical properties, degradation time and cell response of fibrin-like scaffolds. The FGG scaffold was fabricated by optimizing some properties of fibrin-only gel and gelatin-glycosaminoglycan (GG) scaffolds. Mechanical analysis of optimized fibrin-only gel showed the Young module and tensile strength of up to 72 and 121 KPa, respectively. Significantly, the nine-fold increase in the Young modulus and a seven-fold increase in tensile strength was observed when fibrin reinforced with GG scaffold. Additionally, the results demonstrated that the degradation time of fibrin was enhanced successfully up to 7 days which was much longer time compared to fibrin-only gel with 38 h of degradation time. More than 45% of FGG initial mass was preserved on day 7 in the presence of aprotinin. Human corneal fibroblast cells (HCFCs) were seeded on the FGG, fibrin-only gel and GG scaffolds for 5 days. The FGG scaffold showed excellent cell viability over 5 days, and the proliferation of HCFCs also increased significantly in comparison with fibrin-only gel and GG scaffolds. The FGG scaffold illustrates the great potential to use in which appropriate stability and mechanical properties are essential to tissue functionality.
Collapse
Affiliation(s)
- Zahra Hajian Foroushani
- Department of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - S Sharareh Mahdavi
- Department of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Alireza Baradaran-Rafii
- Ophthalmic Research Center, Labbafinejad Medical Center and Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mehrab Mehrvar
- Department of Chemical Engineering, Ryerson University, Toronto, Canada
| |
Collapse
|
10
|
Liang W, Chen X, Dong Y, Zhou P, Xu F. Recent advances in biomaterials as instructive scaffolds for stem cells in tissue repair and regeneration. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1848832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, P. R. China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, P. R. China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People’s Hospital, Shaoxing, P. R. China
| | - Ping Zhou
- Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, P. R. China
| | - Fangming Xu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, P. R. China
| |
Collapse
|
11
|
Charbonneau AM, Tran SD. 3D Cell Culture of Human Salivary Glands Using Nature-Inspired Functional Biomaterials: The Egg Yolk Plasma and Egg White. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4807. [PMID: 33126509 PMCID: PMC7672643 DOI: 10.3390/ma13214807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022]
Abstract
The egg yolk plasma (EYP)-a translucent fraction of the egg yolk (EY) obtained by centrifugation-was tested as a developmentally encouraging, cost-effective, biomaterial for salivary gland (SG) tissue engineering. To find optimal incubating conditions for both the human NS-SV-AC SG acinar cell line and SG fibroblasts, cells were stained with Live/Dead®. The cellular contents of 96-well plates were analyzed by high content screening image analysis. Characteristically, the EYP biomaterial had lipid and protein content resembling the EY. On its own, the EYP was non-conducive to cell survival. EYP's pH of 6 mainly contributed to cell death. This was demonstrated by titrating EYP's pH with different concentrations of either commercial cell culture media, NaOH, or egg white (EW). These additives improved SG mesenchymal and epithelial cell survival. The best combinations were EYP diluted with (1) 70% commercial medium, (2) 0.02 M NaOH, or (3) 50% EW. Importantly, commercial medium-free growth was obtained with EYP + NaOH or EYP + EW. Furthermore, 3D cultures were obtained as a result of EW's gelatinous properties. Here, the isolation, characterization, and optimization of three EYP-based biomaterial combinations are shown; two were free of commercial medium or supplements and supported both SG cells' survival.
Collapse
Affiliation(s)
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montréal, QC H3A 2B2, Canada;
| |
Collapse
|
12
|
Ma J, Cai H, Long X, Cheng K, Xu X, Zhang D, Li J. Hyaluronic acid bioinspired polymers for the regulation of cell chondrogenic and osteogenic differentiation. Int J Biol Macromol 2020; 161:1011-1020. [PMID: 32531368 DOI: 10.1016/j.ijbiomac.2020.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022]
Abstract
As the simplest glycosaminoglycan (GAG) in extracellular matrix, hyaluronic acid (HA) takes part in several important biological processes, such as regulating cell proliferation, differentiation, and migration. In this work, a series of HA-inspired polymers with different saccharide and carboxylate units (HA-analogue polymers) are synthesized by free radical polymerization, and characterized using Fourier transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC) and nuclear magnetic resonance spectrometer (NMR), Moreover, cell experiments demonstrate that HA-analogue polymers with a certain proportion of saccharide and carboxylate (PM1G1) units shows a positive effect on the proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs). Furthermore, HA-analogue polymers have prominent cartilage inductive capacity in chondrogenic induction medium (CIM) and brilliant bone inductive capacity in osteogenic induction medium (OIM) toward BMSCs. Therefore, it is confirmed that the HA-analogue polymers can effectively mimic the functions of HA and have broad potential application prospects in the biomedical and clinical fields.
Collapse
Affiliation(s)
- Jiayun Ma
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Huijuan Cai
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaoling Long
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Kai Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dongyue Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
13
|
In situ bone regeneration of large cranial defects using synthetic ceramic implants with a tailored composition and design. Proc Natl Acad Sci U S A 2020; 117:26660-26671. [PMID: 33046631 PMCID: PMC7604495 DOI: 10.1073/pnas.2007635117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Large cranial reconstructions are increasingly performed worldwide and still represent a substantial clinical challenge. The gold standard, autologous bone, has limited availability and high donor-site morbidity. Current alloplastic materials are associated with high complication and failure rates. This study shows the capacity of a customized, purely synthetic, 3D-manufactured bioceramic implant to regenerate and restore large cranial defects with mature, well-vascularized bone, with a morphology, ultrastructure, and composition similar to those of native skull bone. This approach triggers the regenerative potential of host tissue by tailoring the implant composition and design. The regeneration of large defects using purely synthetic material without adjunct cell therapy or growth factors represents a major advancement for rehabilitating patients in need of large cranial reconstructions. The repair of large cranial defects with bone is a major clinical challenge that necessitates novel materials and engineering solutions. Three-dimensionally (3D) printed bioceramic (BioCer) implants consisting of additively manufactured titanium frames enveloped with CaP BioCer or titanium control implants with similar designs were implanted in the ovine skull and at s.c. sites and retrieved after 12 and 3 mo, respectively. Samples were collected for morphological, ultrastructural, and compositional analyses using histology, electron microscopy, and Raman spectroscopy. Here, we show that BioCer implants provide osteoinductive and microarchitectural cues that promote in situ bone regeneration at locations distant from existing host bone, whereas bone regeneration with inert titanium implants was confined to ingrowth from the defect boundaries. The BioCer implant promoted bone regeneration at nonosseous sites, and bone bonding to the implant was demonstrated at the ultrastructural level. BioCer transformed to carbonated apatite in vivo, and the regenerated bone displayed a molecular composition indistinguishable from that of native bone. Proof-of-principle that this approach may represent a shift from mere reconstruction to in situ regeneration was provided by a retrieved human specimen, showing that the BioCer was transformed into well-vascularized osteonal bone, with a morphology, ultrastructure, and composition similar to those of native human skull bone.
Collapse
|
14
|
Graphene oxide-modified 3D acellular cartilage extracellular matrix scaffold for cartilage regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111603. [PMID: 33321647 DOI: 10.1016/j.msec.2020.111603] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/18/2020] [Accepted: 10/03/2020] [Indexed: 02/08/2023]
Abstract
Articular cartilage regeneration is a challenge in orthopedics and tissue engineering. This study prepared a graphene oxide (GO)-modified 3D acellular cartilage extracellular matrix (ACM) scaffold for cartilage repair. Cartilage slices were decellularized using a combination of physical and chemical methods of fabricating ACM particles. GO was crosslinked with the ACM by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxy succinimide to prepare a composite scaffold. GO modification improved the internal structure and mechanical properties of the scaffold. The GO-modified (2 mg/mL) composite scaffold promoted cell adhesion, cell proliferation, and chondrogenic differentiation in vitro. Experiments on subcutaneous implantation in rats demonstrated that the composite scaffold had good biocompatibility and mild inflammatory response. After 12 weeks of implantation, the composite scaffold loaded with bone marrow mesenchymal stem cells completely bridged the cartilage defects in the rabbit knee with hyaline cartilage. Results indicated that the GO-modified 3D ACM composite scaffold can provide a powerful platform for cartilage tissue engineering and articular cartilage injury treatment.
Collapse
|
15
|
Shang F, Yu Y, Liu S, Ming L, Zhang Y, Zhou Z, Zhao J, Jin Y. Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioact Mater 2020; 6:666-683. [PMID: 33005830 PMCID: PMC7509590 DOI: 10.1016/j.bioactmat.2020.08.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 12/11/2022] Open
Abstract
Reconstruction of bone defects, especially the critical-sized defects, with mechanical integrity to the skeleton is important for a patient's rehabilitation, however, it still remains challenge. Utilizing biomaterials of human origin bone tissue for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural bone tissue with regard to its properties. However, not only efficacious and safe but also cost-effective and convenient are important for regenerative biomaterials to achieve clinical translation and commercial success. Advances in our understanding of regenerative biomaterials and their roles in new bone formation potentially opened a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multicomponent construction of native extracellular matrix (ECM) for cell accommodation, the ECM-mimicking biomaterials and the naturally decellularized ECM scaffolds were used to create new tissues for bone restoration. On the other hand, with the going deep in understanding of mesenchymal stem cells (MSCs), they have shown great promise to jumpstart and facilitate bone healing even in diseased microenvironments with pharmacology-based endogenous MSCs rescue/mobilization, systemic/local infusion of MSCs for cytotherapy, biomaterials-based approaches, cell-sheets/-aggregates technology and usage of subcellular vesicles of MSCs to achieve scaffolds-free or cell-free delivery system, all of them have been shown can improve MSCs-mediated regeneration in preclinical studies and several clinical trials. Here, following an overview discussed autogenous/allogenic and ECM-based bone biomaterials for reconstructive surgery and applications of MSCs-mediated bone healing and tissue engineering to further offer principles and effective strategies to optimize MSCs-based bone regeneration. Focusing on MSCs based bone regeneration. Discussed cytotherapy, cell-free therapies and cell-aggregates technology in detail. Stating the approaches of MSCs in diseased microenvironments.
