1
|
Danceanu-Zara CM, Petrovici A, Labusca L, Minuti AE, Stavila C, Plamadeala P, Tiron CE, Aniţă D, Aniţă A, Lupu N. Collection, Establishment and Assessment of Complex Human Osteocartilaginous Explants for Modeling Osteoarthritis. Biomedicines 2024; 12:2406. [PMID: 39457719 PMCID: PMC11504061 DOI: 10.3390/biomedicines12102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
With the increasing burden of osteoarthritis worldwide, cost efficient and reliable models are needed to enable the development of innovative therapies or therapeutic interventions. Ex vivo models have been identified as valuable modalities in translational research, bridging the gap between in vitro and in vivo models. Osteocartilaginous explants from Osteoarthritis (OA) patients offer an exquisite opportunity for studying OA progression and testing novel therapies. We describe the protocol for establishing human osteocartilaginous explants with or without co-culture of homologous synovial tissue. Furthermore, a detailed protocol for the assessment of explanted tissue in terms of protein content using Western blot and immunohistochemistry is provided. Commentaries regarding the technique of choice, possible variations and expected results are inserted.
Collapse
Affiliation(s)
- Camelia-Mihaela Danceanu-Zara
- National Institute of Research and Development in Technical Physics, 700050 Iasi, Romania; (C.-M.D.-Z.); (A.E.M.); (C.S.); (N.L.)
- Transcend Center Regional Oncology Institute, 700483 Iasi, Romania;
| | - Adriana Petrovici
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Faculty of Veterinary Medicine, Iași University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (A.P.); (D.A.); (A.A.)
| | - Luminita Labusca
- National Institute of Research and Development in Technical Physics, 700050 Iasi, Romania; (C.-M.D.-Z.); (A.E.M.); (C.S.); (N.L.)
- Orthopedics and Trauma Clinic, County Emergency Hospital, 700111 Iasi, Romania
| | - Anca Emanuela Minuti
- National Institute of Research and Development in Technical Physics, 700050 Iasi, Romania; (C.-M.D.-Z.); (A.E.M.); (C.S.); (N.L.)
| | - Cristina Stavila
- National Institute of Research and Development in Technical Physics, 700050 Iasi, Romania; (C.-M.D.-Z.); (A.E.M.); (C.S.); (N.L.)
| | - Petru Plamadeala
- Pathology Department, Saint Mary‘s Children Hospital, 700309 Iasi, Romania;
| | | | - Dragoş Aniţă
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Faculty of Veterinary Medicine, Iași University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (A.P.); (D.A.); (A.A.)
| | - Adriana Aniţă
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Faculty of Veterinary Medicine, Iași University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (A.P.); (D.A.); (A.A.)
| | - Nicoleta Lupu
- National Institute of Research and Development in Technical Physics, 700050 Iasi, Romania; (C.-M.D.-Z.); (A.E.M.); (C.S.); (N.L.)
| |
Collapse
|
2
|
Cramer EEA, Hermsen KCJ, Kock LM, Ito K, Hofmann S. Culture system for longitudinal monitoring of bone dynamics ex vivo. Biotechnol Bioeng 2024. [PMID: 39295202 DOI: 10.1002/bit.28848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/19/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024]
Abstract
To quantify and visualize both bone formation and resorption within osteochondral explants cultured ex vivo is challenging with the current analysis techniques. An approach that enables monitoring of bone remodeling dynamics is longitudinal microcomputed tomography (µCT), a non-destructive technique that relies on repeated µCT scanning and subsequent registration of consecutive scans. In this study, a two-compartment culture system suitable for osteochondral explants that allowed for µCT scanning during ex vivo culture was established. Explants were scanned repeatedly in a fixed orientation, which allowed assessment of bone remodeling due to adequate image registration. Using this method, bone formation was found to be restricted to the outer surfaces when cultured statically. To demonstrate that the culture system could capture differences in bone remodeling, explants were cultured statically and under dynamic compression as loading promotes osteogenesis. No quantitative differences between static and dynamic culture were revealed. Still, only in dynamic conditions, bone formation was visualized on trabecular surfaces located within the inner cores, suggesting enhanced bone formation towards the center of the explants upon mechanical loading. Taken together, the ex vivo culture system in combination with longitudinal µCT scanning and subsequent registration of images demonstrated potential for evaluating bone remodeling within explants.
Collapse
Affiliation(s)
- Esther E A Cramer
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Kim C J Hermsen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Linda M Kock
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- LifeTec Group BV, Eindhoven, The Netherlands
| | - Keita Ito
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Sandra Hofmann
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
3
|
Parasuraman G, Amirtham SM, Francis DV, Livingston A, Ramasamy B, Sathishkumar S, Vinod E. Evaluation of Chondral Defect Repair Using Human Fibronectin Adhesion Assay-Derived Chondroprogenitors Suspended in Lyophilized Fetal Collagen Scaffold: An Ex Vivo Osteochondral Unit Model Study. Indian J Orthop 2024; 58:991-1000. [PMID: 39087036 PMCID: PMC11286923 DOI: 10.1007/s43465-024-01192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/22/2024] [Indexed: 08/02/2024]
Abstract
Introduction Chondral defect repair is challenging due to a scarcity of reparative cells and the need to fill a large surface area, compounded by the absence of self-healing mechanisms. Fibronectin adhesion assay-derived chondroprogenitors (FAA-CPs) have emerged as a promising alternative with enhanced chondrogenic ability and reduced hypertrophy. De-cellularized bio-scaffolds are reported to act as extracellular matrix, mimicking the structural and functional characteristics of native tissue, thereby facilitating cell attachment and differentiation. This study primarily assessed the synergistic effect of FAA-CPs suspended in fetal cartilage-derived collagen-containing scaffolds in repairing chondral defects. Methodology The de-cellularized and lyophilized fetal collagen was prepared from the tibio-femoral joint of a 36 + 4-week gestational age fetus. FAA-CPs were isolated from osteoarthritic cartilage samples (n = 3) and characterized. In ex vivo analysis, FAA-CPs at a density of 1 × 106 cells were suspended in the lyophilized scaffold and placed into the chondral defects created in the Osteochondral Units and harvested on the 35th day for histological examination. Results The lyophilized scaffold of de-cellularized fetal cartilage with FAA-CPs demonstrated effective healing of the critical size chondral defect. This was evidenced by a uniform distribution of cells, a well-organized collagen-fibrillar network, complete filling of the defect with alignment to the surface, and favorable integration with the adjacent cartilage. However, these effects were less pronounced in the plain scaffold control group and no demonstrable repair observed in the empty defect group. Conclusion This study suggests the synergistic potential of FAA-CPs and collagen scaffold for chondral repair which needs to be further explored for clinical therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s43465-024-01192-6.
Collapse
Affiliation(s)
- Ganesh Parasuraman
- Centre for Stem Cell Research, (A Unit of InStem, Bengaluru), Christian Medical College, Vellore, India
| | - Soosai Manickam Amirtham
- Department of Physiology/Centre for Stem Cell Research, Christian Medical College, Vellore, India
| | | | - Abel Livingston
- Department of Orthopaedics, Christian Medical College, Vellore, India
| | - Boopalan Ramasamy
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, Australia
| | - Solomon Sathishkumar
- Department of Physiology/Centre for Stem Cell Research, Christian Medical College, Vellore, India
| | - Elizabeth Vinod
- Centre for Stem Cell Research, (A Unit of InStem, Bengaluru), Christian Medical College, Vellore, India
- Department of Physiology/Centre for Stem Cell Research, Christian Medical College, Vellore, India
| |
Collapse
|
4
|
J JL, Parasuraman G, Amirtham SM, Francis DV, Livingston A, Goyal A, Ramasamy B, Sathishkumar S, Vinod E. Comparative assessment of chondral defect repair using migratory chondroprogenitors suspended in either gelled or freeze-dried platelet-rich plasma: An in vitro and ex vivo human osteochondral unit model study. Knee 2024; 48:105-119. [PMID: 38565037 DOI: 10.1016/j.knee.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/23/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Chondroprogenitors, with enhanced chondrogenic potential, have emerged to be a promising alternative for cell-based therapy in cartilage repair. Platelet-rich plasma (PRP), widely used for intra-articular treatment, has a short half-life. Freeze-dried PRP (FD-PRP), with an extended half-life and retained growth factors, is gaining attention. This study compares the efficacy of Migratory Chondroprogenitors (MCPs) in gelled PRP and FD-PRP using in-vitro and ex-vivo models, assessing FD-PRP as a potential off-the-shelf option for effective cartilage repair. METHODOLOGY MCPs were isolated from osteoarthritic cartilage samples (n = 3), characterized through FACS and RT-PCR. For in-vitro analysis, cells were loaded into gelled PRP and FD-PRP scaffolds at a density of 1x106 cells per scaffold. Trilineage differentiation studies and live-dead assays were conducted on MCPs using Calcein AM/Propidium Homodimer-1. In ex-vivo analysis, MCPs of the same density were added to Osteochondral Units (OCU) with chondral defects containing PRP gel and FD-PRP scaffolds, harvested on the 15th and 35th days for histological examination. Controls included cell-free scaffolds. RESULTS Our in-vitro analysis demonstrates the robust viability of MCPs in both scaffolds, with no discernible impact on their differentiation capacity. Ex-vivo analysis of the OCU for cartilage repair showed that the chondrogenic potential characterized by the accumulation of extracellular matrix containing glycosaminoglycans and collagen type II production (with no alteration in collagen type X), was observed to be better with the gel PRP and the gel PRP containing MCP groups. CONCLUSIONS These findings support the preference for gel PRP as a superior synergistic scaffold for chondroprogenitor delivery.
Collapse
Affiliation(s)
- Jeya Lisha J
- Department of Physiology, Christian Medical College, Vellore, India.
| | - Ganesh Parasuraman
- Centre for Stem Cell Research, (A Unit of InStem. Bengaluru), Christian Medical College, Vellore, India.
| | | | | | - Abel Livingston
- Department of Orthopaedics, Christian Medical College, Vellore, India.
| | - Anjali Goyal
- Department of Pathology, Smt NHL Municipal Medical College, Ahmedabad, India.
| | - Boopalan Ramasamy
- Faculty of Health and Medical Sciences, The University of Adelaide, Australia; Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, Australia.
| | | | - Elizabeth Vinod
- Department of Physiology, Christian Medical College, Vellore, India; Centre for Stem Cell Research, (A Unit of InStem. Bengaluru), Christian Medical College, Vellore, India.
| |
Collapse
|
5
|
Trengove A, Duchi S, Onofrillo C, Sooriyaaratchi D, Di Bella C, O'Connor AJ. Bridging bench to body: ex vivo models to understand articular cartilage repair. Curr Opin Biotechnol 2024; 86:103065. [PMID: 38301593 DOI: 10.1016/j.copbio.2024.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
With little to no ability to self-regenerate, human cartilage defects of the knee remain a major clinical challenge. Tissue engineering strategies include delivering specific types of cells and biomaterials to the injured cartilage for restoration of architecture and function. Pre-clinical models to test the efficacy of the therapies come with high costs and ethical issues, and imperfect prediction of performance in humans. Ex vivo models represent an alternative avenue to trial cartilage tissue engineering. Defined as viable explanted cartilage samples, ex vivo models can be cultured with a cell-laden biomaterial or tissue-engineered construct to evaluate cartilage repair. Though human and animal ex vivo models are currently used in the field, there is a need for alternative methods to assess the strength of integration, to increase throughput and manage variability and to optimise and standardise culture conditions, enhancing the utility of these models overall.
Collapse
Affiliation(s)
- Anna Trengove
- Department of Biomedical Engineering, The Graeme Clark Institute, The University of Melbourne, Victoria, Australia; BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Serena Duchi
- BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia; Department of Orthopaedic Surgery, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Carmine Onofrillo
- BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia; Department of Orthopaedic Surgery, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Dulani Sooriyaaratchi
- Department of Biomedical Engineering, The Graeme Clark Institute, The University of Melbourne, Victoria, Australia; BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Claudia Di Bella
- BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia; Department of Orthopaedic Surgery, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia; Department of Surgery, The University of Melbourne, Victoria, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, The Graeme Clark Institute, The University of Melbourne, Victoria, Australia; BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia.
| |
Collapse
|
6
|
Cramer EEA, de Wildt BWM, Hendriks JGE, Ito K, Hofmann S. Integration of osteoclastogenesis through addition of PBMCs in human osteochondral explants cultured ex vivo. Bone 2024; 178:116935. [PMID: 37852425 DOI: 10.1016/j.bone.2023.116935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
The preservation of tissue specific cells in their native 3D extracellular matrix in bone explants provides a unique platform to study remodeling. Thus far, studies involving bone explant cultures showed a clear focus on achieving bone formation and neglected osteoclast activity and resorption. To simulate the homeostatic bone environment ex vivo, both key elements of bone remodeling need to be represented. This study aimed to assess and include osteoclastogenesis in human osteochondral explants through medium supplementation with RANKL and M-CSF and addition of peripheral blood mononuclear cells (PBMCs), providing osteoclast precursors. Osteochondral explants were freshly harvested from human femoral heads obtained from hip surgeries and cultured for 20 days in a two-compartment culture system. Osteochondral explants preserved viability and cellular abundance over the culture period, but histology demonstrated that resident osteoclasts were no longer present after 4 days of culture. Quantitative extracellular tartrate resistant acid phosphatase (TRAP) analysis confirmed depletion of osteoclast activity on day 4 even when stimulated with RANKL and M-CSF. Upon addition of PBMCs, a significant upregulation of TRAP activity was measured from day 10 onwards. Evaluation of bone loss trough μCT registration and measurement of extracellular cathepsin K activity revealed indications of enhanced resorption upon addition of PBMCs. Based on the results we suggest that an external source of osteoclast precursors, such as PBMCs, needs to be added in long-term bone explant cultures to maintain osteoclastic activity, and bone remodeling.
Collapse
Affiliation(s)
- Esther E A Cramer
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Bregje W M de Wildt
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Johannes G E Hendriks
- Department of Orthopedic Surgery & Trauma, Máxima Medical Center Eindhoven/Veldhoven, 5631 BM Eindhoven, the Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.
| |
Collapse
|
7
|
Xu J, Fahmy-Garcia S, Wesdorp MA, Kops N, Forte L, De Luca C, Misciagna MM, Dolcini L, Filardo G, Labberté M, Vancíková K, Kok J, van Rietbergen B, Nickel J, Farrell E, Brama PAJ, van Osch GJVM. Effectiveness of BMP-2 and PDGF-BB Adsorption onto a Collagen/Collagen-Magnesium-Hydroxyapatite Scaffold in Weight-Bearing and Non-Weight-Bearing Osteochondral Defect Bone Repair: In Vitro, Ex Vivo and In Vivo Evaluation. J Funct Biomater 2023; 14:jfb14020111. [PMID: 36826910 PMCID: PMC9961206 DOI: 10.3390/jfb14020111] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Despite promising clinical results in osteochondral defect repair, a recently developed bi-layered collagen/collagen-magnesium-hydroxyapatite scaffold has demonstrated less optimal subchondral bone repair. This study aimed to improve the bone repair potential of this scaffold by adsorbing bone morphogenetic protein 2 (BMP-2) and/or platelet-derived growth factor-BB (PDGF-BB) onto said scaffold. The in vitro release kinetics of BMP-2/PDGF-BB demonstrated that PDGF-BB was burst released from the collagen-only layer, whereas BMP-2 was largely retained in both layers. Cell ingrowth was enhanced by BMP-2/PDFG-BB in a bovine osteochondral defect ex vivo model. In an in vivo semi-orthotopic athymic mouse model, adding BMP-2 or PDGF-BB increased tissue repair after four weeks. After eight weeks, most defects were filled with bone tissue. To further investigate the promising effect of BMP-2, a caprine bilateral stifle osteochondral defect model was used where defects were created in weight-bearing femoral condyle and non-weight-bearing trochlear groove locations. After six months, the adsorption of BMP-2 resulted in significantly less bone repair compared with scaffold-only in the femoral condyle defects and a trend to more bone repair in the trochlear groove. Overall, the adsorption of BMP-2 onto a Col/Col-Mg-HAp scaffold reduced bone formation in weight-bearing osteochondral defects, but not in non-weight-bearing osteochondral defects.
Collapse
Affiliation(s)
- Jietao Xu
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Shorouk Fahmy-Garcia
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Marinus A. Wesdorp
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Nicole Kops
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Lucia Forte
- Fin-Ceramica Faenza S.p.A, 48018 Faenza, Italy
| | | | | | | | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Rizzoli Orthopaedic Institute, 40136 Bologna, Italy
| | - Margot Labberté
- School of Veterinary Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Karin Vancíková
- School of Veterinary Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Joeri Kok
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Bert van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Joachim Nickel
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Pieter A. J. Brama
- School of Veterinary Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Gerjo J. V. M. van Osch
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
- Correspondence: ; Tel.: +31-107043661
| |
Collapse
|
8
|
Tolabi H, Davari N, Khajehmohammadi M, Malektaj H, Nazemi K, Vahedi S, Ghalandari B, Reis RL, Ghorbani F, Oliveira JM. Progress of Microfluidic Hydrogel-Based Scaffolds and Organ-on-Chips for the Cartilage Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2208852. [PMID: 36633376 DOI: 10.1002/adma.202208852] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/09/2022] [Indexed: 05/09/2023]
Abstract
Cartilage degeneration is among the fundamental reasons behind disability and pain across the globe. Numerous approaches have been employed to treat cartilage diseases. Nevertheless, none have shown acceptable outcomes in the long run. In this regard, the convergence of tissue engineering and microfabrication principles can allow developing more advanced microfluidic technologies, thus offering attractive alternatives to current treatments and traditional constructs used in tissue engineering applications. Herein, the current developments involving microfluidic hydrogel-based scaffolds, promising structures for cartilage regeneration, ranging from hydrogels with microfluidic channels to hydrogels prepared by the microfluidic devices, that enable therapeutic delivery of cells, drugs, and growth factors, as well as cartilage-related organ-on-chips are reviewed. Thereafter, cartilage anatomy and types of damages, and present treatment options are briefly overviewed. Various hydrogels are introduced, and the advantages of microfluidic hydrogel-based scaffolds over traditional hydrogels are thoroughly discussed. Furthermore, available technologies for fabricating microfluidic hydrogel-based scaffolds and microfluidic chips are presented. The preclinical and clinical applications of microfluidic hydrogel-based scaffolds in cartilage regeneration and the development of cartilage-related microfluidic chips over time are further explained. The current developments, recent key challenges, and attractive prospects that should be considered so as to develop microfluidic systems in cartilage repair are highlighted.
Collapse
Affiliation(s)
- Hamidreza Tolabi
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, 15875-4413, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 15875-4413, Iran
| | - Niyousha Davari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran
| | - Mehran Khajehmohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Yazd University, Yazd, 89195-741, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, 8916877391, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg, 9220, Denmark
| | - Katayoun Nazemi
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Samaneh Vahedi
- Department of Material Science and Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, 34149-16818, Iran
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Farnaz Ghorbani
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058, Erlangen, Germany
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| |
Collapse
|
9
|
Vinod E, Padmaja K, Ramasamy B, Sathishkumar S. Systematic review of articular cartilage derived chondroprogenitors for cartilage repair in animal models. J Orthop 2023; 35:43-53. [PMID: 36387762 PMCID: PMC9647330 DOI: 10.1016/j.jor.2022.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Purpose of research The potential for cartilage repair using articular cartilage derived chondroprogenitors has recently gained popularity due to promising results from in-vitro and in-vivo studies. Translation of results from in-vitro to a clinical setting requires a sufficient number of animal studies displaying significant positive outcomes. Thus, this systematic review comprehensively discusses the available literature (January 2000-March 2022) on animal models employing chondroprogenitors for cartilage regeneration, highlighting the results and limitations associated with their use.As per Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a web-based search of PubMed and SCOPUS databases was performed for the following terminologies: "chondroprogenitors", "cartilage-progenitors", and "chondrogenic-progenitors", which yielded 528 studies. A total of 12 studies met the standardized inclusion criteria, which included chondroprogenitors derived from hyaline cartilage isolated using fibronectin adhesion assay (FAA) or migratory assay from explant cultures, further analyzing the role of chondroprogenitors using in-vivo animal models. Principal results Analysis revealed that FAA chondroprogenitors demonstrated the ability to attenuate osteoarthritis, repair chondral defects and form stable cartilage in animal models. They displayed better outcomes than bone marrow-derived mesenchymal stem cells but were comparable to chondrocytes. Migratory chondroprogenitors also demonstrated superiority to BM-MSCs in terms of higher chondrogenesis and lower hypertrophy, although a direct comparison to FAA-CPs and other cell types is warranted. Major conclusions Chondroprogenitors exhibit superior properties for chondrogenic repair; however, limited data on animal studies necessitates further studies to optimize their use before clinical translation for neo-cartilage formation.
Collapse
Affiliation(s)
- Elizabeth Vinod
- Department of Physiology, Christian Medical College, Vellore, India
- Centre for Stem Cell Research, (A unit of InStem, Bengaluru), Christian Medical College, Vellore, India
| | - Kawin Padmaja
- Department of Physiology, Christian Medical College, Vellore, India
| | - Boopalan Ramasamy
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | | |
Collapse
|
10
|
Vainieri ML, Grad S. Osteochondral Explant Isolation and Culture Under a Compression and Shear Bioreactor. Methods Mol Biol 2023; 2598:325-336. [PMID: 36355302 DOI: 10.1007/978-1-0716-2839-3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Osteochondral explants harvested from different species are valuable preclinical ex vivo models for tissue engineering research. In this chapter, we describe the isolation of osteochondral plugs from bovine stifle joints, followed by defect creation, and plug preparation in a straightforward manner before mechanical loading using a compression and shear bioreactor. The method can be adapted to isolate osteochondral plugs from any animal species and to load explants in any type of bioreactor.