Collapse
Affiliation(s)
- Fengqing Shang
- State Key Laboratory of Military Stomatology & National Clinical Research, Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Stomatology, The 306th Hospital of PLA, Beijing, 100101, China
| | - Yang Yu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, 250012, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research, Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Leiguo Ming
- State Key Laboratory of Military Stomatology & National Clinical Research, Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yongjie Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research, Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhifei Zhou
- Department of Stomatology, General Hospital of Tibetan Military Command, Lhasa, 850000, China
| | - Jiayu Zhao
- Bureau of Service for Veteran Cadres of PLA in Beijing, Beijing, 100001, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research, Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| |
Collapse
|
16
|
Cheng K, Zhu Y, Wang D, Li Y, Xu X, Cai H, Chu H, Li J, Zhang D. Biomimetic synthesis of chondroitin sulfate-analogue hydrogels for regulating osteogenic and chondrogenic differentiation of bone marrow mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111368. [PMID: 32919697 DOI: 10.1016/j.msec.2020.111368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
As a typical representative of crucial glycosaminoglycans (GAGs), chondroitin sulfate (CS) with sulfonated polysaccharide in structures extensively exists in the extracellular matrix (ECM) and exhibits peculiar bioactivity on the regulation of cells behaviors and fates (e.g. proliferation and differentiation) in organisms. Nevertheless, some intrinsic disadvantages of natural CS mainly ascribe to the intricate structure and inhomogeneous composition (especially the uncontrollable sulfonate degrees), resulting in overt restrictions on its physiological functions and applications. Although recent bionic synthesis of artificial GAGs analogues at the molecular level have already provides an efficient strategy to reconstruct GAG for regulating the cellular behaviors and fates, it still remains great challenges to rationally design and synthesize GAGs analogues with special composition and structure for precisely mimicking ECM. Simultaneously, the relevant regulation process of GAG analogues on cell fate needs to be further studied as well. Herein, chondroitin sulfate-analogue (CS-analogue) hydrogels with diverse contents of saccharide and sulfonate units in the networks were fabricated through photo-polymerization and then characterized by Fourier transform infrared (FT-IR) spectroscopy, zeta potential and scanning electron microscope (SEM). Additionally, CS-analogue hydrogels with proper mechanical properties exhibited favorable swelling, degradation performance and prominent cytocompatibility. According to cell cultivation results, CS-analogue hydrogel with a certain proportion of saccharide and sulfonate units presented preferable promotion on the adhesion, spreading, proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs), shedding light on the significance of saccharide and sulfonate units in regulating cell behaviors. Furthermore, BMSCs cultivated with CS-analogue hydrogels under different culture conditions were also systematically investigated, revealing that with the help of cultivation environment CS-analogue hydrogels owned the remarkable capacity of directing either chondrogenic or osteogenic differentiation of BMSCs. Therefore, it is envisioned that versatile CS-analogue hydrogels would have promising application prospects in the biomedical and clinical fields.
Collapse
Affiliation(s)
- Kai Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yalin Zhu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dingqian Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yichen Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Huijuan Cai
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hetao Chu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Dongyue Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
17
|
Molavi AM, Sadeghi-Avalshahr A, Nokhasteh S, Naderi-Meshkin H. Enhanced biological properties of collagen/chitosan-coated poly(ε-caprolactone) scaffold by surface modification with GHK-Cu peptide and 58S bioglass. Prog Biomater 2020; 9:25-34. [PMID: 32248401 DOI: 10.1007/s40204-020-00129-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/16/2020] [Indexed: 01/15/2023] Open
Abstract
Bioactive glasses and peptides have shown promising results in improving wound healing and skin repair. The present study explores the effectiveness of surface modification of collagen/chitosan-coated electrospun poly(ε-caprolactone) scaffold with 58S bioactive glass or GHK-Cu peptide. To coat scaffolds with the bioactive glass, we prepared suspensions of silanized bioactive glass powder with three different concentrations and the scaffolds were pipetted with suspensions. Similarly, GHK-Cu-coated scaffolds were prepared by pipetting adequate amount of 1-mM solution of peptide (in milli-Q) on the surface of scaffolds. ATR-FTIR spectroscopy indicated the successful modification of collagen/chitosan-coated electrospun poly(ε-caprolactone) scaffold with bioactive glass and GHK-Cu. Microstructural investigations and in vitro studies such as cell adhesion, cell viability and antibacterial assay were performed. All samples demonstrated desirable cell attachment. Compared to poly(ε-caprolactone)/collagen/chitosan, the cell proliferation of GHK-Cu and bioactive glass-coated (concentrations of 0.01 and 0.1) scaffolds increased significantly at days 3 and 7, respectively. Poly(ε-caprolactone)/collagen/chitosan-uncoated scaffold and scaffolds coated with GHK-Cu and bioactive glass revealed desirable antibacterial properties but the antibacterial activity of GHK-Cu-coated sample turned out to be superior. These findings indicated that biological properties of collagen/chitosan-coated synthetic polymer could be improved by GHK-Cu and bioactive glass.
Collapse
Affiliation(s)
- Amir Mahdi Molavi
- Department of Materials Research, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.,Department of Materials Science and Engineering, Faculty of Engineering and Technology, Tarbiat Modares University, Tehran, Iran
| | - Alireza Sadeghi-Avalshahr
- Department of Materials Research, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran. .,Department of Biomaterials, College of Biomedical Engineering, AmirKabir University of Technology, Tehran, Iran.
| | - Samira Nokhasteh
- Department of Materials Research, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| |
Collapse
|
18
|
Jaramillo-Martínez S, Vargas-Requena C, Rodríguez-Gónzalez C, Hernández-Santoyo A, Olivas-Armendáriz I. Effect of extrapallial protein of Mytilus californianus on the process of in vitro biomineralization of chitosan scaffolds. Heliyon 2019; 5:e02252. [PMID: 31497665 PMCID: PMC6722255 DOI: 10.1016/j.heliyon.2019.e02252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/04/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022] Open
Abstract
Biomineralization is the process by which diverse organisms have the capacity to create heterogeneous accumulations, derived from organic and inorganic compounds that induce the process of mineral formation. An example of this can be seen an extrapallial protein (EP) of Mytilus californianus, which is responsible for carrying out the biomineralization process. In order to determine their ability to perform the biomineralization process, EP protein was absorbed and mixed in chitosan scaffolds which were tested in simulated physiological fluid. The materials were analyzed by FTIR spectroscopy, field emission scanning electron microscopy-energy-dispersive electron X-ray spectroscopy andX-ray diffraction. Results confirmed that the EP protein stimulates the rapid growth of biological apatite on the chitosan scaffolds. The mixing method favored more the apatite growth as well as the formation of second nucleation sites than the immersion method.
Collapse
Affiliation(s)
- S Jaramillo-Martínez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo, C.P.32320, Cd. Juárez, Chihuahua, Mexico
| | - C Vargas-Requena
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo, C.P.32320, Cd. Juárez, Chihuahua, Mexico
| | - C Rodríguez-Gónzalez
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P.32320, Cd. Juárez, Chihuahua, Mexico
| | - A Hernández-Santoyo
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - I Olivas-Armendáriz
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P.32320, Cd. Juárez, Chihuahua, Mexico
| |
Collapse
|
19
|
Shih YV, Varghese S. Tissue engineered bone mimetics to study bone disorders ex vivo: Role of bioinspired materials. Biomaterials 2019; 198:107-121. [PMID: 29903640 PMCID: PMC6281816 DOI: 10.1016/j.biomaterials.2018.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022]
Abstract
Recent advances in materials development and tissue engineering has resulted in a substantial number of bioinspired materials that recapitulate cardinal features of bone extracellular matrix (ECM) such as dynamic inorganic and organic environment(s), hierarchical organization, and topographical features. Bone mimicking materials, as defined by its self-explanatory term, are developed based on the current understandings of the natural bone ECM during development, remodeling, and fracture repair. Compared to conventional plastic cultures, biomaterials that resemble some aspects of the native environment could elicit a more natural molecular and cellular response relevant to the bone tissue. Although current bioinspired materials are mainly developed to assist tissue repair or engineer bone tissues, such materials could nevertheless be applied to model various skeletal diseases in vitro. This review summarizes the use of bioinspired materials for bone tissue engineering, and their potential to model diseases of bone development and remodeling ex vivo. We largely focus on biomaterials, designed to re-create different aspects of the chemical and physical cues of native bone ECM. Employing these bone-inspired materials and tissue engineered bone surrogates to study bone diseases has tremendous potential and will provide a closer portrayal of disease progression and maintenance, both at the cellular and tissue level. We also briefly touch upon the application of patient-derived stem cells and introduce emerging technologies such as organ-on-chip in disease modeling. Faithful recapitulation of disease pathologies will not only offer novel insights into diseases, but also lead to enabling technologies for drug discovery and new approaches for cell-based therapies.