Collapse
Affiliation(s)
| | - Sibylle Grad
- AO Research Institute Davos, Davos Platz, Switzerland.
| |
Collapse
|
11
|
Merrild NG, Holzmann V, Ariosa-Morejon Y, Faull PA, Coleman J, Barrell WB, Young G, Fischer R, Kelly DJ, Addison O, Vincent TL, Grigoriadis AE, Gentleman E. Local depletion of proteoglycans mediates cartilage tissue repair in an ex vivo integration model. Acta Biomater 2022; 149:179-188. [PMID: 35779773 DOI: 10.1016/j.actbio.2022.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/25/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
Abstract
Successfully replacing damaged cartilage with tissue-engineered constructs requires integration with the host tissue and could benefit from leveraging the native tissue's intrinsic healing capacity; however, efforts are limited by a poor understanding of how cartilage repairs minor defects. Here, we investigated the conditions that foster natural cartilage tissue repair to identify strategies that might be exploited to enhance the integration of engineered/grafted cartilage with host tissue. We damaged porcine articular cartilage explants and using a combination of pulsed SILAC-based proteomics, ultrastructural imaging, and catabolic enzyme blocking strategies reveal that integration of damaged cartilage surfaces is not driven by neo-matrix synthesis, but rather local depletion of proteoglycans. ADAMTS4 expression and activity are upregulated in injured cartilage explants, but integration could be reduced by inhibiting metalloproteinase activity with TIMP3. These observations suggest that catabolic enzyme-mediated proteoglycan depletion likely allows existing collagen fibrils to undergo cross-linking, fibrillogenesis, or entanglement, driving integration. Catabolic enzymes are often considered pathophysiological markers of osteoarthritis. Our findings suggest that damage-induced upregulation of metalloproteinase activity may be a part of a healing response that tips towards tissue destruction under pathological conditions and in osteoarthritis, but could also be harnessed in tissue engineering strategies to mediate repair. STATEMENT OF SIGNIFICANCE: Cartilage tissue engineering strategies require graft integration with the surrounding tissue; however, how the native tissue repairs minor injuries is poorly understood. We applied pulsed SILAC-based proteomics, ultrastructural imaging, and catabolic enzyme blocking strategies to a porcine cartilage explant model and found that integration of damaged cartilage surfaces is driven by catabolic enzyme-mediated local depletion of proteoglycans. Although catabolic enzymes have been implicated in cartilage destruction in osteoarthritis, our findings suggest that damage-induced upregulation of metalloproteinase activity may be a part of a healing response that tips towards tissue destruction under pathological conditions. They also suggest that this natural cartilage tissue repair process could be harnessed in tissue engineering strategies to enhance the integration of engineered cartilage with host tissue.
Collapse
Affiliation(s)
- Nicholas Groth Merrild
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Viktoria Holzmann
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Yoanna Ariosa-Morejon
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Peter A Faull
- College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer Coleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - William B Barrell
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Gloria Young
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Owen Addison
- Centre for Oral, Clinical and Translational Sciences, King's College London, London SE1 9RT, UK
| | - Tonia L Vincent
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | | | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK.
| |
Collapse
|
12
|
Kleuskens MWA, Crispim JF, van Donkelaar CC, Janssen RPA, Ito K. Evaluating Initial Integration of Cell-Based Chondrogenic Constructs in Human Osteochondral Explants. Tissue Eng Part C Methods 2022; 28:34-44. [PMID: 35018813 DOI: 10.1089/ten.tec.2021.0196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Integration of an implant with the surrounding tissue is a major challenge in cartilage regeneration. It is usually assessed with in vivo animal studies at the end-stage of implant development. To reduce animal experimentation and at the same time increase screening throughput and speed up implant development, this study examined whether integration of allogeneic cell-based implants with the surrounding native cartilage could be demonstrated in an ex vivo human osteochondral culture model. Chondrocytes were isolated from smooth cartilage tissue of fresh human tibial plateaus and condyles. They were expanded for 12 days either in three-dimensional spinner flask cultures to generate organoids, or in two-dimensional culture flasks for standard cell expansion. Three implant groups were created (fibrin+organoids, fibrin+cells, and fibrin only) and used to fill a Ø 6 mm full-depth chondral defect created in human osteochondral explants (Ø 10 mm, bone length cut to 4 mm) harvested from a second set of fresh human tibial plateaus. Explants were cultured for 1 or 28 days in a double-chamber culture platform. Histology showed that after 28 days the organoids on the interface of the defect remodeled and merged, and cells migrated through the fibrin glue bridging the space between the organoids and between the organoids and the native cartilage. For both conditions, newly formed tissue rich in proteoglycans and collagen type II was present mainly on the edges and in the corners of the defect. In these matrix-rich areas, cells resided in lacunae and the newly formed tissue integrated with the surrounding native cartilage. Biochemical analysis revealed a statistically significant effect of culture time on glycosaminoglycan (GAG) content, and showed a higher hydroxyproline (HYP) content for organoid-filled implants compared with cell-filled implants at both timepoints. This ex vivo human osteochondral culture system provides possibilities for exploration and identification of promising implant strategies based on evaluation of integration and matrix production under more controlled experimental conditions than possible in vivo.
Collapse
Affiliation(s)
- Meike W A Kleuskens
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - João F Crispim
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - Corrinus C van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - Rob P A Janssen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands.,Department of Orthopaedic Surgery and Trauma, Máxima Medical Center, Eindhoven-Veldhoven, The Netherlands.,Department of Paramedical Sciences, Fontys University of Applied Sciences, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| |
Collapse
|
13
|
Doyle SE, Snow F, Duchi S, O’Connell CD, Onofrillo C, Di Bella C, Pirogova E. 3D Printed Multiphasic Scaffolds for Osteochondral Repair: Challenges and Opportunities. Int J Mol Sci 2021; 22:12420. [PMID: 34830302 PMCID: PMC8622524 DOI: 10.3390/ijms222212420] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Osteochondral (OC) defects are debilitating joint injuries characterized by the loss of full thickness articular cartilage along with the underlying calcified cartilage through to the subchondral bone. While current surgical treatments can provide some relief from pain, none can fully repair all the components of the OC unit and restore its native function. Engineering OC tissue is challenging due to the presence of the three distinct tissue regions. Recent advances in additive manufacturing provide unprecedented control over the internal microstructure of bioscaffolds, the patterning of growth factors and the encapsulation of potentially regenerative cells. These developments are ushering in a new paradigm of 'multiphasic' scaffold designs in which the optimal micro-environment for each tissue region is individually crafted. Although the adoption of these techniques provides new opportunities in OC research, it also introduces challenges, such as creating tissue interfaces, integrating multiple fabrication techniques and co-culturing different cells within the same construct. This review captures the considerations and capabilities in developing 3D printed OC scaffolds, including materials, fabrication techniques, mechanical function, biological components and design.
Collapse
Affiliation(s)
- Stephanie E. Doyle
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
| | - Finn Snow
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
| | - Serena Duchi
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Cathal D. O’Connell
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
| | - Carmine Onofrillo
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Claudia Di Bella
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Orthopaedics, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
| |
Collapse
|
14
|
Andrés Sastre E, Nossin Y, Jansen I, Kops N, Intini C, Witte-Bouma J, van Rietbergen B, Hofmann S, Ridwan Y, Gleeson JP, O'Brien FJ, Wolvius EB, van Osch GJVM, Farrell E. A new semi-orthotopic bone defect model for cell and biomaterial testing in regenerative medicine. Biomaterials 2021; 279:121187. [PMID: 34678648 DOI: 10.1016/j.biomaterials.2021.121187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
In recent decades, an increasing number of tissue engineered bone grafts have been developed. However, expensive and laborious screenings in vivo are necessary to assess the safety and efficacy of their formulations. Rodents are the first choice for initial in vivo screens but their size limits the dimensions and number of the bone grafts that can be tested in orthotopic locations. Here, we report the development of a refined murine subcutaneous model for semi-orthotopic bone formation that allows the testing of up to four grafts per mouse one order of magnitude greater in volume than currently possible in mice. Crucially, these defects are also "critical size" and unable to heal within the timeframe of the study without intervention. The model is based on four bovine bone implants, ring-shaped, where the bone healing potential of distinct grafts can be evaluated in vivo. In this study we demonstrate that promotion and prevention of ossification can be assessed in our model. For this, we used a semi-automatic algorithm for longitudinal micro-CT image registration followed by histological analyses. Taken together, our data supports that this model is suitable as a platform for the real-time screening of bone formation, and provides the possibility to study bone resorption, osseointegration and vascularisation.
Collapse
Affiliation(s)
- E Andrés Sastre
- Department of Oral and Maxillofacial Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Y Nossin
- Department of Otorhinolaryngology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - I Jansen
- Department of Oral and Maxillofacial Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands; Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - N Kops
- Department of Orthopaedics and Sports Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - C Intini
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J Witte-Bouma
- Department of Oral and Maxillofacial Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - B van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Center, Maastricht, the Netherlands
| | - S Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Y Ridwan
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - J P Gleeson
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - F J O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; SFI Advanced Materials and Bioengineering Research (AMBER) Center, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Trinity Center for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - E B Wolvius
- Department of Oral and Maxillofacial Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - G J V M van Osch
- Department of Otorhinolaryngology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Orthopaedics and Sports Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Delft, the Netherlands
| | - E Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
15
|
Kleuskens MWA, van Donkelaar CC, Kock LM, Janssen RPA, Ito K. An ex vivo human osteochondral culture model. J Orthop Res 2021; 39:871-879. [PMID: 32592503 PMCID: PMC8048497 DOI: 10.1002/jor.24789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023]
Abstract
To reduce animal experimentation and to overcome translational issues in cartilage tissue engineering, there is a need to develop an ex vivo human tissue-based approach. This study aims to demonstrate that a human osteochondral explant at different stages of osteoarthritis (OA) can be kept in long-term culture while preserving its viability and composition. Osteochondral explants with either a smooth or fibrillated cartilage surface, representing different OA stages, were harvested from fresh human tibial plateaus. Explants were cultured for 2 or 4 weeks in a double-chamber culture platform. The biochemical content of the cartilage of cultured explants did not significantly change over a period of 4 weeks and these findings were supported by histology. Chondrocytes mostly preserved their metabolic activity during culture and active bone and marrow were found in the periphery of the explants, while metabolic activity was decreased in the bone core in cultured explants compared to fresh explants. In fibrillated explants, chondrocyte viability decreased in the periphery of the sample in cultured groups compared to fresh explants (fresh, 94 ± 6%; cultured, 64% ± 17%, 2 weeks, and 69% ± 17%, 4 weeks; P < .05). Although biochemical and histological results did not show changes within the cartilage tissue, the viability of the explants should be carefully controlled for each specific use. This system provides an alternative to explore drug treatment and implant performance under more controlled experimental conditions than possible in vivo, in combination with clinically relevant human osteochondral tissue.
Collapse
Affiliation(s)
- Meike W. A. Kleuskens
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Corrinus C. van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Linda M. Kock
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands,LifeTec Group BVEindhovenThe Netherlands
| | - Rob P. A. Janssen
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands,Orthopaedic Center MáximaMáxima Medical Center Eindhoven/VeldhovenEindhovenThe Netherlands,Value‐Based Health Care, Faculty of Paramedical SciencesFontys University of Applied SciencesEindhovenThe Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Novel therapies for damaged and diseased bone are being developed in a preclinical testing process consisting of in vitro cell experiments followed by in vivo animal studies. The in vitro results are often not representative of the results observed in vivo. This could be caused by the complexity of the natural bone environment that is missing in vitro. Ex vivo bone explant cultures provide a model in which cells are preserved in their native three-dimensional environment. Herein, it is aimed to review the current status of bone explant culture models in relation to their potential in complementing the preclinical evaluation process with specific attention paid to the incorporation of mechanical loading within ex vivo culture systems. RECENT FINDINGS Bone explant cultures are often performed with physiologically less relevant bone, immature bone, and explants derived from rodents, which complicates translatability into clinical practice. Mature bone explants encounter difficulties with maintaining viability, especially in static culture. The integration of mechanical stimuli was able to extend the lifespan of explants and to induce new bone formation. Bone explant cultures provide unique platforms for bone research and mechanical loading was demonstrated to be an important component in achieving osteogenesis ex vivo. However, more research is needed to establish a representative, reliable, and reproducible bone explant culture system that includes both components of bone remodeling, i.e., formation and resorption, in order to bridge the gap between in vitro and in vivo research in preclinical testing.