Collapse
Affiliation(s)
- Yuru Vernon Shih
- Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA.
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA; Department of Materials Science and Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
20
|
Chitosan based polymer/bioglass composites for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:955-967. [DOI: 10.1016/j.msec.2018.12.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 11/09/2018] [Accepted: 12/09/2018] [Indexed: 01/12/2023]
|
21
|
Kihlström Burenstam Linder L, Birgersson U, Lundgren K, Illies C, Engstrand T. Patient-Specific Titanium-Reinforced Calcium Phosphate Implant for the Repair and Healing of Complex Cranial Defects. World Neurosurg 2018; 122:e399-e407. [PMID: 30342265 DOI: 10.1016/j.wneu.2018.10.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/08/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND The reconstruction of complex cranial defects is challenging and is associated with a high complication rate. The development of a patient-specific, titanium-reinforced, calcium phosphate-based (CaP-Ti) implant with bone regenerative properties has previously been described in 2 case studies with the hypothesis that the implant may improve clinical outcome. OBJECTIVE To identify whether the introduction of CaP-Ti implant has the potential to improve clinical outcome. METHODS A retrospective review of all patients having undergone CaP-Ti cranioplasty was conducted. Comprehensive clinical data were collected from the hospital computer database and patient records. Bone formation and osseointegration were analyzed in a single retrieval specimen. RESULTS Fifty patients, with 52 cranial defects, met the inclusion criteria. The patient cohort displayed a previous failure rate of 64% (32/50) with autologous bone, alloplastic materials, or both. At a median follow-up time of 25 months, the explantation rate due to either early postoperative infection or persistent wound dehiscence was 1.9% (1/53) or 3.8% (2/53), respectively. Surgical intervention with local wound revision was required in 2 patients without the need of implant removal. One patient had a brain tumor recurrence, and the implant was explanted 31 months after implantation. Histologic examination showed that the entire implant was partly yet evenly transformed into vascularized compact bone. CONCLUSION In the present study the CaP-Ti implant appears to have improved the clinical outcomes in a cohort of patients with a high rate of previous cranioplasty failures. The bone regenerative effect may in particular have an impact on the long-term success rate of the implant.
Collapse
Affiliation(s)
- Lars Kihlström Burenstam Linder
- Department of Neurosurgery, Clinical Neurosciences, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden.
| | - Ulrik Birgersson
- Department of Clinical Science, Intervention and Technology, Division of Imaging and Technology, Karolinska Institutet, Huddinge, Sweden
| | - Kalle Lundgren
- Department of Molecular Medicine and Surgery, Unit for Craniofacial diseases, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Christopher Illies
- Department of Clinical Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Engstrand
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Abstract
Microspheres have long been used in drug delivery applications because of their controlled release capabilities. They have increasingly served as the fundamental building block for fabricating scaffolds for regenerative engineering because of their ability to provide a porous network, offer high-resolution control over spatial organization, and deliver growth factors/drugs and/or nanophase materials. Because they provide physicochemical gradients via spatiotemporal release of bioactive factors and nanophase ceramics, microspheres are a desirable tool for engineering complex tissues and biological interfaces. In this review we describe various methods for microsphere fabrication and sintering, and elucidate how these methods influence both micro- and macroscopic scaffold properties, with a special focus on the nature of sintering. Furthermore, we review key applications of microsphere-based scaffolds in regenerating various tissues. We hope to inspire researchers to join a growing community of investigators using microspheres as tissue engineering scaffolds so that their full potential in regenerative engineering may be realized.
Collapse
Affiliation(s)
- Vineet Gupta
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045;
| | - Yusuf Khan
- Department of Orthopaedic Surgery, University of Connecticut Health Campus, Farmington, Connecticut 06030; ,
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269
- Institute for Regenerative Engineering, University of Connecticut Health Campus, Farmington, Connecticut 06030
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045;
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045;
| | - Cato T Laurencin
- Department of Orthopaedic Surgery, University of Connecticut Health Campus, Farmington, Connecticut 06030; ,
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269
- Institute for Regenerative Engineering, University of Connecticut Health Campus, Farmington, Connecticut 06030
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019;
| |
Collapse
|
23
|
Mellott AJ, Shinogle HE, Nelson-Brantley JG, Detamore MS, Staecker H. Exploiting decellularized cochleae as scaffolds for inner ear tissue engineering. Stem Cell Res Ther 2017; 8:41. [PMID: 28241887 PMCID: PMC5330011 DOI: 10.1186/s13287-017-0505-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/18/2017] [Accepted: 02/10/2017] [Indexed: 11/20/2022] Open
Abstract
Background Use of decellularized tissues has become popular in tissue engineering applications as the natural extracellular matrix can provide necessary physical cues that help induce the restoration and development of functional tissues. In relation to cochlear tissue engineering, the question of whether decellularized cochlear tissue can act as a scaffold and support the incorporation of exogenous cells has not been addressed. Investigators have explored the composition of the cochlear extracellular matrix and developed multiple strategies for decellularizing a variety of different tissues; however, no one has investigated whether decellularized cochlear tissue can support implantation of exogenous cells. Methods As a proof-of-concept study, human Wharton’s jelly cells were perfused into decellularized cochleae isolated from C57BL/6 mice to determine if human Wharton’s jelly cells could implant into decellularized cochlear tissue. Decellularization was verified through scanning electron microscopy. Cocheae were stained with DAPI and immunostained with Myosin VIIa to identify cells. Perfused cochleae were imaged using confocal microscopy. Results Features of the organ of Corti were clearly identified in the native cochleae when imaged with scanning electron microscopy and confocal microscopy. Acellular structures were identified in decellularized cochleae; however, no cellular structures or lipid membranes were present within the decellularized cochleae when imaged via scanning electron microscopy. Confocal microscopy revealed positive identification and adherence of cells in decellularized cochleae after perfusion with human Wharton’s jelly cells. Some cells positively expressed Myosin VIIa after perfusion. Conclusions Human Wharton’s jelly cells are capable of successfully implanting into decellularized cochlear extracellular matrix. The identification of Myosin VIIa expression in human Wharton’s jelly cells after implantation into the decellularized cochlear extracellular matrix suggest that components of the cochlear extracellular matrix may be involved in differentiation.
Collapse
Affiliation(s)
- Adam J Mellott
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Heather E Shinogle
- Microscopy and Analytical Imaging Laboratory, University of Kansas, Lawrence, KS, 66045, USA
| | - Jennifer G Nelson-Brantley
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 3010, Kansas City, KS, 66160, USA
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 3010, Kansas City, KS, 66160, USA.
| |
Collapse
|
24
|
Townsend JM, Dennis SC, Whitlow J, Feng Y, Wang J, Andrews B, Nudo RJ, Detamore MS, Berkland CJ. Colloidal Gels with Extracellular Matrix Particles and Growth Factors for Bone Regeneration in Critical Size Rat Calvarial Defects. AAPS JOURNAL 2017; 19:703-711. [PMID: 28138909 DOI: 10.1208/s12248-017-0045-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/09/2017] [Indexed: 12/30/2022]
Abstract
Colloidal gels encapsulating natural materials and exhibiting paste-like properties for placement are promising for filling complex geometries in craniofacial bone regeneration applications. Colloidal materials have demonstrated modest clinical outcomes as bone substitutes in orthopedic applications, but limited success in craniofacial applications. As such, development of a novel colloidal gel will fill a void in commercially available products for use in craniofacial reconstruction. One likely application for this technology is cranial reconstruction. Currently, traumatic brain injury (TBI) is often treated with a hemi-craniectomy, a procedure in which half the cranium is removed to allow the injured brain to swell and herniate beyond the enclosed cranial vault. The use of colloidal gels would allow for the design of a pliable material capable of expansion during brain swelling and facilitate cranial bone regeneration alleviating the need for a second surgery to replace the previously removed hemi-cranium. In the current study, colloidal nanoparticles of hydroxyapatite (HAp), demineralized bone matrix (DBM), and decellularized cartilage (DCC) were combined with hyaluronic acid (HA) to form colloidal gels with desirable rheological properties ([Formula: see text] ≥ 100 Pa). BMP-2 and VEGF growth factors were included to assess extracellular matrix (ECM) contribution of DBM and DCC. The HA-HAp (BMP-2) and HA-HAp-DCC group had 89 and 82% higher bone regeneration compared to the sham group, respectively (p < 0.01). Material retention issues observed may be alleviated by implementing chemical crosslinking. Overall, DCC may be a promising material for bone regeneration in general, and colloidal gels may hold significant potential in craniofacial applications.
Collapse
Affiliation(s)
- Jakob M Townsend
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - S Connor Dennis
- Bioengineering Program, University of Kansas, Lawrence, Kansas, 66047, USA
| | - Jonathan Whitlow
- Bioengineering Program, University of Kansas, Lawrence, Kansas, 66047, USA
| | - Yi Feng
- Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| | - Jinxi Wang
- Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| | - Brian Andrews
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| | - Randolph J Nudo
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Cory J Berkland
- Bioengineering Program, University of Kansas, Lawrence, Kansas, 66047, USA. .,Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, 66047, USA.
| |
Collapse
|
25
|
Dennis SC, Whitlow J, Detamore MS, Kieweg SL, Berkland CJ. Hyaluronic-Acid-Hydroxyapatite Colloidal Gels Combined with Micronized Native ECM as Potential Bone Defect Fillers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:206-218. [PMID: 28005380 DOI: 10.1021/acs.langmuir.6b03529] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of the grand challenges in translational regenerative medicine is the surgical placement of biomaterials. For bone regeneration in particular, malleable and injectable colloidal gelsare frequently designed to exhibit self-assembling and shear-response behavior which facilitates biomaterial placement in tissue defects. The current study demonstrated that by combining native extracellular matrix (ECM) microparticles, i.e., demineralized bone matrix (DBM) and decellularized cartilage (DCC), with hyaluronic acid (HA) and hydroxyapatite (HAP) nanoparticles, a viscoelastic colloidal gel consisting exclusively of natural materials was achieved. Rheological testing of HA-ECM suspensions and HA-HAP-ECM colloidal gels concluded either equivalent or substantially higher storage moduli (G' ≈ 100-10 000 Pa), yield stresses (τy ≈ 100-1000 Pa), and viscoelastic recoveries (G'recovery ≥ 87%) in comparison with controls formulated without ECM, which indicated a previously unexplored synergy in fluid properties between ECM microparticles and HA-HAP colloidal networks. Notable rheological differences were observed between respective DBM and DCC formulations, specifically in HA-HAP-DBM mixtures, which displayed a mean 3-fold increase in G' and a mean 4-fold increase in τy from corresponding DCC mixtures. An initial in vitro assessment of these potential tissue fillers as substrates for cell growth revealed that all formulations of HA-ECM and HA-HAP-ECM showed no signs of cytotoxicity and appeared to promote cell viability. Both DBM and DCC colloidal gels represent promising platforms for future studies in bone and cartilage tissue engineering. Overall, the current study identified colloidal gels constructed exclusively of natural materials, with viscoelastic properties that may facilitate surgical placement for a wide variety of therapeutic applications.
Collapse
Affiliation(s)
| | | | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma , Norman, Oklahoma 73019, United States
| | | | | |
Collapse
|
26
|
Bui L, Aleid A, Alassaf A, Wilson OC, Raub CB, Frenkel V. Development of a custom biological scaffold for investigating ultrasound-mediated intracellular delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:461-470. [DOI: 10.1016/j.msec.2016.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/08/2016] [Accepted: 09/12/2016] [Indexed: 01/15/2023]
|
27
|
Xue C, Ren H, Zhu H, Gu X, Guo Q, Zhou Y, Huang J, Wang S, Zha G, Gu J, Yang Y, Gu Y, Gu X. Bone marrow mesenchymal stem cell-derived acellular matrix-coated chitosan/silk scaffolds for neural tissue regeneration. J Mater Chem B 2017; 5:1246-1257. [DOI: 10.1039/c6tb02959k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel tissue engineered nerve graft (TENG) was used for the first time to bridge a 60 mm long nerve gap in a dog sciatic nerve and achieved satisfactory results.
Collapse
|
28
|
Gupta V, Tenny KM, Barragan M, Berkland CJ, Detamore MS. Microsphere-based scaffolds encapsulating chondroitin sulfate or decellularized cartilage. J Biomater Appl 2016; 31:328-43. [PMID: 27358376 PMCID: PMC5179140 DOI: 10.1177/0885328216655469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extracellular matrix materials such as decellularized cartilage (DCC) and chondroitin sulfate (CS) may be attractive chondrogenic materials for cartilage regeneration. The goal of the current study was to investigate the effects of encapsulation of DCC and CS in homogeneous microsphere-based scaffolds, and to test the hypothesis that encapsulation of these extracellular matrix materials would induce chondrogenesis of rat bone marrow stromal cells. Four different types of homogeneous scaffolds were fabricated from microspheres of poly(D,L-lactic-co-glycolic acid): Blank (poly(D,L-lactic-co-glycolic acid) only; negative control), transforming growth factor-β3 encapsulated (positive control), DCC encapsulated, and CS encapsulated. These scaffolds were then seeded with rat bone marrow stromal cells and cultured for 6 weeks. The DCC and CS encapsulation altered the morphological features of the microspheres, resulting in higher porosities in these groups. Moreover, the mechanical properties of the scaffolds were impacted due to differences in the degree of sintering, with the CS group exhibiting the highest compressive modulus. Biochemical evidence suggested a mitogenic effect of DCC and CS encapsulation on rat bone marrow stromal cells with the matrix synthesis boosted primarily by the inherently present extracellular matrix components. An important finding was that the cell seeded CS and DCC groups at week 6 had up to an order of magnitude higher glycosaminoglycan contents than their acellular counterparts. Gene expression results indicated a suppressive effect of DCC and CS encapsulation on rat bone marrow stromal cell chondrogenesis with differences in gene expression patterns existing between the DCC and CS groups. Overall, DCC and CS were easily included in microsphere-based scaffolds; however, there is a requirement to further refine their concentrations to achieve the differentiation profiles we seek in vitro.
Collapse
Affiliation(s)
- Vineet Gupta
- Bioengineering Graduate Program, University of Kansas, USA
| | - Kevin M Tenny
- Department of Chemical and Petroleum Engineering, University of Kansas, USA
| | | | - Cory J Berkland
- Department of Chemical and Petroleum Engineering, University of Kansas, USA Department of Pharmaceutical Chemistry, University of Kansas, USA
| | - Michael S Detamore
- Bioengineering Graduate Program, University of Kansas, USA Department of Chemical and Petroleum Engineering, University of Kansas, USA
| |
Collapse
|
29
|
Gupta V, Lyne DV, Barragan M, Berkland CJ, Detamore MS. Microsphere-based scaffolds encapsulating tricalcium phosphate and hydroxyapatite for bone regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:121. [PMID: 27272903 PMCID: PMC5299100 DOI: 10.1007/s10856-016-5734-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/28/2016] [Indexed: 06/06/2023]
Abstract
Bioceramic mixtures of tricalcium phosphate (TCP) and hydroxyapatite (HAp) are widely used for bone regeneration because of their excellent cytocompatibility, osteoconduction, and osteoinduction. Therefore, we hypothesized that incorporation of a mixture of TCP and HAp in microsphere-based scaffolds would enhance osteogenesis of rat bone marrow stromal cells (rBMSCs) compared to a positive control of scaffolds with encapsulated bone-morphogenic protein-2 (BMP-2). Poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds encapsulating TCP and HAp mixtures in two different ratios (7:3 and 1:1) were fabricated with the same net ceramic content (30 wt%) to evaluate how incorporation of these ceramic mixtures would affect the osteogenesis in rBMSCs. Encapsulation of TCP/HAp mixtures impacted microsphere morphologies and the compressive moduli of the scaffolds. Additionally, TCP/HAp mixtures enhanced the end-point secretion of extracellular matrix components relevant to bone tissue compared to the "blank" (PLGA-only) microsphere-based scaffolds as evidenced by the biochemical, gene expression, histology, and immunohistochemical characterization. Moreover, the TCP/HAp mixture groups even surpassed the BMP-2 positive control group in some instances in terms of matrix synthesis and gene expression. Lastly, gene expression data suggested that the rBMSCs responded differently to different TCP/HAp ratios presented to them. Altogether, it can be concluded that TCP/HAp mixtures stimulated the differentiation of rBMSCs toward an osteoblastic phenotype, and therefore may be beneficial in gradient microsphere-based scaffolds for osteochondral regeneration.
Collapse
Affiliation(s)
- Vineet Gupta
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA
| | - Dina V Lyne
- Department of Chemical and Petroleum Engineering, The University of Kansas, 4149 Learned Hall 1530 W. 15th Street, Lawrence, KS, 66045-7618, USA
| | - Marilyn Barragan
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Cory J Berkland
- Department of Chemical and Petroleum Engineering, The University of Kansas, 4149 Learned Hall 1530 W. 15th Street, Lawrence, KS, 66045-7618, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Michael S Detamore
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
- Department of Chemical and Petroleum Engineering, The University of Kansas, 4149 Learned Hall 1530 W. 15th Street, Lawrence, KS, 66045-7618, USA.