Collapse
Affiliation(s)
- E E A Cramer
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - K Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - S Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands.
| |
Collapse
|
17
|
Monaco G, El Haj AJ, Alini M, Stoddart MJ. Ex Vivo Systems to Study Chondrogenic Differentiation and Cartilage Integration. J Funct Morphol Kinesiol 2021; 6:E6. [PMID: 33466400 PMCID: PMC7838775 DOI: 10.3390/jfmk6010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Articular cartilage injury and repair is an issue of growing importance. Although common, defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity, which is largely due to its avascular nature. There is a critical need to better study and understand cellular healing mechanisms to achieve more effective therapies for cartilage regeneration. This article aims to describe the key features of cartilage which is being modelled using tissue engineered cartilage constructs and ex vivo systems. These models have been used to investigate chondrogenic differentiation and to study the mechanisms of cartilage integration into the surrounding tissue. The review highlights the key regeneration principles of articular cartilage repair in healthy and diseased joints. Using co-culture models and novel bioreactor designs, the basis of regeneration is aligned with recent efforts for optimal therapeutic interventions.
Collapse
Affiliation(s)
- Graziana Monaco
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
| | - Alicia J. El Haj
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
- Healthcare Technology Institute, Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
| | - Martin J. Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
| |
Collapse
|
18
|
Nippolainen E, Shaikh R, Virtanen V, Rieppo L, Saarakkala S, Töyräs J, Afara IO. Near Infrared Spectroscopy Enables Differentiation of Mechanically and Enzymatically Induced Cartilage Injuries. Ann Biomed Eng 2020. [PMID: 32300956 DOI: 10.1103/physrevb.97.115447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
This study evaluates the feasibility of near infrared (NIR) spectroscopy to distinguish between different cartilage injury types associated with post-traumatic osteoarthritis and idiopathic osteoarthritis (OA) induced by mechanical and enzymatic damages. Bovine osteochondral samples (n = 72) were subjected to mechanical (n = 24) and enzymatic (n = 36) damage; NIR spectral measurements were acquired from each sample before and after damage, and from a separate control group (n = 12). Biomechanical measurements were then conducted to determine the functional integrity of the samples. NIR spectral variations resulting from different damage types were investigated and the samples classified using partial least squares discriminant analysis (PLS-DA). Partial least squares regression (PLSR) was then employed to investigate the relationship between the NIR spectra and biomechanical properties of the samples. Results of the study demonstrate that substantial spectral changes occur in the region of 1700-2200 nm due to tissue damages, while differences between enzymatically and mechanically induced damages can be observed mainly in the region of 1780-1810 nm. We conclude that NIR spectroscopy, combined with multivariate analysis, is capable of discriminating between cartilage injuries that mimic idiopathic OA and traumatic injuries based on specific spectral features. This information could be useful in determining the optimal treatment strategy during cartilage repair in arthroscopy.
Collapse
Affiliation(s)
- Ervin Nippolainen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Rubina Shaikh
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Vesa Virtanen
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Lassi Rieppo
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Isaac O Afara
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
19
|
Vainieri ML, Alini M, Yayon A, van Osch GJVM, Grad S. Mechanical Stress Inhibits Early Stages of Endogenous Cell Migration: A Pilot Study in an Ex Vivo Osteochondral Model. Polymers (Basel) 2020; 12:polym12081754. [PMID: 32781503 PMCID: PMC7466115 DOI: 10.3390/polym12081754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 01/07/2023] Open
Abstract
Cell migration has a central role in osteochondral defect repair initiation and biomaterial-mediated regeneration. New advancements to reestablish tissue function include biomaterials and factors promoting cell recruitment, differentiation and tissue integration, but little is known about responses to mechanical stimuli. In the present pilot study, we tested the influence of extrinsic forces in combination with biomaterials releasing chemoattractant signals on cell migration. We used an ex vivo mechanically stimulated osteochondral defect explant filled with fibrin/hyaluronan hydrogel, in presence or absence of platelet-derived growth factor-BB or stromal cell-derived factor 1, to assess endogenous cell recruitment into the wound site. Periodic mechanical stress at early time point negatively influenced cell infiltration compared to unloaded samples, and the implementation of chemokines to increase cell migration was not efficient to overcome this negative effect. The gene expression at 15 days of culture indicated a marked downregulation of matrix metalloproteinase (MMP)13 and MMP3, a decrease of β1 integrin and increased mRNA levels of actin in osteochondral samples exposed to complex load. This work using an ex vivo osteochondral mechanically stimulated advanced platform demonstrated that recurrent mechanical stress at early time points impeded cell migration into the hydrogel, providing a unique opportunity to improve our understanding on management of joint injury.
Collapse
Affiliation(s)
- Maria L. Vainieri
- AO Research Institute Davos, 7270 Davos, Switzerland; (M.L.V.); (M.A.)
- Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands;
| | - Mauro Alini
- AO Research Institute Davos, 7270 Davos, Switzerland; (M.L.V.); (M.A.)
| | - Avner Yayon
- ProCore Ltd., Weizmann Science Park, 7 Golda Meir St., Ness Ziona 70400, Israel;
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands;
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
- Department of Biomedical Engineering, University of Technology Delft, 2628 CD Delft, The Netherlands
| | - Sibylle Grad
- AO Research Institute Davos, 7270 Davos, Switzerland; (M.L.V.); (M.A.)
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence: ; Tel.: +41-81-4142480
| |
Collapse
|
20
|
van Oirschot BAJA, Jansen JA, van de Ven CJJM, Geven EJW, Gossen JA. Evaluation of Collagen Membranes Coated with Testosterone and Alendronate to Improve Guided Bone Regeneration in Mandibular Bone Defects in Minipigs. J Oral Maxillofac Res 2020; 11:e4. [PMID: 33262883 PMCID: PMC7644271 DOI: 10.5037/jomr.2020.11304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/27/2020] [Indexed: 04/19/2023]
Abstract
OBJECTIVES The purpose of the present in vivo study was to evaluate whether pericard collagen membranes coated with ancillary amounts of testosterone and alendronate in a poly-lactic glycolic acid (PLGA) carrier as compared to uncoated membranes will improve early bone regeneration. MATERIAL AND METHODS In each of 16 minipigs, four standardized mandibular intraosseous defects were made bilaterally. The defects were filled with Bio-Oss® granules and covered with a non-coated or coated membrane. Membranes were spray-coated with 4 layers of PLGA containing testosterone and alendronate resulting in 20, 50 or 125 μg/cm2 of testosterone and 20 µg/cm2 alendronate (F20, F50, F125). Non-coated membranes served as controls (F0). Animals were sacrificed at 6 and 12 weeks after treatment. Qualitative and quantitative histological evaluations of bone regeneration were performed. Differences between groups were assessed by paired Student's t-test. RESULTS Light microscopical analysis showed new bone formation that was in close contact with the Bio-Oss® surface without an intervening non-mineralized tissue layer. Histomorphometric analysis of newly formed bone showed a significant 20% increase in area in the F125 coated membrane treated defects (40 [SD 10]%) compared to the F0 treated defects after 6 weeks (33 [SD 10]%, P = 0.013). At week 12, the total percentage of new bone was increased compared to week 6, but no increase in newly formed bone compared to F0 was observed. CONCLUSIONS The data from this in vivo study indicate that F125 collagen membranes coated with testosterone and alendronate resulted in superior bone formation (+24%) when normalized to control sites using uncoated membranes.
Collapse
Affiliation(s)
- Bart A J A van Oirschot
- Department of Dentistry - Biomaterials, Radboudumc, Radboud University Nijmegen, NijmegenThe Netherlands
| | - John A Jansen
- Department of Dentistry - Biomaterials, Radboudumc, Radboud University Nijmegen, NijmegenThe Netherlands
| | - Cindy J J M van de Ven
- Department of Dentistry - Biomaterials, Radboudumc, Radboud University Nijmegen, NijmegenThe Netherlands
- Osteo-Pharma BV, OssThe Netherlands
| | - Edwin J W Geven
- Department of Dentistry - Biomaterials, Radboudumc, Radboud University Nijmegen, NijmegenThe Netherlands
- Osteo-Pharma BV, OssThe Netherlands
| | - Jan A Gossen
- Department of Dentistry - Biomaterials, Radboudumc, Radboud University Nijmegen, NijmegenThe Netherlands
- Osteo-Pharma BV, OssThe Netherlands
| |
Collapse
|
21
|
McCreery KP, Calve S, Neu CP. Ontogeny informs regeneration: explant models to investigate the role of the extracellular matrix in cartilage tissue assembly and development. Connect Tissue Res 2020; 61:278-291. [PMID: 32186210 PMCID: PMC7190409 DOI: 10.1080/03008207.2019.1698556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/22/2019] [Indexed: 02/03/2023]
Abstract
Osteoarthritis (OA) is typically managed in late stages by replacement of the articular cartilage surface with a prosthesis as an effective, though undesirable outcome. As an alternative, hydrogel implants or growth factor treatments are currently of great interest in the tissue engineering community, and scaffold materials are often designed to emulate the mechanical and chemical composition of mature extracellular matrix (ECM) tissue. However, scaffolds frequently fail to capture the structure and organization of cartilage. Additionally, many current scaffold designs do not mimic processes by which structurally sound cartilage is formed during musculoskeletal development. The objective of this review is to highlight methods that investigate cartilage ontogenesis with native and model systems in the context of regenerative medicine. Specific emphasis is placed on the use of cartilage explant cultures that provide a physiologically relevant microenvironment to study tissue assembly and development. Ex vivo cartilage has proven to be a cost-effective and accessible model system that allows researchers to control the culture conditions and stimuli and perform proteomics and imaging studies that are not easily possible using in vivo experiments, while preserving native cell-matrix interactions. We anticipate our review will promote a developmental biology approach using explanted tissues to guide cartilage tissue engineering and inform new treatment methods for OA and joint damage.
Collapse
Affiliation(s)
| | - Sarah Calve
- Department of Mechanical Engineering, University of Colorado, Boulder, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, USA
| | - Corey P. Neu
- Department of Mechanical Engineering, University of Colorado, Boulder, USA
| |
Collapse
|
22
|
Near Infrared Spectroscopy Enables Differentiation of Mechanically and Enzymatically Induced Cartilage Injuries. Ann Biomed Eng 2020; 48:2343-2353. [PMID: 32300956 PMCID: PMC7452885 DOI: 10.1007/s10439-020-02506-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/02/2020] [Indexed: 01/29/2023]
Abstract
This study evaluates the feasibility of near infrared (NIR) spectroscopy to distinguish between different cartilage injury types associated with post-traumatic osteoarthritis and idiopathic osteoarthritis (OA) induced by mechanical and enzymatic damages. Bovine osteochondral samples (n = 72) were subjected to mechanical (n = 24) and enzymatic (n = 36) damage; NIR spectral measurements were acquired from each sample before and after damage, and from a separate control group (n = 12). Biomechanical measurements were then conducted to determine the functional integrity of the samples. NIR spectral variations resulting from different damage types were investigated and the samples classified using partial least squares discriminant analysis (PLS-DA). Partial least squares regression (PLSR) was then employed to investigate the relationship between the NIR spectra and biomechanical properties of the samples. Results of the study demonstrate that substantial spectral changes occur in the region of 1700–2200 nm due to tissue damages, while differences between enzymatically and mechanically induced damages can be observed mainly in the region of 1780–1810 nm. We conclude that NIR spectroscopy, combined with multivariate analysis, is capable of discriminating between cartilage injuries that mimic idiopathic OA and traumatic injuries based on specific spectral features. This information could be useful in determining the optimal treatment strategy during cartilage repair in arthroscopy.
Collapse
|
23
|
Vainieri ML, Lolli A, Kops N, D'Atri D, Eglin D, Yayon A, Alini M, Grad S, Sivasubramaniyan K, van Osch GJVM. Evaluation of biomimetic hyaluronic-based hydrogels with enhanced endogenous cell recruitment and cartilage matrix formation. Acta Biomater 2020; 101:293-303. [PMID: 31726249 DOI: 10.1016/j.actbio.2019.11.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/17/2023]
Abstract
Biomaterials play a pivotal role in cell-free cartilage repair approaches, where cells must migrate through the scaffold, fill the defect, and then proliferate and differentiate facilitating tissue remodeling. Here we used multiple assays to test the influence of chemokines and growth factors on cell migration and cartilage repair in two different hyaluronan (HA)-based hydrogels. We first investigated bone marrow Mesenchymal Stromal Cells (BMSC) migration in vitro, in response to different concentrations of platelet-derived growth factor-BB (PDGF-BB), chemokine ligand 5 (CCL5/RANTES) and stromal cell-derived factor 1 (SDF-1), using a 3D spheroid-based assay. PDGF-BB was selected as most favourable chemotactic agent, and MSC migration was assessed in the context of physical impediment to cell recruitment by testing Fibrin-HA and HA-Tyramine hydrogels of different cross-linking densities. Supplementation of PDGF-BB stimulated progressive migration of MSC through the gels over time. We then investigated in situ cell migration into the hydrogels with and without PDGF-BB, using a cartilage-bone explant model implanted subcutaneously in athymic mice. In vivo studies show that when placed into an osteochondral defect, both hydrogels supported endogenous cell infiltration and provided an amenable microenvironment for cartilage production. These processes were best supported in Fibrin-HA hydrogel in the absence of PDGF-BB. This study used an advanced preclinical testing platform to select an appropriate microenvironment provided by implanted hydrogels, demonstrating that HA-based hydrogels can promote the initial and critical step of endogenous cell recruitment and circumvent some of the clinical challenges in cartilage tissue repair. STATEMENT OF SIGNIFICANCE: The challenge of articular cartilage repair arises from its complex structure and architecture, which confers the unique mechanical behavior of the extracellular matrix. The aim of our research is to identify biomaterials for implants that can support migration of endogenous stem and progenitor cell populations from cartilage and bone tissue, in order to permanently replace damaged cartilage with the original hyaline structure. Here, we present an in vitro 3D spheroid-based migration assay and an osteochondral defect model, which provide the opportunity to assess biomaterials and biomolecules, and to get stronger experimental evidence of the not well-characterized dynamic process of endogenous cells colonization in an osteochondral defect. Furthermore, the delicate step of early cell migration into biomaterials towards functional tissue engineering is reproduced. These tests can be used for pre-clinical testing of newly developed material designs in the field of scaffold engineering.
Collapse
Affiliation(s)
- M L Vainieri
- AO Research Institute Davos, Davos Platz, Switzerland; Department of Orthopeadics, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands.
| | - A Lolli
- Department of Orthopeadics, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands.
| | - N Kops
- Department of Orthopeadics, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands.
| | - D D'Atri
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| | - D Eglin
- AO Research Institute Davos, Davos Platz, Switzerland.
| | - A Yayon
- ProCore Ltd., Weizmann Science Park, 7 Golda Meir St., Ness Ziona 70400, Israel.
| | - M Alini
- AO Research Institute Davos, Davos Platz, Switzerland.
| | - S Grad
- AO Research Institute Davos, Davos Platz, Switzerland.
| | - K Sivasubramaniyan
- Department of Orthopeadics, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands.
| | - G J V M van Osch
- Department of Orthopeadics, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands; Department of Otorhinolaryngology, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands.
| |
Collapse
|
24
|
Klüter T, Hassan R, Rasch A, Naujokat H, Wang F, Behrendt P, Lippross S, Gerdesmeyer L, Eglin D, Seekamp A, Fuchs S. An Ex Vivo Bone Defect Model to Evaluate Bone Substitutes and Associated Bone Regeneration Processes. Tissue Eng Part C Methods 2020; 26:56-65. [DOI: 10.1089/ten.tec.2019.0274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Tim Klüter
- Department of Trauma and Orthopedic Surgery, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Rywan Hassan
- Department of Trauma and Orthopedic Surgery, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Alexander Rasch
- Department of Trauma and Orthopedic Surgery, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Hendrik Naujokat
- Department of Oral and Maxillofacial Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Fanlu Wang
- Department of Trauma and Orthopedic Surgery, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Peter Behrendt
- Department of Trauma and Orthopedic Surgery, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Sebastian Lippross
- Department of Trauma and Orthopedic Surgery, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ludger Gerdesmeyer
- Department of Trauma and Orthopedic Surgery, Section for Oncological and Rheumatological Orthopedics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - David Eglin
- AO Research Institute Davos, Davos, Switzerland
| | - Andreas Seekamp
- Department of Trauma and Orthopedic Surgery, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Sabine Fuchs
- Department of Trauma and Orthopedic Surgery, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
25
|
Comparison of monosodium iodoacetate model of osteoarthritis between in-vivo and ex-vivo osteochondral unit in rabbits. J Clin Orthop Trauma 2019; 10:S1-S2. [PMID: 31695255 PMCID: PMC6823658 DOI: 10.1016/j.jcot.2018.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 11/23/2022] Open
|
26
|
Huang MJ, Zhao JY, Xu JJ, Li J, Zhuang YF, Zhang XL. lncRNA ADAMTS9-AS2 Controls Human Mesenchymal Stem Cell Chondrogenic Differentiation and Functions as a ceRNA. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:533-545. [PMID: 31671346 PMCID: PMC6838486 DOI: 10.1016/j.omtn.2019.08.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/17/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as key regulators of cell differentiation and development. However, potential roles for lncRNAs in chondrogenic differentiation have remained poorly understood. Here we identify lncRNA ADAMTS9 antisense RNA 2, ADAMTS9-AS2, which controls the chondrogenic differentiation by acting as a competing endogenous RNA (ceRNA) in human mesenchymal stem cells (hMSCs). We screen out ADAMTS9-AS2 of undifferentiated and differentiated cells during chondrogenic differentiation by microarrays. Suppression or overexpression of lncRNA ADAMTS9-AS2 correlates with inhibition and promotion of hMSC chondrogenic differentiation, respectively. We find that ADAMTS9-AS2 can sponge miR-942-5p to regulate the expression of Scrg1, a transcription factor promoting chondrogenic gene expression. Finally, we confirm the function of ADAMTS9-AS2 to cartilage repair in the absence of transforming growth factor β (TGF-β) in vivo. In conclusion, ADAMTS9-AS2 plays an important role in chondrogenic differentiation as a ceRNA, so that it can be regarded as a therapy target for cartilage repair.
Collapse
Affiliation(s)
- Ming-Jian Huang
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jing-Yu Zhao
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jia-Jia Xu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Jing Li
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Yi-Fu Zhuang
- Department of Orthopedic Surgery, Shanghai Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 201999, China
| | - Xiao-Ling Zhang
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
27
|
Remodeling of Human Osteochondral Defects via rAAV-Mediated Co-Overexpression of TGF-β and IGF-I from Implanted Human Bone Marrow-Derived Mesenchymal Stromal Cells. J Clin Med 2019; 8:jcm8091326. [PMID: 31466339 PMCID: PMC6781264 DOI: 10.3390/jcm8091326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/01/2022] Open
Abstract
The application of chondrogenic gene sequences to human bone marrow-derived mesenchymal stromal cells (hMSCs) is an attractive strategy to activate the reparative activities of these cells as a means to enhance the processes of cartilage repair using indirect cell transplantation procedures that may improve the repopulation of cartilage lesions. In the present study, we examined the feasibility of co-delivering the highly competent transforming growth factor beta (TGF-β) with the insulin-like growth factor I (IGF-I) in hMSCs via recombinant adeno-associated virus (rAAV) vector-mediated gene transfer prior to implantation in a human model of osteochondral defect (OCD) ex vivo that provides a microenvironment similar to that of focal cartilage lesions. The successful co-overexpression of rAAV TGF-β/IGF-I in implanted hMSCs promoted the durable remodeling of tissue injury in human OCDs over a prolonged period of time (21 days) relative to individual gene transfer and the control (reporter lacZ gene) treatment, with enhanced levels of cell proliferation and matrix deposition (proteoglycans, type-II collagen) both in the lesions and at a distance, while hypertrophic, osteogenic, and catabolic processes could be advantageously delayed. These findings demonstrate the value of indirect, progenitor cell-based combined rAAV gene therapy to treat human focal cartilage defects in a natural environment as a basis for future clinical applications.
Collapse
|
28
|
Lolli A, Sivasubramaniyan K, Vainieri ML, Oieni J, Kops N, Yayon A, van Osch GJVM. Hydrogel-based delivery of antimiR-221 enhances cartilage regeneration by endogenous cells. J Control Release 2019; 309:220-230. [PMID: 31369767 DOI: 10.1016/j.jconrel.2019.07.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 06/15/2019] [Accepted: 07/28/2019] [Indexed: 02/06/2023]
Abstract
Articular cartilage is frequently injured by trauma or osteoarthritis, with limited and inadequate treatment options. We investigated a new strategy based on hydrogel-mediated delivery of a locked nucleic acid microRNA inhibitor targeting miR-221 (antimiR-221) to guide in situ cartilage repair by endogenous cells. First, we showed that transfection of antimiR-221 into human bone marrow-derived mesenchymal stromal cells (hMSCs) blocked miR-221 expression and enhanced chondrogenesis in vitro. Next, we loaded a fibrin/hyaluronan (FB/HA) hydrogel with antimiR-221 in combination or not with lipofectamine carrier. FB/HA strongly retained functional antimiR-221 over 14 days of in vitro culture, and provided a supportive environment for cell transfection, as validated by flow cytometry and qRT-PCR analysis. Seeding of hMSCs on the surface of antimiR-221 loaded FB/HA led to invasion of the hydrogel and miR-221 knockdown in situ within 7 days. Overall, the use of lipofectamine enhanced the potency of the system, with increased antimiR-221 retention and miR-221 silencing in infiltrating cells. Finally, FB/HA hydrogels were used to fill defects in osteochondral biopsies that were implanted subcutaneously in mice. FB/HA loaded with antimiR-221/lipofectamine significantly enhanced cartilage repair by endogenous cells, demonstrating the feasibility of our approach and the need to achieve highly effective in situ transfection. Our study provides new evidence on the treatment of focal cartilage injuries using controlled biomaterial-mediated delivery of antimicroRNA for in situ guided regeneration.