| |
Collapse
|
30
|
Beck EC, Barragan M, Tadros MH, Gehrke SH, Detamore MS. Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel. Acta Biomater 2016; 38:94-105. [PMID: 27090590 DOI: 10.1016/j.actbio.2016.04.019] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED ECM-based materials are appealing for tissue engineering strategies because they may promote stem cell recruitment, cell infiltration, and cell differentiation without the need to supplement with additional biological factors. Cartilage ECM has recently shown potential to be chondroinductive, particularly in a hydrogel-based system, which may be revolutionary in orthopedic medicine. However, hydrogels composed of natural materials are often mechanically inferior to synthetic materials, which is a major limitation for load-bearing tissue applications. The objective was therefore to create an unprecedented hydrogel derived entirely from native cartilage ECM that was both mechanically more similar to native cartilage tissue and capable of inducing chondrogenesis. Porcine cartilage was decellularized, solubilized, and then methacrylated and UV photocrosslinked to create methacrylated solubilized decellularized cartilage (MeSDCC) gels. Methacrylated gelatin (GelMA) was employed as a control for both biomechanics and bioactivity. Rat bone marrow-derived mesenchymal stem cells were encapsulated in these networks, which were cultured in vitro for 6weeks, where chondrogenic gene expression, the compressive modulus, swelling, and histology were analyzed. One day after crosslinking, the elastic compressive modulus of the 20% MeSDCC gels was 1070±150kPa. Most notably, the stress strain profile of the 20% MeSDCC gels fell within the 95% confidence interval range of native porcine cartilage. Additionally, MeSDCC gels significantly upregulated chondrogenic genes compared to GelMA as early as day 1 and supported extensive matrix synthesis as observed histologically. Given that these gels approached the mechanics of native cartilage tissue, supported matrix synthesis, and induced chondrogenic gene expression, MeSDCC hydrogels may be promising materials for cartilage tissue engineering applications. Future efforts will focus on improving fracture mechanics as well to benefit overall biomechanical performance. STATEMENT OF SIGNIFICANCE Extracellular matrix (ECM)-based materials are appealing for tissue engineering strategies because they may promote stem cell recruitment, cell infiltration, and cell differentiation without the need to supplement with additional biological factors. One such ECM-based material, cartilage ECM, has recently shown potential to be chondroinductive; however, hydrogels composed of natural materials are often mechanically inferior to synthetic materials, which is a major limitation for load-bearing tissue applications. Therefore, this work is significant because we were the first to create hydrogels derived entirely from cartilage ECM that had mechanical properties similar to that of native cartilage until hydrogel failure. Furthermore, these hydrogels had a compressive modulus of 1070±150kPa, they were chondroinductive, and they supported extensive matrix synthesis. In the current study, we have shown that these new hydrogels may prove to be a promising biomaterial for cartilage tissue engineering applications.
Collapse
|
31
|
Popa EG, Reis RL, Gomes ME. Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage. Crit Rev Biotechnol 2016; 35:410-24. [PMID: 24646368 DOI: 10.3109/07388551.2014.889079] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This manuscript provides an overview of the in vitro and in vivo studies reported in the literature focusing on seaweed polysaccharides based hydrogels that have been proposed for applications in regenerative medicine, particularly, in the field of cartilage tissue engineering. For a better understanding of the main requisites for these specific applications, the main aspects of the native cartilage structure, as well as recognized diseases that affect this tissue are briefly described. Current available treatments are also presented to emphasize the need for alternative techniques. The following part of this review is centered on the description of the general characteristics of algae polysaccharides, as well as relevant properties required for designing hydrogels for cartilage tissue engineering purposes. An in-depth overview of the most well known seaweed polysaccharide, namely agarose, alginate, carrageenan and ulvan biopolymeric gels, that have been proposed for engineering cartilage is also provided. Finally, this review describes and summarizes the translational aspect for the clinical application of alternative systems emphasizing the importance of cryopreservation and the commercial products currently available for cartilage treatment.
Collapse
Affiliation(s)
- Elena Geta Popa
- a 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark , Guimarães , Portugal and
| | | | | |
Collapse
|
32
|
Engineering and commercialization of human-device interfaces, from bone to brain. Biomaterials 2016; 95:35-46. [PMID: 27108404 DOI: 10.1016/j.biomaterials.2016.03.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/16/2016] [Accepted: 03/28/2016] [Indexed: 12/16/2022]
Abstract
Cutting edge developments in engineering of tissues, implants and devices allow for guidance and control of specific physiological structure-function relationships. Yet the engineering of functionally appropriate human-device interfaces represents an intractable challenge in the field. This leading opinion review outlines a set of current approaches as well as hurdles to design of interfaces that modulate transfer of information, i.a. forces, electrical potentials, chemical gradients and haptotactic paths, between endogenous and engineered body parts or tissues. The compendium is designed to bridge across currently separated disciplines by highlighting specific commonalities between seemingly disparate systems, e.g. musculoskeletal and nervous systems. We focus on specific examples from our own laboratories, demonstrating that the seemingly disparate musculoskeletal and nervous systems share common paradigms which can be harnessed to inspire innovative interface design solutions. Functional barrier interfaces that control molecular and biophysical traffic between tissue compartments of joints are addressed in an example of the knee. Furthermore, we describe the engineering of gradients for interfaces between endogenous and engineered tissues as well as between electrodes that physically and electrochemically couple the nervous and musculoskeletal systems. Finally, to promote translation of newly developed technologies into products, protocols, and treatments that benefit the patients who need them most, regulatory and technical challenges and opportunities are addressed on hand from an example of an implant cum delivery device that can be used to heal soft and hard tissues, from brain to bone.
Collapse
|
33
|
Beck EC, Barragan M, Libeer TB, Kieweg SL, Converse GL, Hopkins RA, Berkland CJ, Detamore MS. Chondroinduction from Naturally Derived Cartilage Matrix: A Comparison Between Devitalized and Decellularized Cartilage Encapsulated in Hydrogel Pastes. Tissue Eng Part A 2016; 22:665-79. [PMID: 27001140 DOI: 10.1089/ten.tea.2015.0546] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hydrogel precursors are liquid solutions that are prone to leaking after surgical placement. This problem was overcome by incorporating either decellularized cartilage (DCC) or devitalized cartilage (DVC) microparticles into traditional photocrosslinkable hydrogel precursors in an effort to achieve a paste-like hydrogel precursor. DCC and DVC were selected specifically for their potential to induce chondrogenesis of stem cells, given that materials that are chondroinductive on their own without growth factors are a revolutionary goal in orthopedic medicine. We hypothesized that DVC, lacking the additional chemical processing steps in DCC to remove cell content, would lead to a more chondroinductive hydrogel with rat bone marrow-derived mesenchymal stem cells. Hydrogels composed of methacrylated hyaluronic acid (MeHA) and either DCC or DVC microparticles were tested with and without exposure to transforming growth factor (TGF)-β3 over a 6 week culture period, where swelling, mechanical analysis, and gene expression were observed. For collagen II, Sox-9, and aggrecan expression, MeHA precursors containing DVC consistently outperformed the DCC-containing groups, even when the DCC groups were exposed to TGF-β3. DVC consistently outperformed all TGF-β3-exposed groups in aggrecan and collagen II gene expression as well. In addition, when the same concentrations of MeHA with DCC or DVC microparticles were evaluated for yield stress, the yield stress with the DVC microparticles was 2.7 times greater. Furthermore, the only MeHA-containing group that exhibited shape retention was the group containing DVC microparticles. DVC appeared to be superior to DCC in both chondroinductivity and rheological performance of hydrogel precursors, and therefore DVC microparticles may hold translational potential for cartilage regeneration.
Collapse
Affiliation(s)
- Emily C Beck
- 1 Department of Surgery, University of Kansas Medical Center , Kansas City, Kansas
| | - Marilyn Barragan
- 2 Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas
| | - Tony B Libeer
- 3 Department of Chemical and Petroleum Engineering, University of Kansas , Lawrence, Kansas
| | - Sarah L Kieweg
- 4 Department of Mechanical Engineering, University of Kansas , Lawrence, Kansas
| | - Gabriel L Converse
- 5 Cardiac Surgery Research Laboratory, Children's Mercy Hospital , Kansas City, Missouri
| | - Richard A Hopkins
- 5 Cardiac Surgery Research Laboratory, Children's Mercy Hospital , Kansas City, Missouri
| | - Cory J Berkland
- 3 Department of Chemical and Petroleum Engineering, University of Kansas , Lawrence, Kansas.,6 Department of Pharmaceutical Chemistry, University of Kansas , Lawrence, Kansas
| | - Michael S Detamore
- 4 Department of Mechanical Engineering, University of Kansas , Lawrence, Kansas
| |
Collapse
|
34
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
35
|
Beck EC, Barragan M, Tadros MH, Kiyotake EA, Acosta FM, Kieweg SL, Detamore MS. Chondroinductive Hydrogel Pastes Composed of Naturally Derived Devitalized Cartilage. Ann Biomed Eng 2016; 44:1863-80. [PMID: 26744243 DOI: 10.1007/s10439-015-1547-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/29/2015] [Indexed: 01/08/2023]
Abstract
Hydrogel precursors are liquid solutions that are prone to leaking from the defect site once implanted in vivo. Therefore, the objective of the current study was to create a hydrogel precursor that exhibited a yield stress. Additionally, devitalized cartilage extracellular matrix (DVC) was mixed with DVC that had been solubilized and methacrylated (MeSDVC) to create hydrogels that were chondroinductive. Precursors composed of 10% MeSDVC or 10% MeSDVC with 10% DVC were first evaluated rheologically, where non-Newtonian behavior was observed in all hydrogel precursors. Rat bone marrow stem cells (rBMSCs) were mixed in the precursor solutions, and the solutions were then crosslinked and cultured in vitro for 6 weeks with and without exposure to human transforming growth factor β3 (TGF-β3). The compressive modulus, gene expression, biochemical content, swelling, and histology of the gels were analyzed. The DVC-containing gels consistently outperformed the MeSDVC-only group in chondrogenic gene expression, especially at 6 weeks, where the relative collagen II expression of the DVC-containing groups with and without TGF-β3 exposure was 40- and 78-fold higher, respectively, than that of MeSDVC alone. Future work will test for chondrogenesis in vivo and overall, these two cartilage-derived components are promising materials for cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Emily C Beck
- Department of Surgery, University of Kansas Medical Center, Kansas City, MO, 66160, USA
| | - Marilyn Barragan
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Madeleine H Tadros
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Emi A Kiyotake
- Bioengineering Program, University of Kansas, Lawrence, KS, 66045, USA
| | - Francisca M Acosta
- Department of Chemical and Petroleum Engineering, University of Kansas, 4163 Learned Hall, 1530 W. 15th Street, Lawrence, KS, 66045, USA
| | - Sarah L Kieweg
- Bioengineering Program, University of Kansas, Lawrence, KS, 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, 66045, USA
| | - Michael S Detamore
- Bioengineering Program, University of Kansas, Lawrence, KS, 66045, USA.