Collapse
Affiliation(s)
- Andrea Lolli
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | | - Maria L Vainieri
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; AO Research Institute, Davos, Switzerland
| | - Jacopo Oieni
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nicole Kops
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Avner Yayon
- ProCore Ltd., Weizmann Science Park, Nes Ziona, Israel
| | - Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
29
|
Lehmann J, Nürnberger S, Narcisi R, Stok KS, van der Eerden BCJ, Koevoet WJLM, Kops N, Ten Berge D, van Osch GJ. Recellularization of auricular cartilage via elastase-generated channels. Biofabrication 2019; 11:035012. [PMID: 30921774 DOI: 10.1088/1758-5090/ab1436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Decellularized tissue matrices are promising substrates for tissue generation by stem cells to replace poorly regenerating tissues such as cartilage. However, the dense matrix of decellularized cartilage impedes colonisation by stem cells. Here, we show that digestion of elastin fibre bundles traversing auricular cartilage creates channels through which cells can migrate into the matrix. Human chondrocytes and bone marrow-derived mesenchymal stromal cells efficiently colonise elastin-treated scaffolds through these channels, restoring a glycosaminoglycan-rich matrix and improving mechanical properties while maintaining size and shape of the restored tissue. The scaffolds are also rapidly colonised by endogenous cartilage-forming cells in a subcutaneously implanted osteochondral biopsy model. Creating channels for cells in tissue matrices may be a broadly applicable strategy for recellularization and restoration of tissue function.
Collapse
Affiliation(s)
- J Lehmann
- Department of Otorhinolaryngology and Head and Neck Surgery Erasmus MC, Rotterdam, The Netherlands. Department of Cell Biology Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Piluso S, Li Y, Abinzano F, Levato R, Moreira Teixeira L, Karperien M, Leijten J, van Weeren R, Malda J. Mimicking the Articular Joint with In Vitro Models. Trends Biotechnol 2019; 37:1063-1077. [PMID: 31000204 DOI: 10.1016/j.tibtech.2019.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022]
Abstract
Treating joint diseases remains a significant clinical challenge. Conventional in vitro cultures and animal models have been helpful, but suffer from limited predictive power for the human response. Advanced models are therefore required to mimic the complex biological interactions within the human joint. However, the intricate structure of the joint microenvironment and the complex nature of joint diseases have challenged the development of in vitro models that can faithfully mimic the in vivo physiological and pathological environments. In this review, we discuss the current in vitro models of the joint and the progress achieved in the development of novel and potentially more predictive models, and highlight the application of new technologies to accurately emulate the articular joint.
Collapse
Affiliation(s)
- Susanna Piluso
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Yang Li
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Florencia Abinzano
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Liliana Moreira Teixeira
- Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - René van Weeren
- Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
31
|
Boushell MK, Mosher CZ, Suri GK, Doty SB, Strauss EJ, Hunziker EB, Lu HH. Polymeric mesh and insulin-like growth factor 1 delivery enhance cell homing and graft-cartilage integration. Ann N Y Acad Sci 2019; 1442:138-152. [PMID: 30985969 PMCID: PMC7596880 DOI: 10.1111/nyas.14054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 01/05/2023]
Abstract
Cartilage injury, such as full-thickness lesions, predisposes patients to the premature development of osteoarthritis, a degenerative joint disease. While surgical management of cartilage lesions has improved, long-term clinical efficacy has stagnated, owing to the lack of hyaline cartilage regeneration and inadequate graft-host integration. This study tests the hypothesis that integration of cartilage grafts with native cartilage can be improved by enhancing the migration of chondrocytes across the graft-host interface via the release of chemotactic factor from a degradable polymeric mesh. To this end, a polylactide-co-glycolide/poly-ε-caprolactone mesh was designed to localize the delivery of insulin-like growth factor 1 (IGF-1), a well-established chondrocyte attractant. The release of IGF-1 (100 ng/mg) enhanced cell migration from cartilage explants, and the mesh served as critical structural support for cell adhesion, growth, and production of a cartilaginous matrix in vitro, which resulted in increased integration strength compared with mesh-free repair. Further, this neocartilage matrix was structurally contiguous with native and grafted cartilage when tested in an osteochondral explant model in vivo. These results demonstrate that this combined approach of a cell homing factor and supportive matrix will promote cell-mediated integrative cartilage repair and improve clinical outcomes of cartilage grafts in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Margaret K. Boushell
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | | | - Gurbani K. Suri
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - Stephen B. Doty
- Analytical Microscopy Laboratory, Hospital for Special Surgery, New York, New York
| | - Eric J. Strauss
- Department of Orthopaedic Surgery, NYU Langone Medical Center, New York, New York
| | - Ernst B. Hunziker
- Department of BioMedical Research, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Helen H. Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
32
|
Walter SG, Ossendorff R, Schildberg FA. Articular cartilage regeneration and tissue engineering models: a systematic review. Arch Orthop Trauma Surg 2019; 139:305-316. [PMID: 30382366 DOI: 10.1007/s00402-018-3057-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Cartilage regeneration and restoration is a major topic in orthopedic research as cartilaginous degeneration and damage is associated with osteoarthritis and joint destruction. This systematic review aims to summarize current research strategies in cartilage regeneration research. MATERIALS AND METHODS A Pubmed search for models investigating single-site cartilage defects as well as chondrogenesis was conducted and articles were evaluated for content by title and abstract. Finally, only manuscripts were included, which report new models or approaches of cartilage regeneration. RESULTS The search resulted in 2217 studies, 200 of which were eligible for inclusion in this review. The identified manuscripts consisted of a large spectrum of research approaches spanning from cell culture to tissue engineering and transplantation as well as sophisticated computational modeling. CONCLUSIONS In the past three decades, knowledge about articular cartilage and its defects has multiplied in clinical and experimental settings and the respective body of research literature has grown significantly. However, current strategies for articular cartilage repair have not yet succeeded to replicate the structure and function of innate articular cartilage, which makes it even more important to understand the current strategies and their impact. Therefore, the purpose of this review was to globally summarize experimental strategies investigating cartilage regeneration in vitro as well as in vivo. This will allow for better referencing when designing new models or strategies and potentially improve research translation from bench to bedside.
Collapse
Affiliation(s)
- Sebastian G Walter
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Robert Ossendorff
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| |
Collapse
|
33
|
Duchi S, Doyle S, Eekel T, D O'Connell C, Augustine C, Choong P, Onofrillo C, Di Bella C. Protocols for Culturing and Imaging a Human Ex Vivo Osteochondral Model for Cartilage Biomanufacturing Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E640. [PMID: 30791632 PMCID: PMC6416585 DOI: 10.3390/ma12040640] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/01/2023]
Abstract
Cartilage defects and diseases remain major clinical issues in orthopaedics. Biomanufacturing is now a tangible option for the delivery of bioscaffolds capable of regenerating the deficient cartilage tissue. However, several limitations of in vitro and experimental animal models pose serious challenges to the translation of preclinical findings into clinical practice. Ex vivo models are of great value for translating in vitro tissue engineered approaches into clinically relevant conditions. Our aim is to obtain a viable human osteochondral (OC) model to test hydrogel-based materials for cartilage repair. Here we describe a detailed step-by-step framework for the generation of human OC plugs, their culture in a perfusion device and the processing procedures for histological and advanced microscopy imaging. Our ex vivo OC model fulfils the following requirements: the model is metabolically stable for a relevant culture period of 4 weeks in a perfusion bioreactor, the processing procedures allowed for the analysis of 3 different tissues or materials (cartilage, bone and hydrogel) without compromising their integrity. We determined a protocol and the settings for a non-linear microscopy technique on label free sections. Furthermore, we established a clearing protocol to perform light sheet-based observations on the cartilage layer without the need for tedious and destructive histological procedures. Finally, we showed that our OC system is a clinically relevant in terms of cartilage regeneration potential. In conclusion, this OC model represents a valuable preclinical ex vivo tool for studying cartilage therapies, such as hydrogel-based bioscaffolds, and we envision it will reduce the number of animals needed for in vivo testing.
Collapse
Affiliation(s)
- Serena Duchi
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
| | - Stephanie Doyle
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
- School of Engineering, Discipline of Electrical and Biomedical Engineering, RMIT University, 124 La Trobe Street, 3000 Melbourne, Australia.
| | - Timon Eekel
- University of Utrecht, Domplein 29, 3512 JE Utrecht, The Netherlands.
| | - Cathal D O'Connell
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
| | - Cheryl Augustine
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
| | - Peter Choong
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
- Department of Orthopaedics, St Vincent's Hospital, 41 Victoria Parade, 3065 Fitzroy, Australia.
| | - Carmine Onofrillo
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
| | - Claudia Di Bella
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
- Department of Orthopaedics, St Vincent's Hospital, 41 Victoria Parade, 3065 Fitzroy, Australia.
| |
Collapse
|
34
|
Vainieri M, Wahl D, Alini M, van Osch G, Grad S. Mechanically stimulated osteochondral organ culture for evaluation of biomaterials in cartilage repair studies. Acta Biomater 2018; 81:256-266. [PMID: 30273741 DOI: 10.1016/j.actbio.2018.09.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/15/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
Surgical procedures such as microfracture or autologous chondrocyte implantation have been used to treat articular cartilage lesions; however, repair often fails in terms of matrix organization and mechanical behaviour. Advanced biomaterials and tissue engineered constructs have been developed to improve cartilage repair; nevertheless, their clinical translation has been hampered by the lack of reliable in vitro models suitable for pre-clinical screening of new implants and compounds. In this study, an osteochondral defect model in a bioreactor that mimics the multi-axial motion of an articulating joint, was developed. Osteochondral explants were obtained from bovine stifle joints, and cartilage defects of 4 mm diameter were created. The explants were used as an interface against a ceramic ball applying dynamic compressive and shear loading. Osteochondral defects were filled with chondrocytes-seeded fibrin-polyurethane constructs and subjected to mechanical stimulation. Cartilage viability, proteoglycan accumulation and gene expression of seeded chondrocytes were compared to free swelling controls. Cells within both cartilage and bone remained viable throughout the 10-day culture period. Loading did not wear the cartilage, as indicated by histological evaluation and glycosaminoglycan release. The gene expression of seeded chondrocytes indicated a chondrogenic response to the mechanical stimulation. Proteoglycan 4 and cartilage oligomeric matrix protein were markedly increased, while mRNA ratios of collagen type II to type I and aggrecan to versican were also enhanced. This mechanically stimulated osteochondral defect culture model provides a viable microenvironment and will be a useful pre-clinical tool to screen new biomaterials and biological regenerative therapies under relevant complex mechanical stimuli. STATEMENT OF SIGNIFICANCE: Articular cartilage lesions have a poor healing capacity and reflect one of the most challenging problems in orthopedic clinical practice. The aim of current research is to develop a testing system to assess biomaterials for implants, that can permanently replace damaged cartilage with the original hyaline structure and can withstand the mechanical forces long term. Here, we present an osteochondral ex vivo culture model within a cartilage bioreactor, which mimics the complex motion of an articulating joint in vivo. The implementation of mechanical forces is essential for pre-clinical testing of novel technologies in the field of cartilage repair, biomaterial engineering and regenerative medicine. Our model provides a unique opportunity to investigate healing of articular cartilage defects in a physiological joint-like environment.