- Department of Chemical and Petroleum Engineering, University of Kansas, 4163 Learned Hall, 1530 W. 15th Street, Lawrence, KS, 66045, USA.
| |
Collapse
|
36
|
Visualisation of newly synthesised collagen in vitro and in vivo. Sci Rep 2016; 6:18780. [PMID: 26738984 PMCID: PMC4704054 DOI: 10.1038/srep18780] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/26/2015] [Indexed: 12/29/2022] Open
Abstract
Identifying collagen produced de novo by cells in a background of purified collagenous biomaterials poses a major problem in for example the evaluation of tissue-engineered constructs and cell biological studies to tumor dissemination. We have developed a universal strategy to detect and localize newly deposited collagen based on its inherent association with dermatan sulfate. The method is applicable irrespective of host species and collagen source.
Collapse
|
37
|
Place LW, Sekyi M, Taussig J, Kipper MJ. Two-Phase Electrospinning to Incorporate Polyelectrolyte Complexes and Growth Factors into Electrospun Chitosan Nanofibers. Macromol Biosci 2015; 16:371-80. [DOI: 10.1002/mabi.201500288] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/20/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Laura W. Place
- School of Biomedical Engineering; 1370 Campus Delivery Fort Collins CO 80523-1370 USA
| | - Maria Sekyi
- Department of Chemical and Biological Engineering; 1370 Campus Delivery Fort Collins CO 80523-1370 USA
| | - Julia Taussig
- Department of Chemical and Biological Engineering; 1370 Campus Delivery Fort Collins CO 80523-1370 USA
| | - Matt J. Kipper
- School of Biomedical Engineering; 1370 Campus Delivery Fort Collins CO 80523-1370 USA
| |
Collapse
|
38
|
Palma M, Hardy JG, Tadayyon G, Farsari M, Wind SJ, Biggs MJ. Advances in Functional Assemblies for Regenerative Medicine. Adv Healthc Mater 2015; 4:2500-19. [PMID: 26767738 DOI: 10.1002/adhm.201500412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/16/2015] [Indexed: 12/17/2022]
Abstract
The ability to synthesise bioresponsive systems and selectively active biochemistries using polymer-based materials with supramolecular features has led to a surge in research interest directed towards their development as next generation biomaterials for drug delivery, medical device design and tissue engineering.
Collapse
Affiliation(s)
- Matteo Palma
- Department of Chemistry & Biochemistry School of Biological and Chemical Sciences; Queen Mary University of London; London E1 4NS UK
| | - John G. Hardy
- Department of Chemistry; Materials Science Institute; Lancaster University; Lancaster LA1 4YB UK
| | - Ghazal Tadayyon
- Centre for Research in Medical Devices (CURAM); National University of Ireland Galway; Newcastle Road Dangan Ireland
| | - Maria Farsari
- Institute of Electronic Structure and Laser; Crete Greece
| | | | - Manus J. Biggs
- Centre for Research in Medical Devices (CURAM); National University of Ireland Galway; Newcastle Road Dangan Ireland
| |
Collapse
|
39
|
Sridharan B, Sharma B, Detamore MS. A Road Map to Commercialization of Cartilage Therapy in the United States of America. TISSUE ENGINEERING PART B-REVIEWS 2015; 22:15-33. [PMID: 26192161 DOI: 10.1089/ten.teb.2015.0147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite numerous efforts in cartilage regeneration, few products see the light of clinical translation as the commercialization process is opaque, financially demanding, and requires collaboration with people of varied skill sets. The aim of this review is to introduce, to an academic audience, the different paradigms involved in the commercialization of cartilage regeneration technology, elucidate the different hurdles associated with the use of cells and materials in developing new technologies, discuss potential commercialization strategies, and inform the reader about the current trends observed in both the clinical and laboratory setting for establishing clinical trials. Although there are review articles on articular cartilage tissue engineering, independent reports provided by the Food and Drug Administration, and separate review articles on animal models, this is the first review that encompasses all of these facets and is presented in a format favorable to the academic investigator interested in clinical translation from bench to bedside.
Collapse
Affiliation(s)
| | - Blanka Sharma
- 2 Department of Biomedical Engineering, University of Florida , Gainesville, Florida
| | - Michael S Detamore
- 1 Bioengineering Program, University of Kansas , Lawrence, Kansas.,3 Department of Chemical and Petroleum Engineering, University of Kansas , Lawrence, Kansas
| |
Collapse
|
40
|
Mohan N, Gupta V, Sridharan BP, Mellott AJ, Easley JT, Palmer RH, Galbraith RA, Key VH, Berkland CJ, Detamore MS. Microsphere-based gradient implants for osteochondral regeneration: a long-term study in sheep. Regen Med 2015; 10:709-28. [PMID: 26418471 DOI: 10.2217/rme.15.38] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The microfracture technique for cartilage repair has limited ability to regenerate hyaline cartilage. AIM The current study made a direct comparison between microfracture and an osteochondral approach with microsphere-based gradient plugs. MATERIALS & METHODS The PLGA-based scaffolds had opposing gradients of chondroitin sulfate and β-tricalcium phosphate. A 1-year repair study in sheep was conducted. RESULTS The repair tissues in the microfracture were mostly fibrous and had scattered fissures with degenerative changes. Cartilage regenerated with the gradient plugs had equal or superior mechanical properties; had lacunated cells and stable matrix as in hyaline cartilage. CONCLUSION This first report of gradient scaffolds in a long-term, large animal, osteochondral defect demonstrated potential for equal or better cartilage repair than microfracture.
Collapse
Affiliation(s)
- Neethu Mohan
- Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA.,Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum, Kerala 695011, India
| | - Vineet Gupta
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS 66045, USA
| | | | - Adam J Mellott
- Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Jeremiah T Easley
- Preclinical Surgical Research Laboratory, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Ross H Palmer
- Preclinical Surgical Research Laboratory, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Vincent H Key
- University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Cory J Berkland
- Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA.,Bioengineering Graduate Program, University of Kansas, Lawrence, KS 66045, USA.,Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Michael S Detamore
- Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA.,Bioengineering Graduate Program, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
41
|
Mohan N, Wilson J, Joseph D, Vaikkath D, Nair PD. Biomimetic fiber assembled gradient hydrogel to engineer glycosaminoglycan enriched and mineralized cartilage: Anin vitrostudy. J Biomed Mater Res A 2015; 103:3896-906. [DOI: 10.1002/jbm.a.35506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/02/2015] [Accepted: 05/12/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Neethu Mohan
- Division of Tissue Engineering and Regeneration Technologies; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology; Trivandrum Kerala India
| | - Jijo Wilson
- Division of Tissue Engineering and Regeneration Technologies; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology; Trivandrum Kerala India
| | - Dexy Joseph
- Division of Tissue Engineering and Regeneration Technologies; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology; Trivandrum Kerala India
| | - Dhanesh Vaikkath
- Division of Tissue Engineering and Regeneration Technologies; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology; Trivandrum Kerala India
| | - Prabha D. Nair
- Division of Tissue Engineering and Regeneration Technologies; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology; Trivandrum Kerala India
| |
Collapse
|
42
|
Sutherland AJ, Beck EC, Dennis SC, Converse GL, Hopkins RA, Berkland CJ, Detamore MS. Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering. PLoS One 2015; 10:e0121966. [PMID: 25965981 PMCID: PMC4428768 DOI: 10.1371/journal.pone.0121966] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/10/2015] [Indexed: 12/25/2022] Open
Abstract
Extracellular matrix (ECM)-based materials are attractive for regenerative medicine in their ability to potentially aid in stem cell recruitment, infiltration, and differentiation without added biological factors. In musculoskeletal tissue engineering, demineralized bone matrix is widely used, but recently cartilage matrix has been attracting attention as a potentially chondroinductive material. The aim of this study was thus to establish a chemical decellularization method for use with articular cartilage to quantify removal of cells and analyze the cartilage biochemical content at various stages during the decellularization process, which included a physically devitalization step. To study the cellular response to the cartilage matrix, rat bone marrow-derived mesenchymal stem cells (rBMSCs) were cultured in cell pellets containing cells only (control), chondrogenic differentiation medium (TGF-β), chemically decellularized cartilage particles (DCC), or physically devitalized cartilage particles (DVC). The chemical decellularization process removed the vast majority of DNA and about half of the glycosaminoglycans (GAG) within the matrix, but had no significant effect on the amount of hydroxyproline. Most notably, the DCC group significantly outperformed TGF-β in chondroinduction of rBMSCs, with collagen II gene expression an order of magnitude or more higher. While DVC did not exhibit a chondrogenic response to the extent that DCC did, DVC had a greater down regulation of collagen I, collagen X and Runx2. A new protocol has been introduced for cartilage devitalization and decellularization in the current study, with evidence of chondroinductivity. Such bioactivity along with providing the ‘raw material’ building blocks of regenerating cartilage may suggest a promising role for DCC in biomaterials that rely on recruiting endogenous cell recruitment and differentiation for cartilage regeneration.