Collapse
|
35
|
Maglio M, Tschon M, Sicuro L, Lolli R, Fini M. Osteochondral tissue cultures: Between limits and sparks, the next step for advanced in vitro models. J Cell Physiol 2018; 234:5420-5435. [DOI: 10.1002/jcp.27457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/29/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Melania Maglio
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department IRCCS Rizzoli Orthopaedic Institute Bologna Italy
| | - Matilde Tschon
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department IRCCS Rizzoli Orthopaedic Institute Bologna Italy
| | - Laura Sicuro
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department IRCCS Rizzoli Orthopaedic Institute Bologna Italy
| | - Roberta Lolli
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department IRCCS Rizzoli Orthopaedic Institute Bologna Italy
| | - Milena Fini
- Laboratory of Biomechanics and Technology Innovation IRCCS IRCCS Rizzoli Orthopaedic Institute Bologna Italy
| |
Collapse
|
36
|
Yeung P, Zhang W, Wang X, Yan C, Chan B. A human osteoarthritis osteochondral organ culture model for cartilage tissue engineering. Biomaterials 2018; 162:1-21. [DOI: 10.1016/j.biomaterials.2018.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/12/2022]
|
37
|
Peroglio M, Gaspar D, Zeugolis DI, Alini M. Relevance of bioreactors and whole tissue cultures for the translation of new therapies to humans. J Orthop Res 2018; 36:10-21. [PMID: 28718947 DOI: 10.1002/jor.23655] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/30/2017] [Indexed: 02/04/2023]
Abstract
The purpose of this review is to provide a brief overview of bioreactor-based culture systems as alternatives to conventional two- and three-dimensional counterparts. The role, challenges, and future aspirations of bioreactors in the musculoskeletal field (e.g., cartilage, intervertebral disc, tendon, and bone) are discussed. Bioreactors, by recapitulating physiological processes, can be used effectively as part of the initial in vitro screening, reducing that way the number of animal required for preclinical assessment, complying with the 3R principles and, in most cases, allowing working with human tissues. The clinical significance of bioreactors is that, by providing more physiologically relevant conditions to customarily used two- and three-dimensional cultures, they hold the potential to provide a testing platform that is more predictable of a whole tissue response, thereby facilitating the screening of treatments before the initiation of clinical trials. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:10-21, 2018.
Collapse
Affiliation(s)
- Marianna Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| |
Collapse
|
38
|
Bicho D, Pina S, Oliveira JM, Reis RL. In Vitro Mimetic Models for the Bone-Cartilage Interface Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:373-394. [PMID: 29736583 DOI: 10.1007/978-3-319-76735-2_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In embryonic development, pure cartilage structures are in the basis of bone-cartilage interfaces. Despite this fact, the mature bone and cartilage structures can vary greatly in composition and function. Nevertheless, they collaborate in the osteochondral region to create a smooth transition zone that supports the movements and forces resulting from the daily activities. In this sense, all the hierarchical organization is involved in the maintenance and reestablishment of the equilibrium in case of damage. Therefore, this interface has attracted a great deal of interest in order to understand the mechanisms of regeneration or disease progression in osteoarthritis. With that purpose, in vitro tissue models (either static or dynamic) have been studied. Static in vitro tissue models include monocultures, co-cultures, 3D cultures, and ex vivo cultures, mostly cultivated in flat surfaces, while dynamic models involve the use of bioreactors and microfluidic systems. The latter have emerged as alternatives to study the cellular interactions in a more authentic manner over some disadvantages of the static models. The current alternatives of in vitro mimetic models for bone-cartilage interface regeneration are overviewed and discussed herein.
Collapse
Affiliation(s)
- Diana Bicho
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Sandra Pina
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - J Miguel Oliveira
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rui L Reis
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
39
|
Abd El Raouf M, Wang X, Miusi S, Chai J, Mohamed AbdEl-Aal AB, Nefissa Helmy MM, Ghanaati S, Choukroun J, Choukroun E, Zhang Y, Miron RJ. Injectable-platelet rich fibrin using the low speed centrifugation concept improves cartilage regeneration when compared to platelet-rich plasma. Platelets 2017; 30:213-221. [DOI: 10.1080/09537104.2017.1401058] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mustafa Abd El Raouf
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Xuzhu Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Si Miusi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Chai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | | | | | - Shahram Ghanaati
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, Frankfurt Am Main, Germany
| | - Joseph Choukroun
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, Frankfurt Am Main, Germany
| | - Elisa Choukroun
- College of Dental Medicine, University of Nice, Nice, France
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Richard J Miron
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
40
|
Mouser VHM, Dautzenberg NMM, Levato R, van Rijen MHP, Dhert WJA, Malda J, Gawlitta D. Ex vivo model unravelling cell distribution effect in hydrogels for cartilage repair. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2017; 35:65-76. [PMID: 28884783 PMCID: PMC7116182 DOI: 10.14573/altex.1704171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/04/2017] [Indexed: 12/21/2022]
Abstract
The implantation of chondrocyte-laden hydrogels is a promising cartilage repair strategy. Chondrocytes can be spatially positioned in hydrogels and thus in defects, while current clinical cell therapies introduce chondrocytes in the defect depth. The main aim of this study was to evaluate the effect of spatial chondrocyte distribution on the reparative process. To reduce animal experiments, an ex vivo osteochondral plug model was used and evaluated. The role of the delivered and endogenous cells in the repair process was investigated. Full thickness cartilage defects were created in equine osteochondral plugs. Defects were filled with (A) chondrocytes at the bottom of the defect, covered with a cell-free hydrogel, (B) chondrocytes homogeneously encapsulated in a hydrogel, and (C, D) combinations of A and B with different cell densities. Plugs were cultured for up to 57 days, after which the cartilage and repair tissues were characterized and compared to baseline samples. Additionally, at day 21, the origin of cells in the repair tissue was evaluated. Best outcomes were obtained with conditions C and D, which resulted in well-integrated cartilage-like tissue that completely filled the defect, regardless of the initial cell density. A critical role of the spatial chondrocyte distribution in the repair process was observed. Moreover, the osteochondral plugs stimulated cartilage formation in the hydrogels when cultured in the defects. The resulting repair tissue originated from the delivered cells. These findings confirm the potential of the osteochondral plug model for the optimization of the composition of cartilage implants and for studying repair mechanisms.
Collapse
Affiliation(s)
- Vivian H M Mouser
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Noël M M Dautzenberg
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mattie H P van Rijen
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wouter J A Dhert
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
41
|
Abstract
Osteoarthritis (OA) is a degenerative joint condition characterized by painful cartilage lesions that impair joint mobility. Current treatments such as lavage, microfracture, and osteochondral implantation fail to integrate newly formed tissue with host tissues and establish a stable transition to subchondral bone. Similarly, tissue-engineered grafts that facilitate cartilage and bone regeneration are challenged by how to integrate the graft seamlessly with surrounding host cartilage and/or bone. This review centers on current approaches to promote cartilage graft integration. It begins with an overview of articular cartilage structure and function, as well as degenerative changes to this relationship attributed to aging, disease, and trauma. A discussion of the current progress in integrative cartilage repair follows, focusing on graft or scaffold design strategies targeting cartilage-cartilage and/or cartilage-bone integration. It is emphasized that integrative repair is required to ensure long-term success of the cartilage graft and preserve the integrity of the newly engineered articular cartilage. Studies involving the use of enzymes, choice of cell source, biomaterial selection, growth factor incorporation, and stratified versus gradient scaffolds are therefore highlighted. Moreover, models that accurately evaluate the ability of cartilage grafts to enhance tissue integrity and prevent ectopic calcification are also discussed. A summary and future directions section concludes the review.
Collapse
Affiliation(s)
- Margaret K Boushell
- a Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering , Columbia University , New York , NY , USA
| | - Clark T Hung
- b Cellular Engineering Laboratory , Department of Biomedical Engineering Columbia University , New York , NY , USA
| | - Ernst B Hunziker
- c Department of Orthopaedic Surgery & Department of Clinical Research, Center of Regenerative Medicine for Skeletal Tissues , University of Bern , Bern , Switzerland
| | - Eric J Strauss
- d Department of Orthopaedic Surgery, Langone Medical Center , New York University , New York , NY , USA
| | - Helen H Lu
- a Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering , Columbia University , New York , NY , USA
| |
Collapse
|
42
|
Schmutzer M, Aszodi A. Cell compaction influences the regenerative potential of passaged bovine articular chondrocytes in an ex vivo cartilage defect model. J Biosci Bioeng 2017; 123:512-522. [DOI: 10.1016/j.jbiosc.2016.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/01/2016] [Accepted: 11/05/2016] [Indexed: 12/11/2022]
|
43
|
Xia Y, Momot KI, Chen Z, Chen CT, Kahn D, Badar F. Introduction to Cartilage. BIOPHYSICS AND BIOCHEMISTRY OF CARTILAGE BY NMR AND MRI 2016. [DOI: 10.1039/9781782623663-00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cartilage is a supporting connective tissue that, together with the bone, forms the framework supporting the body as a whole. There are many distinct types of cartilage, which exhibit numerous similarities as well as differences. Among them, articular cartilage is the best known and the most studied type. Articular cartilage is the thin layer of connective tissue that covers the articulating ends of bones in synovial (diarthrodial) joints. It provides a smooth surface for joint movement and acts as a load-bearing medium that protects the bone and distributes stress. The intense interest in articular cartilage is motivated by the critical role its degradation plays in arthritis and related joint diseases, which are the number one cause of disability in humans. This chapter discusses the physical, chemical and cellular properties of cartilage that give the tissue its extraordinary load-bearing characteristics.
Collapse
Affiliation(s)
- Yang Xia
- Department of Physics and Center for Biomedical Research, Oakland University Rochester MI 48309 USA
| | - Konstantin I. Momot
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT) Brisbane Qld 4001 Australia
| | - Zhe Chen
- Department of Physics and Center for Biomedical Research, Oakland University Rochester MI 48309 USA
- Department of Radiology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine Shanghai 200025 China
| | - Christopher T. Chen
- Center for Mineral Metabolism and Clinical Research / Department of Orthopedic Surgery, University of Texas Southwestern Medical Center Dallas TX 75390 USA
| | - David Kahn
- Department of Physics and Center for Biomedical Research, Oakland University Rochester MI 48309 USA
| | - Farid Badar
- Department of Physics and Center for Biomedical Research, Oakland University Rochester MI 48309 USA
| |
Collapse
|
44
|
Bahmanpour S, Ghasemi M, Sadeghi-Naini M, Kashani IR. Effects of Platelet-Rich Plasma & Platelet-Rich Fibrin with and without Stromal Cell-Derived Factor-1 on Repairing Full-Thickness Cartilage Defects in Knees of Rabbits. IRANIAN JOURNAL OF MEDICAL SCIENCES 2016; 41:507-517. [PMID: 27853331 PMCID: PMC5106566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/30/2015] [Accepted: 10/18/2015] [Indexed: 11/01/2022]
Abstract
BACKGROUND The purpose of this study was to create biomaterial scaffolds like platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) containing stromal cell-derived factor-1 (SDF1) as a chemokine to induce hyaline cartilage regeneration of rabbit knee in a full thickness defect. METHODS We created a full thickness defect in the trochlear groove of thirty-six bilateral knees of eighteen mature male rabbits. The knees were randomly divided into six groups (group I: untreated control, group II: PRP, group III: PRF, group IV: Gelatin+SDF1, group V: PRP+SDF1, and group VI: PRF+SDF1). After four weeks, the tissue specimens were evaluated by macroscopic examination and histological grading, immunofluorescent staining for collagen type II, and analyzed for cartilage marker genes by real-time PCR. The data were compared using statistical methods (SPSS 20, Kruskal-Wallis test, Bonferroni post hoc test and P<0.05). RESULTS Macroscopic evaluations revealed that international cartilage repair society (ICRS) scores of the PRF+SDF1 group were higher than other groups. Microscopic analysis showed that the ICRS score of the PRP group was significantly lower than other groups. Immunofluorescent staining for collagen II demonstrated a remarkable distribution of type II collagen in the Gel+SDF1, PRP+SDF1 and PRF+SDF1 groups compared with other groups. Real-time PCR analysis revealed that mRNA expression of SOX9 and aggrecan were significantly greater in the PRF+SDF1, PRP+SDF1, Gel+SDF1 and PRF groups than the control group (P<0.05). CONCLUSION Our results indicate that implantation of PRF scaffold containing SDF1 led to the greatest evaluation scores of full-thickness lesions in rabbits.