Collapse
Affiliation(s)
- Amanda J. Sutherland
- University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Emily C. Beck
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, United States of America
| | - S. Connor Dennis
- Orbis Biosciences, Kansas City, Kansas, United States of America
| | - Gabriel L. Converse
- Children’s Mercy Hospital, Cardiac Surgery Research Lab, Ward Family Center for Congenital Heart Disease, Kansas City, Missouri, United States of America
| | - Richard A. Hopkins
- Children’s Mercy Hospital, Cardiac Surgery Research Lab, Ward Family Center for Congenital Heart Disease, Kansas City, Missouri, United States of America
| | - Cory J. Berkland
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, United States of America
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Michael S. Detamore
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, United States of America
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|
43
|
Li YY, Choy TH, Ho FC, Chan PB. Scaffold composition affects cytoskeleton organization, cell-matrix interaction and the cellular fate of human mesenchymal stem cells upon chondrogenic differentiation. Biomaterials 2015; 52:208-20. [PMID: 25818427 DOI: 10.1016/j.biomaterials.2015.02.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/30/2015] [Accepted: 02/06/2015] [Indexed: 11/17/2022]
Abstract
The stem cell niche, or microenvironment, consists of soluble, matrix, cell and mechanical factors that together determine the cellular fates and/or differentiation patterns of stem cells. Collagen and glycosaminoglycans (GAGs) are important scaffolding materials that can mimic the natural matrix niche. Here, we hypothesize that imposing changes in the scaffold composition or, more specifically, incorporating GAGs into the collagen meshwork, will affect the morphology, cytoskeletal organization and integrin expression profiles, and hence the fate of human mesenchymal stem cells (MSCs) upon the induction of differentiation. Using chondrogenesis as an example, we microencapsulated MSCs in three scaffold systems that had varying matrix compositions: collagen alone (C), aminated collagen (AC) and aminated collagen with GAGs (ACG). We then induced the MSCs to differentiate toward a chondrogenic lineage, after which, we characterized the cell viability and morphology, as well as the level of cytoskeletal organization and the integrin expression profile. We also studied the fate of the MSCs by evaluating the major chondrogenic markers at both the gene and protein level. In C, MSC chondrogenesis was successfully induced and MSCs that spread in the scaffolds had a clear actin cytoskeleton; they expressed integrin α2β1, α5 and αv; promoted sox9 nuclear localization transcription activation; and upregulated the expression of chondrogenic matrix markers. In AC, MSC chondrogenesis was completely inhibited but the scaffold still supported cell survival. The MSCs did not spread and they had no actin cytoskeleton; did not express integrin α2 or αv; they failed to differentiate into chondrogenic lineage cells even on chemical induction; and there was little colocalization or functional interaction between integrin α5 and fibronectin. In ACG, although the MSCs did not express integrin α2, they did express integrin αv and there was strong co-localization and hence functional binding between αv and fibronectin. In addition, vimentin was the dominant cytoskeletal protein in these cells, and the chondrogenic marker genes were expressed but at a much lower level than in the MSCs encapsulated in C alone. This work suggests the importance of controlling the matrix composition as a strategy to manipulate cell-matrix interactions (through changes in the integrin expression profile and cytoskeleton organization), and hence stem cell fates.
Collapse
Affiliation(s)
- Yuk Yin Li
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Tze Hang Choy
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Fu Chak Ho
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Pui Barbara Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China.
| |
Collapse
|
44
|
Sutherland AJ, Converse GL, Hopkins RA, Detamore MS. The bioactivity of cartilage extracellular matrix in articular cartilage regeneration. Adv Healthc Mater 2015; 4:29-39. [PMID: 25044502 DOI: 10.1002/adhm.201400165] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/28/2014] [Indexed: 01/08/2023]
Abstract
Cartilage matrix is a promising material for cartilage regeneration given the evidence supporting its chondroinductive character. The "raw materials" of cartilage matrix can serve as building blocks and signals for tissue regeneration. These matrices can be created by chemical or physical processing: physical methods disrupt cellular membranes and nuclei but may not fully remove all cell components and DNA, whereas chemical methods combined with physical methods are effective in fully decellularizing such materials. It is important to delineate between the sources of the cartilage matrix, that is, derived from matrix in vitro or from native tissue, and then to further characterize the cartilage matrix based on the processing method, decellularization or devitalization. With these distinctions, four types of cartilage matrices exist: decellularized native cartilage (DCC), devitalized native cartilage (DVC), decellularized cell-derived matrix (DCCM), and devitalized cell-derived matrix (DVCM). One currently marketed cartilage matrix device is decellularized, although trends in patents suggest additional decellularized products may be available in the future. To identify the most relevant source and processing for cartilage matrix, testing needs to include targeting the desired application, optimizing delivery of the material, identify relevant FDA regulations, assess availability of materials, and immunogenic properties of the product.
Collapse
Affiliation(s)
| | - Gabriel L. Converse
- Children's Mercy Hospital; Cardiac Surgery Research Lab; Ward Family Center for Congenital Heart Disease; 2401 Gillham Rd Kansas City MO 64108 USA
| | - Richard A. Hopkins
- Children's Mercy Hospital; Cardiac Surgery Research Lab; Ward Family Center for Congenital Heart Disease; 2401 Gillham Rd Kansas City MO 64108 USA
| | - Michael S. Detamore
- Bioengineering Graduate Program; University of Kansas; Lawrence KS 66045 USA
- Department of Chemical and Petroleum Engineering; University of Kansas; Lawrence KS 66045 USA
| |
Collapse
|
45
|
Dennis SC, Berkland CJ, Bonewald LF, Detamore MS. Endochondral ossification for enhancing bone regeneration: converging native extracellular matrix biomaterials and developmental engineering in vivo. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:247-66. [PMID: 25336144 DOI: 10.1089/ten.teb.2014.0419] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autologous bone grafting (ABG) remains entrenched as the gold standard of treatment in bone regenerative surgery. Consequently, many marginally successful bone tissue engineering strategies have focused on mimicking portions of ABG's "ideal" osteoconductive, osteoinductive, and osteogenic composition resembling the late reparative stage extracellular matrix (ECM) in bone fracture repair, also known as the "hard" or "bony" callus. An alternative, less common approach that has emerged in the last decade harnesses endochondral (EC) ossification through developmental engineering principles, which acknowledges that the molecular and cellular mechanisms involved in developmental skeletogenesis, specifically EC ossification, are closely paralleled during native bone healing. EC ossification naturally occurs during the majority of bone fractures and, thus, can potentially be utilized to enhance bone regeneration for nearly any orthopedic indication, especially in avascular critical-sized defects where hypoxic conditions favor initial chondrogenesis instead of direct intramembranous ossification. The body's native EC ossification response, however, is not capable of regenerating critical-sized defects without intervention. We propose that an underexplored potential exists to regenerate bone through the native EC ossification response by utilizing strategies which mimic the initial inflammatory or fibrocartilaginous ECM (i.e., "pro-" or "soft" callus) observed in the early reparative stage of bone fracture repair. To date, the majority of strategies utilizing this approach rely on clinically burdensome in vitro cell expansion protocols. This review will focus on the confluence of two evolving areas, (1) native ECM biomaterials and (2) developmental engineering, which will attempt to overcome the technical, business, and regulatory challenges that persist in the area of bone regeneration. Significant attention will be given to native "raw" materials and ECM-based designs that provide necessary osteo- and chondro-conductive and inductive features for enhancing EC ossification. In addition, critical perspectives on existing stem cell-based therapeutic strategies will be discussed with a focus on their use as an extension of the acellular ECM-based designs for specific clinical indications. Within this framework, a novel realm of unexplored design strategies for bone tissue engineering will be introduced into the collective consciousness of the regenerative medicine field.
Collapse
Affiliation(s)
- S Connor Dennis
- 1Bioengineering Program, University of Kansas, Lawrence, Kansas.,2Chemical and Petroleum Engineering Department, University of Kansas, Lawrence, Kansas
| | - Cory J Berkland
- 1Bioengineering Program, University of Kansas, Lawrence, Kansas.,2Chemical and Petroleum Engineering Department, University of Kansas, Lawrence, Kansas.,3Pharmaceutical Chemistry Department, University of Kansas, Lawrence, Kansas
| | - Lynda F Bonewald
- 4Department of Oral Biology, University of Missouri-Kansas City, Kansas City, Missouri
| | - Michael S Detamore
- 1Bioengineering Program, University of Kansas, Lawrence, Kansas.,2Chemical and Petroleum Engineering Department, University of Kansas, Lawrence, Kansas
| |
Collapse
|
46
|
Allen AB, Priddy LB, Li MTA, Guldberg RE. Functional augmentation of naturally-derived materials for tissue regeneration. Ann Biomed Eng 2014; 43:555-67. [PMID: 25422160 DOI: 10.1007/s10439-014-1192-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/13/2014] [Indexed: 12/12/2022]
Abstract
Tissue engineering strategies have utilized a wide spectrum of synthetic and naturally-derived scaffold materials. Synthetic scaffolds are better defined and offer the ability to precisely and reproducibly control their properties, while naturally-derived scaffolds typically have inherent biological and structural properties that may facilitate tissue growth and remodeling. More recently, efforts to design optimized biomaterial scaffolds have blurred the line between these two approaches. Naturally-derived scaffolds can be engineered through the manipulation of intrinsic properties of the pre-existing backbone (e.g., structural properties), as well as the addition of controllable functional components (e.g., biological properties). Chemical and physical processing techniques used to modify structural properties of synthetic scaffolds have been tailored and applied to naturally-derived materials. Such strategies include manipulation of mechanical properties, degradation, and porosity. Furthermore, biofunctional augmentation of natural scaffolds via incorporation of exogenous cells, proteins, peptides, or genes has been shown to enhance functional regeneration over endogenous response to the material itself. Moving forward, the regenerative mode of action of naturally-derived materials requires additional investigation. Elucidating such mechanisms will allow for the determination of critical design parameters to further enhance efficacy and capitalize on the full potential of naturally-derived scaffolds.
Collapse
Affiliation(s)
- Ashley B Allen
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA, 30332, USA,
| | | | | | | |
Collapse
|
47
|
Alsop AT, Pence JC, Weisgerber DW, Harley BA, Bailey RC. Photopatterning of vascular endothelial growth factor within collagen-glycosaminoglycan scaffolds can induce a spatially confined response in human umbilical vein endothelial cells. Acta Biomater 2014; 10:4715-4722. [PMID: 25016280 DOI: 10.1016/j.actbio.2014.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 11/26/2022]
Abstract
Biomolecular signals within the native extracellular matrix are complex, with bioactive factors found in both soluble and sequestered states. In the design of biomaterials for tissue engineering applications it is increasingly clear that new approaches are required to locally tailor the biomolecular environment surrounding cells within the matrix. One area of particular focus is strategies to improve the speed or quality of vascular ingrowth and remodeling. While the addition of soluble vascular endothelial growth factor (VEGF) has been shown to improve vascular response, strategies to immobilize such signals within a biomaterial offer the opportunity to optimize efficiency and to explore spatially defined patterning of such signals. Here we describe the use of benzophenone (BP) photolithography to decorate three-dimensional collagen-glycosaminoglycan (CG) scaffolds with VEGF in a spatially defined manner. In this effort we demonstrate functional patterning of a known agonist of vascular remodeling and directly observe phenotypic effects induced by this immobilized cue. VEGF was successfully patterned in both stripes and square motifs across the scaffold with high specificity (on:off pattern signal). The depth of patterning was determined to extend up to 500 μm into the scaffold microstructure. Notably, photopatterned VEGF retained native functionality as it was shown to induce morphological changes in human umbilical vein cells indicative of early vasculogenesis. Immobilized VEGF led to greater cell infiltration into the scaffold and the formation of immature vascular network structures. Ultimately, these results suggest that BP-mediated photolithography is a facile method to spatially control the presentation of instructive biological cues to cells within CG scaffolds.
Collapse
|
48
|
Leszczak V, Place LW, Franz N, Popat KC, Kipper MJ. Nanostructured biomaterials from electrospun demineralized bone matrix: a survey of processing and crosslinking strategies. ACS APPLIED MATERIALS & INTERFACES 2014; 6:9328-9337. [PMID: 24865253 DOI: 10.1021/am501700e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the design of scaffolds for tissue engineering biochemical function and nanoscale features are of particular interest. Natural polymers provide a wealth of biochemical function, but do not have the processability of synthetic polymers, limiting their ability to mimic the hierarchy of structures in the natural extracellular matrix. Thus, they are often combined with synthetic carrier polymers to enable processing. Demineralized bone matrix (DBM), a natural polymer, is allograft bone with inorganic material removed. DBM contains the protein components of bone, which includes adhesion ligands and osteoinductive signals, such as important growth factors. Herein we describe a novel method for tuning the nanostructure of DBM through electrospinning without the use of a carrier polymer. This work surveys solvents and solvent blends for electrospinning DBM. Blends of hexafluoroisopropanol and trifluoroacetic acid are studied in detail. The effects of DBM concentration and dissolution time on solution viscosity are also reported and correlated to observed differences in electrospun fiber morphology. We also present a survey of techniques to stabilize the resultant fibers with respect to aqueous environments. Glutaraldehyde vapor treatment is successful at maintaining both macroscopic and microscopic structure of the electrospun DBM fibers. Finally, we report results from tensile testing of stabilized DBM nanofiber mats, and preliminary evaluation of their cytocompatibility. The DBM nanofiber mats exhibit good cytocompatibility toward human dermal fibroblasts (HDF) in a 4-day culture; neither the electrospun solvents nor the cross-linking results in any measurable residual cytotoxicity toward HDF.
Collapse
Affiliation(s)
- Victoria Leszczak
- Department of Mechanical Engineering, ‡School of Biomedical Engineering, §Department of Biology, and ⊥Department of Chemical and Biological Engineering, Colorado State University , 1370 Campus Delivery, Fort Collins, Colorado, United States
| | | | | | | | | |
Collapse
|
49
|
Ingavle GC, Gehrke SH, Detamore MS. The bioactivity of agarose-PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan. Biomaterials 2014; 35:3558-70. [PMID: 24462353 PMCID: PMC3936106 DOI: 10.1016/j.biomaterials.2014.01.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/01/2014] [Indexed: 10/25/2022]
Abstract
Our previous reports of interpenetrating networks (IPNs) have demonstrated drastic improvements in mechanical performance relative to individual constituent networks while maintaining viability of encapsulated cells. The current study investigated whether covalent linkage of RGD to the poly(ethylene glycol) diacrylate (PEGDA) network could improve upon cell viability and performance of agarose-PEGDA IPNs compared to unmodified IPNs (control) and to IPNs with different concentrations of physically entrapped aggrecan, providing a point of comparison to previous work. The inclusion of RGD or aggrecan generally did not adversely affect mechanical performance, and significantly improved chondrocyte viability and performance. Although both 4 and 100 μg/mL of aggrecan improved cell viability, only 100 μg/mL aggrecan was clearly beneficial to improving biosynthesis, whereas 100 μg/mL of RGD was beneficial to both chondrocyte viability and biosynthesis. Interestingly, clustering of cells within the IPNs with RGD and the higher aggrecan concentration were observed, likely indicating cell migration and/or preferred regional proliferation. This clustering resulted in a clearly visible enhancement of matrix production compared to the other IPNs. With this cell migration, we also observed significant cell proliferation and matrix synthesis beyond the periphery of the IPN, which could have important implications in facilitating integration with surrounding cartilage in vivo. With RGD and aggrecan (at its higher concentration) providing substantial and comparable improvements in cell performance, RGD would be the recommended bioactive signal for this particular IPN formulation and cell source given the significant cost savings and potentially more straightforward regulatory pathway in commercialization.
Collapse
Affiliation(s)
- Ganesh C Ingavle
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045-7609, USA.
| | - Stevin H Gehrke
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045-7609, USA.
| | - Michael S Detamore
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045-7609, USA.
| |
Collapse
|
50
|
Mohan N, Gupta V, Sridharan B, Sutherland A, Detamore MS. The potential of encapsulating "raw materials" in 3D osteochondral gradient scaffolds. Biotechnol Bioeng 2013; 111:829-41. [PMID: 24293388 DOI: 10.1002/bit.25145] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 10/16/2013] [Accepted: 11/01/2013] [Indexed: 12/12/2022]
Abstract
Scaffolds with continuous gradients in material composition and bioactive signals enable a smooth transition of properties at the interface. Components like chondroitin sulfate (CS) and bioactive glass (BG) in 3D scaffolds may serve as "raw materials" for synthesis of new extracellular matrix (ECM), and may have the potential to completely or partially replace expensive growth factors. We hypothesized that scaffolds with gradients of ECM components would enable superior performance of engineered constructs. Raw material encapsulation altered the appearance, structure, porosity, and degradation of the scaffolds. They allowed the scaffolds to better retain their 3D structure during culture and provided a buffering effect to the cells in culture. Following seeding of rat mesenchymal stem cells, there were several instances where glycosaminoglycan (GAG), collagen, or calcium contents were higher with the scaffolds containing raw materials (CS or BG) than with those containing transforming growth factor (TGF)-β3 or bone morphogenetic protein (BMP)-2. It was also noteworthy that a combination of both CS and TGF-β3 increased the secretion of collagen type II. Moreover, cells seeded in scaffolds containing opposing gradients of CS/TGF-β3 and BG/BMP-2 produced clear regional variations in the secretion of tissue-specific ECM. The study demonstrated raw materials have the potential to create a favorable microenvironment for cells; they can significantly enhance the synthesis of certain extracellular matrix (ECM) components when compared to expensive growth factors; either alone or in combination with growth factors they can enhance the secretion of tissue specific matrix proteins. Raw materials are promising candidates that can be used to either replace or be used in combination with growth factors. Success with raw materials in lieu of growth factors could have profound implications in terms of lower cost and faster regulatory approval for more rapid translation of regenerative medicine products to the clinic.
Collapse
Affiliation(s)
- Neethu Mohan
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | | | | | | | | |
Collapse
|