Collapse
Affiliation(s)
- Soghra Bahmanpour
- Laboratory for Stem Cell Research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Ghasemi
- PhD Student in Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Iraj Ragerdi Kashani
- Department of Anatomical Sciences, School of Medicine, Tehran University of Medical sciences, Tehran, Iran
| |
Collapse
|
45
|
Rey-Rico A, Frisch J, Venkatesan JK, Schmitt G, Rial-Hermida I, Taboada P, Concheiro A, Madry H, Alvarez-Lorenzo C, Cucchiarini M. PEO-PPO-PEO Carriers for rAAV-Mediated Transduction of Human Articular Chondrocytes in Vitro and in a Human Osteochondral Defect Model. ACS APPLIED MATERIALS & INTERFACES 2016; 8:20600-20613. [PMID: 27404480 DOI: 10.1021/acsami.6b06509] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gene therapy is an attractive strategy for the durable treatment of human osteoarthritis (OA), a gradual, irreversible joint disease. Gene carriers based on the small human adeno-associated virus (AAV) exhibit major efficacy in modifying damaged human articular cartilage in situ over extended periods of time. Yet, clinical application of recombinant AAV (rAAV) vectors remains complicated by the presence of neutralizing antibodies against viral capsid elements in a majority of patients. The goal of this study was to evaluate the feasibility of delivering rAAV vectors to human OA chondrocytes in vitro and in an experimental model of osteochondral defect via polymeric micelles to protect gene transfer from experimental neutralization. Interaction of rAAV with micelles of linear (poloxamer PF68) or X-shaped (poloxamine T908) poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) copolymers (PEO-PPO-PEO micelles) was characterized by means of isothermal titration calorimetry. Micelle encapsulation allowed an increase in both the stability and bioactivity of rAAV vectors and promoted higher levels of safe transgene (lacZ) expression both in vitro and in experimental osteochondral defects compared with that of free vector treatment without detrimental effects on the biological activity of the cells or their phenotype. Remarkably, protection against antibody neutralization was also afforded when delivering rAAV via PEO-PPO-PEO micelles in all systems evaluated, especially when using T908. Altogether, these findings show the potential of PEO-PPO-PEO micelles as effective tools to improve current gene-based treatments for human OA.
Collapse
Affiliation(s)
- Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
| | - Janina Frisch
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
| | | | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
| | - Isabel Rial-Hermida
- Departamento de Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela , Santiago de Compostela, Spain
| | - Pablo Taboada
- Departamento de Física de la Materia Condensada, Facultad de Física, Universidade de Santiago de Compostela , Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela , Santiago de Compostela, Spain
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
- Department of Orthopaedics and Orthopaedic Surgery, Saarland University Medical Center , Homburg, Germany
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela , Santiago de Compostela, Spain
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
| |
Collapse
|
46
|
Lolli A, Narcisi R, Lambertini E, Penolazzi L, Angelozzi M, Kops N, Gasparini S, van Osch GJ, Piva R. Silencing of Antichondrogenic MicroRNA-221 in Human Mesenchymal Stem Cells Promotes Cartilage Repair In Vivo. Stem Cells 2016; 34:1801-11. [DOI: 10.1002/stem.2350] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Andrea Lolli
- Department of Biomedical and Specialty Surgical Sciences; University of Ferrara; Ferrara Italy
| | - Roberto Narcisi
- Department of Orthopaedics; Erasmus MC, University Medical Center; CN Rotterdam The Netherlands
| | - Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences; University of Ferrara; Ferrara Italy
| | - Letizia Penolazzi
- Department of Biomedical and Specialty Surgical Sciences; University of Ferrara; Ferrara Italy
| | - Marco Angelozzi
- Department of Biomedical and Specialty Surgical Sciences; University of Ferrara; Ferrara Italy
| | - Nicole Kops
- Department of Orthopaedics; Erasmus MC, University Medical Center; CN Rotterdam The Netherlands
| | - Simona Gasparini
- Department of Orthopaedics; Erasmus MC, University Medical Center; CN Rotterdam The Netherlands
| | - Gerjo J.V.M. van Osch
- Department of Orthopaedics; Erasmus MC, University Medical Center; CN Rotterdam The Netherlands
- Department of Otorhinolaryngology; Erasmus MC, University Medical Center; CN Rotterdam The Netherlands
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences; University of Ferrara; Ferrara Italy
| |
Collapse
|
47
|
Yang L, Lu W, Pang Y, Huang X, Wang Z, Qin A, Hu Q. Fabrication of a novel chitosan scaffold with asymmetric structure for guided tissue regeneration. RSC Adv 2016. [DOI: 10.1039/c6ra12370h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Asymmetric chitosan scaffold with a loose layer and a dense layer exhibited outstanding bone regenerative ability and appropriate degradability.
Collapse
Affiliation(s)
- Ling Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Wentao Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yichuan Pang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiaofei Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - An Qin
- Department of Orthopedics
- Shanghai Key Laboratory of Orthopedic Implants
- Shanghai Ninth People's Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
48
|
Jiang C, Shang J, Li Z, Qin A, Ouyang Z, Qu X, Li H, Tian B, Wang W, Wu C, Wang J, Dai M. Lanthanum Chloride Attenuates Osteoclast Formation and Function Via the Downregulation of Rankl-Induced Nf-κb and Nfatc1 Activities. J Cell Physiol 2015; 231:142-51. [PMID: 26060084 DOI: 10.1002/jcp.25065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 06/01/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Chuan Jiang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital; Shanghai JiaoTong University School of Medicine; Shanghai China
| | - Jiangyinzi Shang
- Department of Orthopaedics; The First Affiliated Hospital; Nanchang University; Nanchang Jiangxi Province China
| | - Zhe Li
- Department of Orthopaedics; The First Affiliated Hospital; Nanchang University; Nanchang Jiangxi Province China
| | - An Qin
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital; Shanghai JiaoTong University School of Medicine; Shanghai China
| | - Zhengxiao Ouyang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital; Shanghai JiaoTong University School of Medicine; Shanghai China
| | - Xinhua Qu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital; Shanghai JiaoTong University School of Medicine; Shanghai China
| | - Haowei Li
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital; Shanghai JiaoTong University School of Medicine; Shanghai China
| | - Bo Tian
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital; Shanghai JiaoTong University School of Medicine; Shanghai China
| | - Wengang Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital; Shanghai JiaoTong University School of Medicine; Shanghai China
| | - Chuanlong Wu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital; Shanghai JiaoTong University School of Medicine; Shanghai China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital; Shanghai JiaoTong University School of Medicine; Shanghai China
| | - Min Dai
- Department of Orthopaedics; The First Affiliated Hospital; Nanchang University; Nanchang Jiangxi Province China
| |
Collapse
|
49
|
Wardale J, Mullen L, Howard D, Ghose S, Rushton N. An ex vivo model using human osteoarthritic cartilage demonstrates the release of bioactive insulin-like growth factor-1 from a collagen-glycosaminoglycan scaffold. Cell Biochem Funct 2015; 33:277-84. [PMID: 26059711 PMCID: PMC4528234 DOI: 10.1002/cbf.3112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 01/04/2023]
Abstract
Biomimetic scaffolds hold great promise for therapeutic repair of cartilage, but although most scaffolds are tested with cells in vitro, there are very few ex vivo models (EVMs) where adult cartilage and scaffolds are co-cultured to optimize their interaction prior to in vivo studies. This study describes a simple, non-compressive method that is applicable to mammalian or human cartilage and provides a reasonable throughput of samples. Rings of full-depth articular cartilage slices were derived from human donors undergoing knee replacement for osteoarthritis and a 3 mm core of a collagen/glycosaminoglycan biomimetic scaffold (Tigenix, UK) inserted to create the EVM. Adult osteoarthritis chondrocytes were seeded into the scaffold and cultures maintained for up to 30 days. Ex vivo models were stable throughout experiments, and cells remained viable. Chondrocytes seeded into the EVM attached throughout the scaffold and in contact with the cartilage explants. Cell migration and deposition of extracellular matrix proteins in the scaffold was enhanced by growth factors particularly if the scaffold was preloaded with growth factors. This study demonstrates that the EVM represents a suitable model that has potential for testing a range of therapeutic parameters such as numbers/types of cell, growth factors or therapeutic drugs before progressing to costly pre-clinical trials. © 2015 The Authors. Cell Biochemistry and Function Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- J Wardale
- Orthopaedic Research Unit, University of Cambridge, Cambridge, UK
| | | | - D Howard
- Orthopaedic Research Unit, University of Cambridge, Cambridge, UK
| | | | - N Rushton
- Orthopaedic Research Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
50
|
Lin H, Lozito TP, Alexander PG, Gottardi R, Tuan RS. Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1β. Mol Pharm 2014; 11:2203-12. [PMID: 24830762 PMCID: PMC4086740 DOI: 10.1021/mp500136b] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Osteoarthritis (OA) is a chronic degenerative disease of the articular joint that involves both bone and cartilage degenerative changes. An engineered osteochondral tissue within physiological conditions will be of significant utility in understanding the pathogenesis of OA and testing the efficacy of potential disease-modifying OA drugs (DMOADs). In this study, a multichamber bioreactor was fabricated and fitted into a microfluidic base. When the osteochondral construct is inserted, two chambers are formed on either side of the construct (top, chondral; bottom, osseous) that is supplied by different medium streams. These medium conduits are critical to create tissue-specific microenvironments in which chondral and osseous tissues will develop and mature. Human bone marrow stem cell (hBMSCs)-derived constructs were fabricated in situ and cultured within the bioreactor and induced to undergo spatially defined chondrogenic and osteogenic differentiation for 4 weeks in tissue-specific media. We observed tissue specific gene expression and matrix production as well as a basophilic interface suggesting a developing tidemark. Introduction of interleukin-1β (IL-1β) to either the chondral or osseous medium stream induced stronger degradative responses locally as well as in the opposing tissue type. For example, IL-1β treatment of the osseous compartment resulted in a strong catabolic response in the chondral layer as indicated by increased matrix metalloproteinase (MMP) expression and activity, and tissue-specific gene expression. This induction was greater than that seen with IL-1β application to the chondral component directly, indicative of active biochemical communication between the two tissue layers and supporting the osteochondral nature of OA. The microtissue culture system developed here offers novel capabilities for investigating the physiology of osteochondral tissue and pathogenic mechanisms of OA and serving as a high-throughput platform to test potential DMOADS.
Collapse
Affiliation(s)
- Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15219, United States
| | | | | | | | | |
Collapse
